xref: /linux/tools/perf/util/cpumap.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <api/fs/fs.h>
3 #include "cpumap.h"
4 #include "debug.h"
5 #include "event.h"
6 #include <assert.h>
7 #include <dirent.h>
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <linux/bitmap.h>
11 #include "asm/bug.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/zalloc.h>
15 
16 static struct perf_cpu max_cpu_num;
17 static struct perf_cpu max_present_cpu_num;
18 static int max_node_num;
19 /**
20  * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
21  * CPU number.
22  */
23 static int *cpunode_map;
24 
25 bool perf_record_cpu_map_data__test_bit(int i,
26 					const struct perf_record_cpu_map_data *data)
27 {
28 	int bit_word32 = i / 32;
29 	__u32 bit_mask32 = 1U << (i & 31);
30 	int bit_word64 = i / 64;
31 	__u64 bit_mask64 = ((__u64)1) << (i & 63);
32 
33 	return (data->mask32_data.long_size == 4)
34 		? (bit_word32 < data->mask32_data.nr) &&
35 		(data->mask32_data.mask[bit_word32] & bit_mask32) != 0
36 		: (bit_word64 < data->mask64_data.nr) &&
37 		(data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
38 }
39 
40 /* Read ith mask value from data into the given 64-bit sized bitmap */
41 static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
42 						    int i, unsigned long *bitmap)
43 {
44 #if __SIZEOF_LONG__ == 8
45 	if (data->mask32_data.long_size == 4)
46 		bitmap[0] = data->mask32_data.mask[i];
47 	else
48 		bitmap[0] = data->mask64_data.mask[i];
49 #else
50 	if (data->mask32_data.long_size == 4) {
51 		bitmap[0] = data->mask32_data.mask[i];
52 		bitmap[1] = 0;
53 	} else {
54 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
55 		bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
56 		bitmap[1] = (unsigned long)data->mask64_data.mask[i];
57 #else
58 		bitmap[0] = (unsigned long)data->mask64_data.mask[i];
59 		bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
60 #endif
61 	}
62 #endif
63 }
64 static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
65 {
66 	struct perf_cpu_map *map;
67 
68 	map = perf_cpu_map__empty_new(data->cpus_data.nr);
69 	if (map) {
70 		unsigned i;
71 
72 		for (i = 0; i < data->cpus_data.nr; i++) {
73 			/*
74 			 * Special treatment for -1, which is not real cpu number,
75 			 * and we need to use (int) -1 to initialize map[i],
76 			 * otherwise it would become 65535.
77 			 */
78 			if (data->cpus_data.cpu[i] == (u16) -1)
79 				map->map[i].cpu = -1;
80 			else
81 				map->map[i].cpu = (int) data->cpus_data.cpu[i];
82 		}
83 	}
84 
85 	return map;
86 }
87 
88 static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
89 {
90 	DECLARE_BITMAP(local_copy, 64);
91 	int weight = 0, mask_nr = data->mask32_data.nr;
92 	struct perf_cpu_map *map;
93 
94 	for (int i = 0; i < mask_nr; i++) {
95 		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
96 		weight += bitmap_weight(local_copy, 64);
97 	}
98 
99 	map = perf_cpu_map__empty_new(weight);
100 	if (!map)
101 		return NULL;
102 
103 	for (int i = 0, j = 0; i < mask_nr; i++) {
104 		int cpus_per_i = (i * data->mask32_data.long_size  * BITS_PER_BYTE);
105 		int cpu;
106 
107 		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
108 		for_each_set_bit(cpu, local_copy, 64)
109 			map->map[j++].cpu = cpu + cpus_per_i;
110 	}
111 	return map;
112 
113 }
114 
115 static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
116 {
117 	struct perf_cpu_map *map;
118 	unsigned int i = 0;
119 
120 	map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
121 				data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
122 	if (!map)
123 		return NULL;
124 
125 	if (data->range_cpu_data.any_cpu)
126 		map->map[i++].cpu = -1;
127 
128 	for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
129 	     i++, cpu++)
130 		map->map[i].cpu = cpu;
131 
132 	return map;
133 }
134 
135 struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
136 {
137 	switch (data->type) {
138 	case PERF_CPU_MAP__CPUS:
139 		return cpu_map__from_entries(data);
140 	case PERF_CPU_MAP__MASK:
141 		return cpu_map__from_mask(data);
142 	case PERF_CPU_MAP__RANGE_CPUS:
143 		return cpu_map__from_range(data);
144 	default:
145 		pr_err("cpu_map__new_data unknown type %d\n", data->type);
146 		return NULL;
147 	}
148 }
149 
150 size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
151 {
152 #define BUFSIZE 1024
153 	char buf[BUFSIZE];
154 
155 	cpu_map__snprint(map, buf, sizeof(buf));
156 	return fprintf(fp, "%s\n", buf);
157 #undef BUFSIZE
158 }
159 
160 struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
161 {
162 	struct perf_cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int) * nr);
163 
164 	if (cpus != NULL) {
165 		int i;
166 
167 		cpus->nr = nr;
168 		for (i = 0; i < nr; i++)
169 			cpus->map[i].cpu = -1;
170 
171 		refcount_set(&cpus->refcnt, 1);
172 	}
173 
174 	return cpus;
175 }
176 
177 struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
178 {
179 	struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
180 
181 	if (cpus != NULL) {
182 		int i;
183 
184 		cpus->nr = nr;
185 		for (i = 0; i < nr; i++)
186 			cpus->map[i] = aggr_cpu_id__empty();
187 
188 		refcount_set(&cpus->refcnt, 1);
189 	}
190 
191 	return cpus;
192 }
193 
194 static int cpu__get_topology_int(int cpu, const char *name, int *value)
195 {
196 	char path[PATH_MAX];
197 
198 	snprintf(path, PATH_MAX,
199 		"devices/system/cpu/cpu%d/topology/%s", cpu, name);
200 
201 	return sysfs__read_int(path, value);
202 }
203 
204 int cpu__get_socket_id(struct perf_cpu cpu)
205 {
206 	int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
207 	return ret ?: value;
208 }
209 
210 struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
211 {
212 	struct aggr_cpu_id id = aggr_cpu_id__empty();
213 
214 	id.socket = cpu__get_socket_id(cpu);
215 	return id;
216 }
217 
218 static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
219 {
220 	struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
221 	struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
222 
223 	if (a->node != b->node)
224 		return a->node - b->node;
225 	else if (a->socket != b->socket)
226 		return a->socket - b->socket;
227 	else if (a->die != b->die)
228 		return a->die - b->die;
229 	else if (a->core != b->core)
230 		return a->core - b->core;
231 	else
232 		return a->thread_idx - b->thread_idx;
233 }
234 
235 struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
236 				       aggr_cpu_id_get_t get_id,
237 				       void *data)
238 {
239 	int idx;
240 	struct perf_cpu cpu;
241 	struct cpu_aggr_map *c = cpu_aggr_map__empty_new(cpus->nr);
242 
243 	if (!c)
244 		return NULL;
245 
246 	/* Reset size as it may only be partially filled */
247 	c->nr = 0;
248 
249 	perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
250 		bool duplicate = false;
251 		struct aggr_cpu_id cpu_id = get_id(cpu, data);
252 
253 		for (int j = 0; j < c->nr; j++) {
254 			if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
255 				duplicate = true;
256 				break;
257 			}
258 		}
259 		if (!duplicate) {
260 			c->map[c->nr] = cpu_id;
261 			c->nr++;
262 		}
263 	}
264 	/* Trim. */
265 	if (c->nr != cpus->nr) {
266 		struct cpu_aggr_map *trimmed_c =
267 			realloc(c,
268 				sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
269 
270 		if (trimmed_c)
271 			c = trimmed_c;
272 	}
273 	/* ensure we process id in increasing order */
274 	qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
275 
276 	return c;
277 
278 }
279 
280 int cpu__get_die_id(struct perf_cpu cpu)
281 {
282 	int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
283 
284 	return ret ?: value;
285 }
286 
287 struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
288 {
289 	struct aggr_cpu_id id;
290 	int die;
291 
292 	die = cpu__get_die_id(cpu);
293 	/* There is no die_id on legacy system. */
294 	if (die == -1)
295 		die = 0;
296 
297 	/*
298 	 * die_id is relative to socket, so start
299 	 * with the socket ID and then add die to
300 	 * make a unique ID.
301 	 */
302 	id = aggr_cpu_id__socket(cpu, data);
303 	if (aggr_cpu_id__is_empty(&id))
304 		return id;
305 
306 	id.die = die;
307 	return id;
308 }
309 
310 int cpu__get_core_id(struct perf_cpu cpu)
311 {
312 	int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
313 	return ret ?: value;
314 }
315 
316 struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
317 {
318 	struct aggr_cpu_id id;
319 	int core = cpu__get_core_id(cpu);
320 
321 	/* aggr_cpu_id__die returns a struct with socket and die set. */
322 	id = aggr_cpu_id__die(cpu, data);
323 	if (aggr_cpu_id__is_empty(&id))
324 		return id;
325 
326 	/*
327 	 * core_id is relative to socket and die, we need a global id.
328 	 * So we combine the result from cpu_map__get_die with the core id
329 	 */
330 	id.core = core;
331 	return id;
332 
333 }
334 
335 struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
336 {
337 	struct aggr_cpu_id id;
338 
339 	/* aggr_cpu_id__core returns a struct with socket, die and core set. */
340 	id = aggr_cpu_id__core(cpu, data);
341 	if (aggr_cpu_id__is_empty(&id))
342 		return id;
343 
344 	id.cpu = cpu;
345 	return id;
346 
347 }
348 
349 struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
350 {
351 	struct aggr_cpu_id id = aggr_cpu_id__empty();
352 
353 	id.node = cpu__get_node(cpu);
354 	return id;
355 }
356 
357 /* setup simple routines to easily access node numbers given a cpu number */
358 static int get_max_num(char *path, int *max)
359 {
360 	size_t num;
361 	char *buf;
362 	int err = 0;
363 
364 	if (filename__read_str(path, &buf, &num))
365 		return -1;
366 
367 	buf[num] = '\0';
368 
369 	/* start on the right, to find highest node num */
370 	while (--num) {
371 		if ((buf[num] == ',') || (buf[num] == '-')) {
372 			num++;
373 			break;
374 		}
375 	}
376 	if (sscanf(&buf[num], "%d", max) < 1) {
377 		err = -1;
378 		goto out;
379 	}
380 
381 	/* convert from 0-based to 1-based */
382 	(*max)++;
383 
384 out:
385 	free(buf);
386 	return err;
387 }
388 
389 /* Determine highest possible cpu in the system for sparse allocation */
390 static void set_max_cpu_num(void)
391 {
392 	const char *mnt;
393 	char path[PATH_MAX];
394 	int ret = -1;
395 
396 	/* set up default */
397 	max_cpu_num.cpu = 4096;
398 	max_present_cpu_num.cpu = 4096;
399 
400 	mnt = sysfs__mountpoint();
401 	if (!mnt)
402 		goto out;
403 
404 	/* get the highest possible cpu number for a sparse allocation */
405 	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
406 	if (ret >= PATH_MAX) {
407 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
408 		goto out;
409 	}
410 
411 	ret = get_max_num(path, &max_cpu_num.cpu);
412 	if (ret)
413 		goto out;
414 
415 	/* get the highest present cpu number for a sparse allocation */
416 	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
417 	if (ret >= PATH_MAX) {
418 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
419 		goto out;
420 	}
421 
422 	ret = get_max_num(path, &max_present_cpu_num.cpu);
423 
424 out:
425 	if (ret)
426 		pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
427 }
428 
429 /* Determine highest possible node in the system for sparse allocation */
430 static void set_max_node_num(void)
431 {
432 	const char *mnt;
433 	char path[PATH_MAX];
434 	int ret = -1;
435 
436 	/* set up default */
437 	max_node_num = 8;
438 
439 	mnt = sysfs__mountpoint();
440 	if (!mnt)
441 		goto out;
442 
443 	/* get the highest possible cpu number for a sparse allocation */
444 	ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
445 	if (ret >= PATH_MAX) {
446 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
447 		goto out;
448 	}
449 
450 	ret = get_max_num(path, &max_node_num);
451 
452 out:
453 	if (ret)
454 		pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
455 }
456 
457 int cpu__max_node(void)
458 {
459 	if (unlikely(!max_node_num))
460 		set_max_node_num();
461 
462 	return max_node_num;
463 }
464 
465 struct perf_cpu cpu__max_cpu(void)
466 {
467 	if (unlikely(!max_cpu_num.cpu))
468 		set_max_cpu_num();
469 
470 	return max_cpu_num;
471 }
472 
473 struct perf_cpu cpu__max_present_cpu(void)
474 {
475 	if (unlikely(!max_present_cpu_num.cpu))
476 		set_max_cpu_num();
477 
478 	return max_present_cpu_num;
479 }
480 
481 
482 int cpu__get_node(struct perf_cpu cpu)
483 {
484 	if (unlikely(cpunode_map == NULL)) {
485 		pr_debug("cpu_map not initialized\n");
486 		return -1;
487 	}
488 
489 	return cpunode_map[cpu.cpu];
490 }
491 
492 static int init_cpunode_map(void)
493 {
494 	int i;
495 
496 	set_max_cpu_num();
497 	set_max_node_num();
498 
499 	cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
500 	if (!cpunode_map) {
501 		pr_err("%s: calloc failed\n", __func__);
502 		return -1;
503 	}
504 
505 	for (i = 0; i < max_cpu_num.cpu; i++)
506 		cpunode_map[i] = -1;
507 
508 	return 0;
509 }
510 
511 int cpu__setup_cpunode_map(void)
512 {
513 	struct dirent *dent1, *dent2;
514 	DIR *dir1, *dir2;
515 	unsigned int cpu, mem;
516 	char buf[PATH_MAX];
517 	char path[PATH_MAX];
518 	const char *mnt;
519 	int n;
520 
521 	/* initialize globals */
522 	if (init_cpunode_map())
523 		return -1;
524 
525 	mnt = sysfs__mountpoint();
526 	if (!mnt)
527 		return 0;
528 
529 	n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
530 	if (n >= PATH_MAX) {
531 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
532 		return -1;
533 	}
534 
535 	dir1 = opendir(path);
536 	if (!dir1)
537 		return 0;
538 
539 	/* walk tree and setup map */
540 	while ((dent1 = readdir(dir1)) != NULL) {
541 		if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
542 			continue;
543 
544 		n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
545 		if (n >= PATH_MAX) {
546 			pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
547 			continue;
548 		}
549 
550 		dir2 = opendir(buf);
551 		if (!dir2)
552 			continue;
553 		while ((dent2 = readdir(dir2)) != NULL) {
554 			if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
555 				continue;
556 			cpunode_map[cpu] = mem;
557 		}
558 		closedir(dir2);
559 	}
560 	closedir(dir1);
561 	return 0;
562 }
563 
564 size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
565 {
566 	int i, start = -1;
567 	bool first = true;
568 	size_t ret = 0;
569 
570 #define COMMA first ? "" : ","
571 
572 	for (i = 0; i < map->nr + 1; i++) {
573 		struct perf_cpu cpu = { .cpu = INT_MAX };
574 		bool last = i == map->nr;
575 
576 		if (!last)
577 			cpu = map->map[i];
578 
579 		if (start == -1) {
580 			start = i;
581 			if (last) {
582 				ret += snprintf(buf + ret, size - ret,
583 						"%s%d", COMMA,
584 						map->map[i].cpu);
585 			}
586 		} else if (((i - start) != (cpu.cpu - map->map[start].cpu)) || last) {
587 			int end = i - 1;
588 
589 			if (start == end) {
590 				ret += snprintf(buf + ret, size - ret,
591 						"%s%d", COMMA,
592 						map->map[start].cpu);
593 			} else {
594 				ret += snprintf(buf + ret, size - ret,
595 						"%s%d-%d", COMMA,
596 						map->map[start].cpu, map->map[end].cpu);
597 			}
598 			first = false;
599 			start = i;
600 		}
601 	}
602 
603 #undef COMMA
604 
605 	pr_debug2("cpumask list: %s\n", buf);
606 	return ret;
607 }
608 
609 static char hex_char(unsigned char val)
610 {
611 	if (val < 10)
612 		return val + '0';
613 	if (val < 16)
614 		return val - 10 + 'a';
615 	return '?';
616 }
617 
618 size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
619 {
620 	int i, cpu;
621 	char *ptr = buf;
622 	unsigned char *bitmap;
623 	struct perf_cpu last_cpu = perf_cpu_map__cpu(map, map->nr - 1);
624 
625 	if (buf == NULL)
626 		return 0;
627 
628 	bitmap = zalloc(last_cpu.cpu / 8 + 1);
629 	if (bitmap == NULL) {
630 		buf[0] = '\0';
631 		return 0;
632 	}
633 
634 	for (i = 0; i < map->nr; i++) {
635 		cpu = perf_cpu_map__cpu(map, i).cpu;
636 		bitmap[cpu / 8] |= 1 << (cpu % 8);
637 	}
638 
639 	for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
640 		unsigned char bits = bitmap[cpu / 8];
641 
642 		if (cpu % 8)
643 			bits >>= 4;
644 		else
645 			bits &= 0xf;
646 
647 		*ptr++ = hex_char(bits);
648 		if ((cpu % 32) == 0 && cpu > 0)
649 			*ptr++ = ',';
650 	}
651 	*ptr = '\0';
652 	free(bitmap);
653 
654 	buf[size - 1] = '\0';
655 	return ptr - buf;
656 }
657 
658 const struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
659 {
660 	static const struct perf_cpu_map *online = NULL;
661 
662 	if (!online)
663 		online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */
664 
665 	return online;
666 }
667 
668 bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
669 {
670 	return a->thread_idx == b->thread_idx &&
671 		a->node == b->node &&
672 		a->socket == b->socket &&
673 		a->die == b->die &&
674 		a->core == b->core &&
675 		a->cpu.cpu == b->cpu.cpu;
676 }
677 
678 bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
679 {
680 	return a->thread_idx == -1 &&
681 		a->node == -1 &&
682 		a->socket == -1 &&
683 		a->die == -1 &&
684 		a->core == -1 &&
685 		a->cpu.cpu == -1;
686 }
687 
688 struct aggr_cpu_id aggr_cpu_id__empty(void)
689 {
690 	struct aggr_cpu_id ret = {
691 		.thread_idx = -1,
692 		.node = -1,
693 		.socket = -1,
694 		.die = -1,
695 		.core = -1,
696 		.cpu = (struct perf_cpu){ .cpu = -1 },
697 	};
698 	return ret;
699 }
700