xref: /linux/tools/perf/util/hist.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "map.h"
8 #include "map_symbol.h"
9 #include "branch.h"
10 #include "mem-events.h"
11 #include "session.h"
12 #include "namespaces.h"
13 #include "cgroup.h"
14 #include "sort.h"
15 #include "units.h"
16 #include "evlist.h"
17 #include "evsel.h"
18 #include "annotate.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "thread.h"
22 #include "block-info.h"
23 #include "ui/progress.h"
24 #include <errno.h>
25 #include <math.h>
26 #include <inttypes.h>
27 #include <sys/param.h>
28 #include <linux/rbtree.h>
29 #include <linux/string.h>
30 #include <linux/time64.h>
31 #include <linux/zalloc.h>
32 
33 static bool hists__filter_entry_by_dso(struct hists *hists,
34 				       struct hist_entry *he);
35 static bool hists__filter_entry_by_thread(struct hists *hists,
36 					  struct hist_entry *he);
37 static bool hists__filter_entry_by_symbol(struct hists *hists,
38 					  struct hist_entry *he);
39 static bool hists__filter_entry_by_socket(struct hists *hists,
40 					  struct hist_entry *he);
41 
42 u16 hists__col_len(struct hists *hists, enum hist_column col)
43 {
44 	return hists->col_len[col];
45 }
46 
47 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
48 {
49 	hists->col_len[col] = len;
50 }
51 
52 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
53 {
54 	if (len > hists__col_len(hists, col)) {
55 		hists__set_col_len(hists, col, len);
56 		return true;
57 	}
58 	return false;
59 }
60 
61 void hists__reset_col_len(struct hists *hists)
62 {
63 	enum hist_column col;
64 
65 	for (col = 0; col < HISTC_NR_COLS; ++col)
66 		hists__set_col_len(hists, col, 0);
67 }
68 
69 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
70 {
71 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
72 
73 	if (hists__col_len(hists, dso) < unresolved_col_width &&
74 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
75 	    !symbol_conf.dso_list)
76 		hists__set_col_len(hists, dso, unresolved_col_width);
77 }
78 
79 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
80 {
81 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
82 	int symlen;
83 	u16 len;
84 
85 	if (h->block_info)
86 		return;
87 	/*
88 	 * +4 accounts for '[x] ' priv level info
89 	 * +2 accounts for 0x prefix on raw addresses
90 	 * +3 accounts for ' y ' symtab origin info
91 	 */
92 	if (h->ms.sym) {
93 		symlen = h->ms.sym->namelen + 4;
94 		if (verbose > 0)
95 			symlen += BITS_PER_LONG / 4 + 2 + 3;
96 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
97 	} else {
98 		symlen = unresolved_col_width + 4 + 2;
99 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
100 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
101 	}
102 
103 	len = thread__comm_len(h->thread);
104 	if (hists__new_col_len(hists, HISTC_COMM, len))
105 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
106 
107 	if (h->ms.map) {
108 		len = dso__name_len(h->ms.map->dso);
109 		hists__new_col_len(hists, HISTC_DSO, len);
110 	}
111 
112 	if (h->parent)
113 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
114 
115 	if (h->branch_info) {
116 		if (h->branch_info->from.ms.sym) {
117 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
118 			if (verbose > 0)
119 				symlen += BITS_PER_LONG / 4 + 2 + 3;
120 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
121 
122 			symlen = dso__name_len(h->branch_info->from.ms.map->dso);
123 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
124 		} else {
125 			symlen = unresolved_col_width + 4 + 2;
126 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
127 			hists__new_col_len(hists, HISTC_ADDR_FROM, symlen);
128 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
129 		}
130 
131 		if (h->branch_info->to.ms.sym) {
132 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
133 			if (verbose > 0)
134 				symlen += BITS_PER_LONG / 4 + 2 + 3;
135 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
136 
137 			symlen = dso__name_len(h->branch_info->to.ms.map->dso);
138 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
139 		} else {
140 			symlen = unresolved_col_width + 4 + 2;
141 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
142 			hists__new_col_len(hists, HISTC_ADDR_TO, symlen);
143 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
144 		}
145 
146 		if (h->branch_info->srcline_from)
147 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
148 					strlen(h->branch_info->srcline_from));
149 		if (h->branch_info->srcline_to)
150 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
151 					strlen(h->branch_info->srcline_to));
152 	}
153 
154 	if (h->mem_info) {
155 		if (h->mem_info->daddr.ms.sym) {
156 			symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4
157 			       + unresolved_col_width + 2;
158 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
159 					   symlen);
160 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
161 					   symlen + 1);
162 		} else {
163 			symlen = unresolved_col_width + 4 + 2;
164 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
165 					   symlen);
166 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
167 					   symlen);
168 		}
169 
170 		if (h->mem_info->iaddr.ms.sym) {
171 			symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4
172 			       + unresolved_col_width + 2;
173 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
174 					   symlen);
175 		} else {
176 			symlen = unresolved_col_width + 4 + 2;
177 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
178 					   symlen);
179 		}
180 
181 		if (h->mem_info->daddr.ms.map) {
182 			symlen = dso__name_len(h->mem_info->daddr.ms.map->dso);
183 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
184 					   symlen);
185 		} else {
186 			symlen = unresolved_col_width + 4 + 2;
187 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
188 		}
189 
190 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
191 				   unresolved_col_width + 4 + 2);
192 
193 		hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE,
194 				   unresolved_col_width + 4 + 2);
195 
196 	} else {
197 		symlen = unresolved_col_width + 4 + 2;
198 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
199 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
200 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
201 	}
202 
203 	hists__new_col_len(hists, HISTC_CGROUP, 6);
204 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
205 	hists__new_col_len(hists, HISTC_CPU, 3);
206 	hists__new_col_len(hists, HISTC_SOCKET, 6);
207 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
208 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
209 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
210 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
211 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
212 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
213 	hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10);
214 	hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13);
215 	hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13);
216 	hists__new_col_len(hists, HISTC_LOCAL_P_STAGE_CYC, 13);
217 	hists__new_col_len(hists, HISTC_GLOBAL_P_STAGE_CYC, 13);
218 	hists__new_col_len(hists, HISTC_ADDR, BITS_PER_LONG / 4 + 2);
219 
220 	if (symbol_conf.nanosecs)
221 		hists__new_col_len(hists, HISTC_TIME, 16);
222 	else
223 		hists__new_col_len(hists, HISTC_TIME, 12);
224 	hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6);
225 
226 	if (h->srcline) {
227 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
228 		hists__new_col_len(hists, HISTC_SRCLINE, len);
229 	}
230 
231 	if (h->srcfile)
232 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
233 
234 	if (h->transaction)
235 		hists__new_col_len(hists, HISTC_TRANSACTION,
236 				   hist_entry__transaction_len());
237 
238 	if (h->trace_output)
239 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
240 
241 	if (h->cgroup) {
242 		const char *cgrp_name = "unknown";
243 		struct cgroup *cgrp = cgroup__find(h->ms.maps->machine->env,
244 						   h->cgroup);
245 		if (cgrp != NULL)
246 			cgrp_name = cgrp->name;
247 
248 		hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
249 	}
250 }
251 
252 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
253 {
254 	struct rb_node *next = rb_first_cached(&hists->entries);
255 	struct hist_entry *n;
256 	int row = 0;
257 
258 	hists__reset_col_len(hists);
259 
260 	while (next && row++ < max_rows) {
261 		n = rb_entry(next, struct hist_entry, rb_node);
262 		if (!n->filtered)
263 			hists__calc_col_len(hists, n);
264 		next = rb_next(&n->rb_node);
265 	}
266 }
267 
268 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
269 					unsigned int cpumode, u64 period)
270 {
271 	switch (cpumode) {
272 	case PERF_RECORD_MISC_KERNEL:
273 		he_stat->period_sys += period;
274 		break;
275 	case PERF_RECORD_MISC_USER:
276 		he_stat->period_us += period;
277 		break;
278 	case PERF_RECORD_MISC_GUEST_KERNEL:
279 		he_stat->period_guest_sys += period;
280 		break;
281 	case PERF_RECORD_MISC_GUEST_USER:
282 		he_stat->period_guest_us += period;
283 		break;
284 	default:
285 		break;
286 	}
287 }
288 
289 static long hist_time(unsigned long htime)
290 {
291 	unsigned long time_quantum = symbol_conf.time_quantum;
292 	if (time_quantum)
293 		return (htime / time_quantum) * time_quantum;
294 	return htime;
295 }
296 
297 static void he_stat__add_period(struct he_stat *he_stat, u64 period)
298 {
299 	he_stat->period		+= period;
300 	he_stat->nr_events	+= 1;
301 }
302 
303 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
304 {
305 	dest->period		+= src->period;
306 	dest->period_sys	+= src->period_sys;
307 	dest->period_us		+= src->period_us;
308 	dest->period_guest_sys	+= src->period_guest_sys;
309 	dest->period_guest_us	+= src->period_guest_us;
310 	dest->nr_events		+= src->nr_events;
311 }
312 
313 static void he_stat__decay(struct he_stat *he_stat)
314 {
315 	he_stat->period = (he_stat->period * 7) / 8;
316 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
317 	/* XXX need decay for weight too? */
318 }
319 
320 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
321 
322 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
323 {
324 	u64 prev_period = he->stat.period;
325 	u64 diff;
326 
327 	if (prev_period == 0)
328 		return true;
329 
330 	he_stat__decay(&he->stat);
331 	if (symbol_conf.cumulate_callchain)
332 		he_stat__decay(he->stat_acc);
333 	decay_callchain(he->callchain);
334 
335 	diff = prev_period - he->stat.period;
336 
337 	if (!he->depth) {
338 		hists->stats.total_period -= diff;
339 		if (!he->filtered)
340 			hists->stats.total_non_filtered_period -= diff;
341 	}
342 
343 	if (!he->leaf) {
344 		struct hist_entry *child;
345 		struct rb_node *node = rb_first_cached(&he->hroot_out);
346 		while (node) {
347 			child = rb_entry(node, struct hist_entry, rb_node);
348 			node = rb_next(node);
349 
350 			if (hists__decay_entry(hists, child))
351 				hists__delete_entry(hists, child);
352 		}
353 	}
354 
355 	return he->stat.period == 0;
356 }
357 
358 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
359 {
360 	struct rb_root_cached *root_in;
361 	struct rb_root_cached *root_out;
362 
363 	if (he->parent_he) {
364 		root_in  = &he->parent_he->hroot_in;
365 		root_out = &he->parent_he->hroot_out;
366 	} else {
367 		if (hists__has(hists, need_collapse))
368 			root_in = &hists->entries_collapsed;
369 		else
370 			root_in = hists->entries_in;
371 		root_out = &hists->entries;
372 	}
373 
374 	rb_erase_cached(&he->rb_node_in, root_in);
375 	rb_erase_cached(&he->rb_node, root_out);
376 
377 	--hists->nr_entries;
378 	if (!he->filtered)
379 		--hists->nr_non_filtered_entries;
380 
381 	hist_entry__delete(he);
382 }
383 
384 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
385 {
386 	struct rb_node *next = rb_first_cached(&hists->entries);
387 	struct hist_entry *n;
388 
389 	while (next) {
390 		n = rb_entry(next, struct hist_entry, rb_node);
391 		next = rb_next(&n->rb_node);
392 		if (((zap_user && n->level == '.') ||
393 		     (zap_kernel && n->level != '.') ||
394 		     hists__decay_entry(hists, n))) {
395 			hists__delete_entry(hists, n);
396 		}
397 	}
398 }
399 
400 void hists__delete_entries(struct hists *hists)
401 {
402 	struct rb_node *next = rb_first_cached(&hists->entries);
403 	struct hist_entry *n;
404 
405 	while (next) {
406 		n = rb_entry(next, struct hist_entry, rb_node);
407 		next = rb_next(&n->rb_node);
408 
409 		hists__delete_entry(hists, n);
410 	}
411 }
412 
413 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
414 {
415 	struct rb_node *next = rb_first_cached(&hists->entries);
416 	struct hist_entry *n;
417 	int i = 0;
418 
419 	while (next) {
420 		n = rb_entry(next, struct hist_entry, rb_node);
421 		if (i == idx)
422 			return n;
423 
424 		next = rb_next(&n->rb_node);
425 		i++;
426 	}
427 
428 	return NULL;
429 }
430 
431 /*
432  * histogram, sorted on item, collects periods
433  */
434 
435 static int hist_entry__init(struct hist_entry *he,
436 			    struct hist_entry *template,
437 			    bool sample_self,
438 			    size_t callchain_size)
439 {
440 	*he = *template;
441 	he->callchain_size = callchain_size;
442 
443 	if (symbol_conf.cumulate_callchain) {
444 		he->stat_acc = malloc(sizeof(he->stat));
445 		if (he->stat_acc == NULL)
446 			return -ENOMEM;
447 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
448 		if (!sample_self)
449 			memset(&he->stat, 0, sizeof(he->stat));
450 	}
451 
452 	map__get(he->ms.map);
453 
454 	if (he->branch_info) {
455 		/*
456 		 * This branch info is (a part of) allocated from
457 		 * sample__resolve_bstack() and will be freed after
458 		 * adding new entries.  So we need to save a copy.
459 		 */
460 		he->branch_info = malloc(sizeof(*he->branch_info));
461 		if (he->branch_info == NULL)
462 			goto err;
463 
464 		memcpy(he->branch_info, template->branch_info,
465 		       sizeof(*he->branch_info));
466 
467 		map__get(he->branch_info->from.ms.map);
468 		map__get(he->branch_info->to.ms.map);
469 	}
470 
471 	if (he->mem_info) {
472 		map__get(he->mem_info->iaddr.ms.map);
473 		map__get(he->mem_info->daddr.ms.map);
474 	}
475 
476 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
477 		callchain_init(he->callchain);
478 
479 	if (he->raw_data) {
480 		he->raw_data = memdup(he->raw_data, he->raw_size);
481 		if (he->raw_data == NULL)
482 			goto err_infos;
483 	}
484 
485 	if (he->srcline) {
486 		he->srcline = strdup(he->srcline);
487 		if (he->srcline == NULL)
488 			goto err_rawdata;
489 	}
490 
491 	if (symbol_conf.res_sample) {
492 		he->res_samples = calloc(sizeof(struct res_sample),
493 					symbol_conf.res_sample);
494 		if (!he->res_samples)
495 			goto err_srcline;
496 	}
497 
498 	INIT_LIST_HEAD(&he->pairs.node);
499 	thread__get(he->thread);
500 	he->hroot_in  = RB_ROOT_CACHED;
501 	he->hroot_out = RB_ROOT_CACHED;
502 
503 	if (!symbol_conf.report_hierarchy)
504 		he->leaf = true;
505 
506 	return 0;
507 
508 err_srcline:
509 	zfree(&he->srcline);
510 
511 err_rawdata:
512 	zfree(&he->raw_data);
513 
514 err_infos:
515 	if (he->branch_info) {
516 		map__put(he->branch_info->from.ms.map);
517 		map__put(he->branch_info->to.ms.map);
518 		zfree(&he->branch_info);
519 	}
520 	if (he->mem_info) {
521 		map__put(he->mem_info->iaddr.ms.map);
522 		map__put(he->mem_info->daddr.ms.map);
523 	}
524 err:
525 	map__zput(he->ms.map);
526 	zfree(&he->stat_acc);
527 	return -ENOMEM;
528 }
529 
530 static void *hist_entry__zalloc(size_t size)
531 {
532 	return zalloc(size + sizeof(struct hist_entry));
533 }
534 
535 static void hist_entry__free(void *ptr)
536 {
537 	free(ptr);
538 }
539 
540 static struct hist_entry_ops default_ops = {
541 	.new	= hist_entry__zalloc,
542 	.free	= hist_entry__free,
543 };
544 
545 static struct hist_entry *hist_entry__new(struct hist_entry *template,
546 					  bool sample_self)
547 {
548 	struct hist_entry_ops *ops = template->ops;
549 	size_t callchain_size = 0;
550 	struct hist_entry *he;
551 	int err = 0;
552 
553 	if (!ops)
554 		ops = template->ops = &default_ops;
555 
556 	if (symbol_conf.use_callchain)
557 		callchain_size = sizeof(struct callchain_root);
558 
559 	he = ops->new(callchain_size);
560 	if (he) {
561 		err = hist_entry__init(he, template, sample_self, callchain_size);
562 		if (err) {
563 			ops->free(he);
564 			he = NULL;
565 		}
566 	}
567 
568 	return he;
569 }
570 
571 static u8 symbol__parent_filter(const struct symbol *parent)
572 {
573 	if (symbol_conf.exclude_other && parent == NULL)
574 		return 1 << HIST_FILTER__PARENT;
575 	return 0;
576 }
577 
578 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
579 {
580 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
581 		return;
582 
583 	he->hists->callchain_period += period;
584 	if (!he->filtered)
585 		he->hists->callchain_non_filtered_period += period;
586 }
587 
588 static struct hist_entry *hists__findnew_entry(struct hists *hists,
589 					       struct hist_entry *entry,
590 					       struct addr_location *al,
591 					       bool sample_self)
592 {
593 	struct rb_node **p;
594 	struct rb_node *parent = NULL;
595 	struct hist_entry *he;
596 	int64_t cmp;
597 	u64 period = entry->stat.period;
598 	bool leftmost = true;
599 
600 	p = &hists->entries_in->rb_root.rb_node;
601 
602 	while (*p != NULL) {
603 		parent = *p;
604 		he = rb_entry(parent, struct hist_entry, rb_node_in);
605 
606 		/*
607 		 * Make sure that it receives arguments in a same order as
608 		 * hist_entry__collapse() so that we can use an appropriate
609 		 * function when searching an entry regardless which sort
610 		 * keys were used.
611 		 */
612 		cmp = hist_entry__cmp(he, entry);
613 
614 		if (!cmp) {
615 			if (sample_self) {
616 				he_stat__add_period(&he->stat, period);
617 				hist_entry__add_callchain_period(he, period);
618 			}
619 			if (symbol_conf.cumulate_callchain)
620 				he_stat__add_period(he->stat_acc, period);
621 
622 			/*
623 			 * This mem info was allocated from sample__resolve_mem
624 			 * and will not be used anymore.
625 			 */
626 			mem_info__zput(entry->mem_info);
627 
628 			block_info__zput(entry->block_info);
629 
630 			/* If the map of an existing hist_entry has
631 			 * become out-of-date due to an exec() or
632 			 * similar, update it.  Otherwise we will
633 			 * mis-adjust symbol addresses when computing
634 			 * the history counter to increment.
635 			 */
636 			if (he->ms.map != entry->ms.map) {
637 				map__put(he->ms.map);
638 				he->ms.map = map__get(entry->ms.map);
639 			}
640 			goto out;
641 		}
642 
643 		if (cmp < 0)
644 			p = &(*p)->rb_left;
645 		else {
646 			p = &(*p)->rb_right;
647 			leftmost = false;
648 		}
649 	}
650 
651 	he = hist_entry__new(entry, sample_self);
652 	if (!he)
653 		return NULL;
654 
655 	if (sample_self)
656 		hist_entry__add_callchain_period(he, period);
657 	hists->nr_entries++;
658 
659 	rb_link_node(&he->rb_node_in, parent, p);
660 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
661 out:
662 	if (sample_self)
663 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
664 	if (symbol_conf.cumulate_callchain)
665 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
666 	return he;
667 }
668 
669 static unsigned random_max(unsigned high)
670 {
671 	unsigned thresh = -high % high;
672 	for (;;) {
673 		unsigned r = random();
674 		if (r >= thresh)
675 			return r % high;
676 	}
677 }
678 
679 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
680 {
681 	struct res_sample *r;
682 	int j;
683 
684 	if (he->num_res < symbol_conf.res_sample) {
685 		j = he->num_res++;
686 	} else {
687 		j = random_max(symbol_conf.res_sample);
688 	}
689 	r = &he->res_samples[j];
690 	r->time = sample->time;
691 	r->cpu = sample->cpu;
692 	r->tid = sample->tid;
693 }
694 
695 static struct hist_entry*
696 __hists__add_entry(struct hists *hists,
697 		   struct addr_location *al,
698 		   struct symbol *sym_parent,
699 		   struct branch_info *bi,
700 		   struct mem_info *mi,
701 		   struct block_info *block_info,
702 		   struct perf_sample *sample,
703 		   bool sample_self,
704 		   struct hist_entry_ops *ops)
705 {
706 	struct namespaces *ns = thread__namespaces(al->thread);
707 	struct hist_entry entry = {
708 		.thread	= al->thread,
709 		.comm = thread__comm(al->thread),
710 		.cgroup_id = {
711 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
712 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
713 		},
714 		.cgroup = sample->cgroup,
715 		.ms = {
716 			.maps	= al->maps,
717 			.map	= al->map,
718 			.sym	= al->sym,
719 		},
720 		.srcline = (char *) al->srcline,
721 		.socket	 = al->socket,
722 		.cpu	 = al->cpu,
723 		.cpumode = al->cpumode,
724 		.ip	 = al->addr,
725 		.level	 = al->level,
726 		.code_page_size = sample->code_page_size,
727 		.stat = {
728 			.nr_events = 1,
729 			.period	= sample->period,
730 		},
731 		.parent = sym_parent,
732 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
733 		.hists	= hists,
734 		.branch_info = bi,
735 		.mem_info = mi,
736 		.block_info = block_info,
737 		.transaction = sample->transaction,
738 		.raw_data = sample->raw_data,
739 		.raw_size = sample->raw_size,
740 		.ops = ops,
741 		.time = hist_time(sample->time),
742 		.weight = sample->weight,
743 		.ins_lat = sample->ins_lat,
744 		.p_stage_cyc = sample->p_stage_cyc,
745 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
746 
747 	if (!hists->has_callchains && he && he->callchain_size != 0)
748 		hists->has_callchains = true;
749 	if (he && symbol_conf.res_sample)
750 		hists__res_sample(he, sample);
751 	return he;
752 }
753 
754 struct hist_entry *hists__add_entry(struct hists *hists,
755 				    struct addr_location *al,
756 				    struct symbol *sym_parent,
757 				    struct branch_info *bi,
758 				    struct mem_info *mi,
759 				    struct perf_sample *sample,
760 				    bool sample_self)
761 {
762 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
763 				  sample, sample_self, NULL);
764 }
765 
766 struct hist_entry *hists__add_entry_ops(struct hists *hists,
767 					struct hist_entry_ops *ops,
768 					struct addr_location *al,
769 					struct symbol *sym_parent,
770 					struct branch_info *bi,
771 					struct mem_info *mi,
772 					struct perf_sample *sample,
773 					bool sample_self)
774 {
775 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
776 				  sample, sample_self, ops);
777 }
778 
779 struct hist_entry *hists__add_entry_block(struct hists *hists,
780 					  struct addr_location *al,
781 					  struct block_info *block_info)
782 {
783 	struct hist_entry entry = {
784 		.block_info = block_info,
785 		.hists = hists,
786 		.ms = {
787 			.maps = al->maps,
788 			.map = al->map,
789 			.sym = al->sym,
790 		},
791 	}, *he = hists__findnew_entry(hists, &entry, al, false);
792 
793 	return he;
794 }
795 
796 static int
797 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
798 		    struct addr_location *al __maybe_unused)
799 {
800 	return 0;
801 }
802 
803 static int
804 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
805 			struct addr_location *al __maybe_unused)
806 {
807 	return 0;
808 }
809 
810 static int
811 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
812 {
813 	struct perf_sample *sample = iter->sample;
814 	struct mem_info *mi;
815 
816 	mi = sample__resolve_mem(sample, al);
817 	if (mi == NULL)
818 		return -ENOMEM;
819 
820 	iter->priv = mi;
821 	return 0;
822 }
823 
824 static int
825 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
826 {
827 	u64 cost;
828 	struct mem_info *mi = iter->priv;
829 	struct hists *hists = evsel__hists(iter->evsel);
830 	struct perf_sample *sample = iter->sample;
831 	struct hist_entry *he;
832 
833 	if (mi == NULL)
834 		return -EINVAL;
835 
836 	cost = sample->weight;
837 	if (!cost)
838 		cost = 1;
839 
840 	/*
841 	 * must pass period=weight in order to get the correct
842 	 * sorting from hists__collapse_resort() which is solely
843 	 * based on periods. We want sorting be done on nr_events * weight
844 	 * and this is indirectly achieved by passing period=weight here
845 	 * and the he_stat__add_period() function.
846 	 */
847 	sample->period = cost;
848 
849 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
850 			      sample, true);
851 	if (!he)
852 		return -ENOMEM;
853 
854 	iter->he = he;
855 	return 0;
856 }
857 
858 static int
859 iter_finish_mem_entry(struct hist_entry_iter *iter,
860 		      struct addr_location *al __maybe_unused)
861 {
862 	struct evsel *evsel = iter->evsel;
863 	struct hists *hists = evsel__hists(evsel);
864 	struct hist_entry *he = iter->he;
865 	int err = -EINVAL;
866 
867 	if (he == NULL)
868 		goto out;
869 
870 	hists__inc_nr_samples(hists, he->filtered);
871 
872 	err = hist_entry__append_callchain(he, iter->sample);
873 
874 out:
875 	/*
876 	 * We don't need to free iter->priv (mem_info) here since the mem info
877 	 * was either already freed in hists__findnew_entry() or passed to a
878 	 * new hist entry by hist_entry__new().
879 	 */
880 	iter->priv = NULL;
881 
882 	iter->he = NULL;
883 	return err;
884 }
885 
886 static int
887 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
888 {
889 	struct branch_info *bi;
890 	struct perf_sample *sample = iter->sample;
891 
892 	bi = sample__resolve_bstack(sample, al);
893 	if (!bi)
894 		return -ENOMEM;
895 
896 	iter->curr = 0;
897 	iter->total = sample->branch_stack->nr;
898 
899 	iter->priv = bi;
900 	return 0;
901 }
902 
903 static int
904 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
905 			     struct addr_location *al __maybe_unused)
906 {
907 	return 0;
908 }
909 
910 static int
911 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
912 {
913 	struct branch_info *bi = iter->priv;
914 	int i = iter->curr;
915 
916 	if (bi == NULL)
917 		return 0;
918 
919 	if (iter->curr >= iter->total)
920 		return 0;
921 
922 	al->maps = bi[i].to.ms.maps;
923 	al->map = bi[i].to.ms.map;
924 	al->sym = bi[i].to.ms.sym;
925 	al->addr = bi[i].to.addr;
926 	return 1;
927 }
928 
929 static int
930 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
931 {
932 	struct branch_info *bi;
933 	struct evsel *evsel = iter->evsel;
934 	struct hists *hists = evsel__hists(evsel);
935 	struct perf_sample *sample = iter->sample;
936 	struct hist_entry *he = NULL;
937 	int i = iter->curr;
938 	int err = 0;
939 
940 	bi = iter->priv;
941 
942 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
943 		goto out;
944 
945 	/*
946 	 * The report shows the percentage of total branches captured
947 	 * and not events sampled. Thus we use a pseudo period of 1.
948 	 */
949 	sample->period = 1;
950 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
951 
952 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
953 			      sample, true);
954 	if (he == NULL)
955 		return -ENOMEM;
956 
957 	hists__inc_nr_samples(hists, he->filtered);
958 
959 out:
960 	iter->he = he;
961 	iter->curr++;
962 	return err;
963 }
964 
965 static int
966 iter_finish_branch_entry(struct hist_entry_iter *iter,
967 			 struct addr_location *al __maybe_unused)
968 {
969 	zfree(&iter->priv);
970 	iter->he = NULL;
971 
972 	return iter->curr >= iter->total ? 0 : -1;
973 }
974 
975 static int
976 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
977 			  struct addr_location *al __maybe_unused)
978 {
979 	return 0;
980 }
981 
982 static int
983 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
984 {
985 	struct evsel *evsel = iter->evsel;
986 	struct perf_sample *sample = iter->sample;
987 	struct hist_entry *he;
988 
989 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
990 			      sample, true);
991 	if (he == NULL)
992 		return -ENOMEM;
993 
994 	iter->he = he;
995 	return 0;
996 }
997 
998 static int
999 iter_finish_normal_entry(struct hist_entry_iter *iter,
1000 			 struct addr_location *al __maybe_unused)
1001 {
1002 	struct hist_entry *he = iter->he;
1003 	struct evsel *evsel = iter->evsel;
1004 	struct perf_sample *sample = iter->sample;
1005 
1006 	if (he == NULL)
1007 		return 0;
1008 
1009 	iter->he = NULL;
1010 
1011 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1012 
1013 	return hist_entry__append_callchain(he, sample);
1014 }
1015 
1016 static int
1017 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1018 			      struct addr_location *al __maybe_unused)
1019 {
1020 	struct hist_entry **he_cache;
1021 
1022 	callchain_cursor_commit(&callchain_cursor);
1023 
1024 	/*
1025 	 * This is for detecting cycles or recursions so that they're
1026 	 * cumulated only one time to prevent entries more than 100%
1027 	 * overhead.
1028 	 */
1029 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
1030 	if (he_cache == NULL)
1031 		return -ENOMEM;
1032 
1033 	iter->priv = he_cache;
1034 	iter->curr = 0;
1035 
1036 	return 0;
1037 }
1038 
1039 static int
1040 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1041 				 struct addr_location *al)
1042 {
1043 	struct evsel *evsel = iter->evsel;
1044 	struct hists *hists = evsel__hists(evsel);
1045 	struct perf_sample *sample = iter->sample;
1046 	struct hist_entry **he_cache = iter->priv;
1047 	struct hist_entry *he;
1048 	int err = 0;
1049 
1050 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1051 			      sample, true);
1052 	if (he == NULL)
1053 		return -ENOMEM;
1054 
1055 	iter->he = he;
1056 	he_cache[iter->curr++] = he;
1057 
1058 	hist_entry__append_callchain(he, sample);
1059 
1060 	/*
1061 	 * We need to re-initialize the cursor since callchain_append()
1062 	 * advanced the cursor to the end.
1063 	 */
1064 	callchain_cursor_commit(&callchain_cursor);
1065 
1066 	hists__inc_nr_samples(hists, he->filtered);
1067 
1068 	return err;
1069 }
1070 
1071 static int
1072 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1073 			   struct addr_location *al)
1074 {
1075 	struct callchain_cursor_node *node;
1076 
1077 	node = callchain_cursor_current(&callchain_cursor);
1078 	if (node == NULL)
1079 		return 0;
1080 
1081 	return fill_callchain_info(al, node, iter->hide_unresolved);
1082 }
1083 
1084 static bool
1085 hist_entry__fast__sym_diff(struct hist_entry *left,
1086 			   struct hist_entry *right)
1087 {
1088 	struct symbol *sym_l = left->ms.sym;
1089 	struct symbol *sym_r = right->ms.sym;
1090 
1091 	if (!sym_l && !sym_r)
1092 		return left->ip != right->ip;
1093 
1094 	return !!_sort__sym_cmp(sym_l, sym_r);
1095 }
1096 
1097 
1098 static int
1099 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1100 			       struct addr_location *al)
1101 {
1102 	struct evsel *evsel = iter->evsel;
1103 	struct perf_sample *sample = iter->sample;
1104 	struct hist_entry **he_cache = iter->priv;
1105 	struct hist_entry *he;
1106 	struct hist_entry he_tmp = {
1107 		.hists = evsel__hists(evsel),
1108 		.cpu = al->cpu,
1109 		.thread = al->thread,
1110 		.comm = thread__comm(al->thread),
1111 		.ip = al->addr,
1112 		.ms = {
1113 			.maps = al->maps,
1114 			.map = al->map,
1115 			.sym = al->sym,
1116 		},
1117 		.srcline = (char *) al->srcline,
1118 		.parent = iter->parent,
1119 		.raw_data = sample->raw_data,
1120 		.raw_size = sample->raw_size,
1121 	};
1122 	int i;
1123 	struct callchain_cursor cursor;
1124 	bool fast = hists__has(he_tmp.hists, sym);
1125 
1126 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
1127 
1128 	callchain_cursor_advance(&callchain_cursor);
1129 
1130 	/*
1131 	 * Check if there's duplicate entries in the callchain.
1132 	 * It's possible that it has cycles or recursive calls.
1133 	 */
1134 	for (i = 0; i < iter->curr; i++) {
1135 		/*
1136 		 * For most cases, there are no duplicate entries in callchain.
1137 		 * The symbols are usually different. Do a quick check for
1138 		 * symbols first.
1139 		 */
1140 		if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp))
1141 			continue;
1142 
1143 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1144 			/* to avoid calling callback function */
1145 			iter->he = NULL;
1146 			return 0;
1147 		}
1148 	}
1149 
1150 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1151 			      sample, false);
1152 	if (he == NULL)
1153 		return -ENOMEM;
1154 
1155 	iter->he = he;
1156 	he_cache[iter->curr++] = he;
1157 
1158 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1159 		callchain_append(he->callchain, &cursor, sample->period);
1160 	return 0;
1161 }
1162 
1163 static int
1164 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1165 			     struct addr_location *al __maybe_unused)
1166 {
1167 	zfree(&iter->priv);
1168 	iter->he = NULL;
1169 
1170 	return 0;
1171 }
1172 
1173 const struct hist_iter_ops hist_iter_mem = {
1174 	.prepare_entry 		= iter_prepare_mem_entry,
1175 	.add_single_entry 	= iter_add_single_mem_entry,
1176 	.next_entry 		= iter_next_nop_entry,
1177 	.add_next_entry 	= iter_add_next_nop_entry,
1178 	.finish_entry 		= iter_finish_mem_entry,
1179 };
1180 
1181 const struct hist_iter_ops hist_iter_branch = {
1182 	.prepare_entry 		= iter_prepare_branch_entry,
1183 	.add_single_entry 	= iter_add_single_branch_entry,
1184 	.next_entry 		= iter_next_branch_entry,
1185 	.add_next_entry 	= iter_add_next_branch_entry,
1186 	.finish_entry 		= iter_finish_branch_entry,
1187 };
1188 
1189 const struct hist_iter_ops hist_iter_normal = {
1190 	.prepare_entry 		= iter_prepare_normal_entry,
1191 	.add_single_entry 	= iter_add_single_normal_entry,
1192 	.next_entry 		= iter_next_nop_entry,
1193 	.add_next_entry 	= iter_add_next_nop_entry,
1194 	.finish_entry 		= iter_finish_normal_entry,
1195 };
1196 
1197 const struct hist_iter_ops hist_iter_cumulative = {
1198 	.prepare_entry 		= iter_prepare_cumulative_entry,
1199 	.add_single_entry 	= iter_add_single_cumulative_entry,
1200 	.next_entry 		= iter_next_cumulative_entry,
1201 	.add_next_entry 	= iter_add_next_cumulative_entry,
1202 	.finish_entry 		= iter_finish_cumulative_entry,
1203 };
1204 
1205 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1206 			 int max_stack_depth, void *arg)
1207 {
1208 	int err, err2;
1209 	struct map *alm = NULL;
1210 
1211 	if (al)
1212 		alm = map__get(al->map);
1213 
1214 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1215 					iter->evsel, al, max_stack_depth);
1216 	if (err) {
1217 		map__put(alm);
1218 		return err;
1219 	}
1220 
1221 	err = iter->ops->prepare_entry(iter, al);
1222 	if (err)
1223 		goto out;
1224 
1225 	err = iter->ops->add_single_entry(iter, al);
1226 	if (err)
1227 		goto out;
1228 
1229 	if (iter->he && iter->add_entry_cb) {
1230 		err = iter->add_entry_cb(iter, al, true, arg);
1231 		if (err)
1232 			goto out;
1233 	}
1234 
1235 	while (iter->ops->next_entry(iter, al)) {
1236 		err = iter->ops->add_next_entry(iter, al);
1237 		if (err)
1238 			break;
1239 
1240 		if (iter->he && iter->add_entry_cb) {
1241 			err = iter->add_entry_cb(iter, al, false, arg);
1242 			if (err)
1243 				goto out;
1244 		}
1245 	}
1246 
1247 out:
1248 	err2 = iter->ops->finish_entry(iter, al);
1249 	if (!err)
1250 		err = err2;
1251 
1252 	map__put(alm);
1253 
1254 	return err;
1255 }
1256 
1257 int64_t
1258 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1259 {
1260 	struct hists *hists = left->hists;
1261 	struct perf_hpp_fmt *fmt;
1262 	int64_t cmp = 0;
1263 
1264 	hists__for_each_sort_list(hists, fmt) {
1265 		if (perf_hpp__is_dynamic_entry(fmt) &&
1266 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1267 			continue;
1268 
1269 		cmp = fmt->cmp(fmt, left, right);
1270 		if (cmp)
1271 			break;
1272 	}
1273 
1274 	return cmp;
1275 }
1276 
1277 int64_t
1278 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1279 {
1280 	struct hists *hists = left->hists;
1281 	struct perf_hpp_fmt *fmt;
1282 	int64_t cmp = 0;
1283 
1284 	hists__for_each_sort_list(hists, fmt) {
1285 		if (perf_hpp__is_dynamic_entry(fmt) &&
1286 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1287 			continue;
1288 
1289 		cmp = fmt->collapse(fmt, left, right);
1290 		if (cmp)
1291 			break;
1292 	}
1293 
1294 	return cmp;
1295 }
1296 
1297 void hist_entry__delete(struct hist_entry *he)
1298 {
1299 	struct hist_entry_ops *ops = he->ops;
1300 
1301 	thread__zput(he->thread);
1302 	map__zput(he->ms.map);
1303 
1304 	if (he->branch_info) {
1305 		map__zput(he->branch_info->from.ms.map);
1306 		map__zput(he->branch_info->to.ms.map);
1307 		free_srcline(he->branch_info->srcline_from);
1308 		free_srcline(he->branch_info->srcline_to);
1309 		zfree(&he->branch_info);
1310 	}
1311 
1312 	if (he->mem_info) {
1313 		map__zput(he->mem_info->iaddr.ms.map);
1314 		map__zput(he->mem_info->daddr.ms.map);
1315 		mem_info__zput(he->mem_info);
1316 	}
1317 
1318 	if (he->block_info)
1319 		block_info__zput(he->block_info);
1320 
1321 	zfree(&he->res_samples);
1322 	zfree(&he->stat_acc);
1323 	free_srcline(he->srcline);
1324 	if (he->srcfile && he->srcfile[0])
1325 		zfree(&he->srcfile);
1326 	free_callchain(he->callchain);
1327 	zfree(&he->trace_output);
1328 	zfree(&he->raw_data);
1329 	ops->free(he);
1330 }
1331 
1332 /*
1333  * If this is not the last column, then we need to pad it according to the
1334  * pre-calculated max length for this column, otherwise don't bother adding
1335  * spaces because that would break viewing this with, for instance, 'less',
1336  * that would show tons of trailing spaces when a long C++ demangled method
1337  * names is sampled.
1338 */
1339 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1340 				   struct perf_hpp_fmt *fmt, int printed)
1341 {
1342 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1343 		const int width = fmt->width(fmt, hpp, he->hists);
1344 		if (printed < width) {
1345 			advance_hpp(hpp, printed);
1346 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1347 		}
1348 	}
1349 
1350 	return printed;
1351 }
1352 
1353 /*
1354  * collapse the histogram
1355  */
1356 
1357 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1358 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1359 				       enum hist_filter type);
1360 
1361 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1362 
1363 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1364 {
1365 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1366 }
1367 
1368 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1369 						enum hist_filter type,
1370 						fmt_chk_fn check)
1371 {
1372 	struct perf_hpp_fmt *fmt;
1373 	bool type_match = false;
1374 	struct hist_entry *parent = he->parent_he;
1375 
1376 	switch (type) {
1377 	case HIST_FILTER__THREAD:
1378 		if (symbol_conf.comm_list == NULL &&
1379 		    symbol_conf.pid_list == NULL &&
1380 		    symbol_conf.tid_list == NULL)
1381 			return;
1382 		break;
1383 	case HIST_FILTER__DSO:
1384 		if (symbol_conf.dso_list == NULL)
1385 			return;
1386 		break;
1387 	case HIST_FILTER__SYMBOL:
1388 		if (symbol_conf.sym_list == NULL)
1389 			return;
1390 		break;
1391 	case HIST_FILTER__PARENT:
1392 	case HIST_FILTER__GUEST:
1393 	case HIST_FILTER__HOST:
1394 	case HIST_FILTER__SOCKET:
1395 	case HIST_FILTER__C2C:
1396 	default:
1397 		return;
1398 	}
1399 
1400 	/* if it's filtered by own fmt, it has to have filter bits */
1401 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1402 		if (check(fmt)) {
1403 			type_match = true;
1404 			break;
1405 		}
1406 	}
1407 
1408 	if (type_match) {
1409 		/*
1410 		 * If the filter is for current level entry, propagate
1411 		 * filter marker to parents.  The marker bit was
1412 		 * already set by default so it only needs to clear
1413 		 * non-filtered entries.
1414 		 */
1415 		if (!(he->filtered & (1 << type))) {
1416 			while (parent) {
1417 				parent->filtered &= ~(1 << type);
1418 				parent = parent->parent_he;
1419 			}
1420 		}
1421 	} else {
1422 		/*
1423 		 * If current entry doesn't have matching formats, set
1424 		 * filter marker for upper level entries.  it will be
1425 		 * cleared if its lower level entries is not filtered.
1426 		 *
1427 		 * For lower-level entries, it inherits parent's
1428 		 * filter bit so that lower level entries of a
1429 		 * non-filtered entry won't set the filter marker.
1430 		 */
1431 		if (parent == NULL)
1432 			he->filtered |= (1 << type);
1433 		else
1434 			he->filtered |= (parent->filtered & (1 << type));
1435 	}
1436 }
1437 
1438 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1439 {
1440 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1441 					    check_thread_entry);
1442 
1443 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1444 					    perf_hpp__is_dso_entry);
1445 
1446 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1447 					    perf_hpp__is_sym_entry);
1448 
1449 	hists__apply_filters(he->hists, he);
1450 }
1451 
1452 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1453 						 struct rb_root_cached *root,
1454 						 struct hist_entry *he,
1455 						 struct hist_entry *parent_he,
1456 						 struct perf_hpp_list *hpp_list)
1457 {
1458 	struct rb_node **p = &root->rb_root.rb_node;
1459 	struct rb_node *parent = NULL;
1460 	struct hist_entry *iter, *new;
1461 	struct perf_hpp_fmt *fmt;
1462 	int64_t cmp;
1463 	bool leftmost = true;
1464 
1465 	while (*p != NULL) {
1466 		parent = *p;
1467 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1468 
1469 		cmp = 0;
1470 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1471 			cmp = fmt->collapse(fmt, iter, he);
1472 			if (cmp)
1473 				break;
1474 		}
1475 
1476 		if (!cmp) {
1477 			he_stat__add_stat(&iter->stat, &he->stat);
1478 			return iter;
1479 		}
1480 
1481 		if (cmp < 0)
1482 			p = &parent->rb_left;
1483 		else {
1484 			p = &parent->rb_right;
1485 			leftmost = false;
1486 		}
1487 	}
1488 
1489 	new = hist_entry__new(he, true);
1490 	if (new == NULL)
1491 		return NULL;
1492 
1493 	hists->nr_entries++;
1494 
1495 	/* save related format list for output */
1496 	new->hpp_list = hpp_list;
1497 	new->parent_he = parent_he;
1498 
1499 	hist_entry__apply_hierarchy_filters(new);
1500 
1501 	/* some fields are now passed to 'new' */
1502 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1503 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1504 			he->trace_output = NULL;
1505 		else
1506 			new->trace_output = NULL;
1507 
1508 		if (perf_hpp__is_srcline_entry(fmt))
1509 			he->srcline = NULL;
1510 		else
1511 			new->srcline = NULL;
1512 
1513 		if (perf_hpp__is_srcfile_entry(fmt))
1514 			he->srcfile = NULL;
1515 		else
1516 			new->srcfile = NULL;
1517 	}
1518 
1519 	rb_link_node(&new->rb_node_in, parent, p);
1520 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1521 	return new;
1522 }
1523 
1524 static int hists__hierarchy_insert_entry(struct hists *hists,
1525 					 struct rb_root_cached *root,
1526 					 struct hist_entry *he)
1527 {
1528 	struct perf_hpp_list_node *node;
1529 	struct hist_entry *new_he = NULL;
1530 	struct hist_entry *parent = NULL;
1531 	int depth = 0;
1532 	int ret = 0;
1533 
1534 	list_for_each_entry(node, &hists->hpp_formats, list) {
1535 		/* skip period (overhead) and elided columns */
1536 		if (node->level == 0 || node->skip)
1537 			continue;
1538 
1539 		/* insert copy of 'he' for each fmt into the hierarchy */
1540 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1541 		if (new_he == NULL) {
1542 			ret = -1;
1543 			break;
1544 		}
1545 
1546 		root = &new_he->hroot_in;
1547 		new_he->depth = depth++;
1548 		parent = new_he;
1549 	}
1550 
1551 	if (new_he) {
1552 		new_he->leaf = true;
1553 
1554 		if (hist_entry__has_callchains(new_he) &&
1555 		    symbol_conf.use_callchain) {
1556 			callchain_cursor_reset(&callchain_cursor);
1557 			if (callchain_merge(&callchain_cursor,
1558 					    new_he->callchain,
1559 					    he->callchain) < 0)
1560 				ret = -1;
1561 		}
1562 	}
1563 
1564 	/* 'he' is no longer used */
1565 	hist_entry__delete(he);
1566 
1567 	/* return 0 (or -1) since it already applied filters */
1568 	return ret;
1569 }
1570 
1571 static int hists__collapse_insert_entry(struct hists *hists,
1572 					struct rb_root_cached *root,
1573 					struct hist_entry *he)
1574 {
1575 	struct rb_node **p = &root->rb_root.rb_node;
1576 	struct rb_node *parent = NULL;
1577 	struct hist_entry *iter;
1578 	int64_t cmp;
1579 	bool leftmost = true;
1580 
1581 	if (symbol_conf.report_hierarchy)
1582 		return hists__hierarchy_insert_entry(hists, root, he);
1583 
1584 	while (*p != NULL) {
1585 		parent = *p;
1586 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1587 
1588 		cmp = hist_entry__collapse(iter, he);
1589 
1590 		if (!cmp) {
1591 			int ret = 0;
1592 
1593 			he_stat__add_stat(&iter->stat, &he->stat);
1594 			if (symbol_conf.cumulate_callchain)
1595 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1596 
1597 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1598 				callchain_cursor_reset(&callchain_cursor);
1599 				if (callchain_merge(&callchain_cursor,
1600 						    iter->callchain,
1601 						    he->callchain) < 0)
1602 					ret = -1;
1603 			}
1604 			hist_entry__delete(he);
1605 			return ret;
1606 		}
1607 
1608 		if (cmp < 0)
1609 			p = &(*p)->rb_left;
1610 		else {
1611 			p = &(*p)->rb_right;
1612 			leftmost = false;
1613 		}
1614 	}
1615 	hists->nr_entries++;
1616 
1617 	rb_link_node(&he->rb_node_in, parent, p);
1618 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1619 	return 1;
1620 }
1621 
1622 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1623 {
1624 	struct rb_root_cached *root;
1625 
1626 	mutex_lock(&hists->lock);
1627 
1628 	root = hists->entries_in;
1629 	if (++hists->entries_in > &hists->entries_in_array[1])
1630 		hists->entries_in = &hists->entries_in_array[0];
1631 
1632 	mutex_unlock(&hists->lock);
1633 
1634 	return root;
1635 }
1636 
1637 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1638 {
1639 	hists__filter_entry_by_dso(hists, he);
1640 	hists__filter_entry_by_thread(hists, he);
1641 	hists__filter_entry_by_symbol(hists, he);
1642 	hists__filter_entry_by_socket(hists, he);
1643 }
1644 
1645 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1646 {
1647 	struct rb_root_cached *root;
1648 	struct rb_node *next;
1649 	struct hist_entry *n;
1650 	int ret;
1651 
1652 	if (!hists__has(hists, need_collapse))
1653 		return 0;
1654 
1655 	hists->nr_entries = 0;
1656 
1657 	root = hists__get_rotate_entries_in(hists);
1658 
1659 	next = rb_first_cached(root);
1660 
1661 	while (next) {
1662 		if (session_done())
1663 			break;
1664 		n = rb_entry(next, struct hist_entry, rb_node_in);
1665 		next = rb_next(&n->rb_node_in);
1666 
1667 		rb_erase_cached(&n->rb_node_in, root);
1668 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1669 		if (ret < 0)
1670 			return -1;
1671 
1672 		if (ret) {
1673 			/*
1674 			 * If it wasn't combined with one of the entries already
1675 			 * collapsed, we need to apply the filters that may have
1676 			 * been set by, say, the hist_browser.
1677 			 */
1678 			hists__apply_filters(hists, n);
1679 		}
1680 		if (prog)
1681 			ui_progress__update(prog, 1);
1682 	}
1683 	return 0;
1684 }
1685 
1686 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1687 {
1688 	struct hists *hists = a->hists;
1689 	struct perf_hpp_fmt *fmt;
1690 	int64_t cmp = 0;
1691 
1692 	hists__for_each_sort_list(hists, fmt) {
1693 		if (perf_hpp__should_skip(fmt, a->hists))
1694 			continue;
1695 
1696 		cmp = fmt->sort(fmt, a, b);
1697 		if (cmp)
1698 			break;
1699 	}
1700 
1701 	return cmp;
1702 }
1703 
1704 static void hists__reset_filter_stats(struct hists *hists)
1705 {
1706 	hists->nr_non_filtered_entries = 0;
1707 	hists->stats.total_non_filtered_period = 0;
1708 }
1709 
1710 void hists__reset_stats(struct hists *hists)
1711 {
1712 	hists->nr_entries = 0;
1713 	hists->stats.total_period = 0;
1714 
1715 	hists__reset_filter_stats(hists);
1716 }
1717 
1718 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1719 {
1720 	hists->nr_non_filtered_entries++;
1721 	hists->stats.total_non_filtered_period += h->stat.period;
1722 }
1723 
1724 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1725 {
1726 	if (!h->filtered)
1727 		hists__inc_filter_stats(hists, h);
1728 
1729 	hists->nr_entries++;
1730 	hists->stats.total_period += h->stat.period;
1731 }
1732 
1733 static void hierarchy_recalc_total_periods(struct hists *hists)
1734 {
1735 	struct rb_node *node;
1736 	struct hist_entry *he;
1737 
1738 	node = rb_first_cached(&hists->entries);
1739 
1740 	hists->stats.total_period = 0;
1741 	hists->stats.total_non_filtered_period = 0;
1742 
1743 	/*
1744 	 * recalculate total period using top-level entries only
1745 	 * since lower level entries only see non-filtered entries
1746 	 * but upper level entries have sum of both entries.
1747 	 */
1748 	while (node) {
1749 		he = rb_entry(node, struct hist_entry, rb_node);
1750 		node = rb_next(node);
1751 
1752 		hists->stats.total_period += he->stat.period;
1753 		if (!he->filtered)
1754 			hists->stats.total_non_filtered_period += he->stat.period;
1755 	}
1756 }
1757 
1758 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1759 					  struct hist_entry *he)
1760 {
1761 	struct rb_node **p = &root->rb_root.rb_node;
1762 	struct rb_node *parent = NULL;
1763 	struct hist_entry *iter;
1764 	struct perf_hpp_fmt *fmt;
1765 	bool leftmost = true;
1766 
1767 	while (*p != NULL) {
1768 		parent = *p;
1769 		iter = rb_entry(parent, struct hist_entry, rb_node);
1770 
1771 		if (hist_entry__sort(he, iter) > 0)
1772 			p = &parent->rb_left;
1773 		else {
1774 			p = &parent->rb_right;
1775 			leftmost = false;
1776 		}
1777 	}
1778 
1779 	rb_link_node(&he->rb_node, parent, p);
1780 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1781 
1782 	/* update column width of dynamic entry */
1783 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1784 		if (perf_hpp__is_dynamic_entry(fmt))
1785 			fmt->sort(fmt, he, NULL);
1786 	}
1787 }
1788 
1789 static void hists__hierarchy_output_resort(struct hists *hists,
1790 					   struct ui_progress *prog,
1791 					   struct rb_root_cached *root_in,
1792 					   struct rb_root_cached *root_out,
1793 					   u64 min_callchain_hits,
1794 					   bool use_callchain)
1795 {
1796 	struct rb_node *node;
1797 	struct hist_entry *he;
1798 
1799 	*root_out = RB_ROOT_CACHED;
1800 	node = rb_first_cached(root_in);
1801 
1802 	while (node) {
1803 		he = rb_entry(node, struct hist_entry, rb_node_in);
1804 		node = rb_next(node);
1805 
1806 		hierarchy_insert_output_entry(root_out, he);
1807 
1808 		if (prog)
1809 			ui_progress__update(prog, 1);
1810 
1811 		hists->nr_entries++;
1812 		if (!he->filtered) {
1813 			hists->nr_non_filtered_entries++;
1814 			hists__calc_col_len(hists, he);
1815 		}
1816 
1817 		if (!he->leaf) {
1818 			hists__hierarchy_output_resort(hists, prog,
1819 						       &he->hroot_in,
1820 						       &he->hroot_out,
1821 						       min_callchain_hits,
1822 						       use_callchain);
1823 			continue;
1824 		}
1825 
1826 		if (!use_callchain)
1827 			continue;
1828 
1829 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1830 			u64 total = he->stat.period;
1831 
1832 			if (symbol_conf.cumulate_callchain)
1833 				total = he->stat_acc->period;
1834 
1835 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1836 		}
1837 
1838 		callchain_param.sort(&he->sorted_chain, he->callchain,
1839 				     min_callchain_hits, &callchain_param);
1840 	}
1841 }
1842 
1843 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1844 					 struct hist_entry *he,
1845 					 u64 min_callchain_hits,
1846 					 bool use_callchain)
1847 {
1848 	struct rb_node **p = &entries->rb_root.rb_node;
1849 	struct rb_node *parent = NULL;
1850 	struct hist_entry *iter;
1851 	struct perf_hpp_fmt *fmt;
1852 	bool leftmost = true;
1853 
1854 	if (use_callchain) {
1855 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1856 			u64 total = he->stat.period;
1857 
1858 			if (symbol_conf.cumulate_callchain)
1859 				total = he->stat_acc->period;
1860 
1861 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1862 		}
1863 		callchain_param.sort(&he->sorted_chain, he->callchain,
1864 				      min_callchain_hits, &callchain_param);
1865 	}
1866 
1867 	while (*p != NULL) {
1868 		parent = *p;
1869 		iter = rb_entry(parent, struct hist_entry, rb_node);
1870 
1871 		if (hist_entry__sort(he, iter) > 0)
1872 			p = &(*p)->rb_left;
1873 		else {
1874 			p = &(*p)->rb_right;
1875 			leftmost = false;
1876 		}
1877 	}
1878 
1879 	rb_link_node(&he->rb_node, parent, p);
1880 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1881 
1882 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1883 		if (perf_hpp__is_dynamic_entry(fmt) &&
1884 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1885 			fmt->sort(fmt, he, NULL);  /* update column width */
1886 	}
1887 }
1888 
1889 static void output_resort(struct hists *hists, struct ui_progress *prog,
1890 			  bool use_callchain, hists__resort_cb_t cb,
1891 			  void *cb_arg)
1892 {
1893 	struct rb_root_cached *root;
1894 	struct rb_node *next;
1895 	struct hist_entry *n;
1896 	u64 callchain_total;
1897 	u64 min_callchain_hits;
1898 
1899 	callchain_total = hists->callchain_period;
1900 	if (symbol_conf.filter_relative)
1901 		callchain_total = hists->callchain_non_filtered_period;
1902 
1903 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1904 
1905 	hists__reset_stats(hists);
1906 	hists__reset_col_len(hists);
1907 
1908 	if (symbol_conf.report_hierarchy) {
1909 		hists__hierarchy_output_resort(hists, prog,
1910 					       &hists->entries_collapsed,
1911 					       &hists->entries,
1912 					       min_callchain_hits,
1913 					       use_callchain);
1914 		hierarchy_recalc_total_periods(hists);
1915 		return;
1916 	}
1917 
1918 	if (hists__has(hists, need_collapse))
1919 		root = &hists->entries_collapsed;
1920 	else
1921 		root = hists->entries_in;
1922 
1923 	next = rb_first_cached(root);
1924 	hists->entries = RB_ROOT_CACHED;
1925 
1926 	while (next) {
1927 		n = rb_entry(next, struct hist_entry, rb_node_in);
1928 		next = rb_next(&n->rb_node_in);
1929 
1930 		if (cb && cb(n, cb_arg))
1931 			continue;
1932 
1933 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1934 		hists__inc_stats(hists, n);
1935 
1936 		if (!n->filtered)
1937 			hists__calc_col_len(hists, n);
1938 
1939 		if (prog)
1940 			ui_progress__update(prog, 1);
1941 	}
1942 }
1943 
1944 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1945 			     hists__resort_cb_t cb, void *cb_arg)
1946 {
1947 	bool use_callchain;
1948 
1949 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1950 		use_callchain = evsel__has_callchain(evsel);
1951 	else
1952 		use_callchain = symbol_conf.use_callchain;
1953 
1954 	use_callchain |= symbol_conf.show_branchflag_count;
1955 
1956 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1957 }
1958 
1959 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1960 {
1961 	return evsel__output_resort_cb(evsel, prog, NULL, NULL);
1962 }
1963 
1964 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1965 {
1966 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1967 }
1968 
1969 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1970 			     hists__resort_cb_t cb)
1971 {
1972 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1973 }
1974 
1975 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1976 {
1977 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1978 		return false;
1979 
1980 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1981 		return true;
1982 
1983 	return false;
1984 }
1985 
1986 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1987 {
1988 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1989 
1990 	while (can_goto_child(he, HMD_NORMAL)) {
1991 		node = rb_last(&he->hroot_out.rb_root);
1992 		he = rb_entry(node, struct hist_entry, rb_node);
1993 	}
1994 	return node;
1995 }
1996 
1997 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1998 {
1999 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2000 
2001 	if (can_goto_child(he, hmd))
2002 		node = rb_first_cached(&he->hroot_out);
2003 	else
2004 		node = rb_next(node);
2005 
2006 	while (node == NULL) {
2007 		he = he->parent_he;
2008 		if (he == NULL)
2009 			break;
2010 
2011 		node = rb_next(&he->rb_node);
2012 	}
2013 	return node;
2014 }
2015 
2016 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
2017 {
2018 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2019 
2020 	node = rb_prev(node);
2021 	if (node)
2022 		return rb_hierarchy_last(node);
2023 
2024 	he = he->parent_he;
2025 	if (he == NULL)
2026 		return NULL;
2027 
2028 	return &he->rb_node;
2029 }
2030 
2031 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
2032 {
2033 	struct rb_node *node;
2034 	struct hist_entry *child;
2035 	float percent;
2036 
2037 	if (he->leaf)
2038 		return false;
2039 
2040 	node = rb_first_cached(&he->hroot_out);
2041 	child = rb_entry(node, struct hist_entry, rb_node);
2042 
2043 	while (node && child->filtered) {
2044 		node = rb_next(node);
2045 		child = rb_entry(node, struct hist_entry, rb_node);
2046 	}
2047 
2048 	if (node)
2049 		percent = hist_entry__get_percent_limit(child);
2050 	else
2051 		percent = 0;
2052 
2053 	return node && percent >= limit;
2054 }
2055 
2056 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2057 				       enum hist_filter filter)
2058 {
2059 	h->filtered &= ~(1 << filter);
2060 
2061 	if (symbol_conf.report_hierarchy) {
2062 		struct hist_entry *parent = h->parent_he;
2063 
2064 		while (parent) {
2065 			he_stat__add_stat(&parent->stat, &h->stat);
2066 
2067 			parent->filtered &= ~(1 << filter);
2068 
2069 			if (parent->filtered)
2070 				goto next;
2071 
2072 			/* force fold unfiltered entry for simplicity */
2073 			parent->unfolded = false;
2074 			parent->has_no_entry = false;
2075 			parent->row_offset = 0;
2076 			parent->nr_rows = 0;
2077 next:
2078 			parent = parent->parent_he;
2079 		}
2080 	}
2081 
2082 	if (h->filtered)
2083 		return;
2084 
2085 	/* force fold unfiltered entry for simplicity */
2086 	h->unfolded = false;
2087 	h->has_no_entry = false;
2088 	h->row_offset = 0;
2089 	h->nr_rows = 0;
2090 
2091 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2092 
2093 	hists__inc_filter_stats(hists, h);
2094 	hists__calc_col_len(hists, h);
2095 }
2096 
2097 
2098 static bool hists__filter_entry_by_dso(struct hists *hists,
2099 				       struct hist_entry *he)
2100 {
2101 	if (hists->dso_filter != NULL &&
2102 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2103 		he->filtered |= (1 << HIST_FILTER__DSO);
2104 		return true;
2105 	}
2106 
2107 	return false;
2108 }
2109 
2110 static bool hists__filter_entry_by_thread(struct hists *hists,
2111 					  struct hist_entry *he)
2112 {
2113 	if (hists->thread_filter != NULL &&
2114 	    he->thread != hists->thread_filter) {
2115 		he->filtered |= (1 << HIST_FILTER__THREAD);
2116 		return true;
2117 	}
2118 
2119 	return false;
2120 }
2121 
2122 static bool hists__filter_entry_by_symbol(struct hists *hists,
2123 					  struct hist_entry *he)
2124 {
2125 	if (hists->symbol_filter_str != NULL &&
2126 	    (!he->ms.sym || strstr(he->ms.sym->name,
2127 				   hists->symbol_filter_str) == NULL)) {
2128 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2129 		return true;
2130 	}
2131 
2132 	return false;
2133 }
2134 
2135 static bool hists__filter_entry_by_socket(struct hists *hists,
2136 					  struct hist_entry *he)
2137 {
2138 	if ((hists->socket_filter > -1) &&
2139 	    (he->socket != hists->socket_filter)) {
2140 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2141 		return true;
2142 	}
2143 
2144 	return false;
2145 }
2146 
2147 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2148 
2149 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2150 {
2151 	struct rb_node *nd;
2152 
2153 	hists->stats.nr_non_filtered_samples = 0;
2154 
2155 	hists__reset_filter_stats(hists);
2156 	hists__reset_col_len(hists);
2157 
2158 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2159 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2160 
2161 		if (filter(hists, h))
2162 			continue;
2163 
2164 		hists__remove_entry_filter(hists, h, type);
2165 	}
2166 }
2167 
2168 static void resort_filtered_entry(struct rb_root_cached *root,
2169 				  struct hist_entry *he)
2170 {
2171 	struct rb_node **p = &root->rb_root.rb_node;
2172 	struct rb_node *parent = NULL;
2173 	struct hist_entry *iter;
2174 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2175 	struct rb_node *nd;
2176 	bool leftmost = true;
2177 
2178 	while (*p != NULL) {
2179 		parent = *p;
2180 		iter = rb_entry(parent, struct hist_entry, rb_node);
2181 
2182 		if (hist_entry__sort(he, iter) > 0)
2183 			p = &(*p)->rb_left;
2184 		else {
2185 			p = &(*p)->rb_right;
2186 			leftmost = false;
2187 		}
2188 	}
2189 
2190 	rb_link_node(&he->rb_node, parent, p);
2191 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2192 
2193 	if (he->leaf || he->filtered)
2194 		return;
2195 
2196 	nd = rb_first_cached(&he->hroot_out);
2197 	while (nd) {
2198 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2199 
2200 		nd = rb_next(nd);
2201 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2202 
2203 		resort_filtered_entry(&new_root, h);
2204 	}
2205 
2206 	he->hroot_out = new_root;
2207 }
2208 
2209 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2210 {
2211 	struct rb_node *nd;
2212 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2213 
2214 	hists->stats.nr_non_filtered_samples = 0;
2215 
2216 	hists__reset_filter_stats(hists);
2217 	hists__reset_col_len(hists);
2218 
2219 	nd = rb_first_cached(&hists->entries);
2220 	while (nd) {
2221 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2222 		int ret;
2223 
2224 		ret = hist_entry__filter(h, type, arg);
2225 
2226 		/*
2227 		 * case 1. non-matching type
2228 		 * zero out the period, set filter marker and move to child
2229 		 */
2230 		if (ret < 0) {
2231 			memset(&h->stat, 0, sizeof(h->stat));
2232 			h->filtered |= (1 << type);
2233 
2234 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2235 		}
2236 		/*
2237 		 * case 2. matched type (filter out)
2238 		 * set filter marker and move to next
2239 		 */
2240 		else if (ret == 1) {
2241 			h->filtered |= (1 << type);
2242 
2243 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2244 		}
2245 		/*
2246 		 * case 3. ok (not filtered)
2247 		 * add period to hists and parents, erase the filter marker
2248 		 * and move to next sibling
2249 		 */
2250 		else {
2251 			hists__remove_entry_filter(hists, h, type);
2252 
2253 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2254 		}
2255 	}
2256 
2257 	hierarchy_recalc_total_periods(hists);
2258 
2259 	/*
2260 	 * resort output after applying a new filter since filter in a lower
2261 	 * hierarchy can change periods in a upper hierarchy.
2262 	 */
2263 	nd = rb_first_cached(&hists->entries);
2264 	while (nd) {
2265 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2266 
2267 		nd = rb_next(nd);
2268 		rb_erase_cached(&h->rb_node, &hists->entries);
2269 
2270 		resort_filtered_entry(&new_root, h);
2271 	}
2272 
2273 	hists->entries = new_root;
2274 }
2275 
2276 void hists__filter_by_thread(struct hists *hists)
2277 {
2278 	if (symbol_conf.report_hierarchy)
2279 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2280 					hists->thread_filter);
2281 	else
2282 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2283 				      hists__filter_entry_by_thread);
2284 }
2285 
2286 void hists__filter_by_dso(struct hists *hists)
2287 {
2288 	if (symbol_conf.report_hierarchy)
2289 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2290 					hists->dso_filter);
2291 	else
2292 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2293 				      hists__filter_entry_by_dso);
2294 }
2295 
2296 void hists__filter_by_symbol(struct hists *hists)
2297 {
2298 	if (symbol_conf.report_hierarchy)
2299 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2300 					hists->symbol_filter_str);
2301 	else
2302 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2303 				      hists__filter_entry_by_symbol);
2304 }
2305 
2306 void hists__filter_by_socket(struct hists *hists)
2307 {
2308 	if (symbol_conf.report_hierarchy)
2309 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2310 					&hists->socket_filter);
2311 	else
2312 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2313 				      hists__filter_entry_by_socket);
2314 }
2315 
2316 void events_stats__inc(struct events_stats *stats, u32 type)
2317 {
2318 	++stats->nr_events[0];
2319 	++stats->nr_events[type];
2320 }
2321 
2322 static void hists_stats__inc(struct hists_stats *stats)
2323 {
2324 	++stats->nr_samples;
2325 }
2326 
2327 void hists__inc_nr_events(struct hists *hists)
2328 {
2329 	hists_stats__inc(&hists->stats);
2330 }
2331 
2332 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2333 {
2334 	hists_stats__inc(&hists->stats);
2335 	if (!filtered)
2336 		hists->stats.nr_non_filtered_samples++;
2337 }
2338 
2339 void hists__inc_nr_lost_samples(struct hists *hists, u32 lost)
2340 {
2341 	hists->stats.nr_lost_samples += lost;
2342 }
2343 
2344 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2345 						 struct hist_entry *pair)
2346 {
2347 	struct rb_root_cached *root;
2348 	struct rb_node **p;
2349 	struct rb_node *parent = NULL;
2350 	struct hist_entry *he;
2351 	int64_t cmp;
2352 	bool leftmost = true;
2353 
2354 	if (hists__has(hists, need_collapse))
2355 		root = &hists->entries_collapsed;
2356 	else
2357 		root = hists->entries_in;
2358 
2359 	p = &root->rb_root.rb_node;
2360 
2361 	while (*p != NULL) {
2362 		parent = *p;
2363 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2364 
2365 		cmp = hist_entry__collapse(he, pair);
2366 
2367 		if (!cmp)
2368 			goto out;
2369 
2370 		if (cmp < 0)
2371 			p = &(*p)->rb_left;
2372 		else {
2373 			p = &(*p)->rb_right;
2374 			leftmost = false;
2375 		}
2376 	}
2377 
2378 	he = hist_entry__new(pair, true);
2379 	if (he) {
2380 		memset(&he->stat, 0, sizeof(he->stat));
2381 		he->hists = hists;
2382 		if (symbol_conf.cumulate_callchain)
2383 			memset(he->stat_acc, 0, sizeof(he->stat));
2384 		rb_link_node(&he->rb_node_in, parent, p);
2385 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2386 		hists__inc_stats(hists, he);
2387 		he->dummy = true;
2388 	}
2389 out:
2390 	return he;
2391 }
2392 
2393 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2394 						    struct rb_root_cached *root,
2395 						    struct hist_entry *pair)
2396 {
2397 	struct rb_node **p;
2398 	struct rb_node *parent = NULL;
2399 	struct hist_entry *he;
2400 	struct perf_hpp_fmt *fmt;
2401 	bool leftmost = true;
2402 
2403 	p = &root->rb_root.rb_node;
2404 	while (*p != NULL) {
2405 		int64_t cmp = 0;
2406 
2407 		parent = *p;
2408 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2409 
2410 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2411 			cmp = fmt->collapse(fmt, he, pair);
2412 			if (cmp)
2413 				break;
2414 		}
2415 		if (!cmp)
2416 			goto out;
2417 
2418 		if (cmp < 0)
2419 			p = &parent->rb_left;
2420 		else {
2421 			p = &parent->rb_right;
2422 			leftmost = false;
2423 		}
2424 	}
2425 
2426 	he = hist_entry__new(pair, true);
2427 	if (he) {
2428 		rb_link_node(&he->rb_node_in, parent, p);
2429 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2430 
2431 		he->dummy = true;
2432 		he->hists = hists;
2433 		memset(&he->stat, 0, sizeof(he->stat));
2434 		hists__inc_stats(hists, he);
2435 	}
2436 out:
2437 	return he;
2438 }
2439 
2440 static struct hist_entry *hists__find_entry(struct hists *hists,
2441 					    struct hist_entry *he)
2442 {
2443 	struct rb_node *n;
2444 
2445 	if (hists__has(hists, need_collapse))
2446 		n = hists->entries_collapsed.rb_root.rb_node;
2447 	else
2448 		n = hists->entries_in->rb_root.rb_node;
2449 
2450 	while (n) {
2451 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2452 		int64_t cmp = hist_entry__collapse(iter, he);
2453 
2454 		if (cmp < 0)
2455 			n = n->rb_left;
2456 		else if (cmp > 0)
2457 			n = n->rb_right;
2458 		else
2459 			return iter;
2460 	}
2461 
2462 	return NULL;
2463 }
2464 
2465 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2466 						      struct hist_entry *he)
2467 {
2468 	struct rb_node *n = root->rb_root.rb_node;
2469 
2470 	while (n) {
2471 		struct hist_entry *iter;
2472 		struct perf_hpp_fmt *fmt;
2473 		int64_t cmp = 0;
2474 
2475 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2476 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2477 			cmp = fmt->collapse(fmt, iter, he);
2478 			if (cmp)
2479 				break;
2480 		}
2481 
2482 		if (cmp < 0)
2483 			n = n->rb_left;
2484 		else if (cmp > 0)
2485 			n = n->rb_right;
2486 		else
2487 			return iter;
2488 	}
2489 
2490 	return NULL;
2491 }
2492 
2493 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2494 				   struct rb_root_cached *other_root)
2495 {
2496 	struct rb_node *nd;
2497 	struct hist_entry *pos, *pair;
2498 
2499 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2500 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2501 		pair = hists__find_hierarchy_entry(other_root, pos);
2502 
2503 		if (pair) {
2504 			hist_entry__add_pair(pair, pos);
2505 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2506 		}
2507 	}
2508 }
2509 
2510 /*
2511  * Look for pairs to link to the leader buckets (hist_entries):
2512  */
2513 void hists__match(struct hists *leader, struct hists *other)
2514 {
2515 	struct rb_root_cached *root;
2516 	struct rb_node *nd;
2517 	struct hist_entry *pos, *pair;
2518 
2519 	if (symbol_conf.report_hierarchy) {
2520 		/* hierarchy report always collapses entries */
2521 		return hists__match_hierarchy(&leader->entries_collapsed,
2522 					      &other->entries_collapsed);
2523 	}
2524 
2525 	if (hists__has(leader, need_collapse))
2526 		root = &leader->entries_collapsed;
2527 	else
2528 		root = leader->entries_in;
2529 
2530 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2531 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2532 		pair = hists__find_entry(other, pos);
2533 
2534 		if (pair)
2535 			hist_entry__add_pair(pair, pos);
2536 	}
2537 }
2538 
2539 static int hists__link_hierarchy(struct hists *leader_hists,
2540 				 struct hist_entry *parent,
2541 				 struct rb_root_cached *leader_root,
2542 				 struct rb_root_cached *other_root)
2543 {
2544 	struct rb_node *nd;
2545 	struct hist_entry *pos, *leader;
2546 
2547 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2548 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2549 
2550 		if (hist_entry__has_pairs(pos)) {
2551 			bool found = false;
2552 
2553 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2554 				if (leader->hists == leader_hists) {
2555 					found = true;
2556 					break;
2557 				}
2558 			}
2559 			if (!found)
2560 				return -1;
2561 		} else {
2562 			leader = add_dummy_hierarchy_entry(leader_hists,
2563 							   leader_root, pos);
2564 			if (leader == NULL)
2565 				return -1;
2566 
2567 			/* do not point parent in the pos */
2568 			leader->parent_he = parent;
2569 
2570 			hist_entry__add_pair(pos, leader);
2571 		}
2572 
2573 		if (!pos->leaf) {
2574 			if (hists__link_hierarchy(leader_hists, leader,
2575 						  &leader->hroot_in,
2576 						  &pos->hroot_in) < 0)
2577 				return -1;
2578 		}
2579 	}
2580 	return 0;
2581 }
2582 
2583 /*
2584  * Look for entries in the other hists that are not present in the leader, if
2585  * we find them, just add a dummy entry on the leader hists, with period=0,
2586  * nr_events=0, to serve as the list header.
2587  */
2588 int hists__link(struct hists *leader, struct hists *other)
2589 {
2590 	struct rb_root_cached *root;
2591 	struct rb_node *nd;
2592 	struct hist_entry *pos, *pair;
2593 
2594 	if (symbol_conf.report_hierarchy) {
2595 		/* hierarchy report always collapses entries */
2596 		return hists__link_hierarchy(leader, NULL,
2597 					     &leader->entries_collapsed,
2598 					     &other->entries_collapsed);
2599 	}
2600 
2601 	if (hists__has(other, need_collapse))
2602 		root = &other->entries_collapsed;
2603 	else
2604 		root = other->entries_in;
2605 
2606 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2607 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2608 
2609 		if (!hist_entry__has_pairs(pos)) {
2610 			pair = hists__add_dummy_entry(leader, pos);
2611 			if (pair == NULL)
2612 				return -1;
2613 			hist_entry__add_pair(pos, pair);
2614 		}
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 int hists__unlink(struct hists *hists)
2621 {
2622 	struct rb_root_cached *root;
2623 	struct rb_node *nd;
2624 	struct hist_entry *pos;
2625 
2626 	if (hists__has(hists, need_collapse))
2627 		root = &hists->entries_collapsed;
2628 	else
2629 		root = hists->entries_in;
2630 
2631 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2632 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2633 		list_del_init(&pos->pairs.node);
2634 	}
2635 
2636 	return 0;
2637 }
2638 
2639 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2640 			  struct perf_sample *sample, bool nonany_branch_mode,
2641 			  u64 *total_cycles)
2642 {
2643 	struct branch_info *bi;
2644 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2645 
2646 	/* If we have branch cycles always annotate them. */
2647 	if (bs && bs->nr && entries[0].flags.cycles) {
2648 		int i;
2649 
2650 		bi = sample__resolve_bstack(sample, al);
2651 		if (bi) {
2652 			struct addr_map_symbol *prev = NULL;
2653 
2654 			/*
2655 			 * Ignore errors, still want to process the
2656 			 * other entries.
2657 			 *
2658 			 * For non standard branch modes always
2659 			 * force no IPC (prev == NULL)
2660 			 *
2661 			 * Note that perf stores branches reversed from
2662 			 * program order!
2663 			 */
2664 			for (i = bs->nr - 1; i >= 0; i--) {
2665 				addr_map_symbol__account_cycles(&bi[i].from,
2666 					nonany_branch_mode ? NULL : prev,
2667 					bi[i].flags.cycles);
2668 				prev = &bi[i].to;
2669 
2670 				if (total_cycles)
2671 					*total_cycles += bi[i].flags.cycles;
2672 			}
2673 			free(bi);
2674 		}
2675 	}
2676 }
2677 
2678 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp,
2679 				 bool skip_empty)
2680 {
2681 	struct evsel *pos;
2682 	size_t ret = 0;
2683 
2684 	evlist__for_each_entry(evlist, pos) {
2685 		struct hists *hists = evsel__hists(pos);
2686 
2687 		if (skip_empty && !hists->stats.nr_samples && !hists->stats.nr_lost_samples)
2688 			continue;
2689 
2690 		ret += fprintf(fp, "%s stats:\n", evsel__name(pos));
2691 		if (hists->stats.nr_samples)
2692 			ret += fprintf(fp, "%16s events: %10d\n",
2693 				       "SAMPLE", hists->stats.nr_samples);
2694 		if (hists->stats.nr_lost_samples)
2695 			ret += fprintf(fp, "%16s events: %10d\n",
2696 				       "LOST_SAMPLES", hists->stats.nr_lost_samples);
2697 	}
2698 
2699 	return ret;
2700 }
2701 
2702 
2703 u64 hists__total_period(struct hists *hists)
2704 {
2705 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2706 		hists->stats.total_period;
2707 }
2708 
2709 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2710 {
2711 	char unit;
2712 	int printed;
2713 	const struct dso *dso = hists->dso_filter;
2714 	struct thread *thread = hists->thread_filter;
2715 	int socket_id = hists->socket_filter;
2716 	unsigned long nr_samples = hists->stats.nr_samples;
2717 	u64 nr_events = hists->stats.total_period;
2718 	struct evsel *evsel = hists_to_evsel(hists);
2719 	const char *ev_name = evsel__name(evsel);
2720 	char buf[512], sample_freq_str[64] = "";
2721 	size_t buflen = sizeof(buf);
2722 	char ref[30] = " show reference callgraph, ";
2723 	bool enable_ref = false;
2724 
2725 	if (symbol_conf.filter_relative) {
2726 		nr_samples = hists->stats.nr_non_filtered_samples;
2727 		nr_events = hists->stats.total_non_filtered_period;
2728 	}
2729 
2730 	if (evsel__is_group_event(evsel)) {
2731 		struct evsel *pos;
2732 
2733 		evsel__group_desc(evsel, buf, buflen);
2734 		ev_name = buf;
2735 
2736 		for_each_group_member(pos, evsel) {
2737 			struct hists *pos_hists = evsel__hists(pos);
2738 
2739 			if (symbol_conf.filter_relative) {
2740 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2741 				nr_events += pos_hists->stats.total_non_filtered_period;
2742 			} else {
2743 				nr_samples += pos_hists->stats.nr_samples;
2744 				nr_events += pos_hists->stats.total_period;
2745 			}
2746 		}
2747 	}
2748 
2749 	if (symbol_conf.show_ref_callgraph &&
2750 	    strstr(ev_name, "call-graph=no"))
2751 		enable_ref = true;
2752 
2753 	if (show_freq)
2754 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2755 
2756 	nr_samples = convert_unit(nr_samples, &unit);
2757 	printed = scnprintf(bf, size,
2758 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2759 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2760 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2761 
2762 
2763 	if (hists->uid_filter_str)
2764 		printed += snprintf(bf + printed, size - printed,
2765 				    ", UID: %s", hists->uid_filter_str);
2766 	if (thread) {
2767 		if (hists__has(hists, thread)) {
2768 			printed += scnprintf(bf + printed, size - printed,
2769 				    ", Thread: %s(%d)",
2770 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2771 				    thread->tid);
2772 		} else {
2773 			printed += scnprintf(bf + printed, size - printed,
2774 				    ", Thread: %s",
2775 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2776 		}
2777 	}
2778 	if (dso)
2779 		printed += scnprintf(bf + printed, size - printed,
2780 				    ", DSO: %s", dso->short_name);
2781 	if (socket_id > -1)
2782 		printed += scnprintf(bf + printed, size - printed,
2783 				    ", Processor Socket: %d", socket_id);
2784 
2785 	return printed;
2786 }
2787 
2788 int parse_filter_percentage(const struct option *opt __maybe_unused,
2789 			    const char *arg, int unset __maybe_unused)
2790 {
2791 	if (!strcmp(arg, "relative"))
2792 		symbol_conf.filter_relative = true;
2793 	else if (!strcmp(arg, "absolute"))
2794 		symbol_conf.filter_relative = false;
2795 	else {
2796 		pr_debug("Invalid percentage: %s\n", arg);
2797 		return -1;
2798 	}
2799 
2800 	return 0;
2801 }
2802 
2803 int perf_hist_config(const char *var, const char *value)
2804 {
2805 	if (!strcmp(var, "hist.percentage"))
2806 		return parse_filter_percentage(NULL, value, 0);
2807 
2808 	return 0;
2809 }
2810 
2811 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2812 {
2813 	memset(hists, 0, sizeof(*hists));
2814 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2815 	hists->entries_in = &hists->entries_in_array[0];
2816 	hists->entries_collapsed = RB_ROOT_CACHED;
2817 	hists->entries = RB_ROOT_CACHED;
2818 	mutex_init(&hists->lock);
2819 	hists->socket_filter = -1;
2820 	hists->hpp_list = hpp_list;
2821 	INIT_LIST_HEAD(&hists->hpp_formats);
2822 	return 0;
2823 }
2824 
2825 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2826 {
2827 	struct rb_node *node;
2828 	struct hist_entry *he;
2829 
2830 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2831 		node = rb_first_cached(root);
2832 		rb_erase_cached(node, root);
2833 
2834 		he = rb_entry(node, struct hist_entry, rb_node_in);
2835 		hist_entry__delete(he);
2836 	}
2837 }
2838 
2839 static void hists__delete_all_entries(struct hists *hists)
2840 {
2841 	hists__delete_entries(hists);
2842 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2843 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2844 	hists__delete_remaining_entries(&hists->entries_collapsed);
2845 }
2846 
2847 static void hists_evsel__exit(struct evsel *evsel)
2848 {
2849 	struct hists *hists = evsel__hists(evsel);
2850 	struct perf_hpp_fmt *fmt, *pos;
2851 	struct perf_hpp_list_node *node, *tmp;
2852 
2853 	hists__delete_all_entries(hists);
2854 
2855 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2856 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2857 			list_del_init(&fmt->list);
2858 			free(fmt);
2859 		}
2860 		list_del_init(&node->list);
2861 		free(node);
2862 	}
2863 }
2864 
2865 static int hists_evsel__init(struct evsel *evsel)
2866 {
2867 	struct hists *hists = evsel__hists(evsel);
2868 
2869 	__hists__init(hists, &perf_hpp_list);
2870 	return 0;
2871 }
2872 
2873 /*
2874  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2875  * stored in the rbtree...
2876  */
2877 
2878 int hists__init(void)
2879 {
2880 	int err = evsel__object_config(sizeof(struct hists_evsel),
2881 				       hists_evsel__init, hists_evsel__exit);
2882 	if (err)
2883 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2884 
2885 	return err;
2886 }
2887 
2888 void perf_hpp_list__init(struct perf_hpp_list *list)
2889 {
2890 	INIT_LIST_HEAD(&list->fields);
2891 	INIT_LIST_HEAD(&list->sorts);
2892 }
2893