xref: /linux/tools/perf/util/machine.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39 
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45 
46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48 	return map__dso(machine->vmlinux_map);
49 }
50 
51 static void dsos__init(struct dsos *dsos)
52 {
53 	INIT_LIST_HEAD(&dsos->head);
54 	dsos->root = RB_ROOT;
55 	init_rwsem(&dsos->lock);
56 }
57 
58 static int machine__set_mmap_name(struct machine *machine)
59 {
60 	if (machine__is_host(machine))
61 		machine->mmap_name = strdup("[kernel.kallsyms]");
62 	else if (machine__is_default_guest(machine))
63 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
64 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
65 			  machine->pid) < 0)
66 		machine->mmap_name = NULL;
67 
68 	return machine->mmap_name ? 0 : -ENOMEM;
69 }
70 
71 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
72 {
73 	char comm[64];
74 
75 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
76 	thread__set_comm(thread, comm, 0);
77 }
78 
79 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80 {
81 	int err = -ENOMEM;
82 
83 	memset(machine, 0, sizeof(*machine));
84 	machine->kmaps = maps__new(machine);
85 	if (machine->kmaps == NULL)
86 		return -ENOMEM;
87 
88 	RB_CLEAR_NODE(&machine->rb_node);
89 	dsos__init(&machine->dsos);
90 
91 	threads__init(&machine->threads);
92 
93 	machine->vdso_info = NULL;
94 	machine->env = NULL;
95 
96 	machine->pid = pid;
97 
98 	machine->id_hdr_size = 0;
99 	machine->kptr_restrict_warned = false;
100 	machine->comm_exec = false;
101 	machine->kernel_start = 0;
102 	machine->vmlinux_map = NULL;
103 
104 	machine->root_dir = strdup(root_dir);
105 	if (machine->root_dir == NULL)
106 		goto out;
107 
108 	if (machine__set_mmap_name(machine))
109 		goto out;
110 
111 	if (pid != HOST_KERNEL_ID) {
112 		struct thread *thread = machine__findnew_thread(machine, -1,
113 								pid);
114 
115 		if (thread == NULL)
116 			goto out;
117 
118 		thread__set_guest_comm(thread, pid);
119 		thread__put(thread);
120 	}
121 
122 	machine->current_tid = NULL;
123 	err = 0;
124 
125 out:
126 	if (err) {
127 		zfree(&machine->kmaps);
128 		zfree(&machine->root_dir);
129 		zfree(&machine->mmap_name);
130 	}
131 	return 0;
132 }
133 
134 struct machine *machine__new_host(void)
135 {
136 	struct machine *machine = malloc(sizeof(*machine));
137 
138 	if (machine != NULL) {
139 		machine__init(machine, "", HOST_KERNEL_ID);
140 
141 		if (machine__create_kernel_maps(machine) < 0)
142 			goto out_delete;
143 	}
144 
145 	return machine;
146 out_delete:
147 	free(machine);
148 	return NULL;
149 }
150 
151 struct machine *machine__new_kallsyms(void)
152 {
153 	struct machine *machine = machine__new_host();
154 	/*
155 	 * FIXME:
156 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
157 	 *    ask for not using the kcore parsing code, once this one is fixed
158 	 *    to create a map per module.
159 	 */
160 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
161 		machine__delete(machine);
162 		machine = NULL;
163 	}
164 
165 	return machine;
166 }
167 
168 static void dsos__purge(struct dsos *dsos)
169 {
170 	struct dso *pos, *n;
171 
172 	down_write(&dsos->lock);
173 
174 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
175 		RB_CLEAR_NODE(&pos->rb_node);
176 		pos->root = NULL;
177 		list_del_init(&pos->node);
178 		dso__put(pos);
179 	}
180 
181 	up_write(&dsos->lock);
182 }
183 
184 static void dsos__exit(struct dsos *dsos)
185 {
186 	dsos__purge(dsos);
187 	exit_rwsem(&dsos->lock);
188 }
189 
190 void machine__delete_threads(struct machine *machine)
191 {
192 	threads__remove_all_threads(&machine->threads);
193 }
194 
195 void machine__exit(struct machine *machine)
196 {
197 	if (machine == NULL)
198 		return;
199 
200 	machine__destroy_kernel_maps(machine);
201 	maps__zput(machine->kmaps);
202 	dsos__exit(&machine->dsos);
203 	machine__exit_vdso(machine);
204 	zfree(&machine->root_dir);
205 	zfree(&machine->mmap_name);
206 	zfree(&machine->current_tid);
207 	zfree(&machine->kallsyms_filename);
208 
209 	threads__exit(&machine->threads);
210 }
211 
212 void machine__delete(struct machine *machine)
213 {
214 	if (machine) {
215 		machine__exit(machine);
216 		free(machine);
217 	}
218 }
219 
220 void machines__init(struct machines *machines)
221 {
222 	machine__init(&machines->host, "", HOST_KERNEL_ID);
223 	machines->guests = RB_ROOT_CACHED;
224 }
225 
226 void machines__exit(struct machines *machines)
227 {
228 	machine__exit(&machines->host);
229 	/* XXX exit guest */
230 }
231 
232 struct machine *machines__add(struct machines *machines, pid_t pid,
233 			      const char *root_dir)
234 {
235 	struct rb_node **p = &machines->guests.rb_root.rb_node;
236 	struct rb_node *parent = NULL;
237 	struct machine *pos, *machine = malloc(sizeof(*machine));
238 	bool leftmost = true;
239 
240 	if (machine == NULL)
241 		return NULL;
242 
243 	if (machine__init(machine, root_dir, pid) != 0) {
244 		free(machine);
245 		return NULL;
246 	}
247 
248 	while (*p != NULL) {
249 		parent = *p;
250 		pos = rb_entry(parent, struct machine, rb_node);
251 		if (pid < pos->pid)
252 			p = &(*p)->rb_left;
253 		else {
254 			p = &(*p)->rb_right;
255 			leftmost = false;
256 		}
257 	}
258 
259 	rb_link_node(&machine->rb_node, parent, p);
260 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
261 
262 	machine->machines = machines;
263 
264 	return machine;
265 }
266 
267 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
268 {
269 	struct rb_node *nd;
270 
271 	machines->host.comm_exec = comm_exec;
272 
273 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
274 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
275 
276 		machine->comm_exec = comm_exec;
277 	}
278 }
279 
280 struct machine *machines__find(struct machines *machines, pid_t pid)
281 {
282 	struct rb_node **p = &machines->guests.rb_root.rb_node;
283 	struct rb_node *parent = NULL;
284 	struct machine *machine;
285 	struct machine *default_machine = NULL;
286 
287 	if (pid == HOST_KERNEL_ID)
288 		return &machines->host;
289 
290 	while (*p != NULL) {
291 		parent = *p;
292 		machine = rb_entry(parent, struct machine, rb_node);
293 		if (pid < machine->pid)
294 			p = &(*p)->rb_left;
295 		else if (pid > machine->pid)
296 			p = &(*p)->rb_right;
297 		else
298 			return machine;
299 		if (!machine->pid)
300 			default_machine = machine;
301 	}
302 
303 	return default_machine;
304 }
305 
306 struct machine *machines__findnew(struct machines *machines, pid_t pid)
307 {
308 	char path[PATH_MAX];
309 	const char *root_dir = "";
310 	struct machine *machine = machines__find(machines, pid);
311 
312 	if (machine && (machine->pid == pid))
313 		goto out;
314 
315 	if ((pid != HOST_KERNEL_ID) &&
316 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
317 	    (symbol_conf.guestmount)) {
318 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
319 		if (access(path, R_OK)) {
320 			static struct strlist *seen;
321 
322 			if (!seen)
323 				seen = strlist__new(NULL, NULL);
324 
325 			if (!strlist__has_entry(seen, path)) {
326 				pr_err("Can't access file %s\n", path);
327 				strlist__add(seen, path);
328 			}
329 			machine = NULL;
330 			goto out;
331 		}
332 		root_dir = path;
333 	}
334 
335 	machine = machines__add(machines, pid, root_dir);
336 out:
337 	return machine;
338 }
339 
340 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
341 {
342 	struct machine *machine = machines__find(machines, pid);
343 
344 	if (!machine)
345 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
346 	return machine;
347 }
348 
349 /*
350  * A common case for KVM test programs is that the test program acts as the
351  * hypervisor, creating, running and destroying the virtual machine, and
352  * providing the guest object code from its own object code. In this case,
353  * the VM is not running an OS, but only the functions loaded into it by the
354  * hypervisor test program, and conveniently, loaded at the same virtual
355  * addresses.
356  *
357  * Normally to resolve addresses, MMAP events are needed to map addresses
358  * back to the object code and debug symbols for that object code.
359  *
360  * Currently, there is no way to get such mapping information from guests
361  * but, in the scenario described above, the guest has the same mappings
362  * as the hypervisor, so support for that scenario can be achieved.
363  *
364  * To support that, copy the host thread's maps to the guest thread's maps.
365  * Note, we do not discover the guest until we encounter a guest event,
366  * which works well because it is not until then that we know that the host
367  * thread's maps have been set up.
368  *
369  * This function returns the guest thread. Apart from keeping the data
370  * structures sane, using a thread belonging to the guest machine, instead
371  * of the host thread, allows it to have its own comm (refer
372  * thread__set_guest_comm()).
373  */
374 static struct thread *findnew_guest_code(struct machine *machine,
375 					 struct machine *host_machine,
376 					 pid_t pid)
377 {
378 	struct thread *host_thread;
379 	struct thread *thread;
380 	int err;
381 
382 	if (!machine)
383 		return NULL;
384 
385 	thread = machine__findnew_thread(machine, -1, pid);
386 	if (!thread)
387 		return NULL;
388 
389 	/* Assume maps are set up if there are any */
390 	if (!maps__empty(thread__maps(thread)))
391 		return thread;
392 
393 	host_thread = machine__find_thread(host_machine, -1, pid);
394 	if (!host_thread)
395 		goto out_err;
396 
397 	thread__set_guest_comm(thread, pid);
398 
399 	/*
400 	 * Guest code can be found in hypervisor process at the same address
401 	 * so copy host maps.
402 	 */
403 	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
404 	thread__put(host_thread);
405 	if (err)
406 		goto out_err;
407 
408 	return thread;
409 
410 out_err:
411 	thread__zput(thread);
412 	return NULL;
413 }
414 
415 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
416 {
417 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
418 	struct machine *machine = machines__findnew(machines, pid);
419 
420 	return findnew_guest_code(machine, host_machine, pid);
421 }
422 
423 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
424 {
425 	struct machines *machines = machine->machines;
426 	struct machine *host_machine;
427 
428 	if (!machines)
429 		return NULL;
430 
431 	host_machine = machines__find(machines, HOST_KERNEL_ID);
432 
433 	return findnew_guest_code(machine, host_machine, pid);
434 }
435 
436 void machines__process_guests(struct machines *machines,
437 			      machine__process_t process, void *data)
438 {
439 	struct rb_node *nd;
440 
441 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
442 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
443 		process(pos, data);
444 	}
445 }
446 
447 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
448 {
449 	struct rb_node *node;
450 	struct machine *machine;
451 
452 	machines->host.id_hdr_size = id_hdr_size;
453 
454 	for (node = rb_first_cached(&machines->guests); node;
455 	     node = rb_next(node)) {
456 		machine = rb_entry(node, struct machine, rb_node);
457 		machine->id_hdr_size = id_hdr_size;
458 	}
459 
460 	return;
461 }
462 
463 static void machine__update_thread_pid(struct machine *machine,
464 				       struct thread *th, pid_t pid)
465 {
466 	struct thread *leader;
467 
468 	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
469 		return;
470 
471 	thread__set_pid(th, pid);
472 
473 	if (thread__pid(th) == thread__tid(th))
474 		return;
475 
476 	leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
477 	if (!leader)
478 		goto out_err;
479 
480 	if (!thread__maps(leader))
481 		thread__set_maps(leader, maps__new(machine));
482 
483 	if (!thread__maps(leader))
484 		goto out_err;
485 
486 	if (thread__maps(th) == thread__maps(leader))
487 		goto out_put;
488 
489 	if (thread__maps(th)) {
490 		/*
491 		 * Maps are created from MMAP events which provide the pid and
492 		 * tid.  Consequently there never should be any maps on a thread
493 		 * with an unknown pid.  Just print an error if there are.
494 		 */
495 		if (!maps__empty(thread__maps(th)))
496 			pr_err("Discarding thread maps for %d:%d\n",
497 				thread__pid(th), thread__tid(th));
498 		maps__put(thread__maps(th));
499 	}
500 
501 	thread__set_maps(th, maps__get(thread__maps(leader)));
502 out_put:
503 	thread__put(leader);
504 	return;
505 out_err:
506 	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
507 	goto out_put;
508 }
509 
510 /*
511  * Caller must eventually drop thread->refcnt returned with a successful
512  * lookup/new thread inserted.
513  */
514 static struct thread *__machine__findnew_thread(struct machine *machine,
515 						pid_t pid,
516 						pid_t tid,
517 						bool create)
518 {
519 	struct thread *th = threads__find(&machine->threads, tid);
520 	bool created;
521 
522 	if (th) {
523 		machine__update_thread_pid(machine, th, pid);
524 		return th;
525 	}
526 	if (!create)
527 		return NULL;
528 
529 	th = threads__findnew(&machine->threads, pid, tid, &created);
530 	if (created) {
531 		/*
532 		 * We have to initialize maps separately after rb tree is
533 		 * updated.
534 		 *
535 		 * The reason is that we call machine__findnew_thread within
536 		 * thread__init_maps to find the thread leader and that would
537 		 * screwed the rb tree.
538 		 */
539 		if (thread__init_maps(th, machine)) {
540 			pr_err("Thread init failed thread %d\n", pid);
541 			threads__remove(&machine->threads, th);
542 			thread__put(th);
543 			return NULL;
544 		}
545 	} else
546 		machine__update_thread_pid(machine, th, pid);
547 
548 	return th;
549 }
550 
551 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
552 {
553 	return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
554 }
555 
556 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
557 				    pid_t tid)
558 {
559 	return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
560 }
561 
562 /*
563  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
564  * So here a single thread is created for that, but actually there is a separate
565  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
566  * is only 1. That causes problems for some tools, requiring workarounds. For
567  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
568  */
569 struct thread *machine__idle_thread(struct machine *machine)
570 {
571 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
572 
573 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
574 	    thread__set_namespaces(thread, 0, NULL))
575 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
576 
577 	return thread;
578 }
579 
580 struct comm *machine__thread_exec_comm(struct machine *machine,
581 				       struct thread *thread)
582 {
583 	if (machine->comm_exec)
584 		return thread__exec_comm(thread);
585 	else
586 		return thread__comm(thread);
587 }
588 
589 int machine__process_comm_event(struct machine *machine, union perf_event *event,
590 				struct perf_sample *sample)
591 {
592 	struct thread *thread = machine__findnew_thread(machine,
593 							event->comm.pid,
594 							event->comm.tid);
595 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
596 	int err = 0;
597 
598 	if (exec)
599 		machine->comm_exec = true;
600 
601 	if (dump_trace)
602 		perf_event__fprintf_comm(event, stdout);
603 
604 	if (thread == NULL ||
605 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
606 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
607 		err = -1;
608 	}
609 
610 	thread__put(thread);
611 
612 	return err;
613 }
614 
615 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
616 				      union perf_event *event,
617 				      struct perf_sample *sample __maybe_unused)
618 {
619 	struct thread *thread = machine__findnew_thread(machine,
620 							event->namespaces.pid,
621 							event->namespaces.tid);
622 	int err = 0;
623 
624 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
625 		  "\nWARNING: kernel seems to support more namespaces than perf"
626 		  " tool.\nTry updating the perf tool..\n\n");
627 
628 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
629 		  "\nWARNING: perf tool seems to support more namespaces than"
630 		  " the kernel.\nTry updating the kernel..\n\n");
631 
632 	if (dump_trace)
633 		perf_event__fprintf_namespaces(event, stdout);
634 
635 	if (thread == NULL ||
636 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
637 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
638 		err = -1;
639 	}
640 
641 	thread__put(thread);
642 
643 	return err;
644 }
645 
646 int machine__process_cgroup_event(struct machine *machine,
647 				  union perf_event *event,
648 				  struct perf_sample *sample __maybe_unused)
649 {
650 	struct cgroup *cgrp;
651 
652 	if (dump_trace)
653 		perf_event__fprintf_cgroup(event, stdout);
654 
655 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
656 	if (cgrp == NULL)
657 		return -ENOMEM;
658 
659 	return 0;
660 }
661 
662 int machine__process_lost_event(struct machine *machine __maybe_unused,
663 				union perf_event *event, struct perf_sample *sample __maybe_unused)
664 {
665 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
666 		    event->lost.id, event->lost.lost);
667 	return 0;
668 }
669 
670 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
671 					union perf_event *event, struct perf_sample *sample)
672 {
673 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
674 		    sample->id, event->lost_samples.lost);
675 	return 0;
676 }
677 
678 static struct dso *machine__findnew_module_dso(struct machine *machine,
679 					       struct kmod_path *m,
680 					       const char *filename)
681 {
682 	struct dso *dso;
683 
684 	down_write(&machine->dsos.lock);
685 
686 	dso = __dsos__find(&machine->dsos, m->name, true);
687 	if (!dso) {
688 		dso = __dsos__addnew(&machine->dsos, m->name);
689 		if (dso == NULL)
690 			goto out_unlock;
691 
692 		dso__set_module_info(dso, m, machine);
693 		dso__set_long_name(dso, strdup(filename), true);
694 		dso->kernel = DSO_SPACE__KERNEL;
695 	}
696 
697 	dso__get(dso);
698 out_unlock:
699 	up_write(&machine->dsos.lock);
700 	return dso;
701 }
702 
703 int machine__process_aux_event(struct machine *machine __maybe_unused,
704 			       union perf_event *event)
705 {
706 	if (dump_trace)
707 		perf_event__fprintf_aux(event, stdout);
708 	return 0;
709 }
710 
711 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
712 					union perf_event *event)
713 {
714 	if (dump_trace)
715 		perf_event__fprintf_itrace_start(event, stdout);
716 	return 0;
717 }
718 
719 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
720 					    union perf_event *event)
721 {
722 	if (dump_trace)
723 		perf_event__fprintf_aux_output_hw_id(event, stdout);
724 	return 0;
725 }
726 
727 int machine__process_switch_event(struct machine *machine __maybe_unused,
728 				  union perf_event *event)
729 {
730 	if (dump_trace)
731 		perf_event__fprintf_switch(event, stdout);
732 	return 0;
733 }
734 
735 static int machine__process_ksymbol_register(struct machine *machine,
736 					     union perf_event *event,
737 					     struct perf_sample *sample __maybe_unused)
738 {
739 	struct symbol *sym;
740 	struct dso *dso;
741 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
742 	int err = 0;
743 
744 	if (!map) {
745 		dso = dso__new(event->ksymbol.name);
746 
747 		if (!dso) {
748 			err = -ENOMEM;
749 			goto out;
750 		}
751 		dso->kernel = DSO_SPACE__KERNEL;
752 		map = map__new2(0, dso);
753 		dso__put(dso);
754 		if (!map) {
755 			err = -ENOMEM;
756 			goto out;
757 		}
758 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
759 			dso->binary_type = DSO_BINARY_TYPE__OOL;
760 			dso->data.file_size = event->ksymbol.len;
761 			dso__set_loaded(dso);
762 		}
763 
764 		map__set_start(map, event->ksymbol.addr);
765 		map__set_end(map, map__start(map) + event->ksymbol.len);
766 		err = maps__insert(machine__kernel_maps(machine), map);
767 		if (err) {
768 			err = -ENOMEM;
769 			goto out;
770 		}
771 
772 		dso__set_loaded(dso);
773 
774 		if (is_bpf_image(event->ksymbol.name)) {
775 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
776 			dso__set_long_name(dso, "", false);
777 		}
778 	} else {
779 		dso = map__dso(map);
780 	}
781 
782 	sym = symbol__new(map__map_ip(map, map__start(map)),
783 			  event->ksymbol.len,
784 			  0, 0, event->ksymbol.name);
785 	if (!sym) {
786 		err = -ENOMEM;
787 		goto out;
788 	}
789 	dso__insert_symbol(dso, sym);
790 out:
791 	map__put(map);
792 	return err;
793 }
794 
795 static int machine__process_ksymbol_unregister(struct machine *machine,
796 					       union perf_event *event,
797 					       struct perf_sample *sample __maybe_unused)
798 {
799 	struct symbol *sym;
800 	struct map *map;
801 
802 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
803 	if (!map)
804 		return 0;
805 
806 	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
807 		maps__remove(machine__kernel_maps(machine), map);
808 	else {
809 		struct dso *dso = map__dso(map);
810 
811 		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
812 		if (sym)
813 			dso__delete_symbol(dso, sym);
814 	}
815 	map__put(map);
816 	return 0;
817 }
818 
819 int machine__process_ksymbol(struct machine *machine __maybe_unused,
820 			     union perf_event *event,
821 			     struct perf_sample *sample)
822 {
823 	if (dump_trace)
824 		perf_event__fprintf_ksymbol(event, stdout);
825 
826 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
827 		return machine__process_ksymbol_unregister(machine, event,
828 							   sample);
829 	return machine__process_ksymbol_register(machine, event, sample);
830 }
831 
832 int machine__process_text_poke(struct machine *machine, union perf_event *event,
833 			       struct perf_sample *sample __maybe_unused)
834 {
835 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
836 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
837 	struct dso *dso = map ? map__dso(map) : NULL;
838 
839 	if (dump_trace)
840 		perf_event__fprintf_text_poke(event, machine, stdout);
841 
842 	if (!event->text_poke.new_len)
843 		goto out;
844 
845 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
846 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
847 		goto out;
848 	}
849 
850 	if (dso) {
851 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
852 		int ret;
853 
854 		/*
855 		 * Kernel maps might be changed when loading symbols so loading
856 		 * must be done prior to using kernel maps.
857 		 */
858 		map__load(map);
859 		ret = dso__data_write_cache_addr(dso, map, machine,
860 						 event->text_poke.addr,
861 						 new_bytes,
862 						 event->text_poke.new_len);
863 		if (ret != event->text_poke.new_len)
864 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
865 				 event->text_poke.addr);
866 	} else {
867 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
868 			 event->text_poke.addr);
869 	}
870 out:
871 	map__put(map);
872 	return 0;
873 }
874 
875 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
876 					      const char *filename)
877 {
878 	struct map *map = NULL;
879 	struct kmod_path m;
880 	struct dso *dso;
881 	int err;
882 
883 	if (kmod_path__parse_name(&m, filename))
884 		return NULL;
885 
886 	dso = machine__findnew_module_dso(machine, &m, filename);
887 	if (dso == NULL)
888 		goto out;
889 
890 	map = map__new2(start, dso);
891 	if (map == NULL)
892 		goto out;
893 
894 	err = maps__insert(machine__kernel_maps(machine), map);
895 	/* If maps__insert failed, return NULL. */
896 	if (err) {
897 		map__put(map);
898 		map = NULL;
899 	}
900 out:
901 	/* put the dso here, corresponding to  machine__findnew_module_dso */
902 	dso__put(dso);
903 	zfree(&m.name);
904 	return map;
905 }
906 
907 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
908 {
909 	struct rb_node *nd;
910 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
911 
912 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
913 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
914 		ret += __dsos__fprintf(&pos->dsos.head, fp);
915 	}
916 
917 	return ret;
918 }
919 
920 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
921 				     bool (skip)(struct dso *dso, int parm), int parm)
922 {
923 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
924 }
925 
926 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
927 				     bool (skip)(struct dso *dso, int parm), int parm)
928 {
929 	struct rb_node *nd;
930 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
931 
932 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
933 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
934 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
935 	}
936 	return ret;
937 }
938 
939 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
940 {
941 	int i;
942 	size_t printed = 0;
943 	struct dso *kdso = machine__kernel_dso(machine);
944 
945 	if (kdso->has_build_id) {
946 		char filename[PATH_MAX];
947 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
948 					   false))
949 			printed += fprintf(fp, "[0] %s\n", filename);
950 	}
951 
952 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
953 		printed += fprintf(fp, "[%d] %s\n",
954 				   i + kdso->has_build_id, vmlinux_path[i]);
955 
956 	return printed;
957 }
958 
959 struct machine_fprintf_cb_args {
960 	FILE *fp;
961 	size_t printed;
962 };
963 
964 static int machine_fprintf_cb(struct thread *thread, void *data)
965 {
966 	struct machine_fprintf_cb_args *args = data;
967 
968 	/* TODO: handle fprintf errors. */
969 	args->printed += thread__fprintf(thread, args->fp);
970 	return 0;
971 }
972 
973 size_t machine__fprintf(struct machine *machine, FILE *fp)
974 {
975 	struct machine_fprintf_cb_args args = {
976 		.fp = fp,
977 		.printed = 0,
978 	};
979 	size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
980 
981 	machine__for_each_thread(machine, machine_fprintf_cb, &args);
982 	return ret + args.printed;
983 }
984 
985 static struct dso *machine__get_kernel(struct machine *machine)
986 {
987 	const char *vmlinux_name = machine->mmap_name;
988 	struct dso *kernel;
989 
990 	if (machine__is_host(machine)) {
991 		if (symbol_conf.vmlinux_name)
992 			vmlinux_name = symbol_conf.vmlinux_name;
993 
994 		kernel = machine__findnew_kernel(machine, vmlinux_name,
995 						 "[kernel]", DSO_SPACE__KERNEL);
996 	} else {
997 		if (symbol_conf.default_guest_vmlinux_name)
998 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
999 
1000 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1001 						 "[guest.kernel]",
1002 						 DSO_SPACE__KERNEL_GUEST);
1003 	}
1004 
1005 	if (kernel != NULL && (!kernel->has_build_id))
1006 		dso__read_running_kernel_build_id(kernel, machine);
1007 
1008 	return kernel;
1009 }
1010 
1011 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1012 				    size_t bufsz)
1013 {
1014 	if (machine__is_default_guest(machine))
1015 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1016 	else
1017 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1018 }
1019 
1020 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1021 
1022 /* Figure out the start address of kernel map from /proc/kallsyms.
1023  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1024  * symbol_name if it's not that important.
1025  */
1026 static int machine__get_running_kernel_start(struct machine *machine,
1027 					     const char **symbol_name,
1028 					     u64 *start, u64 *end)
1029 {
1030 	char filename[PATH_MAX];
1031 	int i, err = -1;
1032 	const char *name;
1033 	u64 addr = 0;
1034 
1035 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1036 
1037 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1038 		return 0;
1039 
1040 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1041 		err = kallsyms__get_function_start(filename, name, &addr);
1042 		if (!err)
1043 			break;
1044 	}
1045 
1046 	if (err)
1047 		return -1;
1048 
1049 	if (symbol_name)
1050 		*symbol_name = name;
1051 
1052 	*start = addr;
1053 
1054 	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1055 	if (err)
1056 		err = kallsyms__get_function_start(filename, "_etext", &addr);
1057 	if (!err)
1058 		*end = addr;
1059 
1060 	return 0;
1061 }
1062 
1063 int machine__create_extra_kernel_map(struct machine *machine,
1064 				     struct dso *kernel,
1065 				     struct extra_kernel_map *xm)
1066 {
1067 	struct kmap *kmap;
1068 	struct map *map;
1069 	int err;
1070 
1071 	map = map__new2(xm->start, kernel);
1072 	if (!map)
1073 		return -ENOMEM;
1074 
1075 	map__set_end(map, xm->end);
1076 	map__set_pgoff(map, xm->pgoff);
1077 
1078 	kmap = map__kmap(map);
1079 
1080 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1081 
1082 	err = maps__insert(machine__kernel_maps(machine), map);
1083 
1084 	if (!err) {
1085 		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1086 			kmap->name, map__start(map), map__end(map));
1087 	}
1088 
1089 	map__put(map);
1090 
1091 	return err;
1092 }
1093 
1094 static u64 find_entry_trampoline(struct dso *dso)
1095 {
1096 	/* Duplicates are removed so lookup all aliases */
1097 	const char *syms[] = {
1098 		"_entry_trampoline",
1099 		"__entry_trampoline_start",
1100 		"entry_SYSCALL_64_trampoline",
1101 	};
1102 	struct symbol *sym = dso__first_symbol(dso);
1103 	unsigned int i;
1104 
1105 	for (; sym; sym = dso__next_symbol(sym)) {
1106 		if (sym->binding != STB_GLOBAL)
1107 			continue;
1108 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1109 			if (!strcmp(sym->name, syms[i]))
1110 				return sym->start;
1111 		}
1112 	}
1113 
1114 	return 0;
1115 }
1116 
1117 /*
1118  * These values can be used for kernels that do not have symbols for the entry
1119  * trampolines in kallsyms.
1120  */
1121 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1122 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1123 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1124 
1125 struct machine__map_x86_64_entry_trampolines_args {
1126 	struct maps *kmaps;
1127 	bool found;
1128 };
1129 
1130 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1131 {
1132 	struct machine__map_x86_64_entry_trampolines_args *args = data;
1133 	struct map *dest_map;
1134 	struct kmap *kmap = __map__kmap(map);
1135 
1136 	if (!kmap || !is_entry_trampoline(kmap->name))
1137 		return 0;
1138 
1139 	dest_map = maps__find(args->kmaps, map__pgoff(map));
1140 	if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1141 		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1142 
1143 	map__put(dest_map);
1144 	args->found = true;
1145 	return 0;
1146 }
1147 
1148 /* Map x86_64 PTI entry trampolines */
1149 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1150 					  struct dso *kernel)
1151 {
1152 	struct machine__map_x86_64_entry_trampolines_args args = {
1153 		.kmaps = machine__kernel_maps(machine),
1154 		.found = false,
1155 	};
1156 	int nr_cpus_avail, cpu;
1157 	u64 pgoff;
1158 
1159 	/*
1160 	 * In the vmlinux case, pgoff is a virtual address which must now be
1161 	 * mapped to a vmlinux offset.
1162 	 */
1163 	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1164 
1165 	if (args.found || machine->trampolines_mapped)
1166 		return 0;
1167 
1168 	pgoff = find_entry_trampoline(kernel);
1169 	if (!pgoff)
1170 		return 0;
1171 
1172 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1173 
1174 	/* Add a 1 page map for each CPU's entry trampoline */
1175 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1176 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1177 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1178 			 X86_64_ENTRY_TRAMPOLINE;
1179 		struct extra_kernel_map xm = {
1180 			.start = va,
1181 			.end   = va + page_size,
1182 			.pgoff = pgoff,
1183 		};
1184 
1185 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1186 
1187 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1188 			return -1;
1189 	}
1190 
1191 	machine->trampolines_mapped = nr_cpus_avail;
1192 
1193 	return 0;
1194 }
1195 
1196 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1197 					     struct dso *kernel __maybe_unused)
1198 {
1199 	return 0;
1200 }
1201 
1202 static int
1203 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1204 {
1205 	/* In case of renewal the kernel map, destroy previous one */
1206 	machine__destroy_kernel_maps(machine);
1207 
1208 	map__put(machine->vmlinux_map);
1209 	machine->vmlinux_map = map__new2(0, kernel);
1210 	if (machine->vmlinux_map == NULL)
1211 		return -ENOMEM;
1212 
1213 	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1214 	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1215 }
1216 
1217 void machine__destroy_kernel_maps(struct machine *machine)
1218 {
1219 	struct kmap *kmap;
1220 	struct map *map = machine__kernel_map(machine);
1221 
1222 	if (map == NULL)
1223 		return;
1224 
1225 	kmap = map__kmap(map);
1226 	maps__remove(machine__kernel_maps(machine), map);
1227 	if (kmap && kmap->ref_reloc_sym) {
1228 		zfree((char **)&kmap->ref_reloc_sym->name);
1229 		zfree(&kmap->ref_reloc_sym);
1230 	}
1231 
1232 	map__zput(machine->vmlinux_map);
1233 }
1234 
1235 int machines__create_guest_kernel_maps(struct machines *machines)
1236 {
1237 	int ret = 0;
1238 	struct dirent **namelist = NULL;
1239 	int i, items = 0;
1240 	char path[PATH_MAX];
1241 	pid_t pid;
1242 	char *endp;
1243 
1244 	if (symbol_conf.default_guest_vmlinux_name ||
1245 	    symbol_conf.default_guest_modules ||
1246 	    symbol_conf.default_guest_kallsyms) {
1247 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1248 	}
1249 
1250 	if (symbol_conf.guestmount) {
1251 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1252 		if (items <= 0)
1253 			return -ENOENT;
1254 		for (i = 0; i < items; i++) {
1255 			if (!isdigit(namelist[i]->d_name[0])) {
1256 				/* Filter out . and .. */
1257 				continue;
1258 			}
1259 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1260 			if ((*endp != '\0') ||
1261 			    (endp == namelist[i]->d_name) ||
1262 			    (errno == ERANGE)) {
1263 				pr_debug("invalid directory (%s). Skipping.\n",
1264 					 namelist[i]->d_name);
1265 				continue;
1266 			}
1267 			sprintf(path, "%s/%s/proc/kallsyms",
1268 				symbol_conf.guestmount,
1269 				namelist[i]->d_name);
1270 			ret = access(path, R_OK);
1271 			if (ret) {
1272 				pr_debug("Can't access file %s\n", path);
1273 				goto failure;
1274 			}
1275 			machines__create_kernel_maps(machines, pid);
1276 		}
1277 failure:
1278 		free(namelist);
1279 	}
1280 
1281 	return ret;
1282 }
1283 
1284 void machines__destroy_kernel_maps(struct machines *machines)
1285 {
1286 	struct rb_node *next = rb_first_cached(&machines->guests);
1287 
1288 	machine__destroy_kernel_maps(&machines->host);
1289 
1290 	while (next) {
1291 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1292 
1293 		next = rb_next(&pos->rb_node);
1294 		rb_erase_cached(&pos->rb_node, &machines->guests);
1295 		machine__delete(pos);
1296 	}
1297 }
1298 
1299 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1300 {
1301 	struct machine *machine = machines__findnew(machines, pid);
1302 
1303 	if (machine == NULL)
1304 		return -1;
1305 
1306 	return machine__create_kernel_maps(machine);
1307 }
1308 
1309 int machine__load_kallsyms(struct machine *machine, const char *filename)
1310 {
1311 	struct map *map = machine__kernel_map(machine);
1312 	struct dso *dso = map__dso(map);
1313 	int ret = __dso__load_kallsyms(dso, filename, map, true);
1314 
1315 	if (ret > 0) {
1316 		dso__set_loaded(dso);
1317 		/*
1318 		 * Since /proc/kallsyms will have multiple sessions for the
1319 		 * kernel, with modules between them, fixup the end of all
1320 		 * sections.
1321 		 */
1322 		maps__fixup_end(machine__kernel_maps(machine));
1323 	}
1324 
1325 	return ret;
1326 }
1327 
1328 int machine__load_vmlinux_path(struct machine *machine)
1329 {
1330 	struct map *map = machine__kernel_map(machine);
1331 	struct dso *dso = map__dso(map);
1332 	int ret = dso__load_vmlinux_path(dso, map);
1333 
1334 	if (ret > 0)
1335 		dso__set_loaded(dso);
1336 
1337 	return ret;
1338 }
1339 
1340 static char *get_kernel_version(const char *root_dir)
1341 {
1342 	char version[PATH_MAX];
1343 	FILE *file;
1344 	char *name, *tmp;
1345 	const char *prefix = "Linux version ";
1346 
1347 	sprintf(version, "%s/proc/version", root_dir);
1348 	file = fopen(version, "r");
1349 	if (!file)
1350 		return NULL;
1351 
1352 	tmp = fgets(version, sizeof(version), file);
1353 	fclose(file);
1354 	if (!tmp)
1355 		return NULL;
1356 
1357 	name = strstr(version, prefix);
1358 	if (!name)
1359 		return NULL;
1360 	name += strlen(prefix);
1361 	tmp = strchr(name, ' ');
1362 	if (tmp)
1363 		*tmp = '\0';
1364 
1365 	return strdup(name);
1366 }
1367 
1368 static bool is_kmod_dso(struct dso *dso)
1369 {
1370 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1371 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1372 }
1373 
1374 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1375 {
1376 	char *long_name;
1377 	struct dso *dso;
1378 	struct map *map = maps__find_by_name(maps, m->name);
1379 
1380 	if (map == NULL)
1381 		return 0;
1382 
1383 	long_name = strdup(path);
1384 	if (long_name == NULL) {
1385 		map__put(map);
1386 		return -ENOMEM;
1387 	}
1388 
1389 	dso = map__dso(map);
1390 	dso__set_long_name(dso, long_name, true);
1391 	dso__kernel_module_get_build_id(dso, "");
1392 
1393 	/*
1394 	 * Full name could reveal us kmod compression, so
1395 	 * we need to update the symtab_type if needed.
1396 	 */
1397 	if (m->comp && is_kmod_dso(dso)) {
1398 		dso->symtab_type++;
1399 		dso->comp = m->comp;
1400 	}
1401 	map__put(map);
1402 	return 0;
1403 }
1404 
1405 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1406 {
1407 	struct dirent *dent;
1408 	DIR *dir = opendir(dir_name);
1409 	int ret = 0;
1410 
1411 	if (!dir) {
1412 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1413 		return -1;
1414 	}
1415 
1416 	while ((dent = readdir(dir)) != NULL) {
1417 		char path[PATH_MAX];
1418 		struct stat st;
1419 
1420 		/*sshfs might return bad dent->d_type, so we have to stat*/
1421 		path__join(path, sizeof(path), dir_name, dent->d_name);
1422 		if (stat(path, &st))
1423 			continue;
1424 
1425 		if (S_ISDIR(st.st_mode)) {
1426 			if (!strcmp(dent->d_name, ".") ||
1427 			    !strcmp(dent->d_name, ".."))
1428 				continue;
1429 
1430 			/* Do not follow top-level source and build symlinks */
1431 			if (depth == 0) {
1432 				if (!strcmp(dent->d_name, "source") ||
1433 				    !strcmp(dent->d_name, "build"))
1434 					continue;
1435 			}
1436 
1437 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1438 			if (ret < 0)
1439 				goto out;
1440 		} else {
1441 			struct kmod_path m;
1442 
1443 			ret = kmod_path__parse_name(&m, dent->d_name);
1444 			if (ret)
1445 				goto out;
1446 
1447 			if (m.kmod)
1448 				ret = maps__set_module_path(maps, path, &m);
1449 
1450 			zfree(&m.name);
1451 
1452 			if (ret)
1453 				goto out;
1454 		}
1455 	}
1456 
1457 out:
1458 	closedir(dir);
1459 	return ret;
1460 }
1461 
1462 static int machine__set_modules_path(struct machine *machine)
1463 {
1464 	char *version;
1465 	char modules_path[PATH_MAX];
1466 
1467 	version = get_kernel_version(machine->root_dir);
1468 	if (!version)
1469 		return -1;
1470 
1471 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1472 		 machine->root_dir, version);
1473 	free(version);
1474 
1475 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1476 }
1477 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1478 				u64 *size __maybe_unused,
1479 				const char *name __maybe_unused)
1480 {
1481 	return 0;
1482 }
1483 
1484 static int machine__create_module(void *arg, const char *name, u64 start,
1485 				  u64 size)
1486 {
1487 	struct machine *machine = arg;
1488 	struct map *map;
1489 
1490 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1491 		return -1;
1492 
1493 	map = machine__addnew_module_map(machine, start, name);
1494 	if (map == NULL)
1495 		return -1;
1496 	map__set_end(map, start + size);
1497 
1498 	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1499 	map__put(map);
1500 	return 0;
1501 }
1502 
1503 static int machine__create_modules(struct machine *machine)
1504 {
1505 	const char *modules;
1506 	char path[PATH_MAX];
1507 
1508 	if (machine__is_default_guest(machine)) {
1509 		modules = symbol_conf.default_guest_modules;
1510 	} else {
1511 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1512 		modules = path;
1513 	}
1514 
1515 	if (symbol__restricted_filename(modules, "/proc/modules"))
1516 		return -1;
1517 
1518 	if (modules__parse(modules, machine, machine__create_module))
1519 		return -1;
1520 
1521 	if (!machine__set_modules_path(machine))
1522 		return 0;
1523 
1524 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1525 
1526 	return 0;
1527 }
1528 
1529 static void machine__set_kernel_mmap(struct machine *machine,
1530 				     u64 start, u64 end)
1531 {
1532 	map__set_start(machine->vmlinux_map, start);
1533 	map__set_end(machine->vmlinux_map, end);
1534 	/*
1535 	 * Be a bit paranoid here, some perf.data file came with
1536 	 * a zero sized synthesized MMAP event for the kernel.
1537 	 */
1538 	if (start == 0 && end == 0)
1539 		map__set_end(machine->vmlinux_map, ~0ULL);
1540 }
1541 
1542 static int machine__update_kernel_mmap(struct machine *machine,
1543 				     u64 start, u64 end)
1544 {
1545 	struct map *orig, *updated;
1546 	int err;
1547 
1548 	orig = machine->vmlinux_map;
1549 	updated = map__get(orig);
1550 
1551 	machine->vmlinux_map = updated;
1552 	machine__set_kernel_mmap(machine, start, end);
1553 	maps__remove(machine__kernel_maps(machine), orig);
1554 	err = maps__insert(machine__kernel_maps(machine), updated);
1555 	map__put(orig);
1556 
1557 	return err;
1558 }
1559 
1560 int machine__create_kernel_maps(struct machine *machine)
1561 {
1562 	struct dso *kernel = machine__get_kernel(machine);
1563 	const char *name = NULL;
1564 	u64 start = 0, end = ~0ULL;
1565 	int ret;
1566 
1567 	if (kernel == NULL)
1568 		return -1;
1569 
1570 	ret = __machine__create_kernel_maps(machine, kernel);
1571 	if (ret < 0)
1572 		goto out_put;
1573 
1574 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1575 		if (machine__is_host(machine))
1576 			pr_debug("Problems creating module maps, "
1577 				 "continuing anyway...\n");
1578 		else
1579 			pr_debug("Problems creating module maps for guest %d, "
1580 				 "continuing anyway...\n", machine->pid);
1581 	}
1582 
1583 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1584 		if (name &&
1585 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1586 			machine__destroy_kernel_maps(machine);
1587 			ret = -1;
1588 			goto out_put;
1589 		}
1590 
1591 		/*
1592 		 * we have a real start address now, so re-order the kmaps
1593 		 * assume it's the last in the kmaps
1594 		 */
1595 		ret = machine__update_kernel_mmap(machine, start, end);
1596 		if (ret < 0)
1597 			goto out_put;
1598 	}
1599 
1600 	if (machine__create_extra_kernel_maps(machine, kernel))
1601 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1602 
1603 	if (end == ~0ULL) {
1604 		/* update end address of the kernel map using adjacent module address */
1605 		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1606 							 machine__kernel_map(machine));
1607 
1608 		if (next) {
1609 			machine__set_kernel_mmap(machine, start, map__start(next));
1610 			map__put(next);
1611 		}
1612 	}
1613 
1614 out_put:
1615 	dso__put(kernel);
1616 	return ret;
1617 }
1618 
1619 static bool machine__uses_kcore(struct machine *machine)
1620 {
1621 	struct dso *dso;
1622 
1623 	list_for_each_entry(dso, &machine->dsos.head, node) {
1624 		if (dso__is_kcore(dso))
1625 			return true;
1626 	}
1627 
1628 	return false;
1629 }
1630 
1631 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1632 					     struct extra_kernel_map *xm)
1633 {
1634 	return machine__is(machine, "x86_64") &&
1635 	       is_entry_trampoline(xm->name);
1636 }
1637 
1638 static int machine__process_extra_kernel_map(struct machine *machine,
1639 					     struct extra_kernel_map *xm)
1640 {
1641 	struct dso *kernel = machine__kernel_dso(machine);
1642 
1643 	if (kernel == NULL)
1644 		return -1;
1645 
1646 	return machine__create_extra_kernel_map(machine, kernel, xm);
1647 }
1648 
1649 static int machine__process_kernel_mmap_event(struct machine *machine,
1650 					      struct extra_kernel_map *xm,
1651 					      struct build_id *bid)
1652 {
1653 	enum dso_space_type dso_space;
1654 	bool is_kernel_mmap;
1655 	const char *mmap_name = machine->mmap_name;
1656 
1657 	/* If we have maps from kcore then we do not need or want any others */
1658 	if (machine__uses_kcore(machine))
1659 		return 0;
1660 
1661 	if (machine__is_host(machine))
1662 		dso_space = DSO_SPACE__KERNEL;
1663 	else
1664 		dso_space = DSO_SPACE__KERNEL_GUEST;
1665 
1666 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1667 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1668 		/*
1669 		 * If the event was recorded inside the guest and injected into
1670 		 * the host perf.data file, then it will match a host mmap_name,
1671 		 * so try that - see machine__set_mmap_name().
1672 		 */
1673 		mmap_name = "[kernel.kallsyms]";
1674 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1675 	}
1676 	if (xm->name[0] == '/' ||
1677 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1678 		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1679 
1680 		if (map == NULL)
1681 			goto out_problem;
1682 
1683 		map__set_end(map, map__start(map) + xm->end - xm->start);
1684 
1685 		if (build_id__is_defined(bid))
1686 			dso__set_build_id(map__dso(map), bid);
1687 
1688 		map__put(map);
1689 	} else if (is_kernel_mmap) {
1690 		const char *symbol_name = xm->name + strlen(mmap_name);
1691 		/*
1692 		 * Should be there already, from the build-id table in
1693 		 * the header.
1694 		 */
1695 		struct dso *kernel = NULL;
1696 		struct dso *dso;
1697 
1698 		down_read(&machine->dsos.lock);
1699 
1700 		list_for_each_entry(dso, &machine->dsos.head, node) {
1701 
1702 			/*
1703 			 * The cpumode passed to is_kernel_module is not the
1704 			 * cpumode of *this* event. If we insist on passing
1705 			 * correct cpumode to is_kernel_module, we should
1706 			 * record the cpumode when we adding this dso to the
1707 			 * linked list.
1708 			 *
1709 			 * However we don't really need passing correct
1710 			 * cpumode.  We know the correct cpumode must be kernel
1711 			 * mode (if not, we should not link it onto kernel_dsos
1712 			 * list).
1713 			 *
1714 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1715 			 * is_kernel_module() treats it as a kernel cpumode.
1716 			 */
1717 
1718 			if (!dso->kernel ||
1719 			    is_kernel_module(dso->long_name,
1720 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1721 				continue;
1722 
1723 
1724 			kernel = dso__get(dso);
1725 			break;
1726 		}
1727 
1728 		up_read(&machine->dsos.lock);
1729 
1730 		if (kernel == NULL)
1731 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1732 		if (kernel == NULL)
1733 			goto out_problem;
1734 
1735 		kernel->kernel = dso_space;
1736 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1737 			dso__put(kernel);
1738 			goto out_problem;
1739 		}
1740 
1741 		if (strstr(kernel->long_name, "vmlinux"))
1742 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1743 
1744 		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1745 			dso__put(kernel);
1746 			goto out_problem;
1747 		}
1748 
1749 		if (build_id__is_defined(bid))
1750 			dso__set_build_id(kernel, bid);
1751 
1752 		/*
1753 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1754 		 * symbol. Effectively having zero here means that at record
1755 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1756 		 */
1757 		if (xm->pgoff != 0) {
1758 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1759 							symbol_name,
1760 							xm->pgoff);
1761 		}
1762 
1763 		if (machine__is_default_guest(machine)) {
1764 			/*
1765 			 * preload dso of guest kernel and modules
1766 			 */
1767 			dso__load(kernel, machine__kernel_map(machine));
1768 		}
1769 		dso__put(kernel);
1770 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1771 		return machine__process_extra_kernel_map(machine, xm);
1772 	}
1773 	return 0;
1774 out_problem:
1775 	return -1;
1776 }
1777 
1778 int machine__process_mmap2_event(struct machine *machine,
1779 				 union perf_event *event,
1780 				 struct perf_sample *sample)
1781 {
1782 	struct thread *thread;
1783 	struct map *map;
1784 	struct dso_id dso_id = {
1785 		.maj = event->mmap2.maj,
1786 		.min = event->mmap2.min,
1787 		.ino = event->mmap2.ino,
1788 		.ino_generation = event->mmap2.ino_generation,
1789 	};
1790 	struct build_id __bid, *bid = NULL;
1791 	int ret = 0;
1792 
1793 	if (dump_trace)
1794 		perf_event__fprintf_mmap2(event, stdout);
1795 
1796 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1797 		bid = &__bid;
1798 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1799 	}
1800 
1801 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1802 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1803 		struct extra_kernel_map xm = {
1804 			.start = event->mmap2.start,
1805 			.end   = event->mmap2.start + event->mmap2.len,
1806 			.pgoff = event->mmap2.pgoff,
1807 		};
1808 
1809 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1810 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1811 		if (ret < 0)
1812 			goto out_problem;
1813 		return 0;
1814 	}
1815 
1816 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1817 					event->mmap2.tid);
1818 	if (thread == NULL)
1819 		goto out_problem;
1820 
1821 	map = map__new(machine, event->mmap2.start,
1822 			event->mmap2.len, event->mmap2.pgoff,
1823 			&dso_id, event->mmap2.prot,
1824 			event->mmap2.flags, bid,
1825 			event->mmap2.filename, thread);
1826 
1827 	if (map == NULL)
1828 		goto out_problem_map;
1829 
1830 	ret = thread__insert_map(thread, map);
1831 	if (ret)
1832 		goto out_problem_insert;
1833 
1834 	thread__put(thread);
1835 	map__put(map);
1836 	return 0;
1837 
1838 out_problem_insert:
1839 	map__put(map);
1840 out_problem_map:
1841 	thread__put(thread);
1842 out_problem:
1843 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1844 	return 0;
1845 }
1846 
1847 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1848 				struct perf_sample *sample)
1849 {
1850 	struct thread *thread;
1851 	struct map *map;
1852 	u32 prot = 0;
1853 	int ret = 0;
1854 
1855 	if (dump_trace)
1856 		perf_event__fprintf_mmap(event, stdout);
1857 
1858 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1859 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1860 		struct extra_kernel_map xm = {
1861 			.start = event->mmap.start,
1862 			.end   = event->mmap.start + event->mmap.len,
1863 			.pgoff = event->mmap.pgoff,
1864 		};
1865 
1866 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1867 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1868 		if (ret < 0)
1869 			goto out_problem;
1870 		return 0;
1871 	}
1872 
1873 	thread = machine__findnew_thread(machine, event->mmap.pid,
1874 					 event->mmap.tid);
1875 	if (thread == NULL)
1876 		goto out_problem;
1877 
1878 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1879 		prot = PROT_EXEC;
1880 
1881 	map = map__new(machine, event->mmap.start,
1882 			event->mmap.len, event->mmap.pgoff,
1883 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1884 
1885 	if (map == NULL)
1886 		goto out_problem_map;
1887 
1888 	ret = thread__insert_map(thread, map);
1889 	if (ret)
1890 		goto out_problem_insert;
1891 
1892 	thread__put(thread);
1893 	map__put(map);
1894 	return 0;
1895 
1896 out_problem_insert:
1897 	map__put(map);
1898 out_problem_map:
1899 	thread__put(thread);
1900 out_problem:
1901 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1902 	return 0;
1903 }
1904 
1905 void machine__remove_thread(struct machine *machine, struct thread *th)
1906 {
1907 	return threads__remove(&machine->threads, th);
1908 }
1909 
1910 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1911 				struct perf_sample *sample)
1912 {
1913 	struct thread *thread = machine__find_thread(machine,
1914 						     event->fork.pid,
1915 						     event->fork.tid);
1916 	struct thread *parent = machine__findnew_thread(machine,
1917 							event->fork.ppid,
1918 							event->fork.ptid);
1919 	bool do_maps_clone = true;
1920 	int err = 0;
1921 
1922 	if (dump_trace)
1923 		perf_event__fprintf_task(event, stdout);
1924 
1925 	/*
1926 	 * There may be an existing thread that is not actually the parent,
1927 	 * either because we are processing events out of order, or because the
1928 	 * (fork) event that would have removed the thread was lost. Assume the
1929 	 * latter case and continue on as best we can.
1930 	 */
1931 	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1932 		dump_printf("removing erroneous parent thread %d/%d\n",
1933 			    thread__pid(parent), thread__tid(parent));
1934 		machine__remove_thread(machine, parent);
1935 		thread__put(parent);
1936 		parent = machine__findnew_thread(machine, event->fork.ppid,
1937 						 event->fork.ptid);
1938 	}
1939 
1940 	/* if a thread currently exists for the thread id remove it */
1941 	if (thread != NULL) {
1942 		machine__remove_thread(machine, thread);
1943 		thread__put(thread);
1944 	}
1945 
1946 	thread = machine__findnew_thread(machine, event->fork.pid,
1947 					 event->fork.tid);
1948 	/*
1949 	 * When synthesizing FORK events, we are trying to create thread
1950 	 * objects for the already running tasks on the machine.
1951 	 *
1952 	 * Normally, for a kernel FORK event, we want to clone the parent's
1953 	 * maps because that is what the kernel just did.
1954 	 *
1955 	 * But when synthesizing, this should not be done.  If we do, we end up
1956 	 * with overlapping maps as we process the synthesized MMAP2 events that
1957 	 * get delivered shortly thereafter.
1958 	 *
1959 	 * Use the FORK event misc flags in an internal way to signal this
1960 	 * situation, so we can elide the map clone when appropriate.
1961 	 */
1962 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1963 		do_maps_clone = false;
1964 
1965 	if (thread == NULL || parent == NULL ||
1966 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1967 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1968 		err = -1;
1969 	}
1970 	thread__put(thread);
1971 	thread__put(parent);
1972 
1973 	return err;
1974 }
1975 
1976 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1977 				struct perf_sample *sample __maybe_unused)
1978 {
1979 	struct thread *thread = machine__find_thread(machine,
1980 						     event->fork.pid,
1981 						     event->fork.tid);
1982 
1983 	if (dump_trace)
1984 		perf_event__fprintf_task(event, stdout);
1985 
1986 	if (thread != NULL) {
1987 		if (symbol_conf.keep_exited_threads)
1988 			thread__set_exited(thread, /*exited=*/true);
1989 		else
1990 			machine__remove_thread(machine, thread);
1991 	}
1992 	thread__put(thread);
1993 	return 0;
1994 }
1995 
1996 int machine__process_event(struct machine *machine, union perf_event *event,
1997 			   struct perf_sample *sample)
1998 {
1999 	int ret;
2000 
2001 	switch (event->header.type) {
2002 	case PERF_RECORD_COMM:
2003 		ret = machine__process_comm_event(machine, event, sample); break;
2004 	case PERF_RECORD_MMAP:
2005 		ret = machine__process_mmap_event(machine, event, sample); break;
2006 	case PERF_RECORD_NAMESPACES:
2007 		ret = machine__process_namespaces_event(machine, event, sample); break;
2008 	case PERF_RECORD_CGROUP:
2009 		ret = machine__process_cgroup_event(machine, event, sample); break;
2010 	case PERF_RECORD_MMAP2:
2011 		ret = machine__process_mmap2_event(machine, event, sample); break;
2012 	case PERF_RECORD_FORK:
2013 		ret = machine__process_fork_event(machine, event, sample); break;
2014 	case PERF_RECORD_EXIT:
2015 		ret = machine__process_exit_event(machine, event, sample); break;
2016 	case PERF_RECORD_LOST:
2017 		ret = machine__process_lost_event(machine, event, sample); break;
2018 	case PERF_RECORD_AUX:
2019 		ret = machine__process_aux_event(machine, event); break;
2020 	case PERF_RECORD_ITRACE_START:
2021 		ret = machine__process_itrace_start_event(machine, event); break;
2022 	case PERF_RECORD_LOST_SAMPLES:
2023 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2024 	case PERF_RECORD_SWITCH:
2025 	case PERF_RECORD_SWITCH_CPU_WIDE:
2026 		ret = machine__process_switch_event(machine, event); break;
2027 	case PERF_RECORD_KSYMBOL:
2028 		ret = machine__process_ksymbol(machine, event, sample); break;
2029 	case PERF_RECORD_BPF_EVENT:
2030 		ret = machine__process_bpf(machine, event, sample); break;
2031 	case PERF_RECORD_TEXT_POKE:
2032 		ret = machine__process_text_poke(machine, event, sample); break;
2033 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2034 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2035 	default:
2036 		ret = -1;
2037 		break;
2038 	}
2039 
2040 	return ret;
2041 }
2042 
2043 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2044 {
2045 	return regexec(regex, sym->name, 0, NULL, 0) == 0;
2046 }
2047 
2048 static void ip__resolve_ams(struct thread *thread,
2049 			    struct addr_map_symbol *ams,
2050 			    u64 ip)
2051 {
2052 	struct addr_location al;
2053 
2054 	addr_location__init(&al);
2055 	/*
2056 	 * We cannot use the header.misc hint to determine whether a
2057 	 * branch stack address is user, kernel, guest, hypervisor.
2058 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2059 	 * Thus, we have to try consecutively until we find a match
2060 	 * or else, the symbol is unknown
2061 	 */
2062 	thread__find_cpumode_addr_location(thread, ip, &al);
2063 
2064 	ams->addr = ip;
2065 	ams->al_addr = al.addr;
2066 	ams->al_level = al.level;
2067 	ams->ms.maps = maps__get(al.maps);
2068 	ams->ms.sym = al.sym;
2069 	ams->ms.map = map__get(al.map);
2070 	ams->phys_addr = 0;
2071 	ams->data_page_size = 0;
2072 	addr_location__exit(&al);
2073 }
2074 
2075 static void ip__resolve_data(struct thread *thread,
2076 			     u8 m, struct addr_map_symbol *ams,
2077 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2078 {
2079 	struct addr_location al;
2080 
2081 	addr_location__init(&al);
2082 
2083 	thread__find_symbol(thread, m, addr, &al);
2084 
2085 	ams->addr = addr;
2086 	ams->al_addr = al.addr;
2087 	ams->al_level = al.level;
2088 	ams->ms.maps = maps__get(al.maps);
2089 	ams->ms.sym = al.sym;
2090 	ams->ms.map = map__get(al.map);
2091 	ams->phys_addr = phys_addr;
2092 	ams->data_page_size = daddr_page_size;
2093 	addr_location__exit(&al);
2094 }
2095 
2096 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2097 				     struct addr_location *al)
2098 {
2099 	struct mem_info *mi = mem_info__new();
2100 
2101 	if (!mi)
2102 		return NULL;
2103 
2104 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2105 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2106 			 sample->addr, sample->phys_addr,
2107 			 sample->data_page_size);
2108 	mi->data_src.val = sample->data_src;
2109 
2110 	return mi;
2111 }
2112 
2113 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2114 {
2115 	struct map *map = ms->map;
2116 	char *srcline = NULL;
2117 	struct dso *dso;
2118 
2119 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2120 		return srcline;
2121 
2122 	dso = map__dso(map);
2123 	srcline = srcline__tree_find(&dso->srclines, ip);
2124 	if (!srcline) {
2125 		bool show_sym = false;
2126 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2127 
2128 		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2129 				      ms->sym, show_sym, show_addr, ip);
2130 		srcline__tree_insert(&dso->srclines, ip, srcline);
2131 	}
2132 
2133 	return srcline;
2134 }
2135 
2136 struct iterations {
2137 	int nr_loop_iter;
2138 	u64 cycles;
2139 };
2140 
2141 static int add_callchain_ip(struct thread *thread,
2142 			    struct callchain_cursor *cursor,
2143 			    struct symbol **parent,
2144 			    struct addr_location *root_al,
2145 			    u8 *cpumode,
2146 			    u64 ip,
2147 			    bool branch,
2148 			    struct branch_flags *flags,
2149 			    struct iterations *iter,
2150 			    u64 branch_from)
2151 {
2152 	struct map_symbol ms = {};
2153 	struct addr_location al;
2154 	int nr_loop_iter = 0, err = 0;
2155 	u64 iter_cycles = 0;
2156 	const char *srcline = NULL;
2157 
2158 	addr_location__init(&al);
2159 	al.filtered = 0;
2160 	al.sym = NULL;
2161 	al.srcline = NULL;
2162 	if (!cpumode) {
2163 		thread__find_cpumode_addr_location(thread, ip, &al);
2164 	} else {
2165 		if (ip >= PERF_CONTEXT_MAX) {
2166 			switch (ip) {
2167 			case PERF_CONTEXT_HV:
2168 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2169 				break;
2170 			case PERF_CONTEXT_KERNEL:
2171 				*cpumode = PERF_RECORD_MISC_KERNEL;
2172 				break;
2173 			case PERF_CONTEXT_USER:
2174 				*cpumode = PERF_RECORD_MISC_USER;
2175 				break;
2176 			default:
2177 				pr_debug("invalid callchain context: "
2178 					 "%"PRId64"\n", (s64) ip);
2179 				/*
2180 				 * It seems the callchain is corrupted.
2181 				 * Discard all.
2182 				 */
2183 				callchain_cursor_reset(cursor);
2184 				err = 1;
2185 				goto out;
2186 			}
2187 			goto out;
2188 		}
2189 		thread__find_symbol(thread, *cpumode, ip, &al);
2190 	}
2191 
2192 	if (al.sym != NULL) {
2193 		if (perf_hpp_list.parent && !*parent &&
2194 		    symbol__match_regex(al.sym, &parent_regex))
2195 			*parent = al.sym;
2196 		else if (have_ignore_callees && root_al &&
2197 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2198 			/* Treat this symbol as the root,
2199 			   forgetting its callees. */
2200 			addr_location__copy(root_al, &al);
2201 			callchain_cursor_reset(cursor);
2202 		}
2203 	}
2204 
2205 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2206 		goto out;
2207 
2208 	if (iter) {
2209 		nr_loop_iter = iter->nr_loop_iter;
2210 		iter_cycles = iter->cycles;
2211 	}
2212 
2213 	ms.maps = maps__get(al.maps);
2214 	ms.map = map__get(al.map);
2215 	ms.sym = al.sym;
2216 	srcline = callchain_srcline(&ms, al.addr);
2217 	err = callchain_cursor_append(cursor, ip, &ms,
2218 				      branch, flags, nr_loop_iter,
2219 				      iter_cycles, branch_from, srcline);
2220 out:
2221 	addr_location__exit(&al);
2222 	map_symbol__exit(&ms);
2223 	return err;
2224 }
2225 
2226 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2227 					   struct addr_location *al)
2228 {
2229 	unsigned int i;
2230 	const struct branch_stack *bs = sample->branch_stack;
2231 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2232 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2233 
2234 	if (!bi)
2235 		return NULL;
2236 
2237 	for (i = 0; i < bs->nr; i++) {
2238 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2239 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2240 		bi[i].flags = entries[i].flags;
2241 	}
2242 	return bi;
2243 }
2244 
2245 static void save_iterations(struct iterations *iter,
2246 			    struct branch_entry *be, int nr)
2247 {
2248 	int i;
2249 
2250 	iter->nr_loop_iter++;
2251 	iter->cycles = 0;
2252 
2253 	for (i = 0; i < nr; i++)
2254 		iter->cycles += be[i].flags.cycles;
2255 }
2256 
2257 #define CHASHSZ 127
2258 #define CHASHBITS 7
2259 #define NO_ENTRY 0xff
2260 
2261 #define PERF_MAX_BRANCH_DEPTH 127
2262 
2263 /* Remove loops. */
2264 static int remove_loops(struct branch_entry *l, int nr,
2265 			struct iterations *iter)
2266 {
2267 	int i, j, off;
2268 	unsigned char chash[CHASHSZ];
2269 
2270 	memset(chash, NO_ENTRY, sizeof(chash));
2271 
2272 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2273 
2274 	for (i = 0; i < nr; i++) {
2275 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2276 
2277 		/* no collision handling for now */
2278 		if (chash[h] == NO_ENTRY) {
2279 			chash[h] = i;
2280 		} else if (l[chash[h]].from == l[i].from) {
2281 			bool is_loop = true;
2282 			/* check if it is a real loop */
2283 			off = 0;
2284 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2285 				if (l[j].from != l[i + off].from) {
2286 					is_loop = false;
2287 					break;
2288 				}
2289 			if (is_loop) {
2290 				j = nr - (i + off);
2291 				if (j > 0) {
2292 					save_iterations(iter + i + off,
2293 						l + i, off);
2294 
2295 					memmove(iter + i, iter + i + off,
2296 						j * sizeof(*iter));
2297 
2298 					memmove(l + i, l + i + off,
2299 						j * sizeof(*l));
2300 				}
2301 
2302 				nr -= off;
2303 			}
2304 		}
2305 	}
2306 	return nr;
2307 }
2308 
2309 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2310 				       struct callchain_cursor *cursor,
2311 				       struct perf_sample *sample,
2312 				       struct symbol **parent,
2313 				       struct addr_location *root_al,
2314 				       u64 branch_from,
2315 				       bool callee, int end)
2316 {
2317 	struct ip_callchain *chain = sample->callchain;
2318 	u8 cpumode = PERF_RECORD_MISC_USER;
2319 	int err, i;
2320 
2321 	if (callee) {
2322 		for (i = 0; i < end + 1; i++) {
2323 			err = add_callchain_ip(thread, cursor, parent,
2324 					       root_al, &cpumode, chain->ips[i],
2325 					       false, NULL, NULL, branch_from);
2326 			if (err)
2327 				return err;
2328 		}
2329 		return 0;
2330 	}
2331 
2332 	for (i = end; i >= 0; i--) {
2333 		err = add_callchain_ip(thread, cursor, parent,
2334 				       root_al, &cpumode, chain->ips[i],
2335 				       false, NULL, NULL, branch_from);
2336 		if (err)
2337 			return err;
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 static void save_lbr_cursor_node(struct thread *thread,
2344 				 struct callchain_cursor *cursor,
2345 				 int idx)
2346 {
2347 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2348 
2349 	if (!lbr_stitch)
2350 		return;
2351 
2352 	if (cursor->pos == cursor->nr) {
2353 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2354 		return;
2355 	}
2356 
2357 	if (!cursor->curr)
2358 		cursor->curr = cursor->first;
2359 	else
2360 		cursor->curr = cursor->curr->next;
2361 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2362 	       sizeof(struct callchain_cursor_node));
2363 
2364 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2365 	cursor->pos++;
2366 }
2367 
2368 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2369 				    struct callchain_cursor *cursor,
2370 				    struct perf_sample *sample,
2371 				    struct symbol **parent,
2372 				    struct addr_location *root_al,
2373 				    u64 *branch_from,
2374 				    bool callee)
2375 {
2376 	struct branch_stack *lbr_stack = sample->branch_stack;
2377 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2378 	u8 cpumode = PERF_RECORD_MISC_USER;
2379 	int lbr_nr = lbr_stack->nr;
2380 	struct branch_flags *flags;
2381 	int err, i;
2382 	u64 ip;
2383 
2384 	/*
2385 	 * The curr and pos are not used in writing session. They are cleared
2386 	 * in callchain_cursor_commit() when the writing session is closed.
2387 	 * Using curr and pos to track the current cursor node.
2388 	 */
2389 	if (thread__lbr_stitch(thread)) {
2390 		cursor->curr = NULL;
2391 		cursor->pos = cursor->nr;
2392 		if (cursor->nr) {
2393 			cursor->curr = cursor->first;
2394 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2395 				cursor->curr = cursor->curr->next;
2396 		}
2397 	}
2398 
2399 	if (callee) {
2400 		/* Add LBR ip from first entries.to */
2401 		ip = entries[0].to;
2402 		flags = &entries[0].flags;
2403 		*branch_from = entries[0].from;
2404 		err = add_callchain_ip(thread, cursor, parent,
2405 				       root_al, &cpumode, ip,
2406 				       true, flags, NULL,
2407 				       *branch_from);
2408 		if (err)
2409 			return err;
2410 
2411 		/*
2412 		 * The number of cursor node increases.
2413 		 * Move the current cursor node.
2414 		 * But does not need to save current cursor node for entry 0.
2415 		 * It's impossible to stitch the whole LBRs of previous sample.
2416 		 */
2417 		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2418 			if (!cursor->curr)
2419 				cursor->curr = cursor->first;
2420 			else
2421 				cursor->curr = cursor->curr->next;
2422 			cursor->pos++;
2423 		}
2424 
2425 		/* Add LBR ip from entries.from one by one. */
2426 		for (i = 0; i < lbr_nr; i++) {
2427 			ip = entries[i].from;
2428 			flags = &entries[i].flags;
2429 			err = add_callchain_ip(thread, cursor, parent,
2430 					       root_al, &cpumode, ip,
2431 					       true, flags, NULL,
2432 					       *branch_from);
2433 			if (err)
2434 				return err;
2435 			save_lbr_cursor_node(thread, cursor, i);
2436 		}
2437 		return 0;
2438 	}
2439 
2440 	/* Add LBR ip from entries.from one by one. */
2441 	for (i = lbr_nr - 1; i >= 0; i--) {
2442 		ip = entries[i].from;
2443 		flags = &entries[i].flags;
2444 		err = add_callchain_ip(thread, cursor, parent,
2445 				       root_al, &cpumode, ip,
2446 				       true, flags, NULL,
2447 				       *branch_from);
2448 		if (err)
2449 			return err;
2450 		save_lbr_cursor_node(thread, cursor, i);
2451 	}
2452 
2453 	if (lbr_nr > 0) {
2454 		/* Add LBR ip from first entries.to */
2455 		ip = entries[0].to;
2456 		flags = &entries[0].flags;
2457 		*branch_from = entries[0].from;
2458 		err = add_callchain_ip(thread, cursor, parent,
2459 				root_al, &cpumode, ip,
2460 				true, flags, NULL,
2461 				*branch_from);
2462 		if (err)
2463 			return err;
2464 	}
2465 
2466 	return 0;
2467 }
2468 
2469 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2470 					     struct callchain_cursor *cursor)
2471 {
2472 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2473 	struct callchain_cursor_node *cnode;
2474 	struct stitch_list *stitch_node;
2475 	int err;
2476 
2477 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2478 		cnode = &stitch_node->cursor;
2479 
2480 		err = callchain_cursor_append(cursor, cnode->ip,
2481 					      &cnode->ms,
2482 					      cnode->branch,
2483 					      &cnode->branch_flags,
2484 					      cnode->nr_loop_iter,
2485 					      cnode->iter_cycles,
2486 					      cnode->branch_from,
2487 					      cnode->srcline);
2488 		if (err)
2489 			return err;
2490 	}
2491 	return 0;
2492 }
2493 
2494 static struct stitch_list *get_stitch_node(struct thread *thread)
2495 {
2496 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2497 	struct stitch_list *stitch_node;
2498 
2499 	if (!list_empty(&lbr_stitch->free_lists)) {
2500 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2501 					       struct stitch_list, node);
2502 		list_del(&stitch_node->node);
2503 
2504 		return stitch_node;
2505 	}
2506 
2507 	return malloc(sizeof(struct stitch_list));
2508 }
2509 
2510 static bool has_stitched_lbr(struct thread *thread,
2511 			     struct perf_sample *cur,
2512 			     struct perf_sample *prev,
2513 			     unsigned int max_lbr,
2514 			     bool callee)
2515 {
2516 	struct branch_stack *cur_stack = cur->branch_stack;
2517 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2518 	struct branch_stack *prev_stack = prev->branch_stack;
2519 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2520 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2521 	int i, j, nr_identical_branches = 0;
2522 	struct stitch_list *stitch_node;
2523 	u64 cur_base, distance;
2524 
2525 	if (!cur_stack || !prev_stack)
2526 		return false;
2527 
2528 	/* Find the physical index of the base-of-stack for current sample. */
2529 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2530 
2531 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2532 						     (max_lbr + prev_stack->hw_idx - cur_base);
2533 	/* Previous sample has shorter stack. Nothing can be stitched. */
2534 	if (distance + 1 > prev_stack->nr)
2535 		return false;
2536 
2537 	/*
2538 	 * Check if there are identical LBRs between two samples.
2539 	 * Identical LBRs must have same from, to and flags values. Also,
2540 	 * they have to be saved in the same LBR registers (same physical
2541 	 * index).
2542 	 *
2543 	 * Starts from the base-of-stack of current sample.
2544 	 */
2545 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2546 		if ((prev_entries[i].from != cur_entries[j].from) ||
2547 		    (prev_entries[i].to != cur_entries[j].to) ||
2548 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2549 			break;
2550 		nr_identical_branches++;
2551 	}
2552 
2553 	if (!nr_identical_branches)
2554 		return false;
2555 
2556 	/*
2557 	 * Save the LBRs between the base-of-stack of previous sample
2558 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2559 	 * These LBRs will be stitched later.
2560 	 */
2561 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2562 
2563 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2564 			continue;
2565 
2566 		stitch_node = get_stitch_node(thread);
2567 		if (!stitch_node)
2568 			return false;
2569 
2570 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2571 		       sizeof(struct callchain_cursor_node));
2572 
2573 		if (callee)
2574 			list_add(&stitch_node->node, &lbr_stitch->lists);
2575 		else
2576 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2577 	}
2578 
2579 	return true;
2580 }
2581 
2582 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2583 {
2584 	if (thread__lbr_stitch(thread))
2585 		return true;
2586 
2587 	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2588 	if (!thread__lbr_stitch(thread))
2589 		goto err;
2590 
2591 	thread__lbr_stitch(thread)->prev_lbr_cursor =
2592 		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2593 	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2594 		goto free_lbr_stitch;
2595 
2596 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2597 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2598 
2599 	return true;
2600 
2601 free_lbr_stitch:
2602 	free(thread__lbr_stitch(thread));
2603 	thread__set_lbr_stitch(thread, NULL);
2604 err:
2605 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2606 	thread__set_lbr_stitch_enable(thread, false);
2607 	return false;
2608 }
2609 
2610 /*
2611  * Resolve LBR callstack chain sample
2612  * Return:
2613  * 1 on success get LBR callchain information
2614  * 0 no available LBR callchain information, should try fp
2615  * negative error code on other errors.
2616  */
2617 static int resolve_lbr_callchain_sample(struct thread *thread,
2618 					struct callchain_cursor *cursor,
2619 					struct perf_sample *sample,
2620 					struct symbol **parent,
2621 					struct addr_location *root_al,
2622 					int max_stack,
2623 					unsigned int max_lbr)
2624 {
2625 	bool callee = (callchain_param.order == ORDER_CALLEE);
2626 	struct ip_callchain *chain = sample->callchain;
2627 	int chain_nr = min(max_stack, (int)chain->nr), i;
2628 	struct lbr_stitch *lbr_stitch;
2629 	bool stitched_lbr = false;
2630 	u64 branch_from = 0;
2631 	int err;
2632 
2633 	for (i = 0; i < chain_nr; i++) {
2634 		if (chain->ips[i] == PERF_CONTEXT_USER)
2635 			break;
2636 	}
2637 
2638 	/* LBR only affects the user callchain */
2639 	if (i == chain_nr)
2640 		return 0;
2641 
2642 	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2643 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2644 		lbr_stitch = thread__lbr_stitch(thread);
2645 
2646 		stitched_lbr = has_stitched_lbr(thread, sample,
2647 						&lbr_stitch->prev_sample,
2648 						max_lbr, callee);
2649 
2650 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2651 			list_replace_init(&lbr_stitch->lists,
2652 					  &lbr_stitch->free_lists);
2653 		}
2654 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2655 	}
2656 
2657 	if (callee) {
2658 		/* Add kernel ip */
2659 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2660 						  parent, root_al, branch_from,
2661 						  true, i);
2662 		if (err)
2663 			goto error;
2664 
2665 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2666 					       root_al, &branch_from, true);
2667 		if (err)
2668 			goto error;
2669 
2670 		if (stitched_lbr) {
2671 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2672 			if (err)
2673 				goto error;
2674 		}
2675 
2676 	} else {
2677 		if (stitched_lbr) {
2678 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2679 			if (err)
2680 				goto error;
2681 		}
2682 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2683 					       root_al, &branch_from, false);
2684 		if (err)
2685 			goto error;
2686 
2687 		/* Add kernel ip */
2688 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2689 						  parent, root_al, branch_from,
2690 						  false, i);
2691 		if (err)
2692 			goto error;
2693 	}
2694 	return 1;
2695 
2696 error:
2697 	return (err < 0) ? err : 0;
2698 }
2699 
2700 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2701 			     struct callchain_cursor *cursor,
2702 			     struct symbol **parent,
2703 			     struct addr_location *root_al,
2704 			     u8 *cpumode, int ent)
2705 {
2706 	int err = 0;
2707 
2708 	while (--ent >= 0) {
2709 		u64 ip = chain->ips[ent];
2710 
2711 		if (ip >= PERF_CONTEXT_MAX) {
2712 			err = add_callchain_ip(thread, cursor, parent,
2713 					       root_al, cpumode, ip,
2714 					       false, NULL, NULL, 0);
2715 			break;
2716 		}
2717 	}
2718 	return err;
2719 }
2720 
2721 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2722 		struct thread *thread, int usr_idx)
2723 {
2724 	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2725 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2726 	else
2727 		return 0;
2728 }
2729 
2730 static int thread__resolve_callchain_sample(struct thread *thread,
2731 					    struct callchain_cursor *cursor,
2732 					    struct evsel *evsel,
2733 					    struct perf_sample *sample,
2734 					    struct symbol **parent,
2735 					    struct addr_location *root_al,
2736 					    int max_stack)
2737 {
2738 	struct branch_stack *branch = sample->branch_stack;
2739 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2740 	struct ip_callchain *chain = sample->callchain;
2741 	int chain_nr = 0;
2742 	u8 cpumode = PERF_RECORD_MISC_USER;
2743 	int i, j, err, nr_entries, usr_idx;
2744 	int skip_idx = -1;
2745 	int first_call = 0;
2746 	u64 leaf_frame_caller;
2747 
2748 	if (chain)
2749 		chain_nr = chain->nr;
2750 
2751 	if (evsel__has_branch_callstack(evsel)) {
2752 		struct perf_env *env = evsel__env(evsel);
2753 
2754 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2755 						   root_al, max_stack,
2756 						   !env ? 0 : env->max_branches);
2757 		if (err)
2758 			return (err < 0) ? err : 0;
2759 	}
2760 
2761 	/*
2762 	 * Based on DWARF debug information, some architectures skip
2763 	 * a callchain entry saved by the kernel.
2764 	 */
2765 	skip_idx = arch_skip_callchain_idx(thread, chain);
2766 
2767 	/*
2768 	 * Add branches to call stack for easier browsing. This gives
2769 	 * more context for a sample than just the callers.
2770 	 *
2771 	 * This uses individual histograms of paths compared to the
2772 	 * aggregated histograms the normal LBR mode uses.
2773 	 *
2774 	 * Limitations for now:
2775 	 * - No extra filters
2776 	 * - No annotations (should annotate somehow)
2777 	 */
2778 
2779 	if (branch && callchain_param.branch_callstack) {
2780 		int nr = min(max_stack, (int)branch->nr);
2781 		struct branch_entry be[nr];
2782 		struct iterations iter[nr];
2783 
2784 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2785 			pr_warning("corrupted branch chain. skipping...\n");
2786 			goto check_calls;
2787 		}
2788 
2789 		for (i = 0; i < nr; i++) {
2790 			if (callchain_param.order == ORDER_CALLEE) {
2791 				be[i] = entries[i];
2792 
2793 				if (chain == NULL)
2794 					continue;
2795 
2796 				/*
2797 				 * Check for overlap into the callchain.
2798 				 * The return address is one off compared to
2799 				 * the branch entry. To adjust for this
2800 				 * assume the calling instruction is not longer
2801 				 * than 8 bytes.
2802 				 */
2803 				if (i == skip_idx ||
2804 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2805 					first_call++;
2806 				else if (be[i].from < chain->ips[first_call] &&
2807 				    be[i].from >= chain->ips[first_call] - 8)
2808 					first_call++;
2809 			} else
2810 				be[i] = entries[branch->nr - i - 1];
2811 		}
2812 
2813 		memset(iter, 0, sizeof(struct iterations) * nr);
2814 		nr = remove_loops(be, nr, iter);
2815 
2816 		for (i = 0; i < nr; i++) {
2817 			err = add_callchain_ip(thread, cursor, parent,
2818 					       root_al,
2819 					       NULL, be[i].to,
2820 					       true, &be[i].flags,
2821 					       NULL, be[i].from);
2822 
2823 			if (!err)
2824 				err = add_callchain_ip(thread, cursor, parent, root_al,
2825 						       NULL, be[i].from,
2826 						       true, &be[i].flags,
2827 						       &iter[i], 0);
2828 			if (err == -EINVAL)
2829 				break;
2830 			if (err)
2831 				return err;
2832 		}
2833 
2834 		if (chain_nr == 0)
2835 			return 0;
2836 
2837 		chain_nr -= nr;
2838 	}
2839 
2840 check_calls:
2841 	if (chain && callchain_param.order != ORDER_CALLEE) {
2842 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2843 					&cpumode, chain->nr - first_call);
2844 		if (err)
2845 			return (err < 0) ? err : 0;
2846 	}
2847 	for (i = first_call, nr_entries = 0;
2848 	     i < chain_nr && nr_entries < max_stack; i++) {
2849 		u64 ip;
2850 
2851 		if (callchain_param.order == ORDER_CALLEE)
2852 			j = i;
2853 		else
2854 			j = chain->nr - i - 1;
2855 
2856 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2857 		if (j == skip_idx)
2858 			continue;
2859 #endif
2860 		ip = chain->ips[j];
2861 		if (ip < PERF_CONTEXT_MAX)
2862                        ++nr_entries;
2863 		else if (callchain_param.order != ORDER_CALLEE) {
2864 			err = find_prev_cpumode(chain, thread, cursor, parent,
2865 						root_al, &cpumode, j);
2866 			if (err)
2867 				return (err < 0) ? err : 0;
2868 			continue;
2869 		}
2870 
2871 		/*
2872 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2873 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2874 		 * the index will be different in order to add the missing frame
2875 		 * at the right place.
2876 		 */
2877 
2878 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2879 
2880 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2881 
2882 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2883 
2884 			/*
2885 			 * check if leaf_frame_Caller != ip to not add the same
2886 			 * value twice.
2887 			 */
2888 
2889 			if (leaf_frame_caller && leaf_frame_caller != ip) {
2890 
2891 				err = add_callchain_ip(thread, cursor, parent,
2892 					       root_al, &cpumode, leaf_frame_caller,
2893 					       false, NULL, NULL, 0);
2894 				if (err)
2895 					return (err < 0) ? err : 0;
2896 			}
2897 		}
2898 
2899 		err = add_callchain_ip(thread, cursor, parent,
2900 				       root_al, &cpumode, ip,
2901 				       false, NULL, NULL, 0);
2902 
2903 		if (err)
2904 			return (err < 0) ? err : 0;
2905 	}
2906 
2907 	return 0;
2908 }
2909 
2910 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2911 {
2912 	struct symbol *sym = ms->sym;
2913 	struct map *map = ms->map;
2914 	struct inline_node *inline_node;
2915 	struct inline_list *ilist;
2916 	struct dso *dso;
2917 	u64 addr;
2918 	int ret = 1;
2919 	struct map_symbol ilist_ms;
2920 
2921 	if (!symbol_conf.inline_name || !map || !sym)
2922 		return ret;
2923 
2924 	addr = map__dso_map_ip(map, ip);
2925 	addr = map__rip_2objdump(map, addr);
2926 	dso = map__dso(map);
2927 
2928 	inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
2929 	if (!inline_node) {
2930 		inline_node = dso__parse_addr_inlines(dso, addr, sym);
2931 		if (!inline_node)
2932 			return ret;
2933 		inlines__tree_insert(&dso->inlined_nodes, inline_node);
2934 	}
2935 
2936 	ilist_ms = (struct map_symbol) {
2937 		.maps = maps__get(ms->maps),
2938 		.map = map__get(map),
2939 	};
2940 	list_for_each_entry(ilist, &inline_node->val, list) {
2941 		ilist_ms.sym = ilist->symbol;
2942 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2943 					      NULL, 0, 0, 0, ilist->srcline);
2944 
2945 		if (ret != 0)
2946 			return ret;
2947 	}
2948 	map_symbol__exit(&ilist_ms);
2949 
2950 	return ret;
2951 }
2952 
2953 static int unwind_entry(struct unwind_entry *entry, void *arg)
2954 {
2955 	struct callchain_cursor *cursor = arg;
2956 	const char *srcline = NULL;
2957 	u64 addr = entry->ip;
2958 
2959 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2960 		return 0;
2961 
2962 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2963 		return 0;
2964 
2965 	/*
2966 	 * Convert entry->ip from a virtual address to an offset in
2967 	 * its corresponding binary.
2968 	 */
2969 	if (entry->ms.map)
2970 		addr = map__dso_map_ip(entry->ms.map, entry->ip);
2971 
2972 	srcline = callchain_srcline(&entry->ms, addr);
2973 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2974 				       false, NULL, 0, 0, 0, srcline);
2975 }
2976 
2977 static int thread__resolve_callchain_unwind(struct thread *thread,
2978 					    struct callchain_cursor *cursor,
2979 					    struct evsel *evsel,
2980 					    struct perf_sample *sample,
2981 					    int max_stack)
2982 {
2983 	/* Can we do dwarf post unwind? */
2984 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2985 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2986 		return 0;
2987 
2988 	/* Bail out if nothing was captured. */
2989 	if ((!sample->user_regs.regs) ||
2990 	    (!sample->user_stack.size))
2991 		return 0;
2992 
2993 	return unwind__get_entries(unwind_entry, cursor,
2994 				   thread, sample, max_stack, false);
2995 }
2996 
2997 int thread__resolve_callchain(struct thread *thread,
2998 			      struct callchain_cursor *cursor,
2999 			      struct evsel *evsel,
3000 			      struct perf_sample *sample,
3001 			      struct symbol **parent,
3002 			      struct addr_location *root_al,
3003 			      int max_stack)
3004 {
3005 	int ret = 0;
3006 
3007 	if (cursor == NULL)
3008 		return -ENOMEM;
3009 
3010 	callchain_cursor_reset(cursor);
3011 
3012 	if (callchain_param.order == ORDER_CALLEE) {
3013 		ret = thread__resolve_callchain_sample(thread, cursor,
3014 						       evsel, sample,
3015 						       parent, root_al,
3016 						       max_stack);
3017 		if (ret)
3018 			return ret;
3019 		ret = thread__resolve_callchain_unwind(thread, cursor,
3020 						       evsel, sample,
3021 						       max_stack);
3022 	} else {
3023 		ret = thread__resolve_callchain_unwind(thread, cursor,
3024 						       evsel, sample,
3025 						       max_stack);
3026 		if (ret)
3027 			return ret;
3028 		ret = thread__resolve_callchain_sample(thread, cursor,
3029 						       evsel, sample,
3030 						       parent, root_al,
3031 						       max_stack);
3032 	}
3033 
3034 	return ret;
3035 }
3036 
3037 int machine__for_each_thread(struct machine *machine,
3038 			     int (*fn)(struct thread *thread, void *p),
3039 			     void *priv)
3040 {
3041 	return threads__for_each_thread(&machine->threads, fn, priv);
3042 }
3043 
3044 int machines__for_each_thread(struct machines *machines,
3045 			      int (*fn)(struct thread *thread, void *p),
3046 			      void *priv)
3047 {
3048 	struct rb_node *nd;
3049 	int rc = 0;
3050 
3051 	rc = machine__for_each_thread(&machines->host, fn, priv);
3052 	if (rc != 0)
3053 		return rc;
3054 
3055 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3056 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3057 
3058 		rc = machine__for_each_thread(machine, fn, priv);
3059 		if (rc != 0)
3060 			return rc;
3061 	}
3062 	return rc;
3063 }
3064 
3065 
3066 static int thread_list_cb(struct thread *thread, void *data)
3067 {
3068 	struct list_head *list = data;
3069 	struct thread_list *entry = malloc(sizeof(*entry));
3070 
3071 	if (!entry)
3072 		return -ENOMEM;
3073 
3074 	entry->thread = thread__get(thread);
3075 	list_add_tail(&entry->list, list);
3076 	return 0;
3077 }
3078 
3079 int machine__thread_list(struct machine *machine, struct list_head *list)
3080 {
3081 	return machine__for_each_thread(machine, thread_list_cb, list);
3082 }
3083 
3084 void thread_list__delete(struct list_head *list)
3085 {
3086 	struct thread_list *pos, *next;
3087 
3088 	list_for_each_entry_safe(pos, next, list, list) {
3089 		thread__zput(pos->thread);
3090 		list_del(&pos->list);
3091 		free(pos);
3092 	}
3093 }
3094 
3095 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3096 {
3097 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3098 		return -1;
3099 
3100 	return machine->current_tid[cpu];
3101 }
3102 
3103 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3104 			     pid_t tid)
3105 {
3106 	struct thread *thread;
3107 	const pid_t init_val = -1;
3108 
3109 	if (cpu < 0)
3110 		return -EINVAL;
3111 
3112 	if (realloc_array_as_needed(machine->current_tid,
3113 				    machine->current_tid_sz,
3114 				    (unsigned int)cpu,
3115 				    &init_val))
3116 		return -ENOMEM;
3117 
3118 	machine->current_tid[cpu] = tid;
3119 
3120 	thread = machine__findnew_thread(machine, pid, tid);
3121 	if (!thread)
3122 		return -ENOMEM;
3123 
3124 	thread__set_cpu(thread, cpu);
3125 	thread__put(thread);
3126 
3127 	return 0;
3128 }
3129 
3130 /*
3131  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3132  * machine__normalized_is() if a normalized arch is needed.
3133  */
3134 bool machine__is(struct machine *machine, const char *arch)
3135 {
3136 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3137 }
3138 
3139 bool machine__normalized_is(struct machine *machine, const char *arch)
3140 {
3141 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3142 }
3143 
3144 int machine__nr_cpus_avail(struct machine *machine)
3145 {
3146 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3147 }
3148 
3149 int machine__get_kernel_start(struct machine *machine)
3150 {
3151 	struct map *map = machine__kernel_map(machine);
3152 	int err = 0;
3153 
3154 	/*
3155 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3156 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3157 	 * all addresses including kernel addresses are less than 2^32.  In
3158 	 * that case (32-bit system), if the kernel mapping is unknown, all
3159 	 * addresses will be assumed to be in user space - see
3160 	 * machine__kernel_ip().
3161 	 */
3162 	machine->kernel_start = 1ULL << 63;
3163 	if (map) {
3164 		err = map__load(map);
3165 		/*
3166 		 * On x86_64, PTI entry trampolines are less than the
3167 		 * start of kernel text, but still above 2^63. So leave
3168 		 * kernel_start = 1ULL << 63 for x86_64.
3169 		 */
3170 		if (!err && !machine__is(machine, "x86_64"))
3171 			machine->kernel_start = map__start(map);
3172 	}
3173 	return err;
3174 }
3175 
3176 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3177 {
3178 	u8 addr_cpumode = cpumode;
3179 	bool kernel_ip;
3180 
3181 	if (!machine->single_address_space)
3182 		goto out;
3183 
3184 	kernel_ip = machine__kernel_ip(machine, addr);
3185 	switch (cpumode) {
3186 	case PERF_RECORD_MISC_KERNEL:
3187 	case PERF_RECORD_MISC_USER:
3188 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3189 					   PERF_RECORD_MISC_USER;
3190 		break;
3191 	case PERF_RECORD_MISC_GUEST_KERNEL:
3192 	case PERF_RECORD_MISC_GUEST_USER:
3193 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3194 					   PERF_RECORD_MISC_GUEST_USER;
3195 		break;
3196 	default:
3197 		break;
3198 	}
3199 out:
3200 	return addr_cpumode;
3201 }
3202 
3203 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3204 {
3205 	return dsos__findnew_id(&machine->dsos, filename, id);
3206 }
3207 
3208 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3209 {
3210 	return machine__findnew_dso_id(machine, filename, NULL);
3211 }
3212 
3213 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3214 {
3215 	struct machine *machine = vmachine;
3216 	struct map *map;
3217 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3218 
3219 	if (sym == NULL)
3220 		return NULL;
3221 
3222 	*modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3223 	*addrp = map__unmap_ip(map, sym->start);
3224 	return sym->name;
3225 }
3226 
3227 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3228 {
3229 	struct dso *pos;
3230 	int err = 0;
3231 
3232 	list_for_each_entry(pos, &machine->dsos.head, node) {
3233 		if (fn(pos, machine, priv))
3234 			err = -1;
3235 	}
3236 	return err;
3237 }
3238 
3239 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3240 {
3241 	struct maps *maps = machine__kernel_maps(machine);
3242 
3243 	return maps__for_each_map(maps, fn, priv);
3244 }
3245 
3246 bool machine__is_lock_function(struct machine *machine, u64 addr)
3247 {
3248 	if (!machine->sched.text_start) {
3249 		struct map *kmap;
3250 		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3251 
3252 		if (!sym) {
3253 			/* to avoid retry */
3254 			machine->sched.text_start = 1;
3255 			return false;
3256 		}
3257 
3258 		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3259 
3260 		/* should not fail from here */
3261 		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3262 		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3263 
3264 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3265 		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3266 
3267 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3268 		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3269 	}
3270 
3271 	/* failed to get kernel symbols */
3272 	if (machine->sched.text_start == 1)
3273 		return false;
3274 
3275 	/* mutex and rwsem functions are in sched text section */
3276 	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3277 		return true;
3278 
3279 	/* spinlock functions are in lock text section */
3280 	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3281 		return true;
3282 
3283 	return false;
3284 }
3285