1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * page_fault_test.c - Test stage 2 faults.
4  *
5  * This test tries different combinations of guest accesses (e.g., write,
6  * S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
7  * hugetlbfs with a hole). It checks that the expected handling method is
8  * called (e.g., uffd faults with the right address and write/read flag).
9  */
10 #define _GNU_SOURCE
11 #include <linux/bitmap.h>
12 #include <fcntl.h>
13 #include <test_util.h>
14 #include <kvm_util.h>
15 #include <processor.h>
16 #include <asm/sysreg.h>
17 #include <linux/bitfield.h>
18 #include "guest_modes.h"
19 #include "userfaultfd_util.h"
20 
21 /* Guest virtual addresses that point to the test page and its PTE. */
22 #define TEST_GVA				0xc0000000
23 #define TEST_EXEC_GVA				(TEST_GVA + 0x8)
24 #define TEST_PTE_GVA				0xb0000000
25 #define TEST_DATA				0x0123456789ABCDEF
26 
27 static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
28 
29 #define CMD_NONE				(0)
30 #define CMD_SKIP_TEST				(1ULL << 1)
31 #define CMD_HOLE_PT				(1ULL << 2)
32 #define CMD_HOLE_DATA				(1ULL << 3)
33 #define CMD_CHECK_WRITE_IN_DIRTY_LOG		(1ULL << 4)
34 #define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG		(1ULL << 5)
35 #define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG		(1ULL << 6)
36 #define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG	(1ULL << 7)
37 #define CMD_SET_PTE_AF				(1ULL << 8)
38 
39 #define PREPARE_FN_NR				10
40 #define CHECK_FN_NR				10
41 
42 static struct event_cnt {
43 	int mmio_exits;
44 	int fail_vcpu_runs;
45 	int uffd_faults;
46 	/* uffd_faults is incremented from multiple threads. */
47 	pthread_mutex_t uffd_faults_mutex;
48 } events;
49 
50 struct test_desc {
51 	const char *name;
52 	uint64_t mem_mark_cmd;
53 	/* Skip the test if any prepare function returns false */
54 	bool (*guest_prepare[PREPARE_FN_NR])(void);
55 	void (*guest_test)(void);
56 	void (*guest_test_check[CHECK_FN_NR])(void);
57 	uffd_handler_t uffd_pt_handler;
58 	uffd_handler_t uffd_data_handler;
59 	void (*dabt_handler)(struct ex_regs *regs);
60 	void (*iabt_handler)(struct ex_regs *regs);
61 	void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
62 	void (*fail_vcpu_run_handler)(int ret);
63 	uint32_t pt_memslot_flags;
64 	uint32_t data_memslot_flags;
65 	bool skip;
66 	struct event_cnt expected_events;
67 };
68 
69 struct test_params {
70 	enum vm_mem_backing_src_type src_type;
71 	struct test_desc *test_desc;
72 };
73 
74 static inline void flush_tlb_page(uint64_t vaddr)
75 {
76 	uint64_t page = vaddr >> 12;
77 
78 	dsb(ishst);
79 	asm volatile("tlbi vaae1is, %0" :: "r" (page));
80 	dsb(ish);
81 	isb();
82 }
83 
84 static void guest_write64(void)
85 {
86 	uint64_t val;
87 
88 	WRITE_ONCE(*guest_test_memory, TEST_DATA);
89 	val = READ_ONCE(*guest_test_memory);
90 	GUEST_ASSERT_EQ(val, TEST_DATA);
91 }
92 
93 /* Check the system for atomic instructions. */
94 static bool guest_check_lse(void)
95 {
96 	uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
97 	uint64_t atomic;
98 
99 	atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC), isar0);
100 	return atomic >= 2;
101 }
102 
103 static bool guest_check_dc_zva(void)
104 {
105 	uint64_t dczid = read_sysreg(dczid_el0);
106 	uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_EL0_DZP), dczid);
107 
108 	return dzp == 0;
109 }
110 
111 /* Compare and swap instruction. */
112 static void guest_cas(void)
113 {
114 	uint64_t val;
115 
116 	GUEST_ASSERT(guest_check_lse());
117 	asm volatile(".arch_extension lse\n"
118 		     "casal %0, %1, [%2]\n"
119 		     :: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
120 	val = READ_ONCE(*guest_test_memory);
121 	GUEST_ASSERT_EQ(val, TEST_DATA);
122 }
123 
124 static void guest_read64(void)
125 {
126 	uint64_t val;
127 
128 	val = READ_ONCE(*guest_test_memory);
129 	GUEST_ASSERT_EQ(val, 0);
130 }
131 
132 /* Address translation instruction */
133 static void guest_at(void)
134 {
135 	uint64_t par;
136 
137 	asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
138 	isb();
139 	par = read_sysreg(par_el1);
140 
141 	/* Bit 1 indicates whether the AT was successful */
142 	GUEST_ASSERT_EQ(par & 1, 0);
143 }
144 
145 /*
146  * The size of the block written by "dc zva" is guaranteed to be between (2 <<
147  * 0) and (2 << 9), which is safe in our case as we need the write to happen
148  * for at least a word, and not more than a page.
149  */
150 static void guest_dc_zva(void)
151 {
152 	uint16_t val;
153 
154 	asm volatile("dc zva, %0" :: "r" (guest_test_memory));
155 	dsb(ish);
156 	val = READ_ONCE(*guest_test_memory);
157 	GUEST_ASSERT_EQ(val, 0);
158 }
159 
160 /*
161  * Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
162  * And that's special because KVM must take special care with those: they
163  * should still count as accesses for dirty logging or user-faulting, but
164  * should be handled differently on mmio.
165  */
166 static void guest_ld_preidx(void)
167 {
168 	uint64_t val;
169 	uint64_t addr = TEST_GVA - 8;
170 
171 	/*
172 	 * This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
173 	 * in a gap between memslots not backing by anything.
174 	 */
175 	asm volatile("ldr %0, [%1, #8]!"
176 		     : "=r" (val), "+r" (addr));
177 	GUEST_ASSERT_EQ(val, 0);
178 	GUEST_ASSERT_EQ(addr, TEST_GVA);
179 }
180 
181 static void guest_st_preidx(void)
182 {
183 	uint64_t val = TEST_DATA;
184 	uint64_t addr = TEST_GVA - 8;
185 
186 	asm volatile("str %0, [%1, #8]!"
187 		     : "+r" (val), "+r" (addr));
188 
189 	GUEST_ASSERT_EQ(addr, TEST_GVA);
190 	val = READ_ONCE(*guest_test_memory);
191 }
192 
193 static bool guest_set_ha(void)
194 {
195 	uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
196 	uint64_t hadbs, tcr;
197 
198 	/* Skip if HA is not supported. */
199 	hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HAFDBS), mmfr1);
200 	if (hadbs == 0)
201 		return false;
202 
203 	tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
204 	write_sysreg(tcr, tcr_el1);
205 	isb();
206 
207 	return true;
208 }
209 
210 static bool guest_clear_pte_af(void)
211 {
212 	*((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
213 	flush_tlb_page(TEST_GVA);
214 
215 	return true;
216 }
217 
218 static void guest_check_pte_af(void)
219 {
220 	dsb(ish);
221 	GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
222 }
223 
224 static void guest_check_write_in_dirty_log(void)
225 {
226 	GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
227 }
228 
229 static void guest_check_no_write_in_dirty_log(void)
230 {
231 	GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
232 }
233 
234 static void guest_check_s1ptw_wr_in_dirty_log(void)
235 {
236 	GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
237 }
238 
239 static void guest_check_no_s1ptw_wr_in_dirty_log(void)
240 {
241 	GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG);
242 }
243 
244 static void guest_exec(void)
245 {
246 	int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
247 	int ret;
248 
249 	ret = code();
250 	GUEST_ASSERT_EQ(ret, 0x77);
251 }
252 
253 static bool guest_prepare(struct test_desc *test)
254 {
255 	bool (*prepare_fn)(void);
256 	int i;
257 
258 	for (i = 0; i < PREPARE_FN_NR; i++) {
259 		prepare_fn = test->guest_prepare[i];
260 		if (prepare_fn && !prepare_fn())
261 			return false;
262 	}
263 
264 	return true;
265 }
266 
267 static void guest_test_check(struct test_desc *test)
268 {
269 	void (*check_fn)(void);
270 	int i;
271 
272 	for (i = 0; i < CHECK_FN_NR; i++) {
273 		check_fn = test->guest_test_check[i];
274 		if (check_fn)
275 			check_fn();
276 	}
277 }
278 
279 static void guest_code(struct test_desc *test)
280 {
281 	if (!guest_prepare(test))
282 		GUEST_SYNC(CMD_SKIP_TEST);
283 
284 	GUEST_SYNC(test->mem_mark_cmd);
285 
286 	if (test->guest_test)
287 		test->guest_test();
288 
289 	guest_test_check(test);
290 	GUEST_DONE();
291 }
292 
293 static void no_dabt_handler(struct ex_regs *regs)
294 {
295 	GUEST_FAIL("Unexpected dabt, far_el1 = 0x%lx", read_sysreg(far_el1));
296 }
297 
298 static void no_iabt_handler(struct ex_regs *regs)
299 {
300 	GUEST_FAIL("Unexpected iabt, pc = 0x%lx", regs->pc);
301 }
302 
303 static struct uffd_args {
304 	char *copy;
305 	void *hva;
306 	uint64_t paging_size;
307 } pt_args, data_args;
308 
309 /* Returns true to continue the test, and false if it should be skipped. */
310 static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
311 				struct uffd_args *args)
312 {
313 	uint64_t addr = msg->arg.pagefault.address;
314 	uint64_t flags = msg->arg.pagefault.flags;
315 	struct uffdio_copy copy;
316 	int ret;
317 
318 	TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
319 		    "The only expected UFFD mode is MISSING");
320 	TEST_ASSERT_EQ(addr, (uint64_t)args->hva);
321 
322 	pr_debug("uffd fault: addr=%p write=%d\n",
323 		 (void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));
324 
325 	copy.src = (uint64_t)args->copy;
326 	copy.dst = addr;
327 	copy.len = args->paging_size;
328 	copy.mode = 0;
329 
330 	ret = ioctl(uffd, UFFDIO_COPY, &copy);
331 	if (ret == -1) {
332 		pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
333 			addr, errno);
334 		return ret;
335 	}
336 
337 	pthread_mutex_lock(&events.uffd_faults_mutex);
338 	events.uffd_faults += 1;
339 	pthread_mutex_unlock(&events.uffd_faults_mutex);
340 	return 0;
341 }
342 
343 static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg)
344 {
345 	return uffd_generic_handler(mode, uffd, msg, &pt_args);
346 }
347 
348 static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg)
349 {
350 	return uffd_generic_handler(mode, uffd, msg, &data_args);
351 }
352 
353 static void setup_uffd_args(struct userspace_mem_region *region,
354 			    struct uffd_args *args)
355 {
356 	args->hva = (void *)region->region.userspace_addr;
357 	args->paging_size = region->region.memory_size;
358 
359 	args->copy = malloc(args->paging_size);
360 	TEST_ASSERT(args->copy, "Failed to allocate data copy.");
361 	memcpy(args->copy, args->hva, args->paging_size);
362 }
363 
364 static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
365 		       struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
366 {
367 	struct test_desc *test = p->test_desc;
368 	int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;
369 
370 	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
371 	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);
372 
373 	*pt_uffd = NULL;
374 	if (test->uffd_pt_handler)
375 		*pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
376 						    pt_args.hva,
377 						    pt_args.paging_size,
378 						    test->uffd_pt_handler);
379 
380 	*data_uffd = NULL;
381 	if (test->uffd_data_handler)
382 		*data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
383 						      data_args.hva,
384 						      data_args.paging_size,
385 						      test->uffd_data_handler);
386 }
387 
388 static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
389 		      struct uffd_desc *data_uffd)
390 {
391 	if (test->uffd_pt_handler)
392 		uffd_stop_demand_paging(pt_uffd);
393 	if (test->uffd_data_handler)
394 		uffd_stop_demand_paging(data_uffd);
395 
396 	free(pt_args.copy);
397 	free(data_args.copy);
398 }
399 
400 static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
401 {
402 	TEST_FAIL("There was no UFFD fault expected.");
403 	return -1;
404 }
405 
406 /* Returns false if the test should be skipped. */
407 static bool punch_hole_in_backing_store(struct kvm_vm *vm,
408 					struct userspace_mem_region *region)
409 {
410 	void *hva = (void *)region->region.userspace_addr;
411 	uint64_t paging_size = region->region.memory_size;
412 	int ret, fd = region->fd;
413 
414 	if (fd != -1) {
415 		ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
416 				0, paging_size);
417 		TEST_ASSERT(ret == 0, "fallocate failed");
418 	} else {
419 		ret = madvise(hva, paging_size, MADV_DONTNEED);
420 		TEST_ASSERT(ret == 0, "madvise failed");
421 	}
422 
423 	return true;
424 }
425 
426 static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
427 {
428 	struct userspace_mem_region *region;
429 	void *hva;
430 
431 	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
432 	hva = (void *)region->region.userspace_addr;
433 
434 	TEST_ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);
435 
436 	memcpy(hva, run->mmio.data, run->mmio.len);
437 	events.mmio_exits += 1;
438 }
439 
440 static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
441 {
442 	uint64_t data;
443 
444 	memcpy(&data, run->mmio.data, sizeof(data));
445 	pr_debug("addr=%lld len=%d w=%d data=%lx\n",
446 		 run->mmio.phys_addr, run->mmio.len,
447 		 run->mmio.is_write, data);
448 	TEST_FAIL("There was no MMIO exit expected.");
449 }
450 
451 static bool check_write_in_dirty_log(struct kvm_vm *vm,
452 				     struct userspace_mem_region *region,
453 				     uint64_t host_pg_nr)
454 {
455 	unsigned long *bmap;
456 	bool first_page_dirty;
457 	uint64_t size = region->region.memory_size;
458 
459 	/* getpage_size() is not always equal to vm->page_size */
460 	bmap = bitmap_zalloc(size / getpagesize());
461 	kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
462 	first_page_dirty = test_bit(host_pg_nr, bmap);
463 	free(bmap);
464 	return first_page_dirty;
465 }
466 
467 /* Returns true to continue the test, and false if it should be skipped. */
468 static bool handle_cmd(struct kvm_vm *vm, int cmd)
469 {
470 	struct userspace_mem_region *data_region, *pt_region;
471 	bool continue_test = true;
472 	uint64_t pte_gpa, pte_pg;
473 
474 	data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
475 	pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
476 	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
477 	pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize();
478 
479 	if (cmd == CMD_SKIP_TEST)
480 		continue_test = false;
481 
482 	if (cmd & CMD_HOLE_PT)
483 		continue_test = punch_hole_in_backing_store(vm, pt_region);
484 	if (cmd & CMD_HOLE_DATA)
485 		continue_test = punch_hole_in_backing_store(vm, data_region);
486 	if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
487 		TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
488 			    "Missing write in dirty log");
489 	if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
490 		TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg),
491 			    "Missing s1ptw write in dirty log");
492 	if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
493 		TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
494 			    "Unexpected write in dirty log");
495 	if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
496 		TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg),
497 			    "Unexpected s1ptw write in dirty log");
498 
499 	return continue_test;
500 }
501 
502 void fail_vcpu_run_no_handler(int ret)
503 {
504 	TEST_FAIL("Unexpected vcpu run failure");
505 }
506 
507 void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
508 {
509 	TEST_ASSERT(errno == ENOSYS,
510 		    "The mmio handler should have returned not implemented.");
511 	events.fail_vcpu_runs += 1;
512 }
513 
514 typedef uint32_t aarch64_insn_t;
515 extern aarch64_insn_t __exec_test[2];
516 
517 noinline void __return_0x77(void)
518 {
519 	asm volatile("__exec_test: mov x0, #0x77\n"
520 		     "ret\n");
521 }
522 
523 /*
524  * Note that this function runs on the host before the test VM starts: there's
525  * no need to sync the D$ and I$ caches.
526  */
527 static void load_exec_code_for_test(struct kvm_vm *vm)
528 {
529 	uint64_t *code;
530 	struct userspace_mem_region *region;
531 	void *hva;
532 
533 	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
534 	hva = (void *)region->region.userspace_addr;
535 
536 	assert(TEST_EXEC_GVA > TEST_GVA);
537 	code = hva + TEST_EXEC_GVA - TEST_GVA;
538 	memcpy(code, __exec_test, sizeof(__exec_test));
539 }
540 
541 static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
542 				 struct test_desc *test)
543 {
544 	vm_init_descriptor_tables(vm);
545 	vcpu_init_descriptor_tables(vcpu);
546 
547 	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
548 				ESR_EC_DABT, no_dabt_handler);
549 	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
550 				ESR_EC_IABT, no_iabt_handler);
551 }
552 
553 static void setup_gva_maps(struct kvm_vm *vm)
554 {
555 	struct userspace_mem_region *region;
556 	uint64_t pte_gpa;
557 
558 	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
559 	/* Map TEST_GVA first. This will install a new PTE. */
560 	virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
561 	/* Then map TEST_PTE_GVA to the above PTE. */
562 	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
563 	virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
564 }
565 
566 enum pf_test_memslots {
567 	CODE_AND_DATA_MEMSLOT,
568 	PAGE_TABLE_MEMSLOT,
569 	TEST_DATA_MEMSLOT,
570 };
571 
572 /*
573  * Create a memslot for code and data at pfn=0, and test-data and PT ones
574  * at max_gfn.
575  */
576 static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
577 {
578 	uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
579 	uint64_t guest_page_size = vm->page_size;
580 	uint64_t max_gfn = vm_compute_max_gfn(vm);
581 	/* Enough for 2M of code when using 4K guest pages. */
582 	uint64_t code_npages = 512;
583 	uint64_t pt_size, data_size, data_gpa;
584 
585 	/*
586 	 * This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
587 	 * VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs.  That's 13
588 	 * pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
589 	 * twice that just in case.
590 	 */
591 	pt_size = 26 * guest_page_size;
592 
593 	/* memslot sizes and gpa's must be aligned to the backing page size */
594 	pt_size = align_up(pt_size, backing_src_pagesz);
595 	data_size = align_up(guest_page_size, backing_src_pagesz);
596 	data_gpa = (max_gfn * guest_page_size) - data_size;
597 	data_gpa = align_down(data_gpa, backing_src_pagesz);
598 
599 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
600 				    CODE_AND_DATA_MEMSLOT, code_npages, 0);
601 	vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
602 	vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
603 
604 	vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
605 				    PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
606 				    p->test_desc->pt_memslot_flags);
607 	vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
608 
609 	vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
610 				    data_size / guest_page_size,
611 				    p->test_desc->data_memslot_flags);
612 	vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
613 }
614 
615 static void setup_ucall(struct kvm_vm *vm)
616 {
617 	struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
618 
619 	ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
620 }
621 
622 static void setup_default_handlers(struct test_desc *test)
623 {
624 	if (!test->mmio_handler)
625 		test->mmio_handler = mmio_no_handler;
626 
627 	if (!test->fail_vcpu_run_handler)
628 		test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
629 }
630 
631 static void check_event_counts(struct test_desc *test)
632 {
633 	TEST_ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
634 	TEST_ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
635 	TEST_ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
636 }
637 
638 static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
639 {
640 	struct test_desc *test = p->test_desc;
641 
642 	pr_debug("Test: %s\n", test->name);
643 	pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
644 	pr_debug("Testing memory backing src type: %s\n",
645 		 vm_mem_backing_src_alias(p->src_type)->name);
646 }
647 
648 static void reset_event_counts(void)
649 {
650 	memset(&events, 0, sizeof(events));
651 }
652 
653 /*
654  * This function either succeeds, skips the test (after setting test->skip), or
655  * fails with a TEST_FAIL that aborts all tests.
656  */
657 static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
658 			  struct test_desc *test)
659 {
660 	struct kvm_run *run;
661 	struct ucall uc;
662 	int ret;
663 
664 	run = vcpu->run;
665 
666 	for (;;) {
667 		ret = _vcpu_run(vcpu);
668 		if (ret) {
669 			test->fail_vcpu_run_handler(ret);
670 			goto done;
671 		}
672 
673 		switch (get_ucall(vcpu, &uc)) {
674 		case UCALL_SYNC:
675 			if (!handle_cmd(vm, uc.args[1])) {
676 				test->skip = true;
677 				goto done;
678 			}
679 			break;
680 		case UCALL_ABORT:
681 			REPORT_GUEST_ASSERT(uc);
682 			break;
683 		case UCALL_DONE:
684 			goto done;
685 		case UCALL_NONE:
686 			if (run->exit_reason == KVM_EXIT_MMIO)
687 				test->mmio_handler(vm, run);
688 			break;
689 		default:
690 			TEST_FAIL("Unknown ucall %lu", uc.cmd);
691 		}
692 	}
693 
694 done:
695 	pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
696 }
697 
698 static void run_test(enum vm_guest_mode mode, void *arg)
699 {
700 	struct test_params *p = (struct test_params *)arg;
701 	struct test_desc *test = p->test_desc;
702 	struct kvm_vm *vm;
703 	struct kvm_vcpu *vcpu;
704 	struct uffd_desc *pt_uffd, *data_uffd;
705 
706 	print_test_banner(mode, p);
707 
708 	vm = ____vm_create(VM_SHAPE(mode));
709 	setup_memslots(vm, p);
710 	kvm_vm_elf_load(vm, program_invocation_name);
711 	setup_ucall(vm);
712 	vcpu = vm_vcpu_add(vm, 0, guest_code);
713 
714 	setup_gva_maps(vm);
715 
716 	reset_event_counts();
717 
718 	/*
719 	 * Set some code in the data memslot for the guest to execute (only
720 	 * applicable to the EXEC tests). This has to be done before
721 	 * setup_uffd() as that function copies the memslot data for the uffd
722 	 * handler.
723 	 */
724 	load_exec_code_for_test(vm);
725 	setup_uffd(vm, p, &pt_uffd, &data_uffd);
726 	setup_abort_handlers(vm, vcpu, test);
727 	setup_default_handlers(test);
728 	vcpu_args_set(vcpu, 1, test);
729 
730 	vcpu_run_loop(vm, vcpu, test);
731 
732 	kvm_vm_free(vm);
733 	free_uffd(test, pt_uffd, data_uffd);
734 
735 	/*
736 	 * Make sure we check the events after the uffd threads have exited,
737 	 * which means they updated their respective event counters.
738 	 */
739 	if (!test->skip)
740 		check_event_counts(test);
741 }
742 
743 static void help(char *name)
744 {
745 	puts("");
746 	printf("usage: %s [-h] [-s mem-type]\n", name);
747 	puts("");
748 	guest_modes_help();
749 	backing_src_help("-s");
750 	puts("");
751 }
752 
753 #define SNAME(s)			#s
754 #define SCAT2(a, b)			SNAME(a ## _ ## b)
755 #define SCAT3(a, b, c)			SCAT2(a, SCAT2(b, c))
756 #define SCAT4(a, b, c, d)		SCAT2(a, SCAT3(b, c, d))
757 
758 #define _CHECK(_test)			_CHECK_##_test
759 #define _PREPARE(_test)			_PREPARE_##_test
760 #define _PREPARE_guest_read64		NULL
761 #define _PREPARE_guest_ld_preidx	NULL
762 #define _PREPARE_guest_write64		NULL
763 #define _PREPARE_guest_st_preidx	NULL
764 #define _PREPARE_guest_exec		NULL
765 #define _PREPARE_guest_at		NULL
766 #define _PREPARE_guest_dc_zva		guest_check_dc_zva
767 #define _PREPARE_guest_cas		guest_check_lse
768 
769 /* With or without access flag checks */
770 #define _PREPARE_with_af		guest_set_ha, guest_clear_pte_af
771 #define _PREPARE_no_af			NULL
772 #define _CHECK_with_af			guest_check_pte_af
773 #define _CHECK_no_af			NULL
774 
775 /* Performs an access and checks that no faults were triggered. */
776 #define TEST_ACCESS(_access, _with_af, _mark_cmd)				\
777 {										\
778 	.name			= SCAT3(_access, _with_af, #_mark_cmd),		\
779 	.guest_prepare		= { _PREPARE(_with_af),				\
780 				    _PREPARE(_access) },			\
781 	.mem_mark_cmd		= _mark_cmd,					\
782 	.guest_test		= _access,					\
783 	.guest_test_check	= { _CHECK(_with_af) },				\
784 	.expected_events	= { 0 },					\
785 }
786 
787 #define TEST_UFFD(_access, _with_af, _mark_cmd,					\
788 		  _uffd_data_handler, _uffd_pt_handler, _uffd_faults)		\
789 {										\
790 	.name			= SCAT4(uffd, _access, _with_af, #_mark_cmd),	\
791 	.guest_prepare		= { _PREPARE(_with_af),				\
792 				    _PREPARE(_access) },			\
793 	.guest_test		= _access,					\
794 	.mem_mark_cmd		= _mark_cmd,					\
795 	.guest_test_check	= { _CHECK(_with_af) },				\
796 	.uffd_data_handler	= _uffd_data_handler,				\
797 	.uffd_pt_handler	= _uffd_pt_handler,				\
798 	.expected_events	= { .uffd_faults = _uffd_faults, },		\
799 }
800 
801 #define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check)		\
802 {										\
803 	.name			= SCAT3(dirty_log, _access, _with_af),		\
804 	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
805 	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
806 	.guest_prepare		= { _PREPARE(_with_af),				\
807 				    _PREPARE(_access) },			\
808 	.guest_test		= _access,					\
809 	.guest_test_check	= { _CHECK(_with_af), _test_check, _pt_check },	\
810 	.expected_events	= { 0 },					\
811 }
812 
813 #define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler,		\
814 				_uffd_faults, _test_check, _pt_check)		\
815 {										\
816 	.name			= SCAT3(uffd_and_dirty_log, _access, _with_af),	\
817 	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
818 	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
819 	.guest_prepare		= { _PREPARE(_with_af),				\
820 				    _PREPARE(_access) },			\
821 	.guest_test		= _access,					\
822 	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
823 	.guest_test_check	= { _CHECK(_with_af), _test_check, _pt_check },	\
824 	.uffd_data_handler	= _uffd_data_handler,				\
825 	.uffd_pt_handler	= uffd_pt_handler,				\
826 	.expected_events	= { .uffd_faults = _uffd_faults, },		\
827 }
828 
829 #define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits)			\
830 {										\
831 	.name			= SCAT2(ro_memslot, _access),			\
832 	.data_memslot_flags	= KVM_MEM_READONLY,				\
833 	.pt_memslot_flags	= KVM_MEM_READONLY,				\
834 	.guest_prepare		= { _PREPARE(_access) },			\
835 	.guest_test		= _access,					\
836 	.mmio_handler		= _mmio_handler,				\
837 	.expected_events	= { .mmio_exits = _mmio_exits },		\
838 }
839 
840 #define TEST_RO_MEMSLOT_NO_SYNDROME(_access)					\
841 {										\
842 	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
843 	.data_memslot_flags	= KVM_MEM_READONLY,				\
844 	.pt_memslot_flags	= KVM_MEM_READONLY,				\
845 	.guest_prepare		= { _PREPARE(_access) },			\
846 	.guest_test		= _access,					\
847 	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
848 	.expected_events	= { .fail_vcpu_runs = 1 },			\
849 }
850 
851 #define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits,	\
852 				      _test_check)				\
853 {										\
854 	.name			= SCAT2(ro_memslot, _access),			\
855 	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
856 	.pt_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
857 	.guest_prepare		= { _PREPARE(_access) },			\
858 	.guest_test		= _access,					\
859 	.guest_test_check	= { _test_check },				\
860 	.mmio_handler		= _mmio_handler,				\
861 	.expected_events	= { .mmio_exits = _mmio_exits},			\
862 }
863 
864 #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check)		\
865 {										\
866 	.name			= SCAT2(ro_memslot_no_syn_and_dlog, _access),	\
867 	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
868 	.pt_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
869 	.guest_prepare		= { _PREPARE(_access) },			\
870 	.guest_test		= _access,					\
871 	.guest_test_check	= { _test_check },				\
872 	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
873 	.expected_events	= { .fail_vcpu_runs = 1 },			\
874 }
875 
876 #define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits,		\
877 				 _uffd_data_handler, _uffd_faults)		\
878 {										\
879 	.name			= SCAT2(ro_memslot_uffd, _access),		\
880 	.data_memslot_flags	= KVM_MEM_READONLY,				\
881 	.pt_memslot_flags	= KVM_MEM_READONLY,				\
882 	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
883 	.guest_prepare		= { _PREPARE(_access) },			\
884 	.guest_test		= _access,					\
885 	.uffd_data_handler	= _uffd_data_handler,				\
886 	.uffd_pt_handler	= uffd_pt_handler,				\
887 	.mmio_handler		= _mmio_handler,				\
888 	.expected_events	= { .mmio_exits = _mmio_exits,			\
889 				    .uffd_faults = _uffd_faults },		\
890 }
891 
892 #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler,	\
893 					     _uffd_faults)			\
894 {										\
895 	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
896 	.data_memslot_flags	= KVM_MEM_READONLY,				\
897 	.pt_memslot_flags	= KVM_MEM_READONLY,				\
898 	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
899 	.guest_prepare		= { _PREPARE(_access) },			\
900 	.guest_test		= _access,					\
901 	.uffd_data_handler	= _uffd_data_handler,				\
902 	.uffd_pt_handler	= uffd_pt_handler,			\
903 	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
904 	.expected_events	= { .fail_vcpu_runs = 1,			\
905 				    .uffd_faults = _uffd_faults },		\
906 }
907 
908 static struct test_desc tests[] = {
909 
910 	/* Check that HW is setting the Access Flag (AF) (sanity checks). */
911 	TEST_ACCESS(guest_read64, with_af, CMD_NONE),
912 	TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
913 	TEST_ACCESS(guest_cas, with_af, CMD_NONE),
914 	TEST_ACCESS(guest_write64, with_af, CMD_NONE),
915 	TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
916 	TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
917 	TEST_ACCESS(guest_exec, with_af, CMD_NONE),
918 
919 	/*
920 	 * Punch a hole in the data backing store, and then try multiple
921 	 * accesses: reads should rturn zeroes, and writes should
922 	 * re-populate the page. Moreover, the test also check that no
923 	 * exception was generated in the guest.  Note that this
924 	 * reading/writing behavior is the same as reading/writing a
925 	 * punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
926 	 * userspace.
927 	 */
928 	TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
929 	TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
930 	TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
931 	TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
932 	TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
933 	TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
934 	TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
935 
936 	/*
937 	 * Punch holes in the data and PT backing stores and mark them for
938 	 * userfaultfd handling. This should result in 2 faults: the access
939 	 * on the data backing store, and its respective S1 page table walk
940 	 * (S1PTW).
941 	 */
942 	TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
943 		  uffd_data_handler, uffd_pt_handler, 2),
944 	TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
945 		  uffd_data_handler, uffd_pt_handler, 2),
946 	TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
947 		  uffd_data_handler, uffd_pt_handler, 2),
948 	/*
949 	 * Can't test guest_at with_af as it's IMPDEF whether the AF is set.
950 	 * The S1PTW fault should still be marked as a write.
951 	 */
952 	TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
953 		  uffd_no_handler, uffd_pt_handler, 1),
954 	TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
955 		  uffd_data_handler, uffd_pt_handler, 2),
956 	TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
957 		  uffd_data_handler, uffd_pt_handler, 2),
958 	TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
959 		  uffd_data_handler, uffd_pt_handler, 2),
960 	TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
961 		  uffd_data_handler, uffd_pt_handler, 2),
962 	TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
963 		  uffd_data_handler, uffd_pt_handler, 2),
964 
965 	/*
966 	 * Try accesses when the data and PT memory regions are both
967 	 * tracked for dirty logging.
968 	 */
969 	TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log,
970 		       guest_check_s1ptw_wr_in_dirty_log),
971 	TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log,
972 		       guest_check_no_s1ptw_wr_in_dirty_log),
973 	TEST_DIRTY_LOG(guest_ld_preidx, with_af,
974 		       guest_check_no_write_in_dirty_log,
975 		       guest_check_s1ptw_wr_in_dirty_log),
976 	TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log,
977 		       guest_check_no_s1ptw_wr_in_dirty_log),
978 	TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log,
979 		       guest_check_s1ptw_wr_in_dirty_log),
980 	TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log,
981 		       guest_check_s1ptw_wr_in_dirty_log),
982 	TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log,
983 		       guest_check_s1ptw_wr_in_dirty_log),
984 	TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log,
985 		       guest_check_s1ptw_wr_in_dirty_log),
986 	TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log,
987 		       guest_check_s1ptw_wr_in_dirty_log),
988 
989 	/*
990 	 * Access when the data and PT memory regions are both marked for
991 	 * dirty logging and UFFD at the same time. The expected result is
992 	 * that writes should mark the dirty log and trigger a userfaultfd
993 	 * write fault.  Reads/execs should result in a read userfaultfd
994 	 * fault, and nothing in the dirty log.  Any S1PTW should result in
995 	 * a write in the dirty log and a userfaultfd write.
996 	 */
997 	TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af,
998 				uffd_data_handler, 2,
999 				guest_check_no_write_in_dirty_log,
1000 				guest_check_s1ptw_wr_in_dirty_log),
1001 	TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af,
1002 				uffd_data_handler, 2,
1003 				guest_check_no_write_in_dirty_log,
1004 				guest_check_no_s1ptw_wr_in_dirty_log),
1005 	TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af,
1006 				uffd_data_handler,
1007 				2, guest_check_no_write_in_dirty_log,
1008 				guest_check_s1ptw_wr_in_dirty_log),
1009 	TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1,
1010 				guest_check_no_write_in_dirty_log,
1011 				guest_check_s1ptw_wr_in_dirty_log),
1012 	TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af,
1013 				uffd_data_handler, 2,
1014 				guest_check_no_write_in_dirty_log,
1015 				guest_check_s1ptw_wr_in_dirty_log),
1016 	TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af,
1017 				uffd_data_handler,
1018 				2, guest_check_write_in_dirty_log,
1019 				guest_check_s1ptw_wr_in_dirty_log),
1020 	TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af,
1021 				uffd_data_handler, 2,
1022 				guest_check_write_in_dirty_log,
1023 				guest_check_s1ptw_wr_in_dirty_log),
1024 	TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af,
1025 				uffd_data_handler,
1026 				2, guest_check_write_in_dirty_log,
1027 				guest_check_s1ptw_wr_in_dirty_log),
1028 	TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
1029 				uffd_data_handler, 2,
1030 				guest_check_write_in_dirty_log,
1031 				guest_check_s1ptw_wr_in_dirty_log),
1032 	/*
1033 	 * Access when both the PT and data regions are marked read-only
1034 	 * (with KVM_MEM_READONLY). Writes with a syndrome result in an
1035 	 * MMIO exit, writes with no syndrome (e.g., CAS) result in a
1036 	 * failed vcpu run, and reads/execs with and without syndroms do
1037 	 * not fault.
1038 	 */
1039 	TEST_RO_MEMSLOT(guest_read64, 0, 0),
1040 	TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
1041 	TEST_RO_MEMSLOT(guest_at, 0, 0),
1042 	TEST_RO_MEMSLOT(guest_exec, 0, 0),
1043 	TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
1044 	TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
1045 	TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
1046 	TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
1047 
1048 	/*
1049 	 * The PT and data regions are both read-only and marked
1050 	 * for dirty logging at the same time. The expected result is that
1051 	 * for writes there should be no write in the dirty log. The
1052 	 * readonly handling is the same as if the memslot was not marked
1053 	 * for dirty logging: writes with a syndrome result in an MMIO
1054 	 * exit, and writes with no syndrome result in a failed vcpu run.
1055 	 */
1056 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
1057 				      guest_check_no_write_in_dirty_log),
1058 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
1059 				      guest_check_no_write_in_dirty_log),
1060 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
1061 				      guest_check_no_write_in_dirty_log),
1062 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
1063 				      guest_check_no_write_in_dirty_log),
1064 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
1065 				      1, guest_check_no_write_in_dirty_log),
1066 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
1067 						  guest_check_no_write_in_dirty_log),
1068 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
1069 						  guest_check_no_write_in_dirty_log),
1070 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
1071 						  guest_check_no_write_in_dirty_log),
1072 
1073 	/*
1074 	 * The PT and data regions are both read-only and punched with
1075 	 * holes tracked with userfaultfd.  The expected result is the
1076 	 * union of both userfaultfd and read-only behaviors. For example,
1077 	 * write accesses result in a userfaultfd write fault and an MMIO
1078 	 * exit.  Writes with no syndrome result in a failed vcpu run and
1079 	 * no userfaultfd write fault. Reads result in userfaultfd getting
1080 	 * triggered.
1081 	 */
1082 	TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2),
1083 	TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2),
1084 	TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1),
1085 	TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2),
1086 	TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
1087 				 uffd_data_handler, 2),
1088 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2),
1089 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1),
1090 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1),
1091 
1092 	{ 0 }
1093 };
1094 
1095 static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
1096 {
1097 	struct test_desc *t;
1098 
1099 	for (t = &tests[0]; t->name; t++) {
1100 		if (t->skip)
1101 			continue;
1102 
1103 		struct test_params p = {
1104 			.src_type = src_type,
1105 			.test_desc = t,
1106 		};
1107 
1108 		for_each_guest_mode(run_test, &p);
1109 	}
1110 }
1111 
1112 int main(int argc, char *argv[])
1113 {
1114 	enum vm_mem_backing_src_type src_type;
1115 	int opt;
1116 
1117 	src_type = DEFAULT_VM_MEM_SRC;
1118 
1119 	while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
1120 		switch (opt) {
1121 		case 'm':
1122 			guest_modes_cmdline(optarg);
1123 			break;
1124 		case 's':
1125 			src_type = parse_backing_src_type(optarg);
1126 			break;
1127 		case 'h':
1128 		default:
1129 			help(argv[0]);
1130 			exit(0);
1131 		}
1132 	}
1133 
1134 	for_each_test_and_guest_mode(src_type);
1135 	return 0;
1136 }
1137