1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ucall support. A ucall is a "hypercall to userspace".
4  *
5  * Copyright (C) 2018, Red Hat, Inc.
6  */
7 #include "kvm_util.h"
8 
9 static vm_vaddr_t *ucall_exit_mmio_addr;
10 
11 static bool ucall_mmio_init(struct kvm_vm *vm, vm_paddr_t gpa)
12 {
13 	if (kvm_userspace_memory_region_find(vm, gpa, gpa + 1))
14 		return false;
15 
16 	virt_pg_map(vm, gpa, gpa);
17 
18 	ucall_exit_mmio_addr = (vm_vaddr_t *)gpa;
19 	sync_global_to_guest(vm, ucall_exit_mmio_addr);
20 
21 	return true;
22 }
23 
24 void ucall_init(struct kvm_vm *vm, void *arg)
25 {
26 	vm_paddr_t gpa, start, end, step, offset;
27 	unsigned int bits;
28 	bool ret;
29 
30 	if (arg) {
31 		gpa = (vm_paddr_t)arg;
32 		ret = ucall_mmio_init(vm, gpa);
33 		TEST_ASSERT(ret, "Can't set ucall mmio address to %lx", gpa);
34 		return;
35 	}
36 
37 	/*
38 	 * Find an address within the allowed physical and virtual address
39 	 * spaces, that does _not_ have a KVM memory region associated with
40 	 * it. Identity mapping an address like this allows the guest to
41 	 * access it, but as KVM doesn't know what to do with it, it
42 	 * will assume it's something userspace handles and exit with
43 	 * KVM_EXIT_MMIO. Well, at least that's how it works for AArch64.
44 	 * Here we start with a guess that the addresses around 5/8th
45 	 * of the allowed space are unmapped and then work both down and
46 	 * up from there in 1/16th allowed space sized steps.
47 	 *
48 	 * Note, we need to use VA-bits - 1 when calculating the allowed
49 	 * virtual address space for an identity mapping because the upper
50 	 * half of the virtual address space is the two's complement of the
51 	 * lower and won't match physical addresses.
52 	 */
53 	bits = vm->va_bits - 1;
54 	bits = min(vm->pa_bits, bits);
55 	end = 1ul << bits;
56 	start = end * 5 / 8;
57 	step = end / 16;
58 	for (offset = 0; offset < end - start; offset += step) {
59 		if (ucall_mmio_init(vm, start - offset))
60 			return;
61 		if (ucall_mmio_init(vm, start + offset))
62 			return;
63 	}
64 	TEST_FAIL("Can't find a ucall mmio address");
65 }
66 
67 void ucall_uninit(struct kvm_vm *vm)
68 {
69 	ucall_exit_mmio_addr = 0;
70 	sync_global_to_guest(vm, ucall_exit_mmio_addr);
71 }
72 
73 void ucall(uint64_t cmd, int nargs, ...)
74 {
75 	struct ucall uc = {};
76 	va_list va;
77 	int i;
78 
79 	WRITE_ONCE(uc.cmd, cmd);
80 	nargs = min(nargs, UCALL_MAX_ARGS);
81 
82 	va_start(va, nargs);
83 	for (i = 0; i < nargs; ++i)
84 		WRITE_ONCE(uc.args[i], va_arg(va, uint64_t));
85 	va_end(va);
86 
87 	WRITE_ONCE(*ucall_exit_mmio_addr, (vm_vaddr_t)&uc);
88 }
89 
90 uint64_t get_ucall(struct kvm_vcpu *vcpu, struct ucall *uc)
91 {
92 	struct kvm_run *run = vcpu->run;
93 	struct ucall ucall = {};
94 
95 	if (uc)
96 		memset(uc, 0, sizeof(*uc));
97 
98 	if (run->exit_reason == KVM_EXIT_MMIO &&
99 	    run->mmio.phys_addr == (uint64_t)ucall_exit_mmio_addr) {
100 		vm_vaddr_t gva;
101 
102 		TEST_ASSERT(run->mmio.is_write && run->mmio.len == 8,
103 			    "Unexpected ucall exit mmio address access");
104 		memcpy(&gva, run->mmio.data, sizeof(gva));
105 		memcpy(&ucall, addr_gva2hva(vcpu->vm, gva), sizeof(ucall));
106 
107 		vcpu_run_complete_io(vcpu);
108 		if (uc)
109 			memcpy(uc, &ucall, sizeof(ucall));
110 	}
111 
112 	return ucall.cmd;
113 }
114