xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
13 
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 static int vcpu_mmap_sz(void);
24 
25 int open_path_or_exit(const char *path, int flags)
26 {
27 	int fd;
28 
29 	fd = open(path, flags);
30 	if (fd < 0) {
31 		print_skip("%s not available (errno: %d)", path, errno);
32 		exit(KSFT_SKIP);
33 	}
34 
35 	return fd;
36 }
37 
38 /*
39  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
40  *
41  * Input Args:
42  *   flags - The flags to pass when opening KVM_DEV_PATH.
43  *
44  * Return:
45  *   The opened file descriptor of /dev/kvm.
46  */
47 static int _open_kvm_dev_path_or_exit(int flags)
48 {
49 	return open_path_or_exit(KVM_DEV_PATH, flags);
50 }
51 
52 int open_kvm_dev_path_or_exit(void)
53 {
54 	return _open_kvm_dev_path_or_exit(O_RDONLY);
55 }
56 
57 /*
58  * Capability
59  *
60  * Input Args:
61  *   cap - Capability
62  *
63  * Output Args: None
64  *
65  * Return:
66  *   On success, the Value corresponding to the capability (KVM_CAP_*)
67  *   specified by the value of cap.  On failure a TEST_ASSERT failure
68  *   is produced.
69  *
70  * Looks up and returns the value corresponding to the capability
71  * (KVM_CAP_*) given by cap.
72  */
73 int kvm_check_cap(long cap)
74 {
75 	int ret;
76 	int kvm_fd;
77 
78 	kvm_fd = open_kvm_dev_path_or_exit();
79 	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
80 	TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
81 		"  rc: %i errno: %i", ret, errno);
82 
83 	close(kvm_fd);
84 
85 	return ret;
86 }
87 
88 /* VM Check Capability
89  *
90  * Input Args:
91  *   vm - Virtual Machine
92  *   cap - Capability
93  *
94  * Output Args: None
95  *
96  * Return:
97  *   On success, the Value corresponding to the capability (KVM_CAP_*)
98  *   specified by the value of cap.  On failure a TEST_ASSERT failure
99  *   is produced.
100  *
101  * Looks up and returns the value corresponding to the capability
102  * (KVM_CAP_*) given by cap.
103  */
104 int vm_check_cap(struct kvm_vm *vm, long cap)
105 {
106 	int ret;
107 
108 	ret = ioctl(vm->fd, KVM_CHECK_EXTENSION, cap);
109 	TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION VM IOCTL failed,\n"
110 		"  rc: %i errno: %i", ret, errno);
111 
112 	return ret;
113 }
114 
115 /* VM Enable Capability
116  *
117  * Input Args:
118  *   vm - Virtual Machine
119  *   cap - Capability
120  *
121  * Output Args: None
122  *
123  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
124  *
125  * Enables a capability (KVM_CAP_*) on the VM.
126  */
127 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
128 {
129 	int ret;
130 
131 	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
132 	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
133 		"  rc: %i errno: %i", ret, errno);
134 
135 	return ret;
136 }
137 
138 /* VCPU Enable Capability
139  *
140  * Input Args:
141  *   vm - Virtual Machine
142  *   vcpu_id - VCPU
143  *   cap - Capability
144  *
145  * Output Args: None
146  *
147  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
148  *
149  * Enables a capability (KVM_CAP_*) on the VCPU.
150  */
151 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
152 		    struct kvm_enable_cap *cap)
153 {
154 	struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
155 	int r;
156 
157 	TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
158 
159 	r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
160 	TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
161 			"  rc: %i, errno: %i", r, errno);
162 
163 	return r;
164 }
165 
166 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
167 {
168 	struct kvm_enable_cap cap = { 0 };
169 
170 	cap.cap = KVM_CAP_DIRTY_LOG_RING;
171 	cap.args[0] = ring_size;
172 	vm_enable_cap(vm, &cap);
173 	vm->dirty_ring_size = ring_size;
174 }
175 
176 static void vm_open(struct kvm_vm *vm, int perm)
177 {
178 	vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
179 
180 	if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
181 		print_skip("immediate_exit not available");
182 		exit(KSFT_SKIP);
183 	}
184 
185 	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
186 	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
187 		"rc: %i errno: %i", vm->fd, errno);
188 }
189 
190 const char *vm_guest_mode_string(uint32_t i)
191 {
192 	static const char * const strings[] = {
193 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
194 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
195 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
196 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
197 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
198 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
199 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
200 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
201 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
202 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
203 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
204 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
205 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
206 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
207 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
208 	};
209 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
210 		       "Missing new mode strings?");
211 
212 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
213 
214 	return strings[i];
215 }
216 
217 const struct vm_guest_mode_params vm_guest_mode_params[] = {
218 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
219 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
220 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
221 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
222 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
223 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
224 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
225 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
226 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
227 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
228 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
229 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
230 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
231 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
232 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
233 };
234 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
235 	       "Missing new mode params?");
236 
237 /*
238  * VM Create
239  *
240  * Input Args:
241  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
242  *   phy_pages - Physical memory pages
243  *   perm - permission
244  *
245  * Output Args: None
246  *
247  * Return:
248  *   Pointer to opaque structure that describes the created VM.
249  *
250  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
251  * When phy_pages is non-zero, a memory region of phy_pages physical pages
252  * is created and mapped starting at guest physical address 0.  The file
253  * descriptor to control the created VM is created with the permissions
254  * given by perm (e.g. O_RDWR).
255  */
256 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
257 {
258 	struct kvm_vm *vm;
259 
260 	pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
261 		 vm_guest_mode_string(mode), phy_pages, perm);
262 
263 	vm = calloc(1, sizeof(*vm));
264 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
265 
266 	INIT_LIST_HEAD(&vm->vcpus);
267 	vm->regions.gpa_tree = RB_ROOT;
268 	vm->regions.hva_tree = RB_ROOT;
269 	hash_init(vm->regions.slot_hash);
270 
271 	vm->mode = mode;
272 	vm->type = 0;
273 
274 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
275 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
276 	vm->page_size = vm_guest_mode_params[mode].page_size;
277 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
278 
279 	/* Setup mode specific traits. */
280 	switch (vm->mode) {
281 	case VM_MODE_P52V48_4K:
282 		vm->pgtable_levels = 4;
283 		break;
284 	case VM_MODE_P52V48_64K:
285 		vm->pgtable_levels = 3;
286 		break;
287 	case VM_MODE_P48V48_4K:
288 		vm->pgtable_levels = 4;
289 		break;
290 	case VM_MODE_P48V48_64K:
291 		vm->pgtable_levels = 3;
292 		break;
293 	case VM_MODE_P40V48_4K:
294 	case VM_MODE_P36V48_4K:
295 		vm->pgtable_levels = 4;
296 		break;
297 	case VM_MODE_P40V48_64K:
298 	case VM_MODE_P36V48_64K:
299 		vm->pgtable_levels = 3;
300 		break;
301 	case VM_MODE_P48V48_16K:
302 	case VM_MODE_P40V48_16K:
303 	case VM_MODE_P36V48_16K:
304 		vm->pgtable_levels = 4;
305 		break;
306 	case VM_MODE_P36V47_16K:
307 		vm->pgtable_levels = 3;
308 		break;
309 	case VM_MODE_PXXV48_4K:
310 #ifdef __x86_64__
311 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
312 		/*
313 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
314 		 * it doesn't take effect unless a CR4.LA57 is set, which it
315 		 * isn't for this VM_MODE.
316 		 */
317 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
318 			    "Linear address width (%d bits) not supported",
319 			    vm->va_bits);
320 		pr_debug("Guest physical address width detected: %d\n",
321 			 vm->pa_bits);
322 		vm->pgtable_levels = 4;
323 		vm->va_bits = 48;
324 #else
325 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
326 #endif
327 		break;
328 	case VM_MODE_P47V64_4K:
329 		vm->pgtable_levels = 5;
330 		break;
331 	case VM_MODE_P44V64_4K:
332 		vm->pgtable_levels = 5;
333 		break;
334 	default:
335 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
336 	}
337 
338 #ifdef __aarch64__
339 	if (vm->pa_bits != 40)
340 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
341 #endif
342 
343 	vm_open(vm, perm);
344 
345 	/* Limit to VA-bit canonical virtual addresses. */
346 	vm->vpages_valid = sparsebit_alloc();
347 	sparsebit_set_num(vm->vpages_valid,
348 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
349 	sparsebit_set_num(vm->vpages_valid,
350 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
351 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
352 
353 	/* Limit physical addresses to PA-bits. */
354 	vm->max_gfn = vm_compute_max_gfn(vm);
355 
356 	/* Allocate and setup memory for guest. */
357 	vm->vpages_mapped = sparsebit_alloc();
358 	if (phy_pages != 0)
359 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
360 					    0, 0, phy_pages, 0);
361 
362 	return vm;
363 }
364 
365 struct kvm_vm *vm_create_without_vcpus(enum vm_guest_mode mode, uint64_t pages)
366 {
367 	struct kvm_vm *vm;
368 
369 	vm = vm_create(mode, pages, O_RDWR);
370 
371 	kvm_vm_elf_load(vm, program_invocation_name);
372 
373 #ifdef __x86_64__
374 	vm_create_irqchip(vm);
375 #endif
376 	return vm;
377 }
378 
379 /*
380  * VM Create with customized parameters
381  *
382  * Input Args:
383  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
384  *   nr_vcpus - VCPU count
385  *   slot0_mem_pages - Slot0 physical memory size
386  *   extra_mem_pages - Non-slot0 physical memory total size
387  *   num_percpu_pages - Per-cpu physical memory pages
388  *   guest_code - Guest entry point
389  *   vcpuids - VCPU IDs
390  *
391  * Output Args: None
392  *
393  * Return:
394  *   Pointer to opaque structure that describes the created VM.
395  *
396  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K),
397  * with customized slot0 memory size, at least 512 pages currently.
398  * extra_mem_pages is only used to calculate the maximum page table size,
399  * no real memory allocation for non-slot0 memory in this function.
400  */
401 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
402 				    uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
403 				    uint32_t num_percpu_pages, void *guest_code,
404 				    uint32_t vcpuids[])
405 {
406 	uint64_t vcpu_pages, extra_pg_pages, pages;
407 	struct kvm_vm *vm;
408 	int i;
409 
410 	/* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */
411 	if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
412 		slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
413 
414 	/* The maximum page table size for a memory region will be when the
415 	 * smallest pages are used. Considering each page contains x page
416 	 * table descriptors, the total extra size for page tables (for extra
417 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
418 	 * than N/x*2.
419 	 */
420 	vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
421 	extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
422 	pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
423 
424 	TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
425 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
426 		    nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
427 
428 	pages = vm_adjust_num_guest_pages(mode, pages);
429 
430 	vm = vm_create_without_vcpus(mode, pages);
431 
432 	for (i = 0; i < nr_vcpus; ++i) {
433 		uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
434 
435 		vm_vcpu_add_default(vm, vcpuid, guest_code);
436 	}
437 
438 	return vm;
439 }
440 
441 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
442 					    uint32_t num_percpu_pages, void *guest_code,
443 					    uint32_t vcpuids[])
444 {
445 	return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
446 				    extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
447 }
448 
449 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
450 				 void *guest_code)
451 {
452 	return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
453 					    (uint32_t []){ vcpuid });
454 }
455 
456 /*
457  * VM Restart
458  *
459  * Input Args:
460  *   vm - VM that has been released before
461  *   perm - permission
462  *
463  * Output Args: None
464  *
465  * Reopens the file descriptors associated to the VM and reinstates the
466  * global state, such as the irqchip and the memory regions that are mapped
467  * into the guest.
468  */
469 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
470 {
471 	int ctr;
472 	struct userspace_mem_region *region;
473 
474 	vm_open(vmp, perm);
475 	if (vmp->has_irqchip)
476 		vm_create_irqchip(vmp);
477 
478 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
479 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
480 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
481 			    "  rc: %i errno: %i\n"
482 			    "  slot: %u flags: 0x%x\n"
483 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
484 			    ret, errno, region->region.slot,
485 			    region->region.flags,
486 			    region->region.guest_phys_addr,
487 			    region->region.memory_size);
488 	}
489 }
490 
491 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
492 {
493 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
494 	int ret;
495 
496 	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
497 	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
498 		    __func__, strerror(-ret));
499 }
500 
501 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
502 			    uint64_t first_page, uint32_t num_pages)
503 {
504 	struct kvm_clear_dirty_log args = {
505 		.dirty_bitmap = log, .slot = slot,
506 		.first_page = first_page,
507 		.num_pages = num_pages
508 	};
509 	int ret;
510 
511 	ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
512 	TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
513 		    __func__, strerror(-ret));
514 }
515 
516 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
517 {
518 	return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
519 }
520 
521 /*
522  * Userspace Memory Region Find
523  *
524  * Input Args:
525  *   vm - Virtual Machine
526  *   start - Starting VM physical address
527  *   end - Ending VM physical address, inclusive.
528  *
529  * Output Args: None
530  *
531  * Return:
532  *   Pointer to overlapping region, NULL if no such region.
533  *
534  * Searches for a region with any physical memory that overlaps with
535  * any portion of the guest physical addresses from start to end
536  * inclusive.  If multiple overlapping regions exist, a pointer to any
537  * of the regions is returned.  Null is returned only when no overlapping
538  * region exists.
539  */
540 static struct userspace_mem_region *
541 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
542 {
543 	struct rb_node *node;
544 
545 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
546 		struct userspace_mem_region *region =
547 			container_of(node, struct userspace_mem_region, gpa_node);
548 		uint64_t existing_start = region->region.guest_phys_addr;
549 		uint64_t existing_end = region->region.guest_phys_addr
550 			+ region->region.memory_size - 1;
551 		if (start <= existing_end && end >= existing_start)
552 			return region;
553 
554 		if (start < existing_start)
555 			node = node->rb_left;
556 		else
557 			node = node->rb_right;
558 	}
559 
560 	return NULL;
561 }
562 
563 /*
564  * KVM Userspace Memory Region Find
565  *
566  * Input Args:
567  *   vm - Virtual Machine
568  *   start - Starting VM physical address
569  *   end - Ending VM physical address, inclusive.
570  *
571  * Output Args: None
572  *
573  * Return:
574  *   Pointer to overlapping region, NULL if no such region.
575  *
576  * Public interface to userspace_mem_region_find. Allows tests to look up
577  * the memslot datastructure for a given range of guest physical memory.
578  */
579 struct kvm_userspace_memory_region *
580 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
581 				 uint64_t end)
582 {
583 	struct userspace_mem_region *region;
584 
585 	region = userspace_mem_region_find(vm, start, end);
586 	if (!region)
587 		return NULL;
588 
589 	return &region->region;
590 }
591 
592 /*
593  * VCPU Find
594  *
595  * Input Args:
596  *   vm - Virtual Machine
597  *   vcpuid - VCPU ID
598  *
599  * Output Args: None
600  *
601  * Return:
602  *   Pointer to VCPU structure
603  *
604  * Locates a vcpu structure that describes the VCPU specified by vcpuid and
605  * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
606  * for the specified vcpuid.
607  */
608 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
609 {
610 	struct vcpu *vcpu;
611 
612 	list_for_each_entry(vcpu, &vm->vcpus, list) {
613 		if (vcpu->id == vcpuid)
614 			return vcpu;
615 	}
616 
617 	return NULL;
618 }
619 
620 /*
621  * VM VCPU Remove
622  *
623  * Input Args:
624  *   vcpu - VCPU to remove
625  *
626  * Output Args: None
627  *
628  * Return: None, TEST_ASSERT failures for all error conditions
629  *
630  * Removes a vCPU from a VM and frees its resources.
631  */
632 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
633 {
634 	int ret;
635 
636 	if (vcpu->dirty_gfns) {
637 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
638 		TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
639 			    "rc: %i errno: %i", ret, errno);
640 		vcpu->dirty_gfns = NULL;
641 	}
642 
643 	ret = munmap(vcpu->state, vcpu_mmap_sz());
644 	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
645 		"errno: %i", ret, errno);
646 	ret = close(vcpu->fd);
647 	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
648 		"errno: %i", ret, errno);
649 
650 	list_del(&vcpu->list);
651 	free(vcpu);
652 }
653 
654 void kvm_vm_release(struct kvm_vm *vmp)
655 {
656 	struct vcpu *vcpu, *tmp;
657 	int ret;
658 
659 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
660 		vm_vcpu_rm(vmp, vcpu);
661 
662 	ret = close(vmp->fd);
663 	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
664 		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
665 
666 	ret = close(vmp->kvm_fd);
667 	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
668 		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
669 }
670 
671 static void __vm_mem_region_delete(struct kvm_vm *vm,
672 				   struct userspace_mem_region *region,
673 				   bool unlink)
674 {
675 	int ret;
676 
677 	if (unlink) {
678 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
679 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
680 		hash_del(&region->slot_node);
681 	}
682 
683 	region->region.memory_size = 0;
684 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
685 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
686 		    "rc: %i errno: %i", ret, errno);
687 
688 	sparsebit_free(&region->unused_phy_pages);
689 	ret = munmap(region->mmap_start, region->mmap_size);
690 	TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
691 
692 	free(region);
693 }
694 
695 /*
696  * Destroys and frees the VM pointed to by vmp.
697  */
698 void kvm_vm_free(struct kvm_vm *vmp)
699 {
700 	int ctr;
701 	struct hlist_node *node;
702 	struct userspace_mem_region *region;
703 
704 	if (vmp == NULL)
705 		return;
706 
707 	/* Free userspace_mem_regions. */
708 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
709 		__vm_mem_region_delete(vmp, region, false);
710 
711 	/* Free sparsebit arrays. */
712 	sparsebit_free(&vmp->vpages_valid);
713 	sparsebit_free(&vmp->vpages_mapped);
714 
715 	kvm_vm_release(vmp);
716 
717 	/* Free the structure describing the VM. */
718 	free(vmp);
719 }
720 
721 int kvm_memfd_alloc(size_t size, bool hugepages)
722 {
723 	int memfd_flags = MFD_CLOEXEC;
724 	int fd, r;
725 
726 	if (hugepages)
727 		memfd_flags |= MFD_HUGETLB;
728 
729 	fd = memfd_create("kvm_selftest", memfd_flags);
730 	TEST_ASSERT(fd != -1, "memfd_create() failed, errno: %i (%s)",
731 		    errno, strerror(errno));
732 
733 	r = ftruncate(fd, size);
734 	TEST_ASSERT(!r, "ftruncate() failed, errno: %i (%s)", errno, strerror(errno));
735 
736 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
737 	TEST_ASSERT(!r, "fallocate() failed, errno: %i (%s)", errno, strerror(errno));
738 
739 	return fd;
740 }
741 
742 /*
743  * Memory Compare, host virtual to guest virtual
744  *
745  * Input Args:
746  *   hva - Starting host virtual address
747  *   vm - Virtual Machine
748  *   gva - Starting guest virtual address
749  *   len - number of bytes to compare
750  *
751  * Output Args: None
752  *
753  * Input/Output Args: None
754  *
755  * Return:
756  *   Returns 0 if the bytes starting at hva for a length of len
757  *   are equal the guest virtual bytes starting at gva.  Returns
758  *   a value < 0, if bytes at hva are less than those at gva.
759  *   Otherwise a value > 0 is returned.
760  *
761  * Compares the bytes starting at the host virtual address hva, for
762  * a length of len, to the guest bytes starting at the guest virtual
763  * address given by gva.
764  */
765 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
766 {
767 	size_t amt;
768 
769 	/*
770 	 * Compare a batch of bytes until either a match is found
771 	 * or all the bytes have been compared.
772 	 */
773 	for (uintptr_t offset = 0; offset < len; offset += amt) {
774 		uintptr_t ptr1 = (uintptr_t)hva + offset;
775 
776 		/*
777 		 * Determine host address for guest virtual address
778 		 * at offset.
779 		 */
780 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
781 
782 		/*
783 		 * Determine amount to compare on this pass.
784 		 * Don't allow the comparsion to cross a page boundary.
785 		 */
786 		amt = len - offset;
787 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
788 			amt = vm->page_size - (ptr1 % vm->page_size);
789 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
790 			amt = vm->page_size - (ptr2 % vm->page_size);
791 
792 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
793 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
794 
795 		/*
796 		 * Perform the comparison.  If there is a difference
797 		 * return that result to the caller, otherwise need
798 		 * to continue on looking for a mismatch.
799 		 */
800 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
801 		if (ret != 0)
802 			return ret;
803 	}
804 
805 	/*
806 	 * No mismatch found.  Let the caller know the two memory
807 	 * areas are equal.
808 	 */
809 	return 0;
810 }
811 
812 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
813 					       struct userspace_mem_region *region)
814 {
815 	struct rb_node **cur, *parent;
816 
817 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
818 		struct userspace_mem_region *cregion;
819 
820 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
821 		parent = *cur;
822 		if (region->region.guest_phys_addr <
823 		    cregion->region.guest_phys_addr)
824 			cur = &(*cur)->rb_left;
825 		else {
826 			TEST_ASSERT(region->region.guest_phys_addr !=
827 				    cregion->region.guest_phys_addr,
828 				    "Duplicate GPA in region tree");
829 
830 			cur = &(*cur)->rb_right;
831 		}
832 	}
833 
834 	rb_link_node(&region->gpa_node, parent, cur);
835 	rb_insert_color(&region->gpa_node, gpa_tree);
836 }
837 
838 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
839 					       struct userspace_mem_region *region)
840 {
841 	struct rb_node **cur, *parent;
842 
843 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
844 		struct userspace_mem_region *cregion;
845 
846 		cregion = container_of(*cur, typeof(*cregion), hva_node);
847 		parent = *cur;
848 		if (region->host_mem < cregion->host_mem)
849 			cur = &(*cur)->rb_left;
850 		else {
851 			TEST_ASSERT(region->host_mem !=
852 				    cregion->host_mem,
853 				    "Duplicate HVA in region tree");
854 
855 			cur = &(*cur)->rb_right;
856 		}
857 	}
858 
859 	rb_link_node(&region->hva_node, parent, cur);
860 	rb_insert_color(&region->hva_node, hva_tree);
861 }
862 
863 
864 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
865 				uint64_t gpa, uint64_t size, void *hva)
866 {
867 	struct kvm_userspace_memory_region region = {
868 		.slot = slot,
869 		.flags = flags,
870 		.guest_phys_addr = gpa,
871 		.memory_size = size,
872 		.userspace_addr = (uintptr_t)hva,
873 	};
874 
875 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
876 }
877 
878 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
879 			       uint64_t gpa, uint64_t size, void *hva)
880 {
881 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
882 
883 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
884 		    errno, strerror(errno));
885 }
886 
887 /*
888  * VM Userspace Memory Region Add
889  *
890  * Input Args:
891  *   vm - Virtual Machine
892  *   src_type - Storage source for this region.
893  *              NULL to use anonymous memory.
894  *   guest_paddr - Starting guest physical address
895  *   slot - KVM region slot
896  *   npages - Number of physical pages
897  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
898  *
899  * Output Args: None
900  *
901  * Return: None
902  *
903  * Allocates a memory area of the number of pages specified by npages
904  * and maps it to the VM specified by vm, at a starting physical address
905  * given by guest_paddr.  The region is created with a KVM region slot
906  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
907  * region is created with the flags given by flags.
908  */
909 void vm_userspace_mem_region_add(struct kvm_vm *vm,
910 	enum vm_mem_backing_src_type src_type,
911 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
912 	uint32_t flags)
913 {
914 	int ret;
915 	struct userspace_mem_region *region;
916 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
917 	size_t alignment;
918 
919 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
920 		"Number of guest pages is not compatible with the host. "
921 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
922 
923 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
924 		"address not on a page boundary.\n"
925 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
926 		guest_paddr, vm->page_size);
927 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
928 		<= vm->max_gfn, "Physical range beyond maximum "
929 		"supported physical address,\n"
930 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
931 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
932 		guest_paddr, npages, vm->max_gfn, vm->page_size);
933 
934 	/*
935 	 * Confirm a mem region with an overlapping address doesn't
936 	 * already exist.
937 	 */
938 	region = (struct userspace_mem_region *) userspace_mem_region_find(
939 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
940 	if (region != NULL)
941 		TEST_FAIL("overlapping userspace_mem_region already "
942 			"exists\n"
943 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
944 			"page_size: 0x%x\n"
945 			"  existing guest_paddr: 0x%lx size: 0x%lx",
946 			guest_paddr, npages, vm->page_size,
947 			(uint64_t) region->region.guest_phys_addr,
948 			(uint64_t) region->region.memory_size);
949 
950 	/* Confirm no region with the requested slot already exists. */
951 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
952 			       slot) {
953 		if (region->region.slot != slot)
954 			continue;
955 
956 		TEST_FAIL("A mem region with the requested slot "
957 			"already exists.\n"
958 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
959 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
960 			slot, guest_paddr, npages,
961 			region->region.slot,
962 			(uint64_t) region->region.guest_phys_addr,
963 			(uint64_t) region->region.memory_size);
964 	}
965 
966 	/* Allocate and initialize new mem region structure. */
967 	region = calloc(1, sizeof(*region));
968 	TEST_ASSERT(region != NULL, "Insufficient Memory");
969 	region->mmap_size = npages * vm->page_size;
970 
971 #ifdef __s390x__
972 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
973 	alignment = 0x100000;
974 #else
975 	alignment = 1;
976 #endif
977 
978 	/*
979 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
980 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
981 	 * because mmap will always return an address aligned to the HugeTLB
982 	 * page size.
983 	 */
984 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
985 		alignment = max(backing_src_pagesz, alignment);
986 
987 	ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
988 
989 	/* Add enough memory to align up if necessary */
990 	if (alignment > 1)
991 		region->mmap_size += alignment;
992 
993 	region->fd = -1;
994 	if (backing_src_is_shared(src_type))
995 		region->fd = kvm_memfd_alloc(region->mmap_size,
996 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
997 
998 	region->mmap_start = mmap(NULL, region->mmap_size,
999 				  PROT_READ | PROT_WRITE,
1000 				  vm_mem_backing_src_alias(src_type)->flag,
1001 				  region->fd, 0);
1002 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1003 		    "test_malloc failed, mmap_start: %p errno: %i",
1004 		    region->mmap_start, errno);
1005 
1006 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1007 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1008 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1009 		    region->mmap_start, backing_src_pagesz);
1010 
1011 	/* Align host address */
1012 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1013 
1014 	/* As needed perform madvise */
1015 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1016 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1017 		ret = madvise(region->host_mem, npages * vm->page_size,
1018 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1019 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1020 			    region->host_mem, npages * vm->page_size,
1021 			    vm_mem_backing_src_alias(src_type)->name);
1022 	}
1023 
1024 	region->unused_phy_pages = sparsebit_alloc();
1025 	sparsebit_set_num(region->unused_phy_pages,
1026 		guest_paddr >> vm->page_shift, npages);
1027 	region->region.slot = slot;
1028 	region->region.flags = flags;
1029 	region->region.guest_phys_addr = guest_paddr;
1030 	region->region.memory_size = npages * vm->page_size;
1031 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1032 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1033 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1034 		"  rc: %i errno: %i\n"
1035 		"  slot: %u flags: 0x%x\n"
1036 		"  guest_phys_addr: 0x%lx size: 0x%lx",
1037 		ret, errno, slot, flags,
1038 		guest_paddr, (uint64_t) region->region.memory_size);
1039 
1040 	/* Add to quick lookup data structures */
1041 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1042 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1043 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1044 
1045 	/* If shared memory, create an alias. */
1046 	if (region->fd >= 0) {
1047 		region->mmap_alias = mmap(NULL, region->mmap_size,
1048 					  PROT_READ | PROT_WRITE,
1049 					  vm_mem_backing_src_alias(src_type)->flag,
1050 					  region->fd, 0);
1051 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1052 			    "mmap of alias failed, errno: %i", errno);
1053 
1054 		/* Align host alias address */
1055 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1056 	}
1057 }
1058 
1059 /*
1060  * Memslot to region
1061  *
1062  * Input Args:
1063  *   vm - Virtual Machine
1064  *   memslot - KVM memory slot ID
1065  *
1066  * Output Args: None
1067  *
1068  * Return:
1069  *   Pointer to memory region structure that describe memory region
1070  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1071  *   on error (e.g. currently no memory region using memslot as a KVM
1072  *   memory slot ID).
1073  */
1074 struct userspace_mem_region *
1075 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1076 {
1077 	struct userspace_mem_region *region;
1078 
1079 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1080 			       memslot)
1081 		if (region->region.slot == memslot)
1082 			return region;
1083 
1084 	fprintf(stderr, "No mem region with the requested slot found,\n"
1085 		"  requested slot: %u\n", memslot);
1086 	fputs("---- vm dump ----\n", stderr);
1087 	vm_dump(stderr, vm, 2);
1088 	TEST_FAIL("Mem region not found");
1089 	return NULL;
1090 }
1091 
1092 /*
1093  * VM Memory Region Flags Set
1094  *
1095  * Input Args:
1096  *   vm - Virtual Machine
1097  *   flags - Starting guest physical address
1098  *
1099  * Output Args: None
1100  *
1101  * Return: None
1102  *
1103  * Sets the flags of the memory region specified by the value of slot,
1104  * to the values given by flags.
1105  */
1106 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1107 {
1108 	int ret;
1109 	struct userspace_mem_region *region;
1110 
1111 	region = memslot2region(vm, slot);
1112 
1113 	region->region.flags = flags;
1114 
1115 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1116 
1117 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1118 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1119 		ret, errno, slot, flags);
1120 }
1121 
1122 /*
1123  * VM Memory Region Move
1124  *
1125  * Input Args:
1126  *   vm - Virtual Machine
1127  *   slot - Slot of the memory region to move
1128  *   new_gpa - Starting guest physical address
1129  *
1130  * Output Args: None
1131  *
1132  * Return: None
1133  *
1134  * Change the gpa of a memory region.
1135  */
1136 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1137 {
1138 	struct userspace_mem_region *region;
1139 	int ret;
1140 
1141 	region = memslot2region(vm, slot);
1142 
1143 	region->region.guest_phys_addr = new_gpa;
1144 
1145 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1146 
1147 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1148 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1149 		    ret, errno, slot, new_gpa);
1150 }
1151 
1152 /*
1153  * VM Memory Region Delete
1154  *
1155  * Input Args:
1156  *   vm - Virtual Machine
1157  *   slot - Slot of the memory region to delete
1158  *
1159  * Output Args: None
1160  *
1161  * Return: None
1162  *
1163  * Delete a memory region.
1164  */
1165 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1166 {
1167 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1168 }
1169 
1170 /*
1171  * VCPU mmap Size
1172  *
1173  * Input Args: None
1174  *
1175  * Output Args: None
1176  *
1177  * Return:
1178  *   Size of VCPU state
1179  *
1180  * Returns the size of the structure pointed to by the return value
1181  * of vcpu_state().
1182  */
1183 static int vcpu_mmap_sz(void)
1184 {
1185 	int dev_fd, ret;
1186 
1187 	dev_fd = open_kvm_dev_path_or_exit();
1188 
1189 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1190 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1191 		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1192 		__func__, ret, errno);
1193 
1194 	close(dev_fd);
1195 
1196 	return ret;
1197 }
1198 
1199 /*
1200  * VM VCPU Add
1201  *
1202  * Input Args:
1203  *   vm - Virtual Machine
1204  *   vcpuid - VCPU ID
1205  *
1206  * Output Args: None
1207  *
1208  * Return: None
1209  *
1210  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
1211  * No additional VCPU setup is done.
1212  */
1213 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1214 {
1215 	struct vcpu *vcpu;
1216 
1217 	/* Confirm a vcpu with the specified id doesn't already exist. */
1218 	vcpu = vcpu_find(vm, vcpuid);
1219 	if (vcpu != NULL)
1220 		TEST_FAIL("vcpu with the specified id "
1221 			"already exists,\n"
1222 			"  requested vcpuid: %u\n"
1223 			"  existing vcpuid: %u state: %p",
1224 			vcpuid, vcpu->id, vcpu->state);
1225 
1226 	/* Allocate and initialize new vcpu structure. */
1227 	vcpu = calloc(1, sizeof(*vcpu));
1228 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1229 	vcpu->id = vcpuid;
1230 	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1231 	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1232 		vcpu->fd, errno);
1233 
1234 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1235 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1236 		vcpu_mmap_sz(), sizeof(*vcpu->state));
1237 	vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1238 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1239 	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1240 		"vcpu id: %u errno: %i", vcpuid, errno);
1241 
1242 	/* Add to linked-list of VCPUs. */
1243 	list_add(&vcpu->list, &vm->vcpus);
1244 }
1245 
1246 /*
1247  * VM Virtual Address Unused Gap
1248  *
1249  * Input Args:
1250  *   vm - Virtual Machine
1251  *   sz - Size (bytes)
1252  *   vaddr_min - Minimum Virtual Address
1253  *
1254  * Output Args: None
1255  *
1256  * Return:
1257  *   Lowest virtual address at or below vaddr_min, with at least
1258  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1259  *   size sz is available.
1260  *
1261  * Within the VM specified by vm, locates the lowest starting virtual
1262  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1263  * TEST_ASSERT failure occurs for invalid input or no area of at least
1264  * sz unallocated bytes >= vaddr_min is available.
1265  */
1266 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1267 				      vm_vaddr_t vaddr_min)
1268 {
1269 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1270 
1271 	/* Determine lowest permitted virtual page index. */
1272 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1273 	if ((pgidx_start * vm->page_size) < vaddr_min)
1274 		goto no_va_found;
1275 
1276 	/* Loop over section with enough valid virtual page indexes. */
1277 	if (!sparsebit_is_set_num(vm->vpages_valid,
1278 		pgidx_start, pages))
1279 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1280 			pgidx_start, pages);
1281 	do {
1282 		/*
1283 		 * Are there enough unused virtual pages available at
1284 		 * the currently proposed starting virtual page index.
1285 		 * If not, adjust proposed starting index to next
1286 		 * possible.
1287 		 */
1288 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1289 			pgidx_start, pages))
1290 			goto va_found;
1291 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1292 			pgidx_start, pages);
1293 		if (pgidx_start == 0)
1294 			goto no_va_found;
1295 
1296 		/*
1297 		 * If needed, adjust proposed starting virtual address,
1298 		 * to next range of valid virtual addresses.
1299 		 */
1300 		if (!sparsebit_is_set_num(vm->vpages_valid,
1301 			pgidx_start, pages)) {
1302 			pgidx_start = sparsebit_next_set_num(
1303 				vm->vpages_valid, pgidx_start, pages);
1304 			if (pgidx_start == 0)
1305 				goto no_va_found;
1306 		}
1307 	} while (pgidx_start != 0);
1308 
1309 no_va_found:
1310 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1311 
1312 	/* NOT REACHED */
1313 	return -1;
1314 
1315 va_found:
1316 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1317 		pgidx_start, pages),
1318 		"Unexpected, invalid virtual page index range,\n"
1319 		"  pgidx_start: 0x%lx\n"
1320 		"  pages: 0x%lx",
1321 		pgidx_start, pages);
1322 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1323 		pgidx_start, pages),
1324 		"Unexpected, pages already mapped,\n"
1325 		"  pgidx_start: 0x%lx\n"
1326 		"  pages: 0x%lx",
1327 		pgidx_start, pages);
1328 
1329 	return pgidx_start * vm->page_size;
1330 }
1331 
1332 /*
1333  * VM Virtual Address Allocate
1334  *
1335  * Input Args:
1336  *   vm - Virtual Machine
1337  *   sz - Size in bytes
1338  *   vaddr_min - Minimum starting virtual address
1339  *   data_memslot - Memory region slot for data pages
1340  *   pgd_memslot - Memory region slot for new virtual translation tables
1341  *
1342  * Output Args: None
1343  *
1344  * Return:
1345  *   Starting guest virtual address
1346  *
1347  * Allocates at least sz bytes within the virtual address space of the vm
1348  * given by vm.  The allocated bytes are mapped to a virtual address >=
1349  * the address given by vaddr_min.  Note that each allocation uses a
1350  * a unique set of pages, with the minimum real allocation being at least
1351  * a page.
1352  */
1353 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1354 {
1355 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1356 
1357 	virt_pgd_alloc(vm);
1358 	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1359 					      KVM_UTIL_MIN_PFN * vm->page_size, 0);
1360 
1361 	/*
1362 	 * Find an unused range of virtual page addresses of at least
1363 	 * pages in length.
1364 	 */
1365 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1366 
1367 	/* Map the virtual pages. */
1368 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1369 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1370 
1371 		virt_pg_map(vm, vaddr, paddr);
1372 
1373 		sparsebit_set(vm->vpages_mapped,
1374 			vaddr >> vm->page_shift);
1375 	}
1376 
1377 	return vaddr_start;
1378 }
1379 
1380 /*
1381  * VM Virtual Address Allocate Pages
1382  *
1383  * Input Args:
1384  *   vm - Virtual Machine
1385  *
1386  * Output Args: None
1387  *
1388  * Return:
1389  *   Starting guest virtual address
1390  *
1391  * Allocates at least N system pages worth of bytes within the virtual address
1392  * space of the vm.
1393  */
1394 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1395 {
1396 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1397 }
1398 
1399 /*
1400  * VM Virtual Address Allocate Page
1401  *
1402  * Input Args:
1403  *   vm - Virtual Machine
1404  *
1405  * Output Args: None
1406  *
1407  * Return:
1408  *   Starting guest virtual address
1409  *
1410  * Allocates at least one system page worth of bytes within the virtual address
1411  * space of the vm.
1412  */
1413 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1414 {
1415 	return vm_vaddr_alloc_pages(vm, 1);
1416 }
1417 
1418 /*
1419  * Map a range of VM virtual address to the VM's physical address
1420  *
1421  * Input Args:
1422  *   vm - Virtual Machine
1423  *   vaddr - Virtuall address to map
1424  *   paddr - VM Physical Address
1425  *   npages - The number of pages to map
1426  *   pgd_memslot - Memory region slot for new virtual translation tables
1427  *
1428  * Output Args: None
1429  *
1430  * Return: None
1431  *
1432  * Within the VM given by @vm, creates a virtual translation for
1433  * @npages starting at @vaddr to the page range starting at @paddr.
1434  */
1435 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1436 	      unsigned int npages)
1437 {
1438 	size_t page_size = vm->page_size;
1439 	size_t size = npages * page_size;
1440 
1441 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1442 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1443 
1444 	while (npages--) {
1445 		virt_pg_map(vm, vaddr, paddr);
1446 		vaddr += page_size;
1447 		paddr += page_size;
1448 	}
1449 }
1450 
1451 /*
1452  * Address VM Physical to Host Virtual
1453  *
1454  * Input Args:
1455  *   vm - Virtual Machine
1456  *   gpa - VM physical address
1457  *
1458  * Output Args: None
1459  *
1460  * Return:
1461  *   Equivalent host virtual address
1462  *
1463  * Locates the memory region containing the VM physical address given
1464  * by gpa, within the VM given by vm.  When found, the host virtual
1465  * address providing the memory to the vm physical address is returned.
1466  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1467  */
1468 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1469 {
1470 	struct userspace_mem_region *region;
1471 
1472 	region = userspace_mem_region_find(vm, gpa, gpa);
1473 	if (!region) {
1474 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1475 		return NULL;
1476 	}
1477 
1478 	return (void *)((uintptr_t)region->host_mem
1479 		+ (gpa - region->region.guest_phys_addr));
1480 }
1481 
1482 /*
1483  * Address Host Virtual to VM Physical
1484  *
1485  * Input Args:
1486  *   vm - Virtual Machine
1487  *   hva - Host virtual address
1488  *
1489  * Output Args: None
1490  *
1491  * Return:
1492  *   Equivalent VM physical address
1493  *
1494  * Locates the memory region containing the host virtual address given
1495  * by hva, within the VM given by vm.  When found, the equivalent
1496  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1497  * region containing hva exists.
1498  */
1499 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1500 {
1501 	struct rb_node *node;
1502 
1503 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1504 		struct userspace_mem_region *region =
1505 			container_of(node, struct userspace_mem_region, hva_node);
1506 
1507 		if (hva >= region->host_mem) {
1508 			if (hva <= (region->host_mem
1509 				+ region->region.memory_size - 1))
1510 				return (vm_paddr_t)((uintptr_t)
1511 					region->region.guest_phys_addr
1512 					+ (hva - (uintptr_t)region->host_mem));
1513 
1514 			node = node->rb_right;
1515 		} else
1516 			node = node->rb_left;
1517 	}
1518 
1519 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1520 	return -1;
1521 }
1522 
1523 /*
1524  * Address VM physical to Host Virtual *alias*.
1525  *
1526  * Input Args:
1527  *   vm - Virtual Machine
1528  *   gpa - VM physical address
1529  *
1530  * Output Args: None
1531  *
1532  * Return:
1533  *   Equivalent address within the host virtual *alias* area, or NULL
1534  *   (without failing the test) if the guest memory is not shared (so
1535  *   no alias exists).
1536  *
1537  * When vm_create() and related functions are called with a shared memory
1538  * src_type, we also create a writable, shared alias mapping of the
1539  * underlying guest memory. This allows the host to manipulate guest memory
1540  * without mapping that memory in the guest's address space. And, for
1541  * userfaultfd-based demand paging, we can do so without triggering userfaults.
1542  */
1543 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1544 {
1545 	struct userspace_mem_region *region;
1546 	uintptr_t offset;
1547 
1548 	region = userspace_mem_region_find(vm, gpa, gpa);
1549 	if (!region)
1550 		return NULL;
1551 
1552 	if (!region->host_alias)
1553 		return NULL;
1554 
1555 	offset = gpa - region->region.guest_phys_addr;
1556 	return (void *) ((uintptr_t) region->host_alias + offset);
1557 }
1558 
1559 /*
1560  * VM Create IRQ Chip
1561  *
1562  * Input Args:
1563  *   vm - Virtual Machine
1564  *
1565  * Output Args: None
1566  *
1567  * Return: None
1568  *
1569  * Creates an interrupt controller chip for the VM specified by vm.
1570  */
1571 void vm_create_irqchip(struct kvm_vm *vm)
1572 {
1573 	int ret;
1574 
1575 	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1576 	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1577 		"rc: %i errno: %i", ret, errno);
1578 
1579 	vm->has_irqchip = true;
1580 }
1581 
1582 /*
1583  * VM VCPU State
1584  *
1585  * Input Args:
1586  *   vm - Virtual Machine
1587  *   vcpuid - VCPU ID
1588  *
1589  * Output Args: None
1590  *
1591  * Return:
1592  *   Pointer to structure that describes the state of the VCPU.
1593  *
1594  * Locates and returns a pointer to a structure that describes the
1595  * state of the VCPU with the given vcpuid.
1596  */
1597 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1598 {
1599 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1600 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1601 
1602 	return vcpu->state;
1603 }
1604 
1605 /*
1606  * VM VCPU Run
1607  *
1608  * Input Args:
1609  *   vm - Virtual Machine
1610  *   vcpuid - VCPU ID
1611  *
1612  * Output Args: None
1613  *
1614  * Return: None
1615  *
1616  * Switch to executing the code for the VCPU given by vcpuid, within the VM
1617  * given by vm.
1618  */
1619 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1620 {
1621 	int ret = _vcpu_run(vm, vcpuid);
1622 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1623 		"rc: %i errno: %i", ret, errno);
1624 }
1625 
1626 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1627 {
1628 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1629 	int rc;
1630 
1631 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1632 	do {
1633 		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1634 	} while (rc == -1 && errno == EINTR);
1635 
1636 	assert_on_unhandled_exception(vm, vcpuid);
1637 
1638 	return rc;
1639 }
1640 
1641 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1642 {
1643 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1644 
1645 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1646 
1647 	return vcpu->fd;
1648 }
1649 
1650 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1651 {
1652 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1653 	int ret;
1654 
1655 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1656 
1657 	vcpu->state->immediate_exit = 1;
1658 	ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1659 	vcpu->state->immediate_exit = 0;
1660 
1661 	TEST_ASSERT(ret == -1 && errno == EINTR,
1662 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1663 		    ret, errno);
1664 }
1665 
1666 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1667 			  struct kvm_guest_debug *debug)
1668 {
1669 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1670 	int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1671 
1672 	TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1673 }
1674 
1675 /*
1676  * VM VCPU Set MP State
1677  *
1678  * Input Args:
1679  *   vm - Virtual Machine
1680  *   vcpuid - VCPU ID
1681  *   mp_state - mp_state to be set
1682  *
1683  * Output Args: None
1684  *
1685  * Return: None
1686  *
1687  * Sets the MP state of the VCPU given by vcpuid, to the state given
1688  * by mp_state.
1689  */
1690 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1691 		       struct kvm_mp_state *mp_state)
1692 {
1693 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1694 	int ret;
1695 
1696 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1697 
1698 	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1699 	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1700 		"rc: %i errno: %i", ret, errno);
1701 }
1702 
1703 /*
1704  * VM VCPU Get Reg List
1705  *
1706  * Input Args:
1707  *   vm - Virtual Machine
1708  *   vcpuid - VCPU ID
1709  *
1710  * Output Args:
1711  *   None
1712  *
1713  * Return:
1714  *   A pointer to an allocated struct kvm_reg_list
1715  *
1716  * Get the list of guest registers which are supported for
1717  * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1718  */
1719 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1720 {
1721 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1722 	int ret;
1723 
1724 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
1725 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1726 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1727 	reg_list->n = reg_list_n.n;
1728 	vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1729 	return reg_list;
1730 }
1731 
1732 /*
1733  * VM VCPU Regs Get
1734  *
1735  * Input Args:
1736  *   vm - Virtual Machine
1737  *   vcpuid - VCPU ID
1738  *
1739  * Output Args:
1740  *   regs - current state of VCPU regs
1741  *
1742  * Return: None
1743  *
1744  * Obtains the current register state for the VCPU specified by vcpuid
1745  * and stores it at the location given by regs.
1746  */
1747 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1748 {
1749 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1750 	int ret;
1751 
1752 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1753 
1754 	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1755 	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1756 		ret, errno);
1757 }
1758 
1759 /*
1760  * VM VCPU Regs Set
1761  *
1762  * Input Args:
1763  *   vm - Virtual Machine
1764  *   vcpuid - VCPU ID
1765  *   regs - Values to set VCPU regs to
1766  *
1767  * Output Args: None
1768  *
1769  * Return: None
1770  *
1771  * Sets the regs of the VCPU specified by vcpuid to the values
1772  * given by regs.
1773  */
1774 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1775 {
1776 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1777 	int ret;
1778 
1779 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1780 
1781 	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1782 	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1783 		ret, errno);
1784 }
1785 
1786 #ifdef __KVM_HAVE_VCPU_EVENTS
1787 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1788 		     struct kvm_vcpu_events *events)
1789 {
1790 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1791 	int ret;
1792 
1793 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1794 
1795 	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1796 	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1797 		ret, errno);
1798 }
1799 
1800 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1801 		     struct kvm_vcpu_events *events)
1802 {
1803 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1804 	int ret;
1805 
1806 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1807 
1808 	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1809 	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1810 		ret, errno);
1811 }
1812 #endif
1813 
1814 #ifdef __x86_64__
1815 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1816 			   struct kvm_nested_state *state)
1817 {
1818 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1819 	int ret;
1820 
1821 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1822 
1823 	ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1824 	TEST_ASSERT(ret == 0,
1825 		"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1826 		ret, errno);
1827 }
1828 
1829 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1830 			  struct kvm_nested_state *state, bool ignore_error)
1831 {
1832 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1833 	int ret;
1834 
1835 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1836 
1837 	ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1838 	if (!ignore_error) {
1839 		TEST_ASSERT(ret == 0,
1840 			"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1841 			ret, errno);
1842 	}
1843 
1844 	return ret;
1845 }
1846 #endif
1847 
1848 /*
1849  * VM VCPU System Regs Get
1850  *
1851  * Input Args:
1852  *   vm - Virtual Machine
1853  *   vcpuid - VCPU ID
1854  *
1855  * Output Args:
1856  *   sregs - current state of VCPU system regs
1857  *
1858  * Return: None
1859  *
1860  * Obtains the current system register state for the VCPU specified by
1861  * vcpuid and stores it at the location given by sregs.
1862  */
1863 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1864 {
1865 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1866 	int ret;
1867 
1868 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1869 
1870 	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1871 	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1872 		ret, errno);
1873 }
1874 
1875 /*
1876  * VM VCPU System Regs Set
1877  *
1878  * Input Args:
1879  *   vm - Virtual Machine
1880  *   vcpuid - VCPU ID
1881  *   sregs - Values to set VCPU system regs to
1882  *
1883  * Output Args: None
1884  *
1885  * Return: None
1886  *
1887  * Sets the system regs of the VCPU specified by vcpuid to the values
1888  * given by sregs.
1889  */
1890 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1891 {
1892 	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1893 	TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, "
1894 		"rc: %i errno: %i", ret, errno);
1895 }
1896 
1897 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1898 {
1899 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1900 
1901 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1902 
1903 	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1904 }
1905 
1906 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1907 {
1908 	int ret;
1909 
1910 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1911 	TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1912 		    ret, errno, strerror(errno));
1913 }
1914 
1915 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1916 {
1917 	int ret;
1918 
1919 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1920 	TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1921 		    ret, errno, strerror(errno));
1922 }
1923 
1924 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1925 {
1926 	int ret;
1927 
1928 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1929 	TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1930 		    ret, errno, strerror(errno));
1931 }
1932 
1933 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1934 {
1935 	int ret;
1936 
1937 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1938 	TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1939 		    ret, errno, strerror(errno));
1940 }
1941 
1942 /*
1943  * VCPU Ioctl
1944  *
1945  * Input Args:
1946  *   vm - Virtual Machine
1947  *   vcpuid - VCPU ID
1948  *   cmd - Ioctl number
1949  *   arg - Argument to pass to the ioctl
1950  *
1951  * Return: None
1952  *
1953  * Issues an arbitrary ioctl on a VCPU fd.
1954  */
1955 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1956 		unsigned long cmd, void *arg)
1957 {
1958 	int ret;
1959 
1960 	ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1961 	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1962 		cmd, ret, errno, strerror(errno));
1963 }
1964 
1965 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1966 		unsigned long cmd, void *arg)
1967 {
1968 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1969 	int ret;
1970 
1971 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1972 
1973 	ret = ioctl(vcpu->fd, cmd, arg);
1974 
1975 	return ret;
1976 }
1977 
1978 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1979 {
1980 	struct vcpu *vcpu;
1981 	uint32_t size = vm->dirty_ring_size;
1982 
1983 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1984 
1985 	vcpu = vcpu_find(vm, vcpuid);
1986 
1987 	TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1988 
1989 	if (!vcpu->dirty_gfns) {
1990 		void *addr;
1991 
1992 		addr = mmap(NULL, size, PROT_READ,
1993 			    MAP_PRIVATE, vcpu->fd,
1994 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1995 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1996 
1997 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1998 			    MAP_PRIVATE, vcpu->fd,
1999 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
2000 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
2001 
2002 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
2003 			    MAP_SHARED, vcpu->fd,
2004 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
2005 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
2006 
2007 		vcpu->dirty_gfns = addr;
2008 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
2009 	}
2010 
2011 	return vcpu->dirty_gfns;
2012 }
2013 
2014 /*
2015  * VM Ioctl
2016  *
2017  * Input Args:
2018  *   vm - Virtual Machine
2019  *   cmd - Ioctl number
2020  *   arg - Argument to pass to the ioctl
2021  *
2022  * Return: None
2023  *
2024  * Issues an arbitrary ioctl on a VM fd.
2025  */
2026 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2027 {
2028 	int ret;
2029 
2030 	ret = _vm_ioctl(vm, cmd, arg);
2031 	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
2032 		cmd, ret, errno, strerror(errno));
2033 }
2034 
2035 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2036 {
2037 	return ioctl(vm->fd, cmd, arg);
2038 }
2039 
2040 /*
2041  * KVM system ioctl
2042  *
2043  * Input Args:
2044  *   vm - Virtual Machine
2045  *   cmd - Ioctl number
2046  *   arg - Argument to pass to the ioctl
2047  *
2048  * Return: None
2049  *
2050  * Issues an arbitrary ioctl on a KVM fd.
2051  */
2052 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2053 {
2054 	int ret;
2055 
2056 	ret = ioctl(vm->kvm_fd, cmd, arg);
2057 	TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
2058 		cmd, ret, errno, strerror(errno));
2059 }
2060 
2061 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2062 {
2063 	return ioctl(vm->kvm_fd, cmd, arg);
2064 }
2065 
2066 /*
2067  * Device Ioctl
2068  */
2069 
2070 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2071 {
2072 	struct kvm_device_attr attribute = {
2073 		.group = group,
2074 		.attr = attr,
2075 		.flags = 0,
2076 	};
2077 
2078 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
2079 }
2080 
2081 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2082 {
2083 	int ret = _kvm_device_check_attr(dev_fd, group, attr);
2084 
2085 	TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
2086 	return ret;
2087 }
2088 
2089 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
2090 {
2091 	struct kvm_create_device create_dev;
2092 	int ret;
2093 
2094 	create_dev.type = type;
2095 	create_dev.fd = -1;
2096 	create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2097 	ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
2098 	*fd = create_dev.fd;
2099 	return ret;
2100 }
2101 
2102 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2103 {
2104 	int fd, ret;
2105 
2106 	ret = _kvm_create_device(vm, type, test, &fd);
2107 
2108 	if (!test) {
2109 		TEST_ASSERT(!ret,
2110 			    "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2111 		return fd;
2112 	}
2113 	return ret;
2114 }
2115 
2116 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2117 		      void *val, bool write)
2118 {
2119 	struct kvm_device_attr kvmattr = {
2120 		.group = group,
2121 		.attr = attr,
2122 		.flags = 0,
2123 		.addr = (uintptr_t)val,
2124 	};
2125 	int ret;
2126 
2127 	ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2128 		    &kvmattr);
2129 	return ret;
2130 }
2131 
2132 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2133 		      void *val, bool write)
2134 {
2135 	int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2136 
2137 	TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2138 	return ret;
2139 }
2140 
2141 int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2142 			  uint64_t attr)
2143 {
2144 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2145 
2146 	TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2147 
2148 	return _kvm_device_check_attr(vcpu->fd, group, attr);
2149 }
2150 
2151 int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2152 				 uint64_t attr)
2153 {
2154 	int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr);
2155 
2156 	TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2157 	return ret;
2158 }
2159 
2160 int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2161 			     uint64_t attr, void *val, bool write)
2162 {
2163 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2164 
2165 	TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2166 
2167 	return _kvm_device_access(vcpu->fd, group, attr, val, write);
2168 }
2169 
2170 int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2171 			    uint64_t attr, void *val, bool write)
2172 {
2173 	int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write);
2174 
2175 	TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2176 	return ret;
2177 }
2178 
2179 /*
2180  * IRQ related functions.
2181  */
2182 
2183 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2184 {
2185 	struct kvm_irq_level irq_level = {
2186 		.irq    = irq,
2187 		.level  = level,
2188 	};
2189 
2190 	return _vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
2191 }
2192 
2193 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2194 {
2195 	int ret = _kvm_irq_line(vm, irq, level);
2196 
2197 	TEST_ASSERT(ret >= 0, "KVM_IRQ_LINE failed, rc: %i errno: %i", ret, errno);
2198 }
2199 
2200 struct kvm_irq_routing *kvm_gsi_routing_create(void)
2201 {
2202 	struct kvm_irq_routing *routing;
2203 	size_t size;
2204 
2205 	size = sizeof(struct kvm_irq_routing);
2206 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
2207 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
2208 	routing = calloc(1, size);
2209 	assert(routing);
2210 
2211 	return routing;
2212 }
2213 
2214 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
2215 		uint32_t gsi, uint32_t pin)
2216 {
2217 	int i;
2218 
2219 	assert(routing);
2220 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
2221 
2222 	i = routing->nr;
2223 	routing->entries[i].gsi = gsi;
2224 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
2225 	routing->entries[i].flags = 0;
2226 	routing->entries[i].u.irqchip.irqchip = 0;
2227 	routing->entries[i].u.irqchip.pin = pin;
2228 	routing->nr++;
2229 }
2230 
2231 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2232 {
2233 	int ret;
2234 
2235 	assert(routing);
2236 	ret = ioctl(vm_get_fd(vm), KVM_SET_GSI_ROUTING, routing);
2237 	free(routing);
2238 
2239 	return ret;
2240 }
2241 
2242 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2243 {
2244 	int ret;
2245 
2246 	ret = _kvm_gsi_routing_write(vm, routing);
2247 	TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING failed, rc: %i errno: %i",
2248 				ret, errno);
2249 }
2250 
2251 /*
2252  * VM Dump
2253  *
2254  * Input Args:
2255  *   vm - Virtual Machine
2256  *   indent - Left margin indent amount
2257  *
2258  * Output Args:
2259  *   stream - Output FILE stream
2260  *
2261  * Return: None
2262  *
2263  * Dumps the current state of the VM given by vm, to the FILE stream
2264  * given by stream.
2265  */
2266 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2267 {
2268 	int ctr;
2269 	struct userspace_mem_region *region;
2270 	struct vcpu *vcpu;
2271 
2272 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2273 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2274 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2275 	fprintf(stream, "%*sMem Regions:\n", indent, "");
2276 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2277 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2278 			"host_virt: %p\n", indent + 2, "",
2279 			(uint64_t) region->region.guest_phys_addr,
2280 			(uint64_t) region->region.memory_size,
2281 			region->host_mem);
2282 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2283 		sparsebit_dump(stream, region->unused_phy_pages, 0);
2284 	}
2285 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2286 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2287 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
2288 		vm->pgd_created);
2289 	if (vm->pgd_created) {
2290 		fprintf(stream, "%*sVirtual Translation Tables:\n",
2291 			indent + 2, "");
2292 		virt_dump(stream, vm, indent + 4);
2293 	}
2294 	fprintf(stream, "%*sVCPUs:\n", indent, "");
2295 	list_for_each_entry(vcpu, &vm->vcpus, list)
2296 		vcpu_dump(stream, vm, vcpu->id, indent + 2);
2297 }
2298 
2299 /* Known KVM exit reasons */
2300 static struct exit_reason {
2301 	unsigned int reason;
2302 	const char *name;
2303 } exit_reasons_known[] = {
2304 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
2305 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
2306 	{KVM_EXIT_IO, "IO"},
2307 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
2308 	{KVM_EXIT_DEBUG, "DEBUG"},
2309 	{KVM_EXIT_HLT, "HLT"},
2310 	{KVM_EXIT_MMIO, "MMIO"},
2311 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2312 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2313 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2314 	{KVM_EXIT_INTR, "INTR"},
2315 	{KVM_EXIT_SET_TPR, "SET_TPR"},
2316 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2317 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2318 	{KVM_EXIT_S390_RESET, "S390_RESET"},
2319 	{KVM_EXIT_DCR, "DCR"},
2320 	{KVM_EXIT_NMI, "NMI"},
2321 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2322 	{KVM_EXIT_OSI, "OSI"},
2323 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2324 	{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2325 	{KVM_EXIT_X86_RDMSR, "RDMSR"},
2326 	{KVM_EXIT_X86_WRMSR, "WRMSR"},
2327 	{KVM_EXIT_XEN, "XEN"},
2328 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2329 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2330 #endif
2331 };
2332 
2333 /*
2334  * Exit Reason String
2335  *
2336  * Input Args:
2337  *   exit_reason - Exit reason
2338  *
2339  * Output Args: None
2340  *
2341  * Return:
2342  *   Constant string pointer describing the exit reason.
2343  *
2344  * Locates and returns a constant string that describes the KVM exit
2345  * reason given by exit_reason.  If no such string is found, a constant
2346  * string of "Unknown" is returned.
2347  */
2348 const char *exit_reason_str(unsigned int exit_reason)
2349 {
2350 	unsigned int n1;
2351 
2352 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2353 		if (exit_reason == exit_reasons_known[n1].reason)
2354 			return exit_reasons_known[n1].name;
2355 	}
2356 
2357 	return "Unknown";
2358 }
2359 
2360 /*
2361  * Physical Contiguous Page Allocator
2362  *
2363  * Input Args:
2364  *   vm - Virtual Machine
2365  *   num - number of pages
2366  *   paddr_min - Physical address minimum
2367  *   memslot - Memory region to allocate page from
2368  *
2369  * Output Args: None
2370  *
2371  * Return:
2372  *   Starting physical address
2373  *
2374  * Within the VM specified by vm, locates a range of available physical
2375  * pages at or above paddr_min. If found, the pages are marked as in use
2376  * and their base address is returned. A TEST_ASSERT failure occurs if
2377  * not enough pages are available at or above paddr_min.
2378  */
2379 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2380 			      vm_paddr_t paddr_min, uint32_t memslot)
2381 {
2382 	struct userspace_mem_region *region;
2383 	sparsebit_idx_t pg, base;
2384 
2385 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2386 
2387 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2388 		"not divisible by page size.\n"
2389 		"  paddr_min: 0x%lx page_size: 0x%x",
2390 		paddr_min, vm->page_size);
2391 
2392 	region = memslot2region(vm, memslot);
2393 	base = pg = paddr_min >> vm->page_shift;
2394 
2395 	do {
2396 		for (; pg < base + num; ++pg) {
2397 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2398 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2399 				break;
2400 			}
2401 		}
2402 	} while (pg && pg != base + num);
2403 
2404 	if (pg == 0) {
2405 		fprintf(stderr, "No guest physical page available, "
2406 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2407 			paddr_min, vm->page_size, memslot);
2408 		fputs("---- vm dump ----\n", stderr);
2409 		vm_dump(stderr, vm, 2);
2410 		abort();
2411 	}
2412 
2413 	for (pg = base; pg < base + num; ++pg)
2414 		sparsebit_clear(region->unused_phy_pages, pg);
2415 
2416 	return base * vm->page_size;
2417 }
2418 
2419 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2420 			     uint32_t memslot)
2421 {
2422 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2423 }
2424 
2425 /* Arbitrary minimum physical address used for virtual translation tables. */
2426 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2427 
2428 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2429 {
2430 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2431 }
2432 
2433 /*
2434  * Address Guest Virtual to Host Virtual
2435  *
2436  * Input Args:
2437  *   vm - Virtual Machine
2438  *   gva - VM virtual address
2439  *
2440  * Output Args: None
2441  *
2442  * Return:
2443  *   Equivalent host virtual address
2444  */
2445 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2446 {
2447 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2448 }
2449 
2450 /*
2451  * Is Unrestricted Guest
2452  *
2453  * Input Args:
2454  *   vm - Virtual Machine
2455  *
2456  * Output Args: None
2457  *
2458  * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
2459  *
2460  * Check if the unrestricted guest flag is enabled.
2461  */
2462 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2463 {
2464 	char val = 'N';
2465 	size_t count;
2466 	FILE *f;
2467 
2468 	if (vm == NULL) {
2469 		/* Ensure that the KVM vendor-specific module is loaded. */
2470 		close(open_kvm_dev_path_or_exit());
2471 	}
2472 
2473 	f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2474 	if (f) {
2475 		count = fread(&val, sizeof(char), 1, f);
2476 		TEST_ASSERT(count == 1, "Unable to read from param file.");
2477 		fclose(f);
2478 	}
2479 
2480 	return val == 'Y';
2481 }
2482 
2483 unsigned int vm_get_page_size(struct kvm_vm *vm)
2484 {
2485 	return vm->page_size;
2486 }
2487 
2488 unsigned int vm_get_page_shift(struct kvm_vm *vm)
2489 {
2490 	return vm->page_shift;
2491 }
2492 
2493 unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm)
2494 {
2495 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2496 }
2497 
2498 uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2499 {
2500 	return vm->max_gfn;
2501 }
2502 
2503 int vm_get_fd(struct kvm_vm *vm)
2504 {
2505 	return vm->fd;
2506 }
2507 
2508 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2509 				      unsigned int page_shift,
2510 				      unsigned int new_page_shift,
2511 				      bool ceil)
2512 {
2513 	unsigned int n = 1 << (new_page_shift - page_shift);
2514 
2515 	if (page_shift >= new_page_shift)
2516 		return num_pages * (1 << (page_shift - new_page_shift));
2517 
2518 	return num_pages / n + !!(ceil && num_pages % n);
2519 }
2520 
2521 static inline int getpageshift(void)
2522 {
2523 	return __builtin_ffs(getpagesize()) - 1;
2524 }
2525 
2526 unsigned int
2527 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2528 {
2529 	return vm_calc_num_pages(num_guest_pages,
2530 				 vm_guest_mode_params[mode].page_shift,
2531 				 getpageshift(), true);
2532 }
2533 
2534 unsigned int
2535 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2536 {
2537 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2538 				 vm_guest_mode_params[mode].page_shift, false);
2539 }
2540 
2541 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2542 {
2543 	unsigned int n;
2544 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2545 	return vm_adjust_num_guest_pages(mode, n);
2546 }
2547 
2548 int vm_get_stats_fd(struct kvm_vm *vm)
2549 {
2550 	return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2551 }
2552 
2553 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2554 {
2555 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2556 
2557 	return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2558 }
2559