xref: /linux/tools/testing/selftests/kvm/lib/x86_64/vmx.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/vmx.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12 #include "vmx.h"
13 
14 #define PAGE_SHIFT_4K  12
15 
16 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
17 
18 bool enable_evmcs;
19 
20 struct eptPageTableEntry {
21 	uint64_t readable:1;
22 	uint64_t writable:1;
23 	uint64_t executable:1;
24 	uint64_t memory_type:3;
25 	uint64_t ignore_pat:1;
26 	uint64_t page_size:1;
27 	uint64_t accessed:1;
28 	uint64_t dirty:1;
29 	uint64_t ignored_11_10:2;
30 	uint64_t address:40;
31 	uint64_t ignored_62_52:11;
32 	uint64_t suppress_ve:1;
33 };
34 
35 struct eptPageTablePointer {
36 	uint64_t memory_type:3;
37 	uint64_t page_walk_length:3;
38 	uint64_t ad_enabled:1;
39 	uint64_t reserved_11_07:5;
40 	uint64_t address:40;
41 	uint64_t reserved_63_52:12;
42 };
43 int vcpu_enable_evmcs(struct kvm_vm *vm, int vcpu_id)
44 {
45 	uint16_t evmcs_ver;
46 
47 	struct kvm_enable_cap enable_evmcs_cap = {
48 		.cap = KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
49 		 .args[0] = (unsigned long)&evmcs_ver
50 	};
51 
52 	vcpu_ioctl(vm, vcpu_id, KVM_ENABLE_CAP, &enable_evmcs_cap);
53 
54 	/* KVM should return supported EVMCS version range */
55 	TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
56 		    (evmcs_ver & 0xff) > 0,
57 		    "Incorrect EVMCS version range: %x:%x\n",
58 		    evmcs_ver & 0xff, evmcs_ver >> 8);
59 
60 	return evmcs_ver;
61 }
62 
63 /* Allocate memory regions for nested VMX tests.
64  *
65  * Input Args:
66  *   vm - The VM to allocate guest-virtual addresses in.
67  *
68  * Output Args:
69  *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
70  *
71  * Return:
72  *   Pointer to structure with the addresses of the VMX areas.
73  */
74 struct vmx_pages *
75 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
76 {
77 	vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
78 	struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
79 
80 	/* Setup of a region of guest memory for the vmxon region. */
81 	vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
82 	vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
83 	vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
84 
85 	/* Setup of a region of guest memory for a vmcs. */
86 	vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
87 	vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
88 	vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
89 
90 	/* Setup of a region of guest memory for the MSR bitmap. */
91 	vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
92 	vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
93 	vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
94 	memset(vmx->msr_hva, 0, getpagesize());
95 
96 	/* Setup of a region of guest memory for the shadow VMCS. */
97 	vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
98 	vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
99 	vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
100 
101 	/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
102 	vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
103 	vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
104 	vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
105 	memset(vmx->vmread_hva, 0, getpagesize());
106 
107 	vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
108 	vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
109 	vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
110 	memset(vmx->vmwrite_hva, 0, getpagesize());
111 
112 	/* Setup of a region of guest memory for the VP Assist page. */
113 	vmx->vp_assist = (void *)vm_vaddr_alloc(vm, getpagesize(),
114 						0x10000, 0, 0);
115 	vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist);
116 	vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist);
117 
118 	/* Setup of a region of guest memory for the enlightened VMCS. */
119 	vmx->enlightened_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(),
120 						       0x10000, 0, 0);
121 	vmx->enlightened_vmcs_hva =
122 		addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs);
123 	vmx->enlightened_vmcs_gpa =
124 		addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs);
125 
126 	*p_vmx_gva = vmx_gva;
127 	return vmx;
128 }
129 
130 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
131 {
132 	uint64_t feature_control;
133 	uint64_t required;
134 	unsigned long cr0;
135 	unsigned long cr4;
136 
137 	/*
138 	 * Ensure bits in CR0 and CR4 are valid in VMX operation:
139 	 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
140 	 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
141 	 */
142 	__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
143 	cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
144 	cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
145 	__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
146 
147 	__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
148 	cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
149 	cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
150 	/* Enable VMX operation */
151 	cr4 |= X86_CR4_VMXE;
152 	__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
153 
154 	/*
155 	 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
156 	 *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
157 	 *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
158 	 *    outside of SMX causes a #GP.
159 	 */
160 	required = FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
161 	required |= FEATURE_CONTROL_LOCKED;
162 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
163 	if ((feature_control & required) != required)
164 		wrmsr(MSR_IA32_FEATURE_CONTROL, feature_control | required);
165 
166 	/* Enter VMX root operation. */
167 	*(uint32_t *)(vmx->vmxon) = vmcs_revision();
168 	if (vmxon(vmx->vmxon_gpa))
169 		return false;
170 
171 	return true;
172 }
173 
174 bool load_vmcs(struct vmx_pages *vmx)
175 {
176 	if (!enable_evmcs) {
177 		/* Load a VMCS. */
178 		*(uint32_t *)(vmx->vmcs) = vmcs_revision();
179 		if (vmclear(vmx->vmcs_gpa))
180 			return false;
181 
182 		if (vmptrld(vmx->vmcs_gpa))
183 			return false;
184 
185 		/* Setup shadow VMCS, do not load it yet. */
186 		*(uint32_t *)(vmx->shadow_vmcs) =
187 			vmcs_revision() | 0x80000000ul;
188 		if (vmclear(vmx->shadow_vmcs_gpa))
189 			return false;
190 	} else {
191 		if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa,
192 				  vmx->enlightened_vmcs))
193 			return false;
194 		current_evmcs->revision_id = vmcs_revision();
195 	}
196 
197 	return true;
198 }
199 
200 /*
201  * Initialize the control fields to the most basic settings possible.
202  */
203 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
204 {
205 	uint32_t sec_exec_ctl = 0;
206 
207 	vmwrite(VIRTUAL_PROCESSOR_ID, 0);
208 	vmwrite(POSTED_INTR_NV, 0);
209 
210 	vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
211 
212 	if (vmx->eptp_gpa) {
213 		uint64_t ept_paddr;
214 		struct eptPageTablePointer eptp = {
215 			.memory_type = VMX_BASIC_MEM_TYPE_WB,
216 			.page_walk_length = 3, /* + 1 */
217 			.ad_enabled = !!(rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & VMX_EPT_VPID_CAP_AD_BITS),
218 			.address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
219 		};
220 
221 		memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
222 		vmwrite(EPT_POINTER, ept_paddr);
223 		sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
224 	}
225 
226 	if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
227 		vmwrite(CPU_BASED_VM_EXEC_CONTROL,
228 			rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
229 	else {
230 		vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
231 		GUEST_ASSERT(!sec_exec_ctl);
232 	}
233 
234 	vmwrite(EXCEPTION_BITMAP, 0);
235 	vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
236 	vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
237 	vmwrite(CR3_TARGET_COUNT, 0);
238 	vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
239 		VM_EXIT_HOST_ADDR_SPACE_SIZE);	  /* 64-bit host */
240 	vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
241 	vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
242 	vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
243 		VM_ENTRY_IA32E_MODE);		  /* 64-bit guest */
244 	vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
245 	vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
246 	vmwrite(TPR_THRESHOLD, 0);
247 
248 	vmwrite(CR0_GUEST_HOST_MASK, 0);
249 	vmwrite(CR4_GUEST_HOST_MASK, 0);
250 	vmwrite(CR0_READ_SHADOW, get_cr0());
251 	vmwrite(CR4_READ_SHADOW, get_cr4());
252 
253 	vmwrite(MSR_BITMAP, vmx->msr_gpa);
254 	vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
255 	vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
256 }
257 
258 /*
259  * Initialize the host state fields based on the current host state, with
260  * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
261  * or vmresume.
262  */
263 static inline void init_vmcs_host_state(void)
264 {
265 	uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
266 
267 	vmwrite(HOST_ES_SELECTOR, get_es());
268 	vmwrite(HOST_CS_SELECTOR, get_cs());
269 	vmwrite(HOST_SS_SELECTOR, get_ss());
270 	vmwrite(HOST_DS_SELECTOR, get_ds());
271 	vmwrite(HOST_FS_SELECTOR, get_fs());
272 	vmwrite(HOST_GS_SELECTOR, get_gs());
273 	vmwrite(HOST_TR_SELECTOR, get_tr());
274 
275 	if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
276 		vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
277 	if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
278 		vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
279 	if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
280 		vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
281 			rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
282 
283 	vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
284 
285 	vmwrite(HOST_CR0, get_cr0());
286 	vmwrite(HOST_CR3, get_cr3());
287 	vmwrite(HOST_CR4, get_cr4());
288 	vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
289 	vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
290 	vmwrite(HOST_TR_BASE,
291 		get_desc64_base((struct desc64 *)(get_gdt_base() + get_tr())));
292 	vmwrite(HOST_GDTR_BASE, get_gdt_base());
293 	vmwrite(HOST_IDTR_BASE, get_idt_base());
294 	vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
295 	vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
296 }
297 
298 /*
299  * Initialize the guest state fields essentially as a clone of
300  * the host state fields. Some host state fields have fixed
301  * values, and we set the corresponding guest state fields accordingly.
302  */
303 static inline void init_vmcs_guest_state(void *rip, void *rsp)
304 {
305 	vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
306 	vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
307 	vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
308 	vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
309 	vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
310 	vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
311 	vmwrite(GUEST_LDTR_SELECTOR, 0);
312 	vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
313 	vmwrite(GUEST_INTR_STATUS, 0);
314 	vmwrite(GUEST_PML_INDEX, 0);
315 
316 	vmwrite(VMCS_LINK_POINTER, -1ll);
317 	vmwrite(GUEST_IA32_DEBUGCTL, 0);
318 	vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
319 	vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
320 	vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
321 		vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
322 
323 	vmwrite(GUEST_ES_LIMIT, -1);
324 	vmwrite(GUEST_CS_LIMIT, -1);
325 	vmwrite(GUEST_SS_LIMIT, -1);
326 	vmwrite(GUEST_DS_LIMIT, -1);
327 	vmwrite(GUEST_FS_LIMIT, -1);
328 	vmwrite(GUEST_GS_LIMIT, -1);
329 	vmwrite(GUEST_LDTR_LIMIT, -1);
330 	vmwrite(GUEST_TR_LIMIT, 0x67);
331 	vmwrite(GUEST_GDTR_LIMIT, 0xffff);
332 	vmwrite(GUEST_IDTR_LIMIT, 0xffff);
333 	vmwrite(GUEST_ES_AR_BYTES,
334 		vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
335 	vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
336 	vmwrite(GUEST_SS_AR_BYTES, 0xc093);
337 	vmwrite(GUEST_DS_AR_BYTES,
338 		vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
339 	vmwrite(GUEST_FS_AR_BYTES,
340 		vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
341 	vmwrite(GUEST_GS_AR_BYTES,
342 		vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
343 	vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
344 	vmwrite(GUEST_TR_AR_BYTES, 0x8b);
345 	vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
346 	vmwrite(GUEST_ACTIVITY_STATE, 0);
347 	vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
348 	vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
349 
350 	vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
351 	vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
352 	vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
353 	vmwrite(GUEST_ES_BASE, 0);
354 	vmwrite(GUEST_CS_BASE, 0);
355 	vmwrite(GUEST_SS_BASE, 0);
356 	vmwrite(GUEST_DS_BASE, 0);
357 	vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
358 	vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
359 	vmwrite(GUEST_LDTR_BASE, 0);
360 	vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
361 	vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
362 	vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
363 	vmwrite(GUEST_DR7, 0x400);
364 	vmwrite(GUEST_RSP, (uint64_t)rsp);
365 	vmwrite(GUEST_RIP, (uint64_t)rip);
366 	vmwrite(GUEST_RFLAGS, 2);
367 	vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
368 	vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
369 	vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
370 }
371 
372 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
373 {
374 	init_vmcs_control_fields(vmx);
375 	init_vmcs_host_state();
376 	init_vmcs_guest_state(guest_rip, guest_rsp);
377 }
378 
379 void nested_vmx_check_supported(void)
380 {
381 	struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1);
382 
383 	if (!(entry->ecx & CPUID_VMX)) {
384 		fprintf(stderr, "nested VMX not enabled, skipping test\n");
385 		exit(KSFT_SKIP);
386 	}
387 }
388 
389 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
390 	 	   uint64_t nested_paddr, uint64_t paddr, uint32_t eptp_memslot)
391 {
392 	uint16_t index[4];
393 	struct eptPageTableEntry *pml4e;
394 
395 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
396 		    "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
397 
398 	TEST_ASSERT((nested_paddr % vm->page_size) == 0,
399 		    "Nested physical address not on page boundary,\n"
400 		    "  nested_paddr: 0x%lx vm->page_size: 0x%x",
401 		    nested_paddr, vm->page_size);
402 	TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
403 		    "Physical address beyond beyond maximum supported,\n"
404 		    "  nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
405 		    paddr, vm->max_gfn, vm->page_size);
406 	TEST_ASSERT((paddr % vm->page_size) == 0,
407 		    "Physical address not on page boundary,\n"
408 		    "  paddr: 0x%lx vm->page_size: 0x%x",
409 		    paddr, vm->page_size);
410 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
411 		    "Physical address beyond beyond maximum supported,\n"
412 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
413 		    paddr, vm->max_gfn, vm->page_size);
414 
415 	index[0] = (nested_paddr >> 12) & 0x1ffu;
416 	index[1] = (nested_paddr >> 21) & 0x1ffu;
417 	index[2] = (nested_paddr >> 30) & 0x1ffu;
418 	index[3] = (nested_paddr >> 39) & 0x1ffu;
419 
420 	/* Allocate page directory pointer table if not present. */
421 	pml4e = vmx->eptp_hva;
422 	if (!pml4e[index[3]].readable) {
423 		pml4e[index[3]].address = vm_phy_page_alloc(vm,
424 			  KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
425 			>> vm->page_shift;
426 		pml4e[index[3]].writable = true;
427 		pml4e[index[3]].readable = true;
428 		pml4e[index[3]].executable = true;
429 	}
430 
431 	/* Allocate page directory table if not present. */
432 	struct eptPageTableEntry *pdpe;
433 	pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
434 	if (!pdpe[index[2]].readable) {
435 		pdpe[index[2]].address = vm_phy_page_alloc(vm,
436 			  KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
437 			>> vm->page_shift;
438 		pdpe[index[2]].writable = true;
439 		pdpe[index[2]].readable = true;
440 		pdpe[index[2]].executable = true;
441 	}
442 
443 	/* Allocate page table if not present. */
444 	struct eptPageTableEntry *pde;
445 	pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
446 	if (!pde[index[1]].readable) {
447 		pde[index[1]].address = vm_phy_page_alloc(vm,
448 			  KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
449 			>> vm->page_shift;
450 		pde[index[1]].writable = true;
451 		pde[index[1]].readable = true;
452 		pde[index[1]].executable = true;
453 	}
454 
455 	/* Fill in page table entry. */
456 	struct eptPageTableEntry *pte;
457 	pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
458 	pte[index[0]].address = paddr >> vm->page_shift;
459 	pte[index[0]].writable = true;
460 	pte[index[0]].readable = true;
461 	pte[index[0]].executable = true;
462 
463 	/*
464 	 * For now mark these as accessed and dirty because the only
465 	 * testcase we have needs that.  Can be reconsidered later.
466 	 */
467 	pte[index[0]].accessed = true;
468 	pte[index[0]].dirty = true;
469 }
470 
471 /*
472  * Map a range of EPT guest physical addresses to the VM's physical address
473  *
474  * Input Args:
475  *   vm - Virtual Machine
476  *   nested_paddr - Nested guest physical address to map
477  *   paddr - VM Physical Address
478  *   size - The size of the range to map
479  *   eptp_memslot - Memory region slot for new virtual translation tables
480  *
481  * Output Args: None
482  *
483  * Return: None
484  *
485  * Within the VM given by vm, creates a nested guest translation for the
486  * page range starting at nested_paddr to the page range starting at paddr.
487  */
488 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
489 		uint64_t nested_paddr, uint64_t paddr, uint64_t size,
490 		uint32_t eptp_memslot)
491 {
492 	size_t page_size = vm->page_size;
493 	size_t npages = size / page_size;
494 
495 	TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
496 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
497 
498 	while (npages--) {
499 		nested_pg_map(vmx, vm, nested_paddr, paddr, eptp_memslot);
500 		nested_paddr += page_size;
501 		paddr += page_size;
502 	}
503 }
504 
505 /* Prepare an identity extended page table that maps all the
506  * physical pages in VM.
507  */
508 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
509 			uint32_t memslot, uint32_t eptp_memslot)
510 {
511 	sparsebit_idx_t i, last;
512 	struct userspace_mem_region *region =
513 		memslot2region(vm, memslot);
514 
515 	i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
516 	last = i + (region->region.memory_size >> vm->page_shift);
517 	for (;;) {
518 		i = sparsebit_next_clear(region->unused_phy_pages, i);
519 		if (i > last)
520 			break;
521 
522 		nested_map(vmx, vm,
523 			   (uint64_t)i << vm->page_shift,
524 			   (uint64_t)i << vm->page_shift,
525 			   1 << vm->page_shift,
526 			   eptp_memslot);
527 	}
528 }
529 
530 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
531 		  uint32_t eptp_memslot)
532 {
533 	vmx->eptp = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
534 	vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
535 	vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
536 }
537