xref: /linux/virt/kvm/kvm_main.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77 
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82 
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87 
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92 
93 /*
94  * Ordering of locks:
95  *
96  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98 
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102 
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106 
107 struct kmem_cache *kvm_vcpu_cache;
108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114 
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations *stat_fops_per_vm[];
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 static bool largepages_enabled = true;
153 
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159 
160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 		unsigned long start, unsigned long end, bool blockable)
162 {
163 	return 0;
164 }
165 
166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168 	/*
169 	 * The metadata used by is_zone_device_page() to determine whether or
170 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
172 	 * page_count() is zero to help detect bad usage of this helper.
173 	 */
174 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175 		return false;
176 
177 	return is_zone_device_page(pfn_to_page(pfn));
178 }
179 
180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182 	/*
183 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184 	 * perspective they are "normal" pages, albeit with slightly different
185 	 * usage rules.
186 	 */
187 	if (pfn_valid(pfn))
188 		return PageReserved(pfn_to_page(pfn)) &&
189 		       !kvm_is_zone_device_pfn(pfn);
190 
191 	return true;
192 }
193 
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199 	int cpu = get_cpu();
200 	preempt_notifier_register(&vcpu->preempt_notifier);
201 	kvm_arch_vcpu_load(vcpu, cpu);
202 	put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205 
206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208 	preempt_disable();
209 	kvm_arch_vcpu_put(vcpu);
210 	preempt_notifier_unregister(&vcpu->preempt_notifier);
211 	preempt_enable();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_put);
214 
215 /* TODO: merge with kvm_arch_vcpu_should_kick */
216 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
217 {
218 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
219 
220 	/*
221 	 * We need to wait for the VCPU to reenable interrupts and get out of
222 	 * READING_SHADOW_PAGE_TABLES mode.
223 	 */
224 	if (req & KVM_REQUEST_WAIT)
225 		return mode != OUTSIDE_GUEST_MODE;
226 
227 	/*
228 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
229 	 */
230 	return mode == IN_GUEST_MODE;
231 }
232 
233 static void ack_flush(void *_completed)
234 {
235 }
236 
237 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
238 {
239 	if (unlikely(!cpus))
240 		cpus = cpu_online_mask;
241 
242 	if (cpumask_empty(cpus))
243 		return false;
244 
245 	smp_call_function_many(cpus, ack_flush, NULL, wait);
246 	return true;
247 }
248 
249 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
250 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
251 {
252 	int i, cpu, me;
253 	struct kvm_vcpu *vcpu;
254 	bool called;
255 
256 	me = get_cpu();
257 
258 	kvm_for_each_vcpu(i, vcpu, kvm) {
259 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
260 			continue;
261 
262 		kvm_make_request(req, vcpu);
263 		cpu = vcpu->cpu;
264 
265 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266 			continue;
267 
268 		if (tmp != NULL && cpu != -1 && cpu != me &&
269 		    kvm_request_needs_ipi(vcpu, req))
270 			__cpumask_set_cpu(cpu, tmp);
271 	}
272 
273 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
274 	put_cpu();
275 
276 	return called;
277 }
278 
279 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
280 {
281 	cpumask_var_t cpus;
282 	bool called;
283 
284 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
285 
286 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
287 
288 	free_cpumask_var(cpus);
289 	return called;
290 }
291 
292 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
293 void kvm_flush_remote_tlbs(struct kvm *kvm)
294 {
295 	/*
296 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
297 	 * kvm_make_all_cpus_request.
298 	 */
299 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
300 
301 	/*
302 	 * We want to publish modifications to the page tables before reading
303 	 * mode. Pairs with a memory barrier in arch-specific code.
304 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
305 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
306 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
307 	 *
308 	 * There is already an smp_mb__after_atomic() before
309 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
310 	 * barrier here.
311 	 */
312 	if (!kvm_arch_flush_remote_tlb(kvm)
313 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
314 		++kvm->stat.remote_tlb_flush;
315 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
316 }
317 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
318 #endif
319 
320 void kvm_reload_remote_mmus(struct kvm *kvm)
321 {
322 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
323 }
324 
325 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
326 {
327 	struct page *page;
328 	int r;
329 
330 	mutex_init(&vcpu->mutex);
331 	vcpu->cpu = -1;
332 	vcpu->kvm = kvm;
333 	vcpu->vcpu_id = id;
334 	vcpu->pid = NULL;
335 	init_swait_queue_head(&vcpu->wq);
336 	kvm_async_pf_vcpu_init(vcpu);
337 
338 	vcpu->pre_pcpu = -1;
339 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
340 
341 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
342 	if (!page) {
343 		r = -ENOMEM;
344 		goto fail;
345 	}
346 	vcpu->run = page_address(page);
347 
348 	kvm_vcpu_set_in_spin_loop(vcpu, false);
349 	kvm_vcpu_set_dy_eligible(vcpu, false);
350 	vcpu->preempted = false;
351 	vcpu->ready = false;
352 
353 	r = kvm_arch_vcpu_init(vcpu);
354 	if (r < 0)
355 		goto fail_free_run;
356 	return 0;
357 
358 fail_free_run:
359 	free_page((unsigned long)vcpu->run);
360 fail:
361 	return r;
362 }
363 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
364 
365 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
366 {
367 	/*
368 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
369 	 * will change the vcpu->pid pointer and on uninit all file
370 	 * descriptors are already gone.
371 	 */
372 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
373 	kvm_arch_vcpu_uninit(vcpu);
374 	free_page((unsigned long)vcpu->run);
375 }
376 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
377 
378 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
379 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
380 {
381 	return container_of(mn, struct kvm, mmu_notifier);
382 }
383 
384 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
385 					struct mm_struct *mm,
386 					unsigned long address,
387 					pte_t pte)
388 {
389 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 	int idx;
391 
392 	idx = srcu_read_lock(&kvm->srcu);
393 	spin_lock(&kvm->mmu_lock);
394 	kvm->mmu_notifier_seq++;
395 
396 	if (kvm_set_spte_hva(kvm, address, pte))
397 		kvm_flush_remote_tlbs(kvm);
398 
399 	spin_unlock(&kvm->mmu_lock);
400 	srcu_read_unlock(&kvm->srcu, idx);
401 }
402 
403 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
404 					const struct mmu_notifier_range *range)
405 {
406 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 	int need_tlb_flush = 0, idx;
408 	int ret;
409 
410 	idx = srcu_read_lock(&kvm->srcu);
411 	spin_lock(&kvm->mmu_lock);
412 	/*
413 	 * The count increase must become visible at unlock time as no
414 	 * spte can be established without taking the mmu_lock and
415 	 * count is also read inside the mmu_lock critical section.
416 	 */
417 	kvm->mmu_notifier_count++;
418 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
419 	need_tlb_flush |= kvm->tlbs_dirty;
420 	/* we've to flush the tlb before the pages can be freed */
421 	if (need_tlb_flush)
422 		kvm_flush_remote_tlbs(kvm);
423 
424 	spin_unlock(&kvm->mmu_lock);
425 
426 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
427 					range->end,
428 					mmu_notifier_range_blockable(range));
429 
430 	srcu_read_unlock(&kvm->srcu, idx);
431 
432 	return ret;
433 }
434 
435 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
436 					const struct mmu_notifier_range *range)
437 {
438 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
439 
440 	spin_lock(&kvm->mmu_lock);
441 	/*
442 	 * This sequence increase will notify the kvm page fault that
443 	 * the page that is going to be mapped in the spte could have
444 	 * been freed.
445 	 */
446 	kvm->mmu_notifier_seq++;
447 	smp_wmb();
448 	/*
449 	 * The above sequence increase must be visible before the
450 	 * below count decrease, which is ensured by the smp_wmb above
451 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
452 	 */
453 	kvm->mmu_notifier_count--;
454 	spin_unlock(&kvm->mmu_lock);
455 
456 	BUG_ON(kvm->mmu_notifier_count < 0);
457 }
458 
459 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
460 					      struct mm_struct *mm,
461 					      unsigned long start,
462 					      unsigned long end)
463 {
464 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
465 	int young, idx;
466 
467 	idx = srcu_read_lock(&kvm->srcu);
468 	spin_lock(&kvm->mmu_lock);
469 
470 	young = kvm_age_hva(kvm, start, end);
471 	if (young)
472 		kvm_flush_remote_tlbs(kvm);
473 
474 	spin_unlock(&kvm->mmu_lock);
475 	srcu_read_unlock(&kvm->srcu, idx);
476 
477 	return young;
478 }
479 
480 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
481 					struct mm_struct *mm,
482 					unsigned long start,
483 					unsigned long end)
484 {
485 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
486 	int young, idx;
487 
488 	idx = srcu_read_lock(&kvm->srcu);
489 	spin_lock(&kvm->mmu_lock);
490 	/*
491 	 * Even though we do not flush TLB, this will still adversely
492 	 * affect performance on pre-Haswell Intel EPT, where there is
493 	 * no EPT Access Bit to clear so that we have to tear down EPT
494 	 * tables instead. If we find this unacceptable, we can always
495 	 * add a parameter to kvm_age_hva so that it effectively doesn't
496 	 * do anything on clear_young.
497 	 *
498 	 * Also note that currently we never issue secondary TLB flushes
499 	 * from clear_young, leaving this job up to the regular system
500 	 * cadence. If we find this inaccurate, we might come up with a
501 	 * more sophisticated heuristic later.
502 	 */
503 	young = kvm_age_hva(kvm, start, end);
504 	spin_unlock(&kvm->mmu_lock);
505 	srcu_read_unlock(&kvm->srcu, idx);
506 
507 	return young;
508 }
509 
510 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
511 				       struct mm_struct *mm,
512 				       unsigned long address)
513 {
514 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
515 	int young, idx;
516 
517 	idx = srcu_read_lock(&kvm->srcu);
518 	spin_lock(&kvm->mmu_lock);
519 	young = kvm_test_age_hva(kvm, address);
520 	spin_unlock(&kvm->mmu_lock);
521 	srcu_read_unlock(&kvm->srcu, idx);
522 
523 	return young;
524 }
525 
526 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
527 				     struct mm_struct *mm)
528 {
529 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
530 	int idx;
531 
532 	idx = srcu_read_lock(&kvm->srcu);
533 	kvm_arch_flush_shadow_all(kvm);
534 	srcu_read_unlock(&kvm->srcu, idx);
535 }
536 
537 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
538 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
539 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
540 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
541 	.clear_young		= kvm_mmu_notifier_clear_young,
542 	.test_young		= kvm_mmu_notifier_test_young,
543 	.change_pte		= kvm_mmu_notifier_change_pte,
544 	.release		= kvm_mmu_notifier_release,
545 };
546 
547 static int kvm_init_mmu_notifier(struct kvm *kvm)
548 {
549 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
550 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
551 }
552 
553 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
554 
555 static int kvm_init_mmu_notifier(struct kvm *kvm)
556 {
557 	return 0;
558 }
559 
560 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
561 
562 static struct kvm_memslots *kvm_alloc_memslots(void)
563 {
564 	int i;
565 	struct kvm_memslots *slots;
566 
567 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
568 	if (!slots)
569 		return NULL;
570 
571 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
572 		slots->id_to_index[i] = slots->memslots[i].id = i;
573 
574 	return slots;
575 }
576 
577 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
578 {
579 	if (!memslot->dirty_bitmap)
580 		return;
581 
582 	kvfree(memslot->dirty_bitmap);
583 	memslot->dirty_bitmap = NULL;
584 }
585 
586 /*
587  * Free any memory in @free but not in @dont.
588  */
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
590 			      struct kvm_memory_slot *dont)
591 {
592 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
593 		kvm_destroy_dirty_bitmap(free);
594 
595 	kvm_arch_free_memslot(kvm, free, dont);
596 
597 	free->npages = 0;
598 }
599 
600 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
601 {
602 	struct kvm_memory_slot *memslot;
603 
604 	if (!slots)
605 		return;
606 
607 	kvm_for_each_memslot(memslot, slots)
608 		kvm_free_memslot(kvm, memslot, NULL);
609 
610 	kvfree(slots);
611 }
612 
613 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
614 {
615 	int i;
616 
617 	if (!kvm->debugfs_dentry)
618 		return;
619 
620 	debugfs_remove_recursive(kvm->debugfs_dentry);
621 
622 	if (kvm->debugfs_stat_data) {
623 		for (i = 0; i < kvm_debugfs_num_entries; i++)
624 			kfree(kvm->debugfs_stat_data[i]);
625 		kfree(kvm->debugfs_stat_data);
626 	}
627 }
628 
629 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
630 {
631 	char dir_name[ITOA_MAX_LEN * 2];
632 	struct kvm_stat_data *stat_data;
633 	struct kvm_stats_debugfs_item *p;
634 
635 	if (!debugfs_initialized())
636 		return 0;
637 
638 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
639 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
640 
641 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
642 					 sizeof(*kvm->debugfs_stat_data),
643 					 GFP_KERNEL_ACCOUNT);
644 	if (!kvm->debugfs_stat_data)
645 		return -ENOMEM;
646 
647 	for (p = debugfs_entries; p->name; p++) {
648 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
649 		if (!stat_data)
650 			return -ENOMEM;
651 
652 		stat_data->kvm = kvm;
653 		stat_data->offset = p->offset;
654 		stat_data->mode = p->mode ? p->mode : 0644;
655 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
656 		debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
657 				    stat_data, stat_fops_per_vm[p->kind]);
658 	}
659 	return 0;
660 }
661 
662 /*
663  * Called after the VM is otherwise initialized, but just before adding it to
664  * the vm_list.
665  */
666 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
667 {
668 	return 0;
669 }
670 
671 /*
672  * Called just after removing the VM from the vm_list, but before doing any
673  * other destruction.
674  */
675 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
676 {
677 }
678 
679 static struct kvm *kvm_create_vm(unsigned long type)
680 {
681 	struct kvm *kvm = kvm_arch_alloc_vm();
682 	int r = -ENOMEM;
683 	int i;
684 
685 	if (!kvm)
686 		return ERR_PTR(-ENOMEM);
687 
688 	spin_lock_init(&kvm->mmu_lock);
689 	mmgrab(current->mm);
690 	kvm->mm = current->mm;
691 	kvm_eventfd_init(kvm);
692 	mutex_init(&kvm->lock);
693 	mutex_init(&kvm->irq_lock);
694 	mutex_init(&kvm->slots_lock);
695 	INIT_LIST_HEAD(&kvm->devices);
696 
697 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
698 
699 	if (init_srcu_struct(&kvm->srcu))
700 		goto out_err_no_srcu;
701 	if (init_srcu_struct(&kvm->irq_srcu))
702 		goto out_err_no_irq_srcu;
703 
704 	refcount_set(&kvm->users_count, 1);
705 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
706 		struct kvm_memslots *slots = kvm_alloc_memslots();
707 
708 		if (!slots)
709 			goto out_err_no_arch_destroy_vm;
710 		/* Generations must be different for each address space. */
711 		slots->generation = i;
712 		rcu_assign_pointer(kvm->memslots[i], slots);
713 	}
714 
715 	for (i = 0; i < KVM_NR_BUSES; i++) {
716 		rcu_assign_pointer(kvm->buses[i],
717 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
718 		if (!kvm->buses[i])
719 			goto out_err_no_arch_destroy_vm;
720 	}
721 
722 	r = kvm_arch_init_vm(kvm, type);
723 	if (r)
724 		goto out_err_no_arch_destroy_vm;
725 
726 	r = hardware_enable_all();
727 	if (r)
728 		goto out_err_no_disable;
729 
730 #ifdef CONFIG_HAVE_KVM_IRQFD
731 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
732 #endif
733 
734 	r = kvm_init_mmu_notifier(kvm);
735 	if (r)
736 		goto out_err_no_mmu_notifier;
737 
738 	r = kvm_arch_post_init_vm(kvm);
739 	if (r)
740 		goto out_err;
741 
742 	mutex_lock(&kvm_lock);
743 	list_add(&kvm->vm_list, &vm_list);
744 	mutex_unlock(&kvm_lock);
745 
746 	preempt_notifier_inc();
747 
748 	return kvm;
749 
750 out_err:
751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752 	if (kvm->mmu_notifier.ops)
753 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
754 #endif
755 out_err_no_mmu_notifier:
756 	hardware_disable_all();
757 out_err_no_disable:
758 	kvm_arch_destroy_vm(kvm);
759 out_err_no_arch_destroy_vm:
760 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
761 	for (i = 0; i < KVM_NR_BUSES; i++)
762 		kfree(kvm_get_bus(kvm, i));
763 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
764 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
765 	cleanup_srcu_struct(&kvm->irq_srcu);
766 out_err_no_irq_srcu:
767 	cleanup_srcu_struct(&kvm->srcu);
768 out_err_no_srcu:
769 	kvm_arch_free_vm(kvm);
770 	mmdrop(current->mm);
771 	return ERR_PTR(r);
772 }
773 
774 static void kvm_destroy_devices(struct kvm *kvm)
775 {
776 	struct kvm_device *dev, *tmp;
777 
778 	/*
779 	 * We do not need to take the kvm->lock here, because nobody else
780 	 * has a reference to the struct kvm at this point and therefore
781 	 * cannot access the devices list anyhow.
782 	 */
783 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
784 		list_del(&dev->vm_node);
785 		dev->ops->destroy(dev);
786 	}
787 }
788 
789 static void kvm_destroy_vm(struct kvm *kvm)
790 {
791 	int i;
792 	struct mm_struct *mm = kvm->mm;
793 
794 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
795 	kvm_destroy_vm_debugfs(kvm);
796 	kvm_arch_sync_events(kvm);
797 	mutex_lock(&kvm_lock);
798 	list_del(&kvm->vm_list);
799 	mutex_unlock(&kvm_lock);
800 	kvm_arch_pre_destroy_vm(kvm);
801 
802 	kvm_free_irq_routing(kvm);
803 	for (i = 0; i < KVM_NR_BUSES; i++) {
804 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
805 
806 		if (bus)
807 			kvm_io_bus_destroy(bus);
808 		kvm->buses[i] = NULL;
809 	}
810 	kvm_coalesced_mmio_free(kvm);
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
813 #else
814 	kvm_arch_flush_shadow_all(kvm);
815 #endif
816 	kvm_arch_destroy_vm(kvm);
817 	kvm_destroy_devices(kvm);
818 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
819 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820 	cleanup_srcu_struct(&kvm->irq_srcu);
821 	cleanup_srcu_struct(&kvm->srcu);
822 	kvm_arch_free_vm(kvm);
823 	preempt_notifier_dec();
824 	hardware_disable_all();
825 	mmdrop(mm);
826 }
827 
828 void kvm_get_kvm(struct kvm *kvm)
829 {
830 	refcount_inc(&kvm->users_count);
831 }
832 EXPORT_SYMBOL_GPL(kvm_get_kvm);
833 
834 void kvm_put_kvm(struct kvm *kvm)
835 {
836 	if (refcount_dec_and_test(&kvm->users_count))
837 		kvm_destroy_vm(kvm);
838 }
839 EXPORT_SYMBOL_GPL(kvm_put_kvm);
840 
841 /*
842  * Used to put a reference that was taken on behalf of an object associated
843  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
844  * of the new file descriptor fails and the reference cannot be transferred to
845  * its final owner.  In such cases, the caller is still actively using @kvm and
846  * will fail miserably if the refcount unexpectedly hits zero.
847  */
848 void kvm_put_kvm_no_destroy(struct kvm *kvm)
849 {
850 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
851 }
852 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
853 
854 static int kvm_vm_release(struct inode *inode, struct file *filp)
855 {
856 	struct kvm *kvm = filp->private_data;
857 
858 	kvm_irqfd_release(kvm);
859 
860 	kvm_put_kvm(kvm);
861 	return 0;
862 }
863 
864 /*
865  * Allocation size is twice as large as the actual dirty bitmap size.
866  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
867  */
868 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
869 {
870 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
871 
872 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
873 	if (!memslot->dirty_bitmap)
874 		return -ENOMEM;
875 
876 	return 0;
877 }
878 
879 /*
880  * Insert memslot and re-sort memslots based on their GFN,
881  * so binary search could be used to lookup GFN.
882  * Sorting algorithm takes advantage of having initially
883  * sorted array and known changed memslot position.
884  */
885 static void update_memslots(struct kvm_memslots *slots,
886 			    struct kvm_memory_slot *new,
887 			    enum kvm_mr_change change)
888 {
889 	int id = new->id;
890 	int i = slots->id_to_index[id];
891 	struct kvm_memory_slot *mslots = slots->memslots;
892 
893 	WARN_ON(mslots[i].id != id);
894 	switch (change) {
895 	case KVM_MR_CREATE:
896 		slots->used_slots++;
897 		WARN_ON(mslots[i].npages || !new->npages);
898 		break;
899 	case KVM_MR_DELETE:
900 		slots->used_slots--;
901 		WARN_ON(new->npages || !mslots[i].npages);
902 		break;
903 	default:
904 		break;
905 	}
906 
907 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
908 	       new->base_gfn <= mslots[i + 1].base_gfn) {
909 		if (!mslots[i + 1].npages)
910 			break;
911 		mslots[i] = mslots[i + 1];
912 		slots->id_to_index[mslots[i].id] = i;
913 		i++;
914 	}
915 
916 	/*
917 	 * The ">=" is needed when creating a slot with base_gfn == 0,
918 	 * so that it moves before all those with base_gfn == npages == 0.
919 	 *
920 	 * On the other hand, if new->npages is zero, the above loop has
921 	 * already left i pointing to the beginning of the empty part of
922 	 * mslots, and the ">=" would move the hole backwards in this
923 	 * case---which is wrong.  So skip the loop when deleting a slot.
924 	 */
925 	if (new->npages) {
926 		while (i > 0 &&
927 		       new->base_gfn >= mslots[i - 1].base_gfn) {
928 			mslots[i] = mslots[i - 1];
929 			slots->id_to_index[mslots[i].id] = i;
930 			i--;
931 		}
932 	} else
933 		WARN_ON_ONCE(i != slots->used_slots);
934 
935 	mslots[i] = *new;
936 	slots->id_to_index[mslots[i].id] = i;
937 }
938 
939 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
940 {
941 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
942 
943 #ifdef __KVM_HAVE_READONLY_MEM
944 	valid_flags |= KVM_MEM_READONLY;
945 #endif
946 
947 	if (mem->flags & ~valid_flags)
948 		return -EINVAL;
949 
950 	return 0;
951 }
952 
953 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
954 		int as_id, struct kvm_memslots *slots)
955 {
956 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
957 	u64 gen = old_memslots->generation;
958 
959 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
960 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
961 
962 	rcu_assign_pointer(kvm->memslots[as_id], slots);
963 	synchronize_srcu_expedited(&kvm->srcu);
964 
965 	/*
966 	 * Increment the new memslot generation a second time, dropping the
967 	 * update in-progress flag and incrementing then generation based on
968 	 * the number of address spaces.  This provides a unique and easily
969 	 * identifiable generation number while the memslots are in flux.
970 	 */
971 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
972 
973 	/*
974 	 * Generations must be unique even across address spaces.  We do not need
975 	 * a global counter for that, instead the generation space is evenly split
976 	 * across address spaces.  For example, with two address spaces, address
977 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
978 	 * use generations 1, 3, 5, ...
979 	 */
980 	gen += KVM_ADDRESS_SPACE_NUM;
981 
982 	kvm_arch_memslots_updated(kvm, gen);
983 
984 	slots->generation = gen;
985 
986 	return old_memslots;
987 }
988 
989 /*
990  * Allocate some memory and give it an address in the guest physical address
991  * space.
992  *
993  * Discontiguous memory is allowed, mostly for framebuffers.
994  *
995  * Must be called holding kvm->slots_lock for write.
996  */
997 int __kvm_set_memory_region(struct kvm *kvm,
998 			    const struct kvm_userspace_memory_region *mem)
999 {
1000 	int r;
1001 	gfn_t base_gfn;
1002 	unsigned long npages;
1003 	struct kvm_memory_slot *slot;
1004 	struct kvm_memory_slot old, new;
1005 	struct kvm_memslots *slots = NULL, *old_memslots;
1006 	int as_id, id;
1007 	enum kvm_mr_change change;
1008 
1009 	r = check_memory_region_flags(mem);
1010 	if (r)
1011 		goto out;
1012 
1013 	r = -EINVAL;
1014 	as_id = mem->slot >> 16;
1015 	id = (u16)mem->slot;
1016 
1017 	/* General sanity checks */
1018 	if (mem->memory_size & (PAGE_SIZE - 1))
1019 		goto out;
1020 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1021 		goto out;
1022 	/* We can read the guest memory with __xxx_user() later on. */
1023 	if ((id < KVM_USER_MEM_SLOTS) &&
1024 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1025 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1026 			mem->memory_size)))
1027 		goto out;
1028 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1029 		goto out;
1030 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1031 		goto out;
1032 
1033 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1034 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1035 	npages = mem->memory_size >> PAGE_SHIFT;
1036 
1037 	if (npages > KVM_MEM_MAX_NR_PAGES)
1038 		goto out;
1039 
1040 	new = old = *slot;
1041 
1042 	new.id = id;
1043 	new.base_gfn = base_gfn;
1044 	new.npages = npages;
1045 	new.flags = mem->flags;
1046 
1047 	if (npages) {
1048 		if (!old.npages)
1049 			change = KVM_MR_CREATE;
1050 		else { /* Modify an existing slot. */
1051 			if ((mem->userspace_addr != old.userspace_addr) ||
1052 			    (npages != old.npages) ||
1053 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1054 				goto out;
1055 
1056 			if (base_gfn != old.base_gfn)
1057 				change = KVM_MR_MOVE;
1058 			else if (new.flags != old.flags)
1059 				change = KVM_MR_FLAGS_ONLY;
1060 			else { /* Nothing to change. */
1061 				r = 0;
1062 				goto out;
1063 			}
1064 		}
1065 	} else {
1066 		if (!old.npages)
1067 			goto out;
1068 
1069 		change = KVM_MR_DELETE;
1070 		new.base_gfn = 0;
1071 		new.flags = 0;
1072 	}
1073 
1074 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1075 		/* Check for overlaps */
1076 		r = -EEXIST;
1077 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1078 			if (slot->id == id)
1079 				continue;
1080 			if (!((base_gfn + npages <= slot->base_gfn) ||
1081 			      (base_gfn >= slot->base_gfn + slot->npages)))
1082 				goto out;
1083 		}
1084 	}
1085 
1086 	/* Free page dirty bitmap if unneeded */
1087 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1088 		new.dirty_bitmap = NULL;
1089 
1090 	r = -ENOMEM;
1091 	if (change == KVM_MR_CREATE) {
1092 		new.userspace_addr = mem->userspace_addr;
1093 
1094 		if (kvm_arch_create_memslot(kvm, &new, npages))
1095 			goto out_free;
1096 	}
1097 
1098 	/* Allocate page dirty bitmap if needed */
1099 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1100 		if (kvm_create_dirty_bitmap(&new) < 0)
1101 			goto out_free;
1102 	}
1103 
1104 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1105 	if (!slots)
1106 		goto out_free;
1107 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1108 
1109 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1110 		slot = id_to_memslot(slots, id);
1111 		slot->flags |= KVM_MEMSLOT_INVALID;
1112 
1113 		old_memslots = install_new_memslots(kvm, as_id, slots);
1114 
1115 		/* From this point no new shadow pages pointing to a deleted,
1116 		 * or moved, memslot will be created.
1117 		 *
1118 		 * validation of sp->gfn happens in:
1119 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1120 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1121 		 */
1122 		kvm_arch_flush_shadow_memslot(kvm, slot);
1123 
1124 		/*
1125 		 * We can re-use the old_memslots from above, the only difference
1126 		 * from the currently installed memslots is the invalid flag.  This
1127 		 * will get overwritten by update_memslots anyway.
1128 		 */
1129 		slots = old_memslots;
1130 	}
1131 
1132 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1133 	if (r)
1134 		goto out_slots;
1135 
1136 	/* actual memory is freed via old in kvm_free_memslot below */
1137 	if (change == KVM_MR_DELETE) {
1138 		new.dirty_bitmap = NULL;
1139 		memset(&new.arch, 0, sizeof(new.arch));
1140 	}
1141 
1142 	update_memslots(slots, &new, change);
1143 	old_memslots = install_new_memslots(kvm, as_id, slots);
1144 
1145 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1146 
1147 	kvm_free_memslot(kvm, &old, &new);
1148 	kvfree(old_memslots);
1149 	return 0;
1150 
1151 out_slots:
1152 	kvfree(slots);
1153 out_free:
1154 	kvm_free_memslot(kvm, &new, &old);
1155 out:
1156 	return r;
1157 }
1158 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1159 
1160 int kvm_set_memory_region(struct kvm *kvm,
1161 			  const struct kvm_userspace_memory_region *mem)
1162 {
1163 	int r;
1164 
1165 	mutex_lock(&kvm->slots_lock);
1166 	r = __kvm_set_memory_region(kvm, mem);
1167 	mutex_unlock(&kvm->slots_lock);
1168 	return r;
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1171 
1172 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1173 					  struct kvm_userspace_memory_region *mem)
1174 {
1175 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1176 		return -EINVAL;
1177 
1178 	return kvm_set_memory_region(kvm, mem);
1179 }
1180 
1181 int kvm_get_dirty_log(struct kvm *kvm,
1182 			struct kvm_dirty_log *log, int *is_dirty)
1183 {
1184 	struct kvm_memslots *slots;
1185 	struct kvm_memory_slot *memslot;
1186 	int i, as_id, id;
1187 	unsigned long n;
1188 	unsigned long any = 0;
1189 
1190 	as_id = log->slot >> 16;
1191 	id = (u16)log->slot;
1192 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1193 		return -EINVAL;
1194 
1195 	slots = __kvm_memslots(kvm, as_id);
1196 	memslot = id_to_memslot(slots, id);
1197 	if (!memslot->dirty_bitmap)
1198 		return -ENOENT;
1199 
1200 	n = kvm_dirty_bitmap_bytes(memslot);
1201 
1202 	for (i = 0; !any && i < n/sizeof(long); ++i)
1203 		any = memslot->dirty_bitmap[i];
1204 
1205 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1206 		return -EFAULT;
1207 
1208 	if (any)
1209 		*is_dirty = 1;
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1213 
1214 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1215 /**
1216  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1217  *	and reenable dirty page tracking for the corresponding pages.
1218  * @kvm:	pointer to kvm instance
1219  * @log:	slot id and address to which we copy the log
1220  * @flush:	true if TLB flush is needed by caller
1221  *
1222  * We need to keep it in mind that VCPU threads can write to the bitmap
1223  * concurrently. So, to avoid losing track of dirty pages we keep the
1224  * following order:
1225  *
1226  *    1. Take a snapshot of the bit and clear it if needed.
1227  *    2. Write protect the corresponding page.
1228  *    3. Copy the snapshot to the userspace.
1229  *    4. Upon return caller flushes TLB's if needed.
1230  *
1231  * Between 2 and 4, the guest may write to the page using the remaining TLB
1232  * entry.  This is not a problem because the page is reported dirty using
1233  * the snapshot taken before and step 4 ensures that writes done after
1234  * exiting to userspace will be logged for the next call.
1235  *
1236  */
1237 int kvm_get_dirty_log_protect(struct kvm *kvm,
1238 			struct kvm_dirty_log *log, bool *flush)
1239 {
1240 	struct kvm_memslots *slots;
1241 	struct kvm_memory_slot *memslot;
1242 	int i, as_id, id;
1243 	unsigned long n;
1244 	unsigned long *dirty_bitmap;
1245 	unsigned long *dirty_bitmap_buffer;
1246 
1247 	as_id = log->slot >> 16;
1248 	id = (u16)log->slot;
1249 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1250 		return -EINVAL;
1251 
1252 	slots = __kvm_memslots(kvm, as_id);
1253 	memslot = id_to_memslot(slots, id);
1254 
1255 	dirty_bitmap = memslot->dirty_bitmap;
1256 	if (!dirty_bitmap)
1257 		return -ENOENT;
1258 
1259 	n = kvm_dirty_bitmap_bytes(memslot);
1260 	*flush = false;
1261 	if (kvm->manual_dirty_log_protect) {
1262 		/*
1263 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1264 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1265 		 * is some code duplication between this function and
1266 		 * kvm_get_dirty_log, but hopefully all architecture
1267 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1268 		 * can be eliminated.
1269 		 */
1270 		dirty_bitmap_buffer = dirty_bitmap;
1271 	} else {
1272 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1273 		memset(dirty_bitmap_buffer, 0, n);
1274 
1275 		spin_lock(&kvm->mmu_lock);
1276 		for (i = 0; i < n / sizeof(long); i++) {
1277 			unsigned long mask;
1278 			gfn_t offset;
1279 
1280 			if (!dirty_bitmap[i])
1281 				continue;
1282 
1283 			*flush = true;
1284 			mask = xchg(&dirty_bitmap[i], 0);
1285 			dirty_bitmap_buffer[i] = mask;
1286 
1287 			offset = i * BITS_PER_LONG;
1288 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1289 								offset, mask);
1290 		}
1291 		spin_unlock(&kvm->mmu_lock);
1292 	}
1293 
1294 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1295 		return -EFAULT;
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1299 
1300 /**
1301  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1302  *	and reenable dirty page tracking for the corresponding pages.
1303  * @kvm:	pointer to kvm instance
1304  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1305  * @flush:	true if TLB flush is needed by caller
1306  */
1307 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1308 				struct kvm_clear_dirty_log *log, bool *flush)
1309 {
1310 	struct kvm_memslots *slots;
1311 	struct kvm_memory_slot *memslot;
1312 	int as_id, id;
1313 	gfn_t offset;
1314 	unsigned long i, n;
1315 	unsigned long *dirty_bitmap;
1316 	unsigned long *dirty_bitmap_buffer;
1317 
1318 	as_id = log->slot >> 16;
1319 	id = (u16)log->slot;
1320 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1321 		return -EINVAL;
1322 
1323 	if (log->first_page & 63)
1324 		return -EINVAL;
1325 
1326 	slots = __kvm_memslots(kvm, as_id);
1327 	memslot = id_to_memslot(slots, id);
1328 
1329 	dirty_bitmap = memslot->dirty_bitmap;
1330 	if (!dirty_bitmap)
1331 		return -ENOENT;
1332 
1333 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1334 
1335 	if (log->first_page > memslot->npages ||
1336 	    log->num_pages > memslot->npages - log->first_page ||
1337 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1338 	    return -EINVAL;
1339 
1340 	*flush = false;
1341 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1342 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1343 		return -EFAULT;
1344 
1345 	spin_lock(&kvm->mmu_lock);
1346 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1347 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1348 	     i++, offset += BITS_PER_LONG) {
1349 		unsigned long mask = *dirty_bitmap_buffer++;
1350 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1351 		if (!mask)
1352 			continue;
1353 
1354 		mask &= atomic_long_fetch_andnot(mask, p);
1355 
1356 		/*
1357 		 * mask contains the bits that really have been cleared.  This
1358 		 * never includes any bits beyond the length of the memslot (if
1359 		 * the length is not aligned to 64 pages), therefore it is not
1360 		 * a problem if userspace sets them in log->dirty_bitmap.
1361 		*/
1362 		if (mask) {
1363 			*flush = true;
1364 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1365 								offset, mask);
1366 		}
1367 	}
1368 	spin_unlock(&kvm->mmu_lock);
1369 
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1373 #endif
1374 
1375 bool kvm_largepages_enabled(void)
1376 {
1377 	return largepages_enabled;
1378 }
1379 
1380 void kvm_disable_largepages(void)
1381 {
1382 	largepages_enabled = false;
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1385 
1386 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1387 {
1388 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1389 }
1390 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1391 
1392 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1393 {
1394 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1395 }
1396 
1397 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1398 {
1399 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1400 
1401 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1402 	      memslot->flags & KVM_MEMSLOT_INVALID)
1403 		return false;
1404 
1405 	return true;
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1408 
1409 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1410 {
1411 	struct vm_area_struct *vma;
1412 	unsigned long addr, size;
1413 
1414 	size = PAGE_SIZE;
1415 
1416 	addr = gfn_to_hva(kvm, gfn);
1417 	if (kvm_is_error_hva(addr))
1418 		return PAGE_SIZE;
1419 
1420 	down_read(&current->mm->mmap_sem);
1421 	vma = find_vma(current->mm, addr);
1422 	if (!vma)
1423 		goto out;
1424 
1425 	size = vma_kernel_pagesize(vma);
1426 
1427 out:
1428 	up_read(&current->mm->mmap_sem);
1429 
1430 	return size;
1431 }
1432 
1433 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1434 {
1435 	return slot->flags & KVM_MEM_READONLY;
1436 }
1437 
1438 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1439 				       gfn_t *nr_pages, bool write)
1440 {
1441 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1442 		return KVM_HVA_ERR_BAD;
1443 
1444 	if (memslot_is_readonly(slot) && write)
1445 		return KVM_HVA_ERR_RO_BAD;
1446 
1447 	if (nr_pages)
1448 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1449 
1450 	return __gfn_to_hva_memslot(slot, gfn);
1451 }
1452 
1453 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1454 				     gfn_t *nr_pages)
1455 {
1456 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1457 }
1458 
1459 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1460 					gfn_t gfn)
1461 {
1462 	return gfn_to_hva_many(slot, gfn, NULL);
1463 }
1464 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1465 
1466 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1467 {
1468 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1469 }
1470 EXPORT_SYMBOL_GPL(gfn_to_hva);
1471 
1472 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1473 {
1474 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1477 
1478 /*
1479  * Return the hva of a @gfn and the R/W attribute if possible.
1480  *
1481  * @slot: the kvm_memory_slot which contains @gfn
1482  * @gfn: the gfn to be translated
1483  * @writable: used to return the read/write attribute of the @slot if the hva
1484  * is valid and @writable is not NULL
1485  */
1486 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1487 				      gfn_t gfn, bool *writable)
1488 {
1489 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1490 
1491 	if (!kvm_is_error_hva(hva) && writable)
1492 		*writable = !memslot_is_readonly(slot);
1493 
1494 	return hva;
1495 }
1496 
1497 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1498 {
1499 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1500 
1501 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1502 }
1503 
1504 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1505 {
1506 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1507 
1508 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1509 }
1510 
1511 static inline int check_user_page_hwpoison(unsigned long addr)
1512 {
1513 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1514 
1515 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1516 	return rc == -EHWPOISON;
1517 }
1518 
1519 /*
1520  * The fast path to get the writable pfn which will be stored in @pfn,
1521  * true indicates success, otherwise false is returned.  It's also the
1522  * only part that runs if we can are in atomic context.
1523  */
1524 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1525 			    bool *writable, kvm_pfn_t *pfn)
1526 {
1527 	struct page *page[1];
1528 	int npages;
1529 
1530 	/*
1531 	 * Fast pin a writable pfn only if it is a write fault request
1532 	 * or the caller allows to map a writable pfn for a read fault
1533 	 * request.
1534 	 */
1535 	if (!(write_fault || writable))
1536 		return false;
1537 
1538 	npages = __get_user_pages_fast(addr, 1, 1, page);
1539 	if (npages == 1) {
1540 		*pfn = page_to_pfn(page[0]);
1541 
1542 		if (writable)
1543 			*writable = true;
1544 		return true;
1545 	}
1546 
1547 	return false;
1548 }
1549 
1550 /*
1551  * The slow path to get the pfn of the specified host virtual address,
1552  * 1 indicates success, -errno is returned if error is detected.
1553  */
1554 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1555 			   bool *writable, kvm_pfn_t *pfn)
1556 {
1557 	unsigned int flags = FOLL_HWPOISON;
1558 	struct page *page;
1559 	int npages = 0;
1560 
1561 	might_sleep();
1562 
1563 	if (writable)
1564 		*writable = write_fault;
1565 
1566 	if (write_fault)
1567 		flags |= FOLL_WRITE;
1568 	if (async)
1569 		flags |= FOLL_NOWAIT;
1570 
1571 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1572 	if (npages != 1)
1573 		return npages;
1574 
1575 	/* map read fault as writable if possible */
1576 	if (unlikely(!write_fault) && writable) {
1577 		struct page *wpage;
1578 
1579 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1580 			*writable = true;
1581 			put_page(page);
1582 			page = wpage;
1583 		}
1584 	}
1585 	*pfn = page_to_pfn(page);
1586 	return npages;
1587 }
1588 
1589 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1590 {
1591 	if (unlikely(!(vma->vm_flags & VM_READ)))
1592 		return false;
1593 
1594 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1595 		return false;
1596 
1597 	return true;
1598 }
1599 
1600 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1601 			       unsigned long addr, bool *async,
1602 			       bool write_fault, bool *writable,
1603 			       kvm_pfn_t *p_pfn)
1604 {
1605 	unsigned long pfn;
1606 	int r;
1607 
1608 	r = follow_pfn(vma, addr, &pfn);
1609 	if (r) {
1610 		/*
1611 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1612 		 * not call the fault handler, so do it here.
1613 		 */
1614 		bool unlocked = false;
1615 		r = fixup_user_fault(current, current->mm, addr,
1616 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1617 				     &unlocked);
1618 		if (unlocked)
1619 			return -EAGAIN;
1620 		if (r)
1621 			return r;
1622 
1623 		r = follow_pfn(vma, addr, &pfn);
1624 		if (r)
1625 			return r;
1626 
1627 	}
1628 
1629 	if (writable)
1630 		*writable = true;
1631 
1632 	/*
1633 	 * Get a reference here because callers of *hva_to_pfn* and
1634 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1635 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1636 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1637 	 * simply do nothing for reserved pfns.
1638 	 *
1639 	 * Whoever called remap_pfn_range is also going to call e.g.
1640 	 * unmap_mapping_range before the underlying pages are freed,
1641 	 * causing a call to our MMU notifier.
1642 	 */
1643 	kvm_get_pfn(pfn);
1644 
1645 	*p_pfn = pfn;
1646 	return 0;
1647 }
1648 
1649 /*
1650  * Pin guest page in memory and return its pfn.
1651  * @addr: host virtual address which maps memory to the guest
1652  * @atomic: whether this function can sleep
1653  * @async: whether this function need to wait IO complete if the
1654  *         host page is not in the memory
1655  * @write_fault: whether we should get a writable host page
1656  * @writable: whether it allows to map a writable host page for !@write_fault
1657  *
1658  * The function will map a writable host page for these two cases:
1659  * 1): @write_fault = true
1660  * 2): @write_fault = false && @writable, @writable will tell the caller
1661  *     whether the mapping is writable.
1662  */
1663 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1664 			bool write_fault, bool *writable)
1665 {
1666 	struct vm_area_struct *vma;
1667 	kvm_pfn_t pfn = 0;
1668 	int npages, r;
1669 
1670 	/* we can do it either atomically or asynchronously, not both */
1671 	BUG_ON(atomic && async);
1672 
1673 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1674 		return pfn;
1675 
1676 	if (atomic)
1677 		return KVM_PFN_ERR_FAULT;
1678 
1679 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1680 	if (npages == 1)
1681 		return pfn;
1682 
1683 	down_read(&current->mm->mmap_sem);
1684 	if (npages == -EHWPOISON ||
1685 	      (!async && check_user_page_hwpoison(addr))) {
1686 		pfn = KVM_PFN_ERR_HWPOISON;
1687 		goto exit;
1688 	}
1689 
1690 retry:
1691 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1692 
1693 	if (vma == NULL)
1694 		pfn = KVM_PFN_ERR_FAULT;
1695 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1696 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1697 		if (r == -EAGAIN)
1698 			goto retry;
1699 		if (r < 0)
1700 			pfn = KVM_PFN_ERR_FAULT;
1701 	} else {
1702 		if (async && vma_is_valid(vma, write_fault))
1703 			*async = true;
1704 		pfn = KVM_PFN_ERR_FAULT;
1705 	}
1706 exit:
1707 	up_read(&current->mm->mmap_sem);
1708 	return pfn;
1709 }
1710 
1711 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1712 			       bool atomic, bool *async, bool write_fault,
1713 			       bool *writable)
1714 {
1715 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1716 
1717 	if (addr == KVM_HVA_ERR_RO_BAD) {
1718 		if (writable)
1719 			*writable = false;
1720 		return KVM_PFN_ERR_RO_FAULT;
1721 	}
1722 
1723 	if (kvm_is_error_hva(addr)) {
1724 		if (writable)
1725 			*writable = false;
1726 		return KVM_PFN_NOSLOT;
1727 	}
1728 
1729 	/* Do not map writable pfn in the readonly memslot. */
1730 	if (writable && memslot_is_readonly(slot)) {
1731 		*writable = false;
1732 		writable = NULL;
1733 	}
1734 
1735 	return hva_to_pfn(addr, atomic, async, write_fault,
1736 			  writable);
1737 }
1738 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1739 
1740 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1741 		      bool *writable)
1742 {
1743 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1744 				    write_fault, writable);
1745 }
1746 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1747 
1748 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1749 {
1750 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1753 
1754 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1755 {
1756 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1757 }
1758 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1759 
1760 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1761 {
1762 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1763 }
1764 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1765 
1766 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1767 {
1768 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1771 
1772 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1773 {
1774 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1775 }
1776 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1777 
1778 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1779 {
1780 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1783 
1784 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1785 			    struct page **pages, int nr_pages)
1786 {
1787 	unsigned long addr;
1788 	gfn_t entry = 0;
1789 
1790 	addr = gfn_to_hva_many(slot, gfn, &entry);
1791 	if (kvm_is_error_hva(addr))
1792 		return -1;
1793 
1794 	if (entry < nr_pages)
1795 		return 0;
1796 
1797 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1798 }
1799 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1800 
1801 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1802 {
1803 	if (is_error_noslot_pfn(pfn))
1804 		return KVM_ERR_PTR_BAD_PAGE;
1805 
1806 	if (kvm_is_reserved_pfn(pfn)) {
1807 		WARN_ON(1);
1808 		return KVM_ERR_PTR_BAD_PAGE;
1809 	}
1810 
1811 	return pfn_to_page(pfn);
1812 }
1813 
1814 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1815 {
1816 	kvm_pfn_t pfn;
1817 
1818 	pfn = gfn_to_pfn(kvm, gfn);
1819 
1820 	return kvm_pfn_to_page(pfn);
1821 }
1822 EXPORT_SYMBOL_GPL(gfn_to_page);
1823 
1824 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1825 			 struct kvm_host_map *map)
1826 {
1827 	kvm_pfn_t pfn;
1828 	void *hva = NULL;
1829 	struct page *page = KVM_UNMAPPED_PAGE;
1830 
1831 	if (!map)
1832 		return -EINVAL;
1833 
1834 	pfn = gfn_to_pfn_memslot(slot, gfn);
1835 	if (is_error_noslot_pfn(pfn))
1836 		return -EINVAL;
1837 
1838 	if (pfn_valid(pfn)) {
1839 		page = pfn_to_page(pfn);
1840 		hva = kmap(page);
1841 #ifdef CONFIG_HAS_IOMEM
1842 	} else {
1843 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1844 #endif
1845 	}
1846 
1847 	if (!hva)
1848 		return -EFAULT;
1849 
1850 	map->page = page;
1851 	map->hva = hva;
1852 	map->pfn = pfn;
1853 	map->gfn = gfn;
1854 
1855 	return 0;
1856 }
1857 
1858 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1859 {
1860 	return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1863 
1864 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1865 		    bool dirty)
1866 {
1867 	if (!map)
1868 		return;
1869 
1870 	if (!map->hva)
1871 		return;
1872 
1873 	if (map->page != KVM_UNMAPPED_PAGE)
1874 		kunmap(map->page);
1875 #ifdef CONFIG_HAS_IOMEM
1876 	else
1877 		memunmap(map->hva);
1878 #endif
1879 
1880 	if (dirty) {
1881 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1882 		kvm_release_pfn_dirty(map->pfn);
1883 	} else {
1884 		kvm_release_pfn_clean(map->pfn);
1885 	}
1886 
1887 	map->hva = NULL;
1888 	map->page = NULL;
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1891 
1892 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1893 {
1894 	kvm_pfn_t pfn;
1895 
1896 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1897 
1898 	return kvm_pfn_to_page(pfn);
1899 }
1900 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1901 
1902 void kvm_release_page_clean(struct page *page)
1903 {
1904 	WARN_ON(is_error_page(page));
1905 
1906 	kvm_release_pfn_clean(page_to_pfn(page));
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1909 
1910 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1911 {
1912 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1913 		put_page(pfn_to_page(pfn));
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1916 
1917 void kvm_release_page_dirty(struct page *page)
1918 {
1919 	WARN_ON(is_error_page(page));
1920 
1921 	kvm_release_pfn_dirty(page_to_pfn(page));
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1924 
1925 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1926 {
1927 	kvm_set_pfn_dirty(pfn);
1928 	kvm_release_pfn_clean(pfn);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1931 
1932 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1933 {
1934 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1935 		struct page *page = pfn_to_page(pfn);
1936 
1937 		SetPageDirty(page);
1938 	}
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1941 
1942 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1943 {
1944 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1945 		mark_page_accessed(pfn_to_page(pfn));
1946 }
1947 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1948 
1949 void kvm_get_pfn(kvm_pfn_t pfn)
1950 {
1951 	if (!kvm_is_reserved_pfn(pfn))
1952 		get_page(pfn_to_page(pfn));
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1955 
1956 static int next_segment(unsigned long len, int offset)
1957 {
1958 	if (len > PAGE_SIZE - offset)
1959 		return PAGE_SIZE - offset;
1960 	else
1961 		return len;
1962 }
1963 
1964 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1965 				 void *data, int offset, int len)
1966 {
1967 	int r;
1968 	unsigned long addr;
1969 
1970 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1971 	if (kvm_is_error_hva(addr))
1972 		return -EFAULT;
1973 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1974 	if (r)
1975 		return -EFAULT;
1976 	return 0;
1977 }
1978 
1979 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1980 			int len)
1981 {
1982 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1983 
1984 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1987 
1988 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1989 			     int offset, int len)
1990 {
1991 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1992 
1993 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1996 
1997 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1998 {
1999 	gfn_t gfn = gpa >> PAGE_SHIFT;
2000 	int seg;
2001 	int offset = offset_in_page(gpa);
2002 	int ret;
2003 
2004 	while ((seg = next_segment(len, offset)) != 0) {
2005 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2006 		if (ret < 0)
2007 			return ret;
2008 		offset = 0;
2009 		len -= seg;
2010 		data += seg;
2011 		++gfn;
2012 	}
2013 	return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(kvm_read_guest);
2016 
2017 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2018 {
2019 	gfn_t gfn = gpa >> PAGE_SHIFT;
2020 	int seg;
2021 	int offset = offset_in_page(gpa);
2022 	int ret;
2023 
2024 	while ((seg = next_segment(len, offset)) != 0) {
2025 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2026 		if (ret < 0)
2027 			return ret;
2028 		offset = 0;
2029 		len -= seg;
2030 		data += seg;
2031 		++gfn;
2032 	}
2033 	return 0;
2034 }
2035 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2036 
2037 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2038 			           void *data, int offset, unsigned long len)
2039 {
2040 	int r;
2041 	unsigned long addr;
2042 
2043 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2044 	if (kvm_is_error_hva(addr))
2045 		return -EFAULT;
2046 	pagefault_disable();
2047 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2048 	pagefault_enable();
2049 	if (r)
2050 		return -EFAULT;
2051 	return 0;
2052 }
2053 
2054 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2055 			  unsigned long len)
2056 {
2057 	gfn_t gfn = gpa >> PAGE_SHIFT;
2058 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2059 	int offset = offset_in_page(gpa);
2060 
2061 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2064 
2065 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2066 			       void *data, unsigned long len)
2067 {
2068 	gfn_t gfn = gpa >> PAGE_SHIFT;
2069 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2070 	int offset = offset_in_page(gpa);
2071 
2072 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2075 
2076 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2077 			          const void *data, int offset, int len)
2078 {
2079 	int r;
2080 	unsigned long addr;
2081 
2082 	addr = gfn_to_hva_memslot(memslot, gfn);
2083 	if (kvm_is_error_hva(addr))
2084 		return -EFAULT;
2085 	r = __copy_to_user((void __user *)addr + offset, data, len);
2086 	if (r)
2087 		return -EFAULT;
2088 	mark_page_dirty_in_slot(memslot, gfn);
2089 	return 0;
2090 }
2091 
2092 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2093 			 const void *data, int offset, int len)
2094 {
2095 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2096 
2097 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2100 
2101 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2102 			      const void *data, int offset, int len)
2103 {
2104 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2105 
2106 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2109 
2110 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2111 		    unsigned long len)
2112 {
2113 	gfn_t gfn = gpa >> PAGE_SHIFT;
2114 	int seg;
2115 	int offset = offset_in_page(gpa);
2116 	int ret;
2117 
2118 	while ((seg = next_segment(len, offset)) != 0) {
2119 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2120 		if (ret < 0)
2121 			return ret;
2122 		offset = 0;
2123 		len -= seg;
2124 		data += seg;
2125 		++gfn;
2126 	}
2127 	return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_write_guest);
2130 
2131 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2132 		         unsigned long len)
2133 {
2134 	gfn_t gfn = gpa >> PAGE_SHIFT;
2135 	int seg;
2136 	int offset = offset_in_page(gpa);
2137 	int ret;
2138 
2139 	while ((seg = next_segment(len, offset)) != 0) {
2140 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2141 		if (ret < 0)
2142 			return ret;
2143 		offset = 0;
2144 		len -= seg;
2145 		data += seg;
2146 		++gfn;
2147 	}
2148 	return 0;
2149 }
2150 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2151 
2152 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2153 				       struct gfn_to_hva_cache *ghc,
2154 				       gpa_t gpa, unsigned long len)
2155 {
2156 	int offset = offset_in_page(gpa);
2157 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2158 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2159 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2160 	gfn_t nr_pages_avail;
2161 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2162 
2163 	ghc->gpa = gpa;
2164 	ghc->generation = slots->generation;
2165 	ghc->len = len;
2166 	ghc->hva = KVM_HVA_ERR_BAD;
2167 
2168 	/*
2169 	 * If the requested region crosses two memslots, we still
2170 	 * verify that the entire region is valid here.
2171 	 */
2172 	while (!r && start_gfn <= end_gfn) {
2173 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2174 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2175 					   &nr_pages_avail);
2176 		if (kvm_is_error_hva(ghc->hva))
2177 			r = -EFAULT;
2178 		start_gfn += nr_pages_avail;
2179 	}
2180 
2181 	/* Use the slow path for cross page reads and writes. */
2182 	if (!r && nr_pages_needed == 1)
2183 		ghc->hva += offset;
2184 	else
2185 		ghc->memslot = NULL;
2186 
2187 	return r;
2188 }
2189 
2190 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2191 			      gpa_t gpa, unsigned long len)
2192 {
2193 	struct kvm_memslots *slots = kvm_memslots(kvm);
2194 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2197 
2198 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2199 				  void *data, unsigned int offset,
2200 				  unsigned long len)
2201 {
2202 	struct kvm_memslots *slots = kvm_memslots(kvm);
2203 	int r;
2204 	gpa_t gpa = ghc->gpa + offset;
2205 
2206 	BUG_ON(len + offset > ghc->len);
2207 
2208 	if (slots->generation != ghc->generation)
2209 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2210 
2211 	if (unlikely(!ghc->memslot))
2212 		return kvm_write_guest(kvm, gpa, data, len);
2213 
2214 	if (kvm_is_error_hva(ghc->hva))
2215 		return -EFAULT;
2216 
2217 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2218 	if (r)
2219 		return -EFAULT;
2220 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2221 
2222 	return 0;
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2225 
2226 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2227 			   void *data, unsigned long len)
2228 {
2229 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2230 }
2231 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2232 
2233 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2234 			   void *data, unsigned long len)
2235 {
2236 	struct kvm_memslots *slots = kvm_memslots(kvm);
2237 	int r;
2238 
2239 	BUG_ON(len > ghc->len);
2240 
2241 	if (slots->generation != ghc->generation)
2242 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2243 
2244 	if (unlikely(!ghc->memslot))
2245 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2246 
2247 	if (kvm_is_error_hva(ghc->hva))
2248 		return -EFAULT;
2249 
2250 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2251 	if (r)
2252 		return -EFAULT;
2253 
2254 	return 0;
2255 }
2256 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2257 
2258 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2259 {
2260 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2261 
2262 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2263 }
2264 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2265 
2266 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2267 {
2268 	gfn_t gfn = gpa >> PAGE_SHIFT;
2269 	int seg;
2270 	int offset = offset_in_page(gpa);
2271 	int ret;
2272 
2273 	while ((seg = next_segment(len, offset)) != 0) {
2274 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2275 		if (ret < 0)
2276 			return ret;
2277 		offset = 0;
2278 		len -= seg;
2279 		++gfn;
2280 	}
2281 	return 0;
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2284 
2285 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2286 				    gfn_t gfn)
2287 {
2288 	if (memslot && memslot->dirty_bitmap) {
2289 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2290 
2291 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2292 	}
2293 }
2294 
2295 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2296 {
2297 	struct kvm_memory_slot *memslot;
2298 
2299 	memslot = gfn_to_memslot(kvm, gfn);
2300 	mark_page_dirty_in_slot(memslot, gfn);
2301 }
2302 EXPORT_SYMBOL_GPL(mark_page_dirty);
2303 
2304 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2305 {
2306 	struct kvm_memory_slot *memslot;
2307 
2308 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2309 	mark_page_dirty_in_slot(memslot, gfn);
2310 }
2311 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2312 
2313 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2314 {
2315 	if (!vcpu->sigset_active)
2316 		return;
2317 
2318 	/*
2319 	 * This does a lockless modification of ->real_blocked, which is fine
2320 	 * because, only current can change ->real_blocked and all readers of
2321 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2322 	 * of ->blocked.
2323 	 */
2324 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2325 }
2326 
2327 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2328 {
2329 	if (!vcpu->sigset_active)
2330 		return;
2331 
2332 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2333 	sigemptyset(&current->real_blocked);
2334 }
2335 
2336 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2337 {
2338 	unsigned int old, val, grow, grow_start;
2339 
2340 	old = val = vcpu->halt_poll_ns;
2341 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2342 	grow = READ_ONCE(halt_poll_ns_grow);
2343 	if (!grow)
2344 		goto out;
2345 
2346 	val *= grow;
2347 	if (val < grow_start)
2348 		val = grow_start;
2349 
2350 	if (val > halt_poll_ns)
2351 		val = halt_poll_ns;
2352 
2353 	vcpu->halt_poll_ns = val;
2354 out:
2355 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2356 }
2357 
2358 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2359 {
2360 	unsigned int old, val, shrink;
2361 
2362 	old = val = vcpu->halt_poll_ns;
2363 	shrink = READ_ONCE(halt_poll_ns_shrink);
2364 	if (shrink == 0)
2365 		val = 0;
2366 	else
2367 		val /= shrink;
2368 
2369 	vcpu->halt_poll_ns = val;
2370 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2371 }
2372 
2373 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2374 {
2375 	int ret = -EINTR;
2376 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2377 
2378 	if (kvm_arch_vcpu_runnable(vcpu)) {
2379 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2380 		goto out;
2381 	}
2382 	if (kvm_cpu_has_pending_timer(vcpu))
2383 		goto out;
2384 	if (signal_pending(current))
2385 		goto out;
2386 
2387 	ret = 0;
2388 out:
2389 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2390 	return ret;
2391 }
2392 
2393 /*
2394  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2395  */
2396 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2397 {
2398 	ktime_t start, cur;
2399 	DECLARE_SWAITQUEUE(wait);
2400 	bool waited = false;
2401 	u64 block_ns;
2402 
2403 	kvm_arch_vcpu_blocking(vcpu);
2404 
2405 	start = cur = ktime_get();
2406 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2407 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2408 
2409 		++vcpu->stat.halt_attempted_poll;
2410 		do {
2411 			/*
2412 			 * This sets KVM_REQ_UNHALT if an interrupt
2413 			 * arrives.
2414 			 */
2415 			if (kvm_vcpu_check_block(vcpu) < 0) {
2416 				++vcpu->stat.halt_successful_poll;
2417 				if (!vcpu_valid_wakeup(vcpu))
2418 					++vcpu->stat.halt_poll_invalid;
2419 				goto out;
2420 			}
2421 			cur = ktime_get();
2422 		} while (single_task_running() && ktime_before(cur, stop));
2423 	}
2424 
2425 	for (;;) {
2426 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2427 
2428 		if (kvm_vcpu_check_block(vcpu) < 0)
2429 			break;
2430 
2431 		waited = true;
2432 		schedule();
2433 	}
2434 
2435 	finish_swait(&vcpu->wq, &wait);
2436 	cur = ktime_get();
2437 out:
2438 	kvm_arch_vcpu_unblocking(vcpu);
2439 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2440 
2441 	if (!kvm_arch_no_poll(vcpu)) {
2442 		if (!vcpu_valid_wakeup(vcpu)) {
2443 			shrink_halt_poll_ns(vcpu);
2444 		} else if (halt_poll_ns) {
2445 			if (block_ns <= vcpu->halt_poll_ns)
2446 				;
2447 			/* we had a long block, shrink polling */
2448 			else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2449 				shrink_halt_poll_ns(vcpu);
2450 			/* we had a short halt and our poll time is too small */
2451 			else if (vcpu->halt_poll_ns < halt_poll_ns &&
2452 				block_ns < halt_poll_ns)
2453 				grow_halt_poll_ns(vcpu);
2454 		} else {
2455 			vcpu->halt_poll_ns = 0;
2456 		}
2457 	}
2458 
2459 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2460 	kvm_arch_vcpu_block_finish(vcpu);
2461 }
2462 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2463 
2464 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2465 {
2466 	struct swait_queue_head *wqp;
2467 
2468 	wqp = kvm_arch_vcpu_wq(vcpu);
2469 	if (swq_has_sleeper(wqp)) {
2470 		swake_up_one(wqp);
2471 		WRITE_ONCE(vcpu->ready, true);
2472 		++vcpu->stat.halt_wakeup;
2473 		return true;
2474 	}
2475 
2476 	return false;
2477 }
2478 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2479 
2480 #ifndef CONFIG_S390
2481 /*
2482  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2483  */
2484 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2485 {
2486 	int me;
2487 	int cpu = vcpu->cpu;
2488 
2489 	if (kvm_vcpu_wake_up(vcpu))
2490 		return;
2491 
2492 	me = get_cpu();
2493 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2494 		if (kvm_arch_vcpu_should_kick(vcpu))
2495 			smp_send_reschedule(cpu);
2496 	put_cpu();
2497 }
2498 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2499 #endif /* !CONFIG_S390 */
2500 
2501 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2502 {
2503 	struct pid *pid;
2504 	struct task_struct *task = NULL;
2505 	int ret = 0;
2506 
2507 	rcu_read_lock();
2508 	pid = rcu_dereference(target->pid);
2509 	if (pid)
2510 		task = get_pid_task(pid, PIDTYPE_PID);
2511 	rcu_read_unlock();
2512 	if (!task)
2513 		return ret;
2514 	ret = yield_to(task, 1);
2515 	put_task_struct(task);
2516 
2517 	return ret;
2518 }
2519 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2520 
2521 /*
2522  * Helper that checks whether a VCPU is eligible for directed yield.
2523  * Most eligible candidate to yield is decided by following heuristics:
2524  *
2525  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2526  *  (preempted lock holder), indicated by @in_spin_loop.
2527  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2528  *
2529  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2530  *  chance last time (mostly it has become eligible now since we have probably
2531  *  yielded to lockholder in last iteration. This is done by toggling
2532  *  @dy_eligible each time a VCPU checked for eligibility.)
2533  *
2534  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2535  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2536  *  burning. Giving priority for a potential lock-holder increases lock
2537  *  progress.
2538  *
2539  *  Since algorithm is based on heuristics, accessing another VCPU data without
2540  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2541  *  and continue with next VCPU and so on.
2542  */
2543 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2544 {
2545 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2546 	bool eligible;
2547 
2548 	eligible = !vcpu->spin_loop.in_spin_loop ||
2549 		    vcpu->spin_loop.dy_eligible;
2550 
2551 	if (vcpu->spin_loop.in_spin_loop)
2552 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2553 
2554 	return eligible;
2555 #else
2556 	return true;
2557 #endif
2558 }
2559 
2560 /*
2561  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2562  * a vcpu_load/vcpu_put pair.  However, for most architectures
2563  * kvm_arch_vcpu_runnable does not require vcpu_load.
2564  */
2565 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2566 {
2567 	return kvm_arch_vcpu_runnable(vcpu);
2568 }
2569 
2570 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2571 {
2572 	if (kvm_arch_dy_runnable(vcpu))
2573 		return true;
2574 
2575 #ifdef CONFIG_KVM_ASYNC_PF
2576 	if (!list_empty_careful(&vcpu->async_pf.done))
2577 		return true;
2578 #endif
2579 
2580 	return false;
2581 }
2582 
2583 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2584 {
2585 	struct kvm *kvm = me->kvm;
2586 	struct kvm_vcpu *vcpu;
2587 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2588 	int yielded = 0;
2589 	int try = 3;
2590 	int pass;
2591 	int i;
2592 
2593 	kvm_vcpu_set_in_spin_loop(me, true);
2594 	/*
2595 	 * We boost the priority of a VCPU that is runnable but not
2596 	 * currently running, because it got preempted by something
2597 	 * else and called schedule in __vcpu_run.  Hopefully that
2598 	 * VCPU is holding the lock that we need and will release it.
2599 	 * We approximate round-robin by starting at the last boosted VCPU.
2600 	 */
2601 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2602 		kvm_for_each_vcpu(i, vcpu, kvm) {
2603 			if (!pass && i <= last_boosted_vcpu) {
2604 				i = last_boosted_vcpu;
2605 				continue;
2606 			} else if (pass && i > last_boosted_vcpu)
2607 				break;
2608 			if (!READ_ONCE(vcpu->ready))
2609 				continue;
2610 			if (vcpu == me)
2611 				continue;
2612 			if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2613 				continue;
2614 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2615 				!kvm_arch_vcpu_in_kernel(vcpu))
2616 				continue;
2617 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2618 				continue;
2619 
2620 			yielded = kvm_vcpu_yield_to(vcpu);
2621 			if (yielded > 0) {
2622 				kvm->last_boosted_vcpu = i;
2623 				break;
2624 			} else if (yielded < 0) {
2625 				try--;
2626 				if (!try)
2627 					break;
2628 			}
2629 		}
2630 	}
2631 	kvm_vcpu_set_in_spin_loop(me, false);
2632 
2633 	/* Ensure vcpu is not eligible during next spinloop */
2634 	kvm_vcpu_set_dy_eligible(me, false);
2635 }
2636 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2637 
2638 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2639 {
2640 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2641 	struct page *page;
2642 
2643 	if (vmf->pgoff == 0)
2644 		page = virt_to_page(vcpu->run);
2645 #ifdef CONFIG_X86
2646 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2647 		page = virt_to_page(vcpu->arch.pio_data);
2648 #endif
2649 #ifdef CONFIG_KVM_MMIO
2650 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2651 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2652 #endif
2653 	else
2654 		return kvm_arch_vcpu_fault(vcpu, vmf);
2655 	get_page(page);
2656 	vmf->page = page;
2657 	return 0;
2658 }
2659 
2660 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2661 	.fault = kvm_vcpu_fault,
2662 };
2663 
2664 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2665 {
2666 	vma->vm_ops = &kvm_vcpu_vm_ops;
2667 	return 0;
2668 }
2669 
2670 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2671 {
2672 	struct kvm_vcpu *vcpu = filp->private_data;
2673 
2674 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2675 	kvm_put_kvm(vcpu->kvm);
2676 	return 0;
2677 }
2678 
2679 static struct file_operations kvm_vcpu_fops = {
2680 	.release        = kvm_vcpu_release,
2681 	.unlocked_ioctl = kvm_vcpu_ioctl,
2682 	.mmap           = kvm_vcpu_mmap,
2683 	.llseek		= noop_llseek,
2684 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2685 };
2686 
2687 /*
2688  * Allocates an inode for the vcpu.
2689  */
2690 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2691 {
2692 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2693 
2694 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2695 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2696 }
2697 
2698 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2699 {
2700 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2701 	char dir_name[ITOA_MAX_LEN * 2];
2702 
2703 	if (!debugfs_initialized())
2704 		return;
2705 
2706 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2707 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2708 						  vcpu->kvm->debugfs_dentry);
2709 
2710 	kvm_arch_create_vcpu_debugfs(vcpu);
2711 #endif
2712 }
2713 
2714 /*
2715  * Creates some virtual cpus.  Good luck creating more than one.
2716  */
2717 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2718 {
2719 	int r;
2720 	struct kvm_vcpu *vcpu;
2721 
2722 	if (id >= KVM_MAX_VCPU_ID)
2723 		return -EINVAL;
2724 
2725 	mutex_lock(&kvm->lock);
2726 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2727 		mutex_unlock(&kvm->lock);
2728 		return -EINVAL;
2729 	}
2730 
2731 	kvm->created_vcpus++;
2732 	mutex_unlock(&kvm->lock);
2733 
2734 	vcpu = kvm_arch_vcpu_create(kvm, id);
2735 	if (IS_ERR(vcpu)) {
2736 		r = PTR_ERR(vcpu);
2737 		goto vcpu_decrement;
2738 	}
2739 
2740 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2741 
2742 	r = kvm_arch_vcpu_setup(vcpu);
2743 	if (r)
2744 		goto vcpu_destroy;
2745 
2746 	kvm_create_vcpu_debugfs(vcpu);
2747 
2748 	mutex_lock(&kvm->lock);
2749 	if (kvm_get_vcpu_by_id(kvm, id)) {
2750 		r = -EEXIST;
2751 		goto unlock_vcpu_destroy;
2752 	}
2753 
2754 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2755 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2756 
2757 	/* Now it's all set up, let userspace reach it */
2758 	kvm_get_kvm(kvm);
2759 	r = create_vcpu_fd(vcpu);
2760 	if (r < 0) {
2761 		kvm_put_kvm_no_destroy(kvm);
2762 		goto unlock_vcpu_destroy;
2763 	}
2764 
2765 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2766 
2767 	/*
2768 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2769 	 * before kvm->online_vcpu's incremented value.
2770 	 */
2771 	smp_wmb();
2772 	atomic_inc(&kvm->online_vcpus);
2773 
2774 	mutex_unlock(&kvm->lock);
2775 	kvm_arch_vcpu_postcreate(vcpu);
2776 	return r;
2777 
2778 unlock_vcpu_destroy:
2779 	mutex_unlock(&kvm->lock);
2780 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2781 vcpu_destroy:
2782 	kvm_arch_vcpu_destroy(vcpu);
2783 vcpu_decrement:
2784 	mutex_lock(&kvm->lock);
2785 	kvm->created_vcpus--;
2786 	mutex_unlock(&kvm->lock);
2787 	return r;
2788 }
2789 
2790 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2791 {
2792 	if (sigset) {
2793 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2794 		vcpu->sigset_active = 1;
2795 		vcpu->sigset = *sigset;
2796 	} else
2797 		vcpu->sigset_active = 0;
2798 	return 0;
2799 }
2800 
2801 static long kvm_vcpu_ioctl(struct file *filp,
2802 			   unsigned int ioctl, unsigned long arg)
2803 {
2804 	struct kvm_vcpu *vcpu = filp->private_data;
2805 	void __user *argp = (void __user *)arg;
2806 	int r;
2807 	struct kvm_fpu *fpu = NULL;
2808 	struct kvm_sregs *kvm_sregs = NULL;
2809 
2810 	if (vcpu->kvm->mm != current->mm)
2811 		return -EIO;
2812 
2813 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2814 		return -EINVAL;
2815 
2816 	/*
2817 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2818 	 * execution; mutex_lock() would break them.
2819 	 */
2820 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2821 	if (r != -ENOIOCTLCMD)
2822 		return r;
2823 
2824 	if (mutex_lock_killable(&vcpu->mutex))
2825 		return -EINTR;
2826 	switch (ioctl) {
2827 	case KVM_RUN: {
2828 		struct pid *oldpid;
2829 		r = -EINVAL;
2830 		if (arg)
2831 			goto out;
2832 		oldpid = rcu_access_pointer(vcpu->pid);
2833 		if (unlikely(oldpid != task_pid(current))) {
2834 			/* The thread running this VCPU changed. */
2835 			struct pid *newpid;
2836 
2837 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2838 			if (r)
2839 				break;
2840 
2841 			newpid = get_task_pid(current, PIDTYPE_PID);
2842 			rcu_assign_pointer(vcpu->pid, newpid);
2843 			if (oldpid)
2844 				synchronize_rcu();
2845 			put_pid(oldpid);
2846 		}
2847 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2848 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2849 		break;
2850 	}
2851 	case KVM_GET_REGS: {
2852 		struct kvm_regs *kvm_regs;
2853 
2854 		r = -ENOMEM;
2855 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2856 		if (!kvm_regs)
2857 			goto out;
2858 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2859 		if (r)
2860 			goto out_free1;
2861 		r = -EFAULT;
2862 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2863 			goto out_free1;
2864 		r = 0;
2865 out_free1:
2866 		kfree(kvm_regs);
2867 		break;
2868 	}
2869 	case KVM_SET_REGS: {
2870 		struct kvm_regs *kvm_regs;
2871 
2872 		r = -ENOMEM;
2873 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2874 		if (IS_ERR(kvm_regs)) {
2875 			r = PTR_ERR(kvm_regs);
2876 			goto out;
2877 		}
2878 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2879 		kfree(kvm_regs);
2880 		break;
2881 	}
2882 	case KVM_GET_SREGS: {
2883 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2884 				    GFP_KERNEL_ACCOUNT);
2885 		r = -ENOMEM;
2886 		if (!kvm_sregs)
2887 			goto out;
2888 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2889 		if (r)
2890 			goto out;
2891 		r = -EFAULT;
2892 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2893 			goto out;
2894 		r = 0;
2895 		break;
2896 	}
2897 	case KVM_SET_SREGS: {
2898 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2899 		if (IS_ERR(kvm_sregs)) {
2900 			r = PTR_ERR(kvm_sregs);
2901 			kvm_sregs = NULL;
2902 			goto out;
2903 		}
2904 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2905 		break;
2906 	}
2907 	case KVM_GET_MP_STATE: {
2908 		struct kvm_mp_state mp_state;
2909 
2910 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2911 		if (r)
2912 			goto out;
2913 		r = -EFAULT;
2914 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2915 			goto out;
2916 		r = 0;
2917 		break;
2918 	}
2919 	case KVM_SET_MP_STATE: {
2920 		struct kvm_mp_state mp_state;
2921 
2922 		r = -EFAULT;
2923 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2924 			goto out;
2925 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2926 		break;
2927 	}
2928 	case KVM_TRANSLATE: {
2929 		struct kvm_translation tr;
2930 
2931 		r = -EFAULT;
2932 		if (copy_from_user(&tr, argp, sizeof(tr)))
2933 			goto out;
2934 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2935 		if (r)
2936 			goto out;
2937 		r = -EFAULT;
2938 		if (copy_to_user(argp, &tr, sizeof(tr)))
2939 			goto out;
2940 		r = 0;
2941 		break;
2942 	}
2943 	case KVM_SET_GUEST_DEBUG: {
2944 		struct kvm_guest_debug dbg;
2945 
2946 		r = -EFAULT;
2947 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2948 			goto out;
2949 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2950 		break;
2951 	}
2952 	case KVM_SET_SIGNAL_MASK: {
2953 		struct kvm_signal_mask __user *sigmask_arg = argp;
2954 		struct kvm_signal_mask kvm_sigmask;
2955 		sigset_t sigset, *p;
2956 
2957 		p = NULL;
2958 		if (argp) {
2959 			r = -EFAULT;
2960 			if (copy_from_user(&kvm_sigmask, argp,
2961 					   sizeof(kvm_sigmask)))
2962 				goto out;
2963 			r = -EINVAL;
2964 			if (kvm_sigmask.len != sizeof(sigset))
2965 				goto out;
2966 			r = -EFAULT;
2967 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2968 					   sizeof(sigset)))
2969 				goto out;
2970 			p = &sigset;
2971 		}
2972 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2973 		break;
2974 	}
2975 	case KVM_GET_FPU: {
2976 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2977 		r = -ENOMEM;
2978 		if (!fpu)
2979 			goto out;
2980 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2981 		if (r)
2982 			goto out;
2983 		r = -EFAULT;
2984 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2985 			goto out;
2986 		r = 0;
2987 		break;
2988 	}
2989 	case KVM_SET_FPU: {
2990 		fpu = memdup_user(argp, sizeof(*fpu));
2991 		if (IS_ERR(fpu)) {
2992 			r = PTR_ERR(fpu);
2993 			fpu = NULL;
2994 			goto out;
2995 		}
2996 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2997 		break;
2998 	}
2999 	default:
3000 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3001 	}
3002 out:
3003 	mutex_unlock(&vcpu->mutex);
3004 	kfree(fpu);
3005 	kfree(kvm_sregs);
3006 	return r;
3007 }
3008 
3009 #ifdef CONFIG_KVM_COMPAT
3010 static long kvm_vcpu_compat_ioctl(struct file *filp,
3011 				  unsigned int ioctl, unsigned long arg)
3012 {
3013 	struct kvm_vcpu *vcpu = filp->private_data;
3014 	void __user *argp = compat_ptr(arg);
3015 	int r;
3016 
3017 	if (vcpu->kvm->mm != current->mm)
3018 		return -EIO;
3019 
3020 	switch (ioctl) {
3021 	case KVM_SET_SIGNAL_MASK: {
3022 		struct kvm_signal_mask __user *sigmask_arg = argp;
3023 		struct kvm_signal_mask kvm_sigmask;
3024 		sigset_t sigset;
3025 
3026 		if (argp) {
3027 			r = -EFAULT;
3028 			if (copy_from_user(&kvm_sigmask, argp,
3029 					   sizeof(kvm_sigmask)))
3030 				goto out;
3031 			r = -EINVAL;
3032 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3033 				goto out;
3034 			r = -EFAULT;
3035 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3036 				goto out;
3037 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3038 		} else
3039 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3040 		break;
3041 	}
3042 	default:
3043 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3044 	}
3045 
3046 out:
3047 	return r;
3048 }
3049 #endif
3050 
3051 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3052 {
3053 	struct kvm_device *dev = filp->private_data;
3054 
3055 	if (dev->ops->mmap)
3056 		return dev->ops->mmap(dev, vma);
3057 
3058 	return -ENODEV;
3059 }
3060 
3061 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3062 				 int (*accessor)(struct kvm_device *dev,
3063 						 struct kvm_device_attr *attr),
3064 				 unsigned long arg)
3065 {
3066 	struct kvm_device_attr attr;
3067 
3068 	if (!accessor)
3069 		return -EPERM;
3070 
3071 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3072 		return -EFAULT;
3073 
3074 	return accessor(dev, &attr);
3075 }
3076 
3077 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3078 			     unsigned long arg)
3079 {
3080 	struct kvm_device *dev = filp->private_data;
3081 
3082 	if (dev->kvm->mm != current->mm)
3083 		return -EIO;
3084 
3085 	switch (ioctl) {
3086 	case KVM_SET_DEVICE_ATTR:
3087 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3088 	case KVM_GET_DEVICE_ATTR:
3089 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3090 	case KVM_HAS_DEVICE_ATTR:
3091 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3092 	default:
3093 		if (dev->ops->ioctl)
3094 			return dev->ops->ioctl(dev, ioctl, arg);
3095 
3096 		return -ENOTTY;
3097 	}
3098 }
3099 
3100 static int kvm_device_release(struct inode *inode, struct file *filp)
3101 {
3102 	struct kvm_device *dev = filp->private_data;
3103 	struct kvm *kvm = dev->kvm;
3104 
3105 	if (dev->ops->release) {
3106 		mutex_lock(&kvm->lock);
3107 		list_del(&dev->vm_node);
3108 		dev->ops->release(dev);
3109 		mutex_unlock(&kvm->lock);
3110 	}
3111 
3112 	kvm_put_kvm(kvm);
3113 	return 0;
3114 }
3115 
3116 static const struct file_operations kvm_device_fops = {
3117 	.unlocked_ioctl = kvm_device_ioctl,
3118 	.release = kvm_device_release,
3119 	KVM_COMPAT(kvm_device_ioctl),
3120 	.mmap = kvm_device_mmap,
3121 };
3122 
3123 struct kvm_device *kvm_device_from_filp(struct file *filp)
3124 {
3125 	if (filp->f_op != &kvm_device_fops)
3126 		return NULL;
3127 
3128 	return filp->private_data;
3129 }
3130 
3131 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3132 #ifdef CONFIG_KVM_MPIC
3133 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3134 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3135 #endif
3136 };
3137 
3138 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3139 {
3140 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3141 		return -ENOSPC;
3142 
3143 	if (kvm_device_ops_table[type] != NULL)
3144 		return -EEXIST;
3145 
3146 	kvm_device_ops_table[type] = ops;
3147 	return 0;
3148 }
3149 
3150 void kvm_unregister_device_ops(u32 type)
3151 {
3152 	if (kvm_device_ops_table[type] != NULL)
3153 		kvm_device_ops_table[type] = NULL;
3154 }
3155 
3156 static int kvm_ioctl_create_device(struct kvm *kvm,
3157 				   struct kvm_create_device *cd)
3158 {
3159 	const struct kvm_device_ops *ops = NULL;
3160 	struct kvm_device *dev;
3161 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3162 	int type;
3163 	int ret;
3164 
3165 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3166 		return -ENODEV;
3167 
3168 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3169 	ops = kvm_device_ops_table[type];
3170 	if (ops == NULL)
3171 		return -ENODEV;
3172 
3173 	if (test)
3174 		return 0;
3175 
3176 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3177 	if (!dev)
3178 		return -ENOMEM;
3179 
3180 	dev->ops = ops;
3181 	dev->kvm = kvm;
3182 
3183 	mutex_lock(&kvm->lock);
3184 	ret = ops->create(dev, type);
3185 	if (ret < 0) {
3186 		mutex_unlock(&kvm->lock);
3187 		kfree(dev);
3188 		return ret;
3189 	}
3190 	list_add(&dev->vm_node, &kvm->devices);
3191 	mutex_unlock(&kvm->lock);
3192 
3193 	if (ops->init)
3194 		ops->init(dev);
3195 
3196 	kvm_get_kvm(kvm);
3197 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3198 	if (ret < 0) {
3199 		kvm_put_kvm_no_destroy(kvm);
3200 		mutex_lock(&kvm->lock);
3201 		list_del(&dev->vm_node);
3202 		mutex_unlock(&kvm->lock);
3203 		ops->destroy(dev);
3204 		return ret;
3205 	}
3206 
3207 	cd->fd = ret;
3208 	return 0;
3209 }
3210 
3211 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3212 {
3213 	switch (arg) {
3214 	case KVM_CAP_USER_MEMORY:
3215 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3216 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3217 	case KVM_CAP_INTERNAL_ERROR_DATA:
3218 #ifdef CONFIG_HAVE_KVM_MSI
3219 	case KVM_CAP_SIGNAL_MSI:
3220 #endif
3221 #ifdef CONFIG_HAVE_KVM_IRQFD
3222 	case KVM_CAP_IRQFD:
3223 	case KVM_CAP_IRQFD_RESAMPLE:
3224 #endif
3225 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3226 	case KVM_CAP_CHECK_EXTENSION_VM:
3227 	case KVM_CAP_ENABLE_CAP_VM:
3228 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3229 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3230 #endif
3231 		return 1;
3232 #ifdef CONFIG_KVM_MMIO
3233 	case KVM_CAP_COALESCED_MMIO:
3234 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3235 	case KVM_CAP_COALESCED_PIO:
3236 		return 1;
3237 #endif
3238 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3239 	case KVM_CAP_IRQ_ROUTING:
3240 		return KVM_MAX_IRQ_ROUTES;
3241 #endif
3242 #if KVM_ADDRESS_SPACE_NUM > 1
3243 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3244 		return KVM_ADDRESS_SPACE_NUM;
3245 #endif
3246 	case KVM_CAP_NR_MEMSLOTS:
3247 		return KVM_USER_MEM_SLOTS;
3248 	default:
3249 		break;
3250 	}
3251 	return kvm_vm_ioctl_check_extension(kvm, arg);
3252 }
3253 
3254 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3255 						  struct kvm_enable_cap *cap)
3256 {
3257 	return -EINVAL;
3258 }
3259 
3260 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3261 					   struct kvm_enable_cap *cap)
3262 {
3263 	switch (cap->cap) {
3264 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3265 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3266 		if (cap->flags || (cap->args[0] & ~1))
3267 			return -EINVAL;
3268 		kvm->manual_dirty_log_protect = cap->args[0];
3269 		return 0;
3270 #endif
3271 	default:
3272 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3273 	}
3274 }
3275 
3276 static long kvm_vm_ioctl(struct file *filp,
3277 			   unsigned int ioctl, unsigned long arg)
3278 {
3279 	struct kvm *kvm = filp->private_data;
3280 	void __user *argp = (void __user *)arg;
3281 	int r;
3282 
3283 	if (kvm->mm != current->mm)
3284 		return -EIO;
3285 	switch (ioctl) {
3286 	case KVM_CREATE_VCPU:
3287 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3288 		break;
3289 	case KVM_ENABLE_CAP: {
3290 		struct kvm_enable_cap cap;
3291 
3292 		r = -EFAULT;
3293 		if (copy_from_user(&cap, argp, sizeof(cap)))
3294 			goto out;
3295 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3296 		break;
3297 	}
3298 	case KVM_SET_USER_MEMORY_REGION: {
3299 		struct kvm_userspace_memory_region kvm_userspace_mem;
3300 
3301 		r = -EFAULT;
3302 		if (copy_from_user(&kvm_userspace_mem, argp,
3303 						sizeof(kvm_userspace_mem)))
3304 			goto out;
3305 
3306 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3307 		break;
3308 	}
3309 	case KVM_GET_DIRTY_LOG: {
3310 		struct kvm_dirty_log log;
3311 
3312 		r = -EFAULT;
3313 		if (copy_from_user(&log, argp, sizeof(log)))
3314 			goto out;
3315 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3316 		break;
3317 	}
3318 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3319 	case KVM_CLEAR_DIRTY_LOG: {
3320 		struct kvm_clear_dirty_log log;
3321 
3322 		r = -EFAULT;
3323 		if (copy_from_user(&log, argp, sizeof(log)))
3324 			goto out;
3325 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3326 		break;
3327 	}
3328 #endif
3329 #ifdef CONFIG_KVM_MMIO
3330 	case KVM_REGISTER_COALESCED_MMIO: {
3331 		struct kvm_coalesced_mmio_zone zone;
3332 
3333 		r = -EFAULT;
3334 		if (copy_from_user(&zone, argp, sizeof(zone)))
3335 			goto out;
3336 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3337 		break;
3338 	}
3339 	case KVM_UNREGISTER_COALESCED_MMIO: {
3340 		struct kvm_coalesced_mmio_zone zone;
3341 
3342 		r = -EFAULT;
3343 		if (copy_from_user(&zone, argp, sizeof(zone)))
3344 			goto out;
3345 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3346 		break;
3347 	}
3348 #endif
3349 	case KVM_IRQFD: {
3350 		struct kvm_irqfd data;
3351 
3352 		r = -EFAULT;
3353 		if (copy_from_user(&data, argp, sizeof(data)))
3354 			goto out;
3355 		r = kvm_irqfd(kvm, &data);
3356 		break;
3357 	}
3358 	case KVM_IOEVENTFD: {
3359 		struct kvm_ioeventfd data;
3360 
3361 		r = -EFAULT;
3362 		if (copy_from_user(&data, argp, sizeof(data)))
3363 			goto out;
3364 		r = kvm_ioeventfd(kvm, &data);
3365 		break;
3366 	}
3367 #ifdef CONFIG_HAVE_KVM_MSI
3368 	case KVM_SIGNAL_MSI: {
3369 		struct kvm_msi msi;
3370 
3371 		r = -EFAULT;
3372 		if (copy_from_user(&msi, argp, sizeof(msi)))
3373 			goto out;
3374 		r = kvm_send_userspace_msi(kvm, &msi);
3375 		break;
3376 	}
3377 #endif
3378 #ifdef __KVM_HAVE_IRQ_LINE
3379 	case KVM_IRQ_LINE_STATUS:
3380 	case KVM_IRQ_LINE: {
3381 		struct kvm_irq_level irq_event;
3382 
3383 		r = -EFAULT;
3384 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3385 			goto out;
3386 
3387 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3388 					ioctl == KVM_IRQ_LINE_STATUS);
3389 		if (r)
3390 			goto out;
3391 
3392 		r = -EFAULT;
3393 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3394 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3395 				goto out;
3396 		}
3397 
3398 		r = 0;
3399 		break;
3400 	}
3401 #endif
3402 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3403 	case KVM_SET_GSI_ROUTING: {
3404 		struct kvm_irq_routing routing;
3405 		struct kvm_irq_routing __user *urouting;
3406 		struct kvm_irq_routing_entry *entries = NULL;
3407 
3408 		r = -EFAULT;
3409 		if (copy_from_user(&routing, argp, sizeof(routing)))
3410 			goto out;
3411 		r = -EINVAL;
3412 		if (!kvm_arch_can_set_irq_routing(kvm))
3413 			goto out;
3414 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3415 			goto out;
3416 		if (routing.flags)
3417 			goto out;
3418 		if (routing.nr) {
3419 			r = -ENOMEM;
3420 			entries = vmalloc(array_size(sizeof(*entries),
3421 						     routing.nr));
3422 			if (!entries)
3423 				goto out;
3424 			r = -EFAULT;
3425 			urouting = argp;
3426 			if (copy_from_user(entries, urouting->entries,
3427 					   routing.nr * sizeof(*entries)))
3428 				goto out_free_irq_routing;
3429 		}
3430 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3431 					routing.flags);
3432 out_free_irq_routing:
3433 		vfree(entries);
3434 		break;
3435 	}
3436 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3437 	case KVM_CREATE_DEVICE: {
3438 		struct kvm_create_device cd;
3439 
3440 		r = -EFAULT;
3441 		if (copy_from_user(&cd, argp, sizeof(cd)))
3442 			goto out;
3443 
3444 		r = kvm_ioctl_create_device(kvm, &cd);
3445 		if (r)
3446 			goto out;
3447 
3448 		r = -EFAULT;
3449 		if (copy_to_user(argp, &cd, sizeof(cd)))
3450 			goto out;
3451 
3452 		r = 0;
3453 		break;
3454 	}
3455 	case KVM_CHECK_EXTENSION:
3456 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3457 		break;
3458 	default:
3459 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3460 	}
3461 out:
3462 	return r;
3463 }
3464 
3465 #ifdef CONFIG_KVM_COMPAT
3466 struct compat_kvm_dirty_log {
3467 	__u32 slot;
3468 	__u32 padding1;
3469 	union {
3470 		compat_uptr_t dirty_bitmap; /* one bit per page */
3471 		__u64 padding2;
3472 	};
3473 };
3474 
3475 static long kvm_vm_compat_ioctl(struct file *filp,
3476 			   unsigned int ioctl, unsigned long arg)
3477 {
3478 	struct kvm *kvm = filp->private_data;
3479 	int r;
3480 
3481 	if (kvm->mm != current->mm)
3482 		return -EIO;
3483 	switch (ioctl) {
3484 	case KVM_GET_DIRTY_LOG: {
3485 		struct compat_kvm_dirty_log compat_log;
3486 		struct kvm_dirty_log log;
3487 
3488 		if (copy_from_user(&compat_log, (void __user *)arg,
3489 				   sizeof(compat_log)))
3490 			return -EFAULT;
3491 		log.slot	 = compat_log.slot;
3492 		log.padding1	 = compat_log.padding1;
3493 		log.padding2	 = compat_log.padding2;
3494 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3495 
3496 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3497 		break;
3498 	}
3499 	default:
3500 		r = kvm_vm_ioctl(filp, ioctl, arg);
3501 	}
3502 	return r;
3503 }
3504 #endif
3505 
3506 static struct file_operations kvm_vm_fops = {
3507 	.release        = kvm_vm_release,
3508 	.unlocked_ioctl = kvm_vm_ioctl,
3509 	.llseek		= noop_llseek,
3510 	KVM_COMPAT(kvm_vm_compat_ioctl),
3511 };
3512 
3513 static int kvm_dev_ioctl_create_vm(unsigned long type)
3514 {
3515 	int r;
3516 	struct kvm *kvm;
3517 	struct file *file;
3518 
3519 	kvm = kvm_create_vm(type);
3520 	if (IS_ERR(kvm))
3521 		return PTR_ERR(kvm);
3522 #ifdef CONFIG_KVM_MMIO
3523 	r = kvm_coalesced_mmio_init(kvm);
3524 	if (r < 0)
3525 		goto put_kvm;
3526 #endif
3527 	r = get_unused_fd_flags(O_CLOEXEC);
3528 	if (r < 0)
3529 		goto put_kvm;
3530 
3531 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3532 	if (IS_ERR(file)) {
3533 		put_unused_fd(r);
3534 		r = PTR_ERR(file);
3535 		goto put_kvm;
3536 	}
3537 
3538 	/*
3539 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3540 	 * already set, with ->release() being kvm_vm_release().  In error
3541 	 * cases it will be called by the final fput(file) and will take
3542 	 * care of doing kvm_put_kvm(kvm).
3543 	 */
3544 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3545 		put_unused_fd(r);
3546 		fput(file);
3547 		return -ENOMEM;
3548 	}
3549 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3550 
3551 	fd_install(r, file);
3552 	return r;
3553 
3554 put_kvm:
3555 	kvm_put_kvm(kvm);
3556 	return r;
3557 }
3558 
3559 static long kvm_dev_ioctl(struct file *filp,
3560 			  unsigned int ioctl, unsigned long arg)
3561 {
3562 	long r = -EINVAL;
3563 
3564 	switch (ioctl) {
3565 	case KVM_GET_API_VERSION:
3566 		if (arg)
3567 			goto out;
3568 		r = KVM_API_VERSION;
3569 		break;
3570 	case KVM_CREATE_VM:
3571 		r = kvm_dev_ioctl_create_vm(arg);
3572 		break;
3573 	case KVM_CHECK_EXTENSION:
3574 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3575 		break;
3576 	case KVM_GET_VCPU_MMAP_SIZE:
3577 		if (arg)
3578 			goto out;
3579 		r = PAGE_SIZE;     /* struct kvm_run */
3580 #ifdef CONFIG_X86
3581 		r += PAGE_SIZE;    /* pio data page */
3582 #endif
3583 #ifdef CONFIG_KVM_MMIO
3584 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3585 #endif
3586 		break;
3587 	case KVM_TRACE_ENABLE:
3588 	case KVM_TRACE_PAUSE:
3589 	case KVM_TRACE_DISABLE:
3590 		r = -EOPNOTSUPP;
3591 		break;
3592 	default:
3593 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3594 	}
3595 out:
3596 	return r;
3597 }
3598 
3599 static struct file_operations kvm_chardev_ops = {
3600 	.unlocked_ioctl = kvm_dev_ioctl,
3601 	.llseek		= noop_llseek,
3602 	KVM_COMPAT(kvm_dev_ioctl),
3603 };
3604 
3605 static struct miscdevice kvm_dev = {
3606 	KVM_MINOR,
3607 	"kvm",
3608 	&kvm_chardev_ops,
3609 };
3610 
3611 static void hardware_enable_nolock(void *junk)
3612 {
3613 	int cpu = raw_smp_processor_id();
3614 	int r;
3615 
3616 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3617 		return;
3618 
3619 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3620 
3621 	r = kvm_arch_hardware_enable();
3622 
3623 	if (r) {
3624 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3625 		atomic_inc(&hardware_enable_failed);
3626 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3627 	}
3628 }
3629 
3630 static int kvm_starting_cpu(unsigned int cpu)
3631 {
3632 	raw_spin_lock(&kvm_count_lock);
3633 	if (kvm_usage_count)
3634 		hardware_enable_nolock(NULL);
3635 	raw_spin_unlock(&kvm_count_lock);
3636 	return 0;
3637 }
3638 
3639 static void hardware_disable_nolock(void *junk)
3640 {
3641 	int cpu = raw_smp_processor_id();
3642 
3643 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3644 		return;
3645 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3646 	kvm_arch_hardware_disable();
3647 }
3648 
3649 static int kvm_dying_cpu(unsigned int cpu)
3650 {
3651 	raw_spin_lock(&kvm_count_lock);
3652 	if (kvm_usage_count)
3653 		hardware_disable_nolock(NULL);
3654 	raw_spin_unlock(&kvm_count_lock);
3655 	return 0;
3656 }
3657 
3658 static void hardware_disable_all_nolock(void)
3659 {
3660 	BUG_ON(!kvm_usage_count);
3661 
3662 	kvm_usage_count--;
3663 	if (!kvm_usage_count)
3664 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3665 }
3666 
3667 static void hardware_disable_all(void)
3668 {
3669 	raw_spin_lock(&kvm_count_lock);
3670 	hardware_disable_all_nolock();
3671 	raw_spin_unlock(&kvm_count_lock);
3672 }
3673 
3674 static int hardware_enable_all(void)
3675 {
3676 	int r = 0;
3677 
3678 	raw_spin_lock(&kvm_count_lock);
3679 
3680 	kvm_usage_count++;
3681 	if (kvm_usage_count == 1) {
3682 		atomic_set(&hardware_enable_failed, 0);
3683 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3684 
3685 		if (atomic_read(&hardware_enable_failed)) {
3686 			hardware_disable_all_nolock();
3687 			r = -EBUSY;
3688 		}
3689 	}
3690 
3691 	raw_spin_unlock(&kvm_count_lock);
3692 
3693 	return r;
3694 }
3695 
3696 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3697 		      void *v)
3698 {
3699 	/*
3700 	 * Some (well, at least mine) BIOSes hang on reboot if
3701 	 * in vmx root mode.
3702 	 *
3703 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3704 	 */
3705 	pr_info("kvm: exiting hardware virtualization\n");
3706 	kvm_rebooting = true;
3707 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3708 	return NOTIFY_OK;
3709 }
3710 
3711 static struct notifier_block kvm_reboot_notifier = {
3712 	.notifier_call = kvm_reboot,
3713 	.priority = 0,
3714 };
3715 
3716 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3717 {
3718 	int i;
3719 
3720 	for (i = 0; i < bus->dev_count; i++) {
3721 		struct kvm_io_device *pos = bus->range[i].dev;
3722 
3723 		kvm_iodevice_destructor(pos);
3724 	}
3725 	kfree(bus);
3726 }
3727 
3728 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3729 				 const struct kvm_io_range *r2)
3730 {
3731 	gpa_t addr1 = r1->addr;
3732 	gpa_t addr2 = r2->addr;
3733 
3734 	if (addr1 < addr2)
3735 		return -1;
3736 
3737 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3738 	 * accept any overlapping write.  Any order is acceptable for
3739 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3740 	 * we process all of them.
3741 	 */
3742 	if (r2->len) {
3743 		addr1 += r1->len;
3744 		addr2 += r2->len;
3745 	}
3746 
3747 	if (addr1 > addr2)
3748 		return 1;
3749 
3750 	return 0;
3751 }
3752 
3753 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3754 {
3755 	return kvm_io_bus_cmp(p1, p2);
3756 }
3757 
3758 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3759 			     gpa_t addr, int len)
3760 {
3761 	struct kvm_io_range *range, key;
3762 	int off;
3763 
3764 	key = (struct kvm_io_range) {
3765 		.addr = addr,
3766 		.len = len,
3767 	};
3768 
3769 	range = bsearch(&key, bus->range, bus->dev_count,
3770 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3771 	if (range == NULL)
3772 		return -ENOENT;
3773 
3774 	off = range - bus->range;
3775 
3776 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3777 		off--;
3778 
3779 	return off;
3780 }
3781 
3782 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3783 			      struct kvm_io_range *range, const void *val)
3784 {
3785 	int idx;
3786 
3787 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3788 	if (idx < 0)
3789 		return -EOPNOTSUPP;
3790 
3791 	while (idx < bus->dev_count &&
3792 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3793 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3794 					range->len, val))
3795 			return idx;
3796 		idx++;
3797 	}
3798 
3799 	return -EOPNOTSUPP;
3800 }
3801 
3802 /* kvm_io_bus_write - called under kvm->slots_lock */
3803 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3804 		     int len, const void *val)
3805 {
3806 	struct kvm_io_bus *bus;
3807 	struct kvm_io_range range;
3808 	int r;
3809 
3810 	range = (struct kvm_io_range) {
3811 		.addr = addr,
3812 		.len = len,
3813 	};
3814 
3815 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3816 	if (!bus)
3817 		return -ENOMEM;
3818 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3819 	return r < 0 ? r : 0;
3820 }
3821 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3822 
3823 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3824 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3825 			    gpa_t addr, int len, const void *val, long cookie)
3826 {
3827 	struct kvm_io_bus *bus;
3828 	struct kvm_io_range range;
3829 
3830 	range = (struct kvm_io_range) {
3831 		.addr = addr,
3832 		.len = len,
3833 	};
3834 
3835 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3836 	if (!bus)
3837 		return -ENOMEM;
3838 
3839 	/* First try the device referenced by cookie. */
3840 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3841 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3842 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3843 					val))
3844 			return cookie;
3845 
3846 	/*
3847 	 * cookie contained garbage; fall back to search and return the
3848 	 * correct cookie value.
3849 	 */
3850 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3851 }
3852 
3853 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3854 			     struct kvm_io_range *range, void *val)
3855 {
3856 	int idx;
3857 
3858 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3859 	if (idx < 0)
3860 		return -EOPNOTSUPP;
3861 
3862 	while (idx < bus->dev_count &&
3863 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3864 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3865 				       range->len, val))
3866 			return idx;
3867 		idx++;
3868 	}
3869 
3870 	return -EOPNOTSUPP;
3871 }
3872 
3873 /* kvm_io_bus_read - called under kvm->slots_lock */
3874 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3875 		    int len, void *val)
3876 {
3877 	struct kvm_io_bus *bus;
3878 	struct kvm_io_range range;
3879 	int r;
3880 
3881 	range = (struct kvm_io_range) {
3882 		.addr = addr,
3883 		.len = len,
3884 	};
3885 
3886 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3887 	if (!bus)
3888 		return -ENOMEM;
3889 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3890 	return r < 0 ? r : 0;
3891 }
3892 
3893 /* Caller must hold slots_lock. */
3894 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3895 			    int len, struct kvm_io_device *dev)
3896 {
3897 	int i;
3898 	struct kvm_io_bus *new_bus, *bus;
3899 	struct kvm_io_range range;
3900 
3901 	bus = kvm_get_bus(kvm, bus_idx);
3902 	if (!bus)
3903 		return -ENOMEM;
3904 
3905 	/* exclude ioeventfd which is limited by maximum fd */
3906 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3907 		return -ENOSPC;
3908 
3909 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3910 			  GFP_KERNEL_ACCOUNT);
3911 	if (!new_bus)
3912 		return -ENOMEM;
3913 
3914 	range = (struct kvm_io_range) {
3915 		.addr = addr,
3916 		.len = len,
3917 		.dev = dev,
3918 	};
3919 
3920 	for (i = 0; i < bus->dev_count; i++)
3921 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3922 			break;
3923 
3924 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3925 	new_bus->dev_count++;
3926 	new_bus->range[i] = range;
3927 	memcpy(new_bus->range + i + 1, bus->range + i,
3928 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3929 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3930 	synchronize_srcu_expedited(&kvm->srcu);
3931 	kfree(bus);
3932 
3933 	return 0;
3934 }
3935 
3936 /* Caller must hold slots_lock. */
3937 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3938 			       struct kvm_io_device *dev)
3939 {
3940 	int i;
3941 	struct kvm_io_bus *new_bus, *bus;
3942 
3943 	bus = kvm_get_bus(kvm, bus_idx);
3944 	if (!bus)
3945 		return;
3946 
3947 	for (i = 0; i < bus->dev_count; i++)
3948 		if (bus->range[i].dev == dev) {
3949 			break;
3950 		}
3951 
3952 	if (i == bus->dev_count)
3953 		return;
3954 
3955 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3956 			  GFP_KERNEL_ACCOUNT);
3957 	if (!new_bus)  {
3958 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3959 		goto broken;
3960 	}
3961 
3962 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3963 	new_bus->dev_count--;
3964 	memcpy(new_bus->range + i, bus->range + i + 1,
3965 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3966 
3967 broken:
3968 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3969 	synchronize_srcu_expedited(&kvm->srcu);
3970 	kfree(bus);
3971 	return;
3972 }
3973 
3974 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3975 					 gpa_t addr)
3976 {
3977 	struct kvm_io_bus *bus;
3978 	int dev_idx, srcu_idx;
3979 	struct kvm_io_device *iodev = NULL;
3980 
3981 	srcu_idx = srcu_read_lock(&kvm->srcu);
3982 
3983 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3984 	if (!bus)
3985 		goto out_unlock;
3986 
3987 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3988 	if (dev_idx < 0)
3989 		goto out_unlock;
3990 
3991 	iodev = bus->range[dev_idx].dev;
3992 
3993 out_unlock:
3994 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3995 
3996 	return iodev;
3997 }
3998 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3999 
4000 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4001 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4002 			   const char *fmt)
4003 {
4004 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4005 					  inode->i_private;
4006 
4007 	/* The debugfs files are a reference to the kvm struct which
4008 	 * is still valid when kvm_destroy_vm is called.
4009 	 * To avoid the race between open and the removal of the debugfs
4010 	 * directory we test against the users count.
4011 	 */
4012 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4013 		return -ENOENT;
4014 
4015 	if (simple_attr_open(inode, file, get,
4016 			     stat_data->mode & S_IWUGO ? set : NULL,
4017 			     fmt)) {
4018 		kvm_put_kvm(stat_data->kvm);
4019 		return -ENOMEM;
4020 	}
4021 
4022 	return 0;
4023 }
4024 
4025 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4026 {
4027 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4028 					  inode->i_private;
4029 
4030 	simple_attr_release(inode, file);
4031 	kvm_put_kvm(stat_data->kvm);
4032 
4033 	return 0;
4034 }
4035 
4036 static int vm_stat_get_per_vm(void *data, u64 *val)
4037 {
4038 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4039 
4040 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4041 
4042 	return 0;
4043 }
4044 
4045 static int vm_stat_clear_per_vm(void *data, u64 val)
4046 {
4047 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4048 
4049 	if (val)
4050 		return -EINVAL;
4051 
4052 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4053 
4054 	return 0;
4055 }
4056 
4057 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4058 {
4059 	__simple_attr_check_format("%llu\n", 0ull);
4060 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4061 				vm_stat_clear_per_vm, "%llu\n");
4062 }
4063 
4064 static const struct file_operations vm_stat_get_per_vm_fops = {
4065 	.owner   = THIS_MODULE,
4066 	.open    = vm_stat_get_per_vm_open,
4067 	.release = kvm_debugfs_release,
4068 	.read    = simple_attr_read,
4069 	.write   = simple_attr_write,
4070 	.llseek  = no_llseek,
4071 };
4072 
4073 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4074 {
4075 	int i;
4076 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4077 	struct kvm_vcpu *vcpu;
4078 
4079 	*val = 0;
4080 
4081 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4082 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
4083 
4084 	return 0;
4085 }
4086 
4087 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4088 {
4089 	int i;
4090 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4091 	struct kvm_vcpu *vcpu;
4092 
4093 	if (val)
4094 		return -EINVAL;
4095 
4096 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4097 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
4098 
4099 	return 0;
4100 }
4101 
4102 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4103 {
4104 	__simple_attr_check_format("%llu\n", 0ull);
4105 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4106 				 vcpu_stat_clear_per_vm, "%llu\n");
4107 }
4108 
4109 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4110 	.owner   = THIS_MODULE,
4111 	.open    = vcpu_stat_get_per_vm_open,
4112 	.release = kvm_debugfs_release,
4113 	.read    = simple_attr_read,
4114 	.write   = simple_attr_write,
4115 	.llseek  = no_llseek,
4116 };
4117 
4118 static const struct file_operations *stat_fops_per_vm[] = {
4119 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4120 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4121 };
4122 
4123 static int vm_stat_get(void *_offset, u64 *val)
4124 {
4125 	unsigned offset = (long)_offset;
4126 	struct kvm *kvm;
4127 	struct kvm_stat_data stat_tmp = {.offset = offset};
4128 	u64 tmp_val;
4129 
4130 	*val = 0;
4131 	mutex_lock(&kvm_lock);
4132 	list_for_each_entry(kvm, &vm_list, vm_list) {
4133 		stat_tmp.kvm = kvm;
4134 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4135 		*val += tmp_val;
4136 	}
4137 	mutex_unlock(&kvm_lock);
4138 	return 0;
4139 }
4140 
4141 static int vm_stat_clear(void *_offset, u64 val)
4142 {
4143 	unsigned offset = (long)_offset;
4144 	struct kvm *kvm;
4145 	struct kvm_stat_data stat_tmp = {.offset = offset};
4146 
4147 	if (val)
4148 		return -EINVAL;
4149 
4150 	mutex_lock(&kvm_lock);
4151 	list_for_each_entry(kvm, &vm_list, vm_list) {
4152 		stat_tmp.kvm = kvm;
4153 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4154 	}
4155 	mutex_unlock(&kvm_lock);
4156 
4157 	return 0;
4158 }
4159 
4160 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4161 
4162 static int vcpu_stat_get(void *_offset, u64 *val)
4163 {
4164 	unsigned offset = (long)_offset;
4165 	struct kvm *kvm;
4166 	struct kvm_stat_data stat_tmp = {.offset = offset};
4167 	u64 tmp_val;
4168 
4169 	*val = 0;
4170 	mutex_lock(&kvm_lock);
4171 	list_for_each_entry(kvm, &vm_list, vm_list) {
4172 		stat_tmp.kvm = kvm;
4173 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4174 		*val += tmp_val;
4175 	}
4176 	mutex_unlock(&kvm_lock);
4177 	return 0;
4178 }
4179 
4180 static int vcpu_stat_clear(void *_offset, u64 val)
4181 {
4182 	unsigned offset = (long)_offset;
4183 	struct kvm *kvm;
4184 	struct kvm_stat_data stat_tmp = {.offset = offset};
4185 
4186 	if (val)
4187 		return -EINVAL;
4188 
4189 	mutex_lock(&kvm_lock);
4190 	list_for_each_entry(kvm, &vm_list, vm_list) {
4191 		stat_tmp.kvm = kvm;
4192 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4193 	}
4194 	mutex_unlock(&kvm_lock);
4195 
4196 	return 0;
4197 }
4198 
4199 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4200 			"%llu\n");
4201 
4202 static const struct file_operations *stat_fops[] = {
4203 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4204 	[KVM_STAT_VM]   = &vm_stat_fops,
4205 };
4206 
4207 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4208 {
4209 	struct kobj_uevent_env *env;
4210 	unsigned long long created, active;
4211 
4212 	if (!kvm_dev.this_device || !kvm)
4213 		return;
4214 
4215 	mutex_lock(&kvm_lock);
4216 	if (type == KVM_EVENT_CREATE_VM) {
4217 		kvm_createvm_count++;
4218 		kvm_active_vms++;
4219 	} else if (type == KVM_EVENT_DESTROY_VM) {
4220 		kvm_active_vms--;
4221 	}
4222 	created = kvm_createvm_count;
4223 	active = kvm_active_vms;
4224 	mutex_unlock(&kvm_lock);
4225 
4226 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4227 	if (!env)
4228 		return;
4229 
4230 	add_uevent_var(env, "CREATED=%llu", created);
4231 	add_uevent_var(env, "COUNT=%llu", active);
4232 
4233 	if (type == KVM_EVENT_CREATE_VM) {
4234 		add_uevent_var(env, "EVENT=create");
4235 		kvm->userspace_pid = task_pid_nr(current);
4236 	} else if (type == KVM_EVENT_DESTROY_VM) {
4237 		add_uevent_var(env, "EVENT=destroy");
4238 	}
4239 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4240 
4241 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4242 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4243 
4244 		if (p) {
4245 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4246 			if (!IS_ERR(tmp))
4247 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4248 			kfree(p);
4249 		}
4250 	}
4251 	/* no need for checks, since we are adding at most only 5 keys */
4252 	env->envp[env->envp_idx++] = NULL;
4253 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4254 	kfree(env);
4255 }
4256 
4257 static void kvm_init_debug(void)
4258 {
4259 	struct kvm_stats_debugfs_item *p;
4260 
4261 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4262 
4263 	kvm_debugfs_num_entries = 0;
4264 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4265 		int mode = p->mode ? p->mode : 0644;
4266 		debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4267 				    (void *)(long)p->offset,
4268 				    stat_fops[p->kind]);
4269 	}
4270 }
4271 
4272 static int kvm_suspend(void)
4273 {
4274 	if (kvm_usage_count)
4275 		hardware_disable_nolock(NULL);
4276 	return 0;
4277 }
4278 
4279 static void kvm_resume(void)
4280 {
4281 	if (kvm_usage_count) {
4282 #ifdef CONFIG_LOCKDEP
4283 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4284 #endif
4285 		hardware_enable_nolock(NULL);
4286 	}
4287 }
4288 
4289 static struct syscore_ops kvm_syscore_ops = {
4290 	.suspend = kvm_suspend,
4291 	.resume = kvm_resume,
4292 };
4293 
4294 static inline
4295 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4296 {
4297 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4298 }
4299 
4300 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4301 {
4302 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4303 
4304 	WRITE_ONCE(vcpu->preempted, false);
4305 	WRITE_ONCE(vcpu->ready, false);
4306 
4307 	kvm_arch_sched_in(vcpu, cpu);
4308 
4309 	kvm_arch_vcpu_load(vcpu, cpu);
4310 }
4311 
4312 static void kvm_sched_out(struct preempt_notifier *pn,
4313 			  struct task_struct *next)
4314 {
4315 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4316 
4317 	if (current->state == TASK_RUNNING) {
4318 		WRITE_ONCE(vcpu->preempted, true);
4319 		WRITE_ONCE(vcpu->ready, true);
4320 	}
4321 	kvm_arch_vcpu_put(vcpu);
4322 }
4323 
4324 static void check_processor_compat(void *rtn)
4325 {
4326 	*(int *)rtn = kvm_arch_check_processor_compat();
4327 }
4328 
4329 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4330 		  struct module *module)
4331 {
4332 	int r;
4333 	int cpu;
4334 
4335 	r = kvm_arch_init(opaque);
4336 	if (r)
4337 		goto out_fail;
4338 
4339 	/*
4340 	 * kvm_arch_init makes sure there's at most one caller
4341 	 * for architectures that support multiple implementations,
4342 	 * like intel and amd on x86.
4343 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4344 	 * conflicts in case kvm is already setup for another implementation.
4345 	 */
4346 	r = kvm_irqfd_init();
4347 	if (r)
4348 		goto out_irqfd;
4349 
4350 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4351 		r = -ENOMEM;
4352 		goto out_free_0;
4353 	}
4354 
4355 	r = kvm_arch_hardware_setup();
4356 	if (r < 0)
4357 		goto out_free_1;
4358 
4359 	for_each_online_cpu(cpu) {
4360 		smp_call_function_single(cpu, check_processor_compat, &r, 1);
4361 		if (r < 0)
4362 			goto out_free_2;
4363 	}
4364 
4365 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4366 				      kvm_starting_cpu, kvm_dying_cpu);
4367 	if (r)
4368 		goto out_free_2;
4369 	register_reboot_notifier(&kvm_reboot_notifier);
4370 
4371 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4372 	if (!vcpu_align)
4373 		vcpu_align = __alignof__(struct kvm_vcpu);
4374 	kvm_vcpu_cache =
4375 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4376 					   SLAB_ACCOUNT,
4377 					   offsetof(struct kvm_vcpu, arch),
4378 					   sizeof_field(struct kvm_vcpu, arch),
4379 					   NULL);
4380 	if (!kvm_vcpu_cache) {
4381 		r = -ENOMEM;
4382 		goto out_free_3;
4383 	}
4384 
4385 	r = kvm_async_pf_init();
4386 	if (r)
4387 		goto out_free;
4388 
4389 	kvm_chardev_ops.owner = module;
4390 	kvm_vm_fops.owner = module;
4391 	kvm_vcpu_fops.owner = module;
4392 
4393 	r = misc_register(&kvm_dev);
4394 	if (r) {
4395 		pr_err("kvm: misc device register failed\n");
4396 		goto out_unreg;
4397 	}
4398 
4399 	register_syscore_ops(&kvm_syscore_ops);
4400 
4401 	kvm_preempt_ops.sched_in = kvm_sched_in;
4402 	kvm_preempt_ops.sched_out = kvm_sched_out;
4403 
4404 	kvm_init_debug();
4405 
4406 	r = kvm_vfio_ops_init();
4407 	WARN_ON(r);
4408 
4409 	return 0;
4410 
4411 out_unreg:
4412 	kvm_async_pf_deinit();
4413 out_free:
4414 	kmem_cache_destroy(kvm_vcpu_cache);
4415 out_free_3:
4416 	unregister_reboot_notifier(&kvm_reboot_notifier);
4417 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4418 out_free_2:
4419 	kvm_arch_hardware_unsetup();
4420 out_free_1:
4421 	free_cpumask_var(cpus_hardware_enabled);
4422 out_free_0:
4423 	kvm_irqfd_exit();
4424 out_irqfd:
4425 	kvm_arch_exit();
4426 out_fail:
4427 	return r;
4428 }
4429 EXPORT_SYMBOL_GPL(kvm_init);
4430 
4431 void kvm_exit(void)
4432 {
4433 	debugfs_remove_recursive(kvm_debugfs_dir);
4434 	misc_deregister(&kvm_dev);
4435 	kmem_cache_destroy(kvm_vcpu_cache);
4436 	kvm_async_pf_deinit();
4437 	unregister_syscore_ops(&kvm_syscore_ops);
4438 	unregister_reboot_notifier(&kvm_reboot_notifier);
4439 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4440 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4441 	kvm_arch_hardware_unsetup();
4442 	kvm_arch_exit();
4443 	kvm_irqfd_exit();
4444 	free_cpumask_var(cpus_hardware_enabled);
4445 	kvm_vfio_ops_exit();
4446 }
4447 EXPORT_SYMBOL_GPL(kvm_exit);
4448 
4449 struct kvm_vm_worker_thread_context {
4450 	struct kvm *kvm;
4451 	struct task_struct *parent;
4452 	struct completion init_done;
4453 	kvm_vm_thread_fn_t thread_fn;
4454 	uintptr_t data;
4455 	int err;
4456 };
4457 
4458 static int kvm_vm_worker_thread(void *context)
4459 {
4460 	/*
4461 	 * The init_context is allocated on the stack of the parent thread, so
4462 	 * we have to locally copy anything that is needed beyond initialization
4463 	 */
4464 	struct kvm_vm_worker_thread_context *init_context = context;
4465 	struct kvm *kvm = init_context->kvm;
4466 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4467 	uintptr_t data = init_context->data;
4468 	int err;
4469 
4470 	err = kthread_park(current);
4471 	/* kthread_park(current) is never supposed to return an error */
4472 	WARN_ON(err != 0);
4473 	if (err)
4474 		goto init_complete;
4475 
4476 	err = cgroup_attach_task_all(init_context->parent, current);
4477 	if (err) {
4478 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4479 			__func__, err);
4480 		goto init_complete;
4481 	}
4482 
4483 	set_user_nice(current, task_nice(init_context->parent));
4484 
4485 init_complete:
4486 	init_context->err = err;
4487 	complete(&init_context->init_done);
4488 	init_context = NULL;
4489 
4490 	if (err)
4491 		return err;
4492 
4493 	/* Wait to be woken up by the spawner before proceeding. */
4494 	kthread_parkme();
4495 
4496 	if (!kthread_should_stop())
4497 		err = thread_fn(kvm, data);
4498 
4499 	return err;
4500 }
4501 
4502 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4503 				uintptr_t data, const char *name,
4504 				struct task_struct **thread_ptr)
4505 {
4506 	struct kvm_vm_worker_thread_context init_context = {};
4507 	struct task_struct *thread;
4508 
4509 	*thread_ptr = NULL;
4510 	init_context.kvm = kvm;
4511 	init_context.parent = current;
4512 	init_context.thread_fn = thread_fn;
4513 	init_context.data = data;
4514 	init_completion(&init_context.init_done);
4515 
4516 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4517 			     "%s-%d", name, task_pid_nr(current));
4518 	if (IS_ERR(thread))
4519 		return PTR_ERR(thread);
4520 
4521 	/* kthread_run is never supposed to return NULL */
4522 	WARN_ON(thread == NULL);
4523 
4524 	wait_for_completion(&init_context.init_done);
4525 
4526 	if (!init_context.err)
4527 		*thread_ptr = thread;
4528 
4529 	return init_context.err;
4530 }
4531