1 /*	$NetBSD: sha1.c,v 1.1 2014/03/09 00:15:45 agc Exp $	*/
2 /*	$OpenBSD: sha1.c,v 1.9 1997/07/23 21:12:32 kstailey Exp $	*/
3 
4 /*
5  * SHA-1 in C
6  * By Steve Reid <steve@edmweb.com>
7  * 100% Public Domain
8  *
9  * Test Vectors (from FIPS PUB 180-1)
10  * "abc"
11  *   A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
12  * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
13  *   84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
14  * A million repetitions of "a"
15  *   34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
16  */
17 
18 #define SHA1HANDSOFF		/* Copies data before messing with it. */
19 
20 #include <sys/cdefs.h>
21 
22 #include <string.h>
23 
24 #include <sys/types.h>
25 
26 #include "sha1.h"
27 
28 #if !HAVE_SHA1_H
29 
30 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
31 
32 /*
33  * blk0() and blk() perform the initial expand.
34  * I got the idea of expanding during the round function from SSLeay
35  */
36 #if BYTE_ORDER == LITTLE_ENDIAN
37 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
38     |(rol(block->l[i],8)&0x00FF00FF))
39 #else
40 # define blk0(i) block->l[i]
41 #endif
42 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
43     ^block->l[(i+2)&15]^block->l[i&15],1))
44 
45 /*
46  * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
47  */
48 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
49 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
50 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
51 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
52 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
53 
54 
55 typedef union {
56     uint8_t c[64];
57     uint32_t l[16];
58 } CHAR64LONG16;
59 
60 /* old sparc64 gcc could not compile this */
61 #undef SPARC64_GCC_WORKAROUND
62 #if defined(__sparc64__) && defined(__GNUC__) && __GNUC__ < 3
63 #define SPARC64_GCC_WORKAROUND
64 #endif
65 
66 #ifdef SPARC64_GCC_WORKAROUND
67 void do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
68 void do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
69 void do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
70 void do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
71 
72 #define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i)
73 #define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i)
74 #define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i)
75 #define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i)
76 #define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i)
77 
78 void
do_R01(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)79 do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
80 {
81     nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2); nR0(c,d,e,a,b, 3);
82     nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5); nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7);
83     nR0(c,d,e,a,b, 8); nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11);
84     nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14); nR0(a,b,c,d,e,15);
85     nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17); nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19);
86 }
87 
88 void
do_R2(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)89 do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
90 {
91     nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22); nR2(c,d,e,a,b,23);
92     nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25); nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27);
93     nR2(c,d,e,a,b,28); nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31);
94     nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34); nR2(a,b,c,d,e,35);
95     nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37); nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39);
96 }
97 
98 void
do_R3(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)99 do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
100 {
101     nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42); nR3(c,d,e,a,b,43);
102     nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45); nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47);
103     nR3(c,d,e,a,b,48); nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51);
104     nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54); nR3(a,b,c,d,e,55);
105     nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57); nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59);
106 }
107 
108 void
do_R4(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)109 do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
110 {
111     nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62); nR4(c,d,e,a,b,63);
112     nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65); nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67);
113     nR4(c,d,e,a,b,68); nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71);
114     nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74); nR4(a,b,c,d,e,75);
115     nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77); nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79);
116 }
117 #endif
118 
119 /*
120  * Hash a single 512-bit block. This is the core of the algorithm.
121  */
SHA1Transform(uint32_t state[5],const uint8_t buffer[64])122 void SHA1Transform(uint32_t state[5], const uint8_t buffer[64])
123 {
124     uint32_t a, b, c, d, e;
125     CHAR64LONG16 *block;
126 
127 #ifdef SHA1HANDSOFF
128     CHAR64LONG16 workspace;
129 #endif
130 
131 #ifdef SHA1HANDSOFF
132     block = &workspace;
133     (void)memcpy(block, buffer, 64);
134 #else
135     block = (CHAR64LONG16 *)(void *)buffer;
136 #endif
137 
138     /* Copy context->state[] to working vars */
139     a = state[0];
140     b = state[1];
141     c = state[2];
142     d = state[3];
143     e = state[4];
144 
145 #ifdef SPARC64_GCC_WORKAROUND
146     do_R01(&a, &b, &c, &d, &e, block);
147     do_R2(&a, &b, &c, &d, &e, block);
148     do_R3(&a, &b, &c, &d, &e, block);
149     do_R4(&a, &b, &c, &d, &e, block);
150 #else
151     /* 4 rounds of 20 operations each. Loop unrolled. */
152     R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
153     R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
154     R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
155     R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
156     R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
157     R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
158     R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
159     R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
160     R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
161     R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
162     R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
163     R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
164     R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
165     R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
166     R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
167     R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
168     R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
169     R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
170     R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
171     R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
172 #endif
173 
174     /* Add the working vars back into context.state[] */
175     state[0] += a;
176     state[1] += b;
177     state[2] += c;
178     state[3] += d;
179     state[4] += e;
180 
181     /* Wipe variables */
182     a = b = c = d = e = 0;
183 }
184 
185 
186 /*
187  * SHA1Init - Initialize new context
188  */
SHA1Init(SHA1_CTX * context)189 void SHA1Init(SHA1_CTX *context)
190 {
191 
192     /* SHA1 initialization constants */
193     context->state[0] = 0x67452301;
194     context->state[1] = 0xEFCDAB89;
195     context->state[2] = 0x98BADCFE;
196     context->state[3] = 0x10325476;
197     context->state[4] = 0xC3D2E1F0;
198     context->count[0] = context->count[1] = 0;
199 }
200 
201 
202 /*
203  * Run your data through this.
204  */
SHA1Update(SHA1_CTX * context,const uint8_t * data,unsigned int len)205 void SHA1Update(SHA1_CTX *context, const uint8_t *data, unsigned int len)
206 {
207     unsigned int i, j;
208 
209     j = context->count[0];
210     if ((context->count[0] += len << 3) < j)
211 	context->count[1] += (len>>29)+1;
212     j = (j >> 3) & 63;
213     if ((j + len) > 63) {
214 	(void)memcpy(&context->buffer[j], data, (i = 64-j));
215 	SHA1Transform(context->state, context->buffer);
216 	for ( ; i + 63 < len; i += 64)
217 	    SHA1Transform(context->state, &data[i]);
218 	j = 0;
219     } else {
220 	i = 0;
221     }
222     (void)memcpy(&context->buffer[j], &data[i], len - i);
223 }
224 
225 
226 /*
227  * Add padding and return the message digest.
228  */
SHA1Final(uint8_t digest[20],SHA1_CTX * context)229 void SHA1Final(uint8_t digest[20], SHA1_CTX *context)
230 {
231     unsigned int i;
232     uint8_t finalcount[8];
233 
234     for (i = 0; i < 8; i++) {
235 	finalcount[i] = (uint8_t)((context->count[(i >= 4 ? 0 : 1)]
236 	 >> ((3-(i & 3)) * 8) ) & 255);	 /* Endian independent */
237     }
238     SHA1Update(context, (const uint8_t *)"\200", 1);
239     while ((context->count[0] & 504) != 448)
240 	SHA1Update(context, (const uint8_t *)"\0", 1);
241     SHA1Update(context, finalcount, 8);  /* Should cause a SHA1Transform() */
242 
243     if (digest) {
244 	for (i = 0; i < 20; i++)
245 	    digest[i] = (uint8_t)
246 		((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
247     }
248 }
249 
250 #endif /* HAVE_SHA1_H */
251