1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 
EmitDecl(const Decl & D)34 void CodeGenFunction::EmitDecl(const Decl &D) {
35   switch (D.getKind()) {
36   case Decl::TranslationUnit:
37   case Decl::Namespace:
38   case Decl::UnresolvedUsingTypename:
39   case Decl::ClassTemplateSpecialization:
40   case Decl::ClassTemplatePartialSpecialization:
41   case Decl::VarTemplateSpecialization:
42   case Decl::VarTemplatePartialSpecialization:
43   case Decl::TemplateTypeParm:
44   case Decl::UnresolvedUsingValue:
45   case Decl::NonTypeTemplateParm:
46   case Decl::CXXMethod:
47   case Decl::CXXConstructor:
48   case Decl::CXXDestructor:
49   case Decl::CXXConversion:
50   case Decl::Field:
51   case Decl::MSProperty:
52   case Decl::IndirectField:
53   case Decl::ObjCIvar:
54   case Decl::ObjCAtDefsField:
55   case Decl::ParmVar:
56   case Decl::ImplicitParam:
57   case Decl::ClassTemplate:
58   case Decl::VarTemplate:
59   case Decl::FunctionTemplate:
60   case Decl::TypeAliasTemplate:
61   case Decl::TemplateTemplateParm:
62   case Decl::ObjCMethod:
63   case Decl::ObjCCategory:
64   case Decl::ObjCProtocol:
65   case Decl::ObjCInterface:
66   case Decl::ObjCCategoryImpl:
67   case Decl::ObjCImplementation:
68   case Decl::ObjCProperty:
69   case Decl::ObjCCompatibleAlias:
70   case Decl::AccessSpec:
71   case Decl::LinkageSpec:
72   case Decl::ObjCPropertyImpl:
73   case Decl::FileScopeAsm:
74   case Decl::Friend:
75   case Decl::FriendTemplate:
76   case Decl::Block:
77   case Decl::Captured:
78   case Decl::ClassScopeFunctionSpecialization:
79   case Decl::UsingShadow:
80     llvm_unreachable("Declaration should not be in declstmts!");
81   case Decl::Function:  // void X();
82   case Decl::Record:    // struct/union/class X;
83   case Decl::Enum:      // enum X;
84   case Decl::EnumConstant: // enum ? { X = ? }
85   case Decl::CXXRecord: // struct/union/class X; [C++]
86   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
87   case Decl::Label:        // __label__ x;
88   case Decl::Import:
89   case Decl::OMPThreadPrivate:
90   case Decl::Empty:
91     // None of these decls require codegen support.
92     return;
93 
94   case Decl::NamespaceAlias:
95     if (CGDebugInfo *DI = getDebugInfo())
96         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
97     return;
98   case Decl::Using:          // using X; [C++]
99     if (CGDebugInfo *DI = getDebugInfo())
100         DI->EmitUsingDecl(cast<UsingDecl>(D));
101     return;
102   case Decl::UsingDirective: // using namespace X; [C++]
103     if (CGDebugInfo *DI = getDebugInfo())
104       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
105     return;
106   case Decl::Var: {
107     const VarDecl &VD = cast<VarDecl>(D);
108     assert(VD.isLocalVarDecl() &&
109            "Should not see file-scope variables inside a function!");
110     return EmitVarDecl(VD);
111   }
112 
113   case Decl::Typedef:      // typedef int X;
114   case Decl::TypeAlias: {  // using X = int; [C++0x]
115     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
116     QualType Ty = TD.getUnderlyingType();
117 
118     if (Ty->isVariablyModifiedType())
119       EmitVariablyModifiedType(Ty);
120   }
121   }
122 }
123 
124 /// EmitVarDecl - This method handles emission of any variable declaration
125 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
127   if (D.isStaticLocal()) {
128     llvm::GlobalValue::LinkageTypes Linkage =
129         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
130 
131     // FIXME: We need to force the emission/use of a guard variable for
132     // some variables even if we can constant-evaluate them because
133     // we can't guarantee every translation unit will constant-evaluate them.
134 
135     return EmitStaticVarDecl(D, Linkage);
136   }
137 
138   if (D.hasExternalStorage())
139     // Don't emit it now, allow it to be emitted lazily on its first use.
140     return;
141 
142   if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
143     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
144 
145   assert(D.hasLocalStorage());
146   return EmitAutoVarDecl(D);
147 }
148 
getStaticDeclName(CodeGenModule & CGM,const VarDecl & D)149 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
150   if (CGM.getLangOpts().CPlusPlus)
151     return CGM.getMangledName(&D).str();
152 
153   // If this isn't C++, we don't need a mangled name, just a pretty one.
154   assert(!D.isExternallyVisible() && "name shouldn't matter");
155   std::string ContextName;
156   const DeclContext *DC = D.getDeclContext();
157   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
158     ContextName = CGM.getMangledName(FD);
159   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
160     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
161   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
162     ContextName = OMD->getSelector().getAsString();
163   else
164     llvm_unreachable("Unknown context for static var decl");
165 
166   ContextName += "." + D.getNameAsString();
167   return ContextName;
168 }
169 
getOrCreateStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)170 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
171     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
172   // In general, we don't always emit static var decls once before we reference
173   // them. It is possible to reference them before emitting the function that
174   // contains them, and it is possible to emit the containing function multiple
175   // times.
176   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
177     return ExistingGV;
178 
179   QualType Ty = D.getType();
180   assert(Ty->isConstantSizeType() && "VLAs can't be static");
181 
182   // Use the label if the variable is renamed with the asm-label extension.
183   std::string Name;
184   if (D.hasAttr<AsmLabelAttr>())
185     Name = getMangledName(&D);
186   else
187     Name = getStaticDeclName(*this, D);
188 
189   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
190   unsigned AddrSpace =
191       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
192 
193   // Local address space cannot have an initializer.
194   llvm::Constant *Init = nullptr;
195   if (Ty.getAddressSpace() != LangAS::opencl_local)
196     Init = EmitNullConstant(Ty);
197   else
198     Init = llvm::UndefValue::get(LTy);
199 
200   llvm::GlobalVariable *GV =
201     new llvm::GlobalVariable(getModule(), LTy,
202                              Ty.isConstant(getContext()), Linkage,
203                              Init, Name, nullptr,
204                              llvm::GlobalVariable::NotThreadLocal,
205                              AddrSpace);
206   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
207   setGlobalVisibility(GV, &D);
208 
209   if (D.getTLSKind())
210     setTLSMode(GV, D);
211 
212   if (D.isExternallyVisible()) {
213     if (D.hasAttr<DLLImportAttr>())
214       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
215     else if (D.hasAttr<DLLExportAttr>())
216       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
217   }
218 
219   // Make sure the result is of the correct type.
220   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
221   llvm::Constant *Addr = GV;
222   if (AddrSpace != ExpectedAddrSpace) {
223     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
224     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
225   }
226 
227   setStaticLocalDeclAddress(&D, Addr);
228 
229   // Ensure that the static local gets initialized by making sure the parent
230   // function gets emitted eventually.
231   const Decl *DC = cast<Decl>(D.getDeclContext());
232 
233   // We can't name blocks or captured statements directly, so try to emit their
234   // parents.
235   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
236     DC = DC->getNonClosureContext();
237     // FIXME: Ensure that global blocks get emitted.
238     if (!DC)
239       return Addr;
240   }
241 
242   GlobalDecl GD;
243   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
244     GD = GlobalDecl(CD, Ctor_Base);
245   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
246     GD = GlobalDecl(DD, Dtor_Base);
247   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
248     GD = GlobalDecl(FD);
249   else {
250     // Don't do anything for Obj-C method decls or global closures. We should
251     // never defer them.
252     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
253   }
254   if (GD.getDecl())
255     (void)GetAddrOfGlobal(GD);
256 
257   return Addr;
258 }
259 
260 /// hasNontrivialDestruction - Determine whether a type's destruction is
261 /// non-trivial. If so, and the variable uses static initialization, we must
262 /// register its destructor to run on exit.
hasNontrivialDestruction(QualType T)263 static bool hasNontrivialDestruction(QualType T) {
264   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
265   return RD && !RD->hasTrivialDestructor();
266 }
267 
268 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
269 /// global variable that has already been created for it.  If the initializer
270 /// has a different type than GV does, this may free GV and return a different
271 /// one.  Otherwise it just returns GV.
272 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)273 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
274                                                llvm::GlobalVariable *GV) {
275   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
276 
277   // If constant emission failed, then this should be a C++ static
278   // initializer.
279   if (!Init) {
280     if (!getLangOpts().CPlusPlus)
281       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
282     else if (Builder.GetInsertBlock()) {
283       // Since we have a static initializer, this global variable can't
284       // be constant.
285       GV->setConstant(false);
286 
287       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
288     }
289     return GV;
290   }
291 
292   // The initializer may differ in type from the global. Rewrite
293   // the global to match the initializer.  (We have to do this
294   // because some types, like unions, can't be completely represented
295   // in the LLVM type system.)
296   if (GV->getType()->getElementType() != Init->getType()) {
297     llvm::GlobalVariable *OldGV = GV;
298 
299     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
300                                   OldGV->isConstant(),
301                                   OldGV->getLinkage(), Init, "",
302                                   /*InsertBefore*/ OldGV,
303                                   OldGV->getThreadLocalMode(),
304                            CGM.getContext().getTargetAddressSpace(D.getType()));
305     GV->setVisibility(OldGV->getVisibility());
306 
307     // Steal the name of the old global
308     GV->takeName(OldGV);
309 
310     // Replace all uses of the old global with the new global
311     llvm::Constant *NewPtrForOldDecl =
312     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
313     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
314 
315     // Erase the old global, since it is no longer used.
316     OldGV->eraseFromParent();
317   }
318 
319   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
320   GV->setInitializer(Init);
321 
322   if (hasNontrivialDestruction(D.getType())) {
323     // We have a constant initializer, but a nontrivial destructor. We still
324     // need to perform a guarded "initialization" in order to register the
325     // destructor.
326     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
327   }
328 
329   return GV;
330 }
331 
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)332 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
333                                       llvm::GlobalValue::LinkageTypes Linkage) {
334   llvm::Value *&DMEntry = LocalDeclMap[&D];
335   assert(!DMEntry && "Decl already exists in localdeclmap!");
336 
337   // Check to see if we already have a global variable for this
338   // declaration.  This can happen when double-emitting function
339   // bodies, e.g. with complete and base constructors.
340   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
341 
342   // Store into LocalDeclMap before generating initializer to handle
343   // circular references.
344   DMEntry = addr;
345 
346   // We can't have a VLA here, but we can have a pointer to a VLA,
347   // even though that doesn't really make any sense.
348   // Make sure to evaluate VLA bounds now so that we have them for later.
349   if (D.getType()->isVariablyModifiedType())
350     EmitVariablyModifiedType(D.getType());
351 
352   // Save the type in case adding the initializer forces a type change.
353   llvm::Type *expectedType = addr->getType();
354 
355   llvm::GlobalVariable *var =
356     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
357   // If this value has an initializer, emit it.
358   if (D.getInit())
359     var = AddInitializerToStaticVarDecl(D, var);
360 
361   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
362 
363   if (D.hasAttr<AnnotateAttr>())
364     CGM.AddGlobalAnnotations(&D, var);
365 
366   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
367     var->setSection(SA->getName());
368 
369   if (D.hasAttr<UsedAttr>())
370     CGM.addUsedGlobal(var);
371 
372   // We may have to cast the constant because of the initializer
373   // mismatch above.
374   //
375   // FIXME: It is really dangerous to store this in the map; if anyone
376   // RAUW's the GV uses of this constant will be invalid.
377   llvm::Constant *castedAddr =
378     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
379   DMEntry = castedAddr;
380   CGM.setStaticLocalDeclAddress(&D, castedAddr);
381 
382   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
383 
384   // Emit global variable debug descriptor for static vars.
385   CGDebugInfo *DI = getDebugInfo();
386   if (DI &&
387       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
388     DI->setLocation(D.getLocation());
389     DI->EmitGlobalVariable(var, &D);
390   }
391 }
392 
393 namespace {
394   struct DestroyObject : EHScopeStack::Cleanup {
DestroyObject__anondd60fe6b0111::DestroyObject395     DestroyObject(llvm::Value *addr, QualType type,
396                   CodeGenFunction::Destroyer *destroyer,
397                   bool useEHCleanupForArray)
398       : addr(addr), type(type), destroyer(destroyer),
399         useEHCleanupForArray(useEHCleanupForArray) {}
400 
401     llvm::Value *addr;
402     QualType type;
403     CodeGenFunction::Destroyer *destroyer;
404     bool useEHCleanupForArray;
405 
Emit__anondd60fe6b0111::DestroyObject406     void Emit(CodeGenFunction &CGF, Flags flags) override {
407       // Don't use an EH cleanup recursively from an EH cleanup.
408       bool useEHCleanupForArray =
409         flags.isForNormalCleanup() && this->useEHCleanupForArray;
410 
411       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
412     }
413   };
414 
415   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anondd60fe6b0111::DestroyNRVOVariable416     DestroyNRVOVariable(llvm::Value *addr,
417                         const CXXDestructorDecl *Dtor,
418                         llvm::Value *NRVOFlag)
419       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
420 
421     const CXXDestructorDecl *Dtor;
422     llvm::Value *NRVOFlag;
423     llvm::Value *Loc;
424 
Emit__anondd60fe6b0111::DestroyNRVOVariable425     void Emit(CodeGenFunction &CGF, Flags flags) override {
426       // Along the exceptions path we always execute the dtor.
427       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
428 
429       llvm::BasicBlock *SkipDtorBB = nullptr;
430       if (NRVO) {
431         // If we exited via NRVO, we skip the destructor call.
432         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
433         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
434         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
435         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
436         CGF.EmitBlock(RunDtorBB);
437       }
438 
439       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
440                                 /*ForVirtualBase=*/false,
441                                 /*Delegating=*/false,
442                                 Loc);
443 
444       if (NRVO) CGF.EmitBlock(SkipDtorBB);
445     }
446   };
447 
448   struct CallStackRestore : EHScopeStack::Cleanup {
449     llvm::Value *Stack;
CallStackRestore__anondd60fe6b0111::CallStackRestore450     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
Emit__anondd60fe6b0111::CallStackRestore451     void Emit(CodeGenFunction &CGF, Flags flags) override {
452       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
453       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
454       CGF.Builder.CreateCall(F, V);
455     }
456   };
457 
458   struct ExtendGCLifetime : EHScopeStack::Cleanup {
459     const VarDecl &Var;
ExtendGCLifetime__anondd60fe6b0111::ExtendGCLifetime460     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
461 
Emit__anondd60fe6b0111::ExtendGCLifetime462     void Emit(CodeGenFunction &CGF, Flags flags) override {
463       // Compute the address of the local variable, in case it's a
464       // byref or something.
465       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
466                       Var.getType(), VK_LValue, SourceLocation());
467       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
468                                                 SourceLocation());
469       CGF.EmitExtendGCLifetime(value);
470     }
471   };
472 
473   struct CallCleanupFunction : EHScopeStack::Cleanup {
474     llvm::Constant *CleanupFn;
475     const CGFunctionInfo &FnInfo;
476     const VarDecl &Var;
477 
CallCleanupFunction__anondd60fe6b0111::CallCleanupFunction478     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
479                         const VarDecl *Var)
480       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
481 
Emit__anondd60fe6b0111::CallCleanupFunction482     void Emit(CodeGenFunction &CGF, Flags flags) override {
483       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
484                       Var.getType(), VK_LValue, SourceLocation());
485       // Compute the address of the local variable, in case it's a byref
486       // or something.
487       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
488 
489       // In some cases, the type of the function argument will be different from
490       // the type of the pointer. An example of this is
491       // void f(void* arg);
492       // __attribute__((cleanup(f))) void *g;
493       //
494       // To fix this we insert a bitcast here.
495       QualType ArgTy = FnInfo.arg_begin()->type;
496       llvm::Value *Arg =
497         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
498 
499       CallArgList Args;
500       Args.add(RValue::get(Arg),
501                CGF.getContext().getPointerType(Var.getType()));
502       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
503     }
504   };
505 
506   /// A cleanup to call @llvm.lifetime.end.
507   class CallLifetimeEnd : public EHScopeStack::Cleanup {
508     llvm::Value *Addr;
509     llvm::Value *Size;
510   public:
CallLifetimeEnd(llvm::Value * addr,llvm::Value * size)511     CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
512       : Addr(addr), Size(size) {}
513 
Emit(CodeGenFunction & CGF,Flags flags)514     void Emit(CodeGenFunction &CGF, Flags flags) override {
515       llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
516       CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
517                               Size, castAddr)
518         ->setDoesNotThrow();
519     }
520   };
521 }
522 
523 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
524 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,llvm::Value * addr,Qualifiers::ObjCLifetime lifetime)525 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
526                                     llvm::Value *addr,
527                                     Qualifiers::ObjCLifetime lifetime) {
528   switch (lifetime) {
529   case Qualifiers::OCL_None:
530     llvm_unreachable("present but none");
531 
532   case Qualifiers::OCL_ExplicitNone:
533     // nothing to do
534     break;
535 
536   case Qualifiers::OCL_Strong: {
537     CodeGenFunction::Destroyer *destroyer =
538       (var.hasAttr<ObjCPreciseLifetimeAttr>()
539        ? CodeGenFunction::destroyARCStrongPrecise
540        : CodeGenFunction::destroyARCStrongImprecise);
541 
542     CleanupKind cleanupKind = CGF.getARCCleanupKind();
543     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
544                     cleanupKind & EHCleanup);
545     break;
546   }
547   case Qualifiers::OCL_Autoreleasing:
548     // nothing to do
549     break;
550 
551   case Qualifiers::OCL_Weak:
552     // __weak objects always get EH cleanups; otherwise, exceptions
553     // could cause really nasty crashes instead of mere leaks.
554     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
555                     CodeGenFunction::destroyARCWeak,
556                     /*useEHCleanup*/ true);
557     break;
558   }
559 }
560 
isAccessedBy(const VarDecl & var,const Stmt * s)561 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
562   if (const Expr *e = dyn_cast<Expr>(s)) {
563     // Skip the most common kinds of expressions that make
564     // hierarchy-walking expensive.
565     s = e = e->IgnoreParenCasts();
566 
567     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
568       return (ref->getDecl() == &var);
569     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
570       const BlockDecl *block = be->getBlockDecl();
571       for (const auto &I : block->captures()) {
572         if (I.getVariable() == &var)
573           return true;
574       }
575     }
576   }
577 
578   for (Stmt::const_child_range children = s->children(); children; ++children)
579     // children might be null; as in missing decl or conditional of an if-stmt.
580     if ((*children) && isAccessedBy(var, *children))
581       return true;
582 
583   return false;
584 }
585 
isAccessedBy(const ValueDecl * decl,const Expr * e)586 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
587   if (!decl) return false;
588   if (!isa<VarDecl>(decl)) return false;
589   const VarDecl *var = cast<VarDecl>(decl);
590   return isAccessedBy(*var, e);
591 }
592 
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)593 static void drillIntoBlockVariable(CodeGenFunction &CGF,
594                                    LValue &lvalue,
595                                    const VarDecl *var) {
596   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
597 }
598 
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)599 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
600                                      LValue lvalue, bool capturedByInit) {
601   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
602   if (!lifetime) {
603     llvm::Value *value = EmitScalarExpr(init);
604     if (capturedByInit)
605       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
606     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
607     return;
608   }
609 
610   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
611     init = DIE->getExpr();
612 
613   // If we're emitting a value with lifetime, we have to do the
614   // initialization *before* we leave the cleanup scopes.
615   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
616     enterFullExpression(ewc);
617     init = ewc->getSubExpr();
618   }
619   CodeGenFunction::RunCleanupsScope Scope(*this);
620 
621   // We have to maintain the illusion that the variable is
622   // zero-initialized.  If the variable might be accessed in its
623   // initializer, zero-initialize before running the initializer, then
624   // actually perform the initialization with an assign.
625   bool accessedByInit = false;
626   if (lifetime != Qualifiers::OCL_ExplicitNone)
627     accessedByInit = (capturedByInit || isAccessedBy(D, init));
628   if (accessedByInit) {
629     LValue tempLV = lvalue;
630     // Drill down to the __block object if necessary.
631     if (capturedByInit) {
632       // We can use a simple GEP for this because it can't have been
633       // moved yet.
634       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
635                                    getByRefValueLLVMField(cast<VarDecl>(D))));
636     }
637 
638     llvm::PointerType *ty
639       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
640     ty = cast<llvm::PointerType>(ty->getElementType());
641 
642     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
643 
644     // If __weak, we want to use a barrier under certain conditions.
645     if (lifetime == Qualifiers::OCL_Weak)
646       EmitARCInitWeak(tempLV.getAddress(), zero);
647 
648     // Otherwise just do a simple store.
649     else
650       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
651   }
652 
653   // Emit the initializer.
654   llvm::Value *value = nullptr;
655 
656   switch (lifetime) {
657   case Qualifiers::OCL_None:
658     llvm_unreachable("present but none");
659 
660   case Qualifiers::OCL_ExplicitNone:
661     // nothing to do
662     value = EmitScalarExpr(init);
663     break;
664 
665   case Qualifiers::OCL_Strong: {
666     value = EmitARCRetainScalarExpr(init);
667     break;
668   }
669 
670   case Qualifiers::OCL_Weak: {
671     // No way to optimize a producing initializer into this.  It's not
672     // worth optimizing for, because the value will immediately
673     // disappear in the common case.
674     value = EmitScalarExpr(init);
675 
676     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
677     if (accessedByInit)
678       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
679     else
680       EmitARCInitWeak(lvalue.getAddress(), value);
681     return;
682   }
683 
684   case Qualifiers::OCL_Autoreleasing:
685     value = EmitARCRetainAutoreleaseScalarExpr(init);
686     break;
687   }
688 
689   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
690 
691   // If the variable might have been accessed by its initializer, we
692   // might have to initialize with a barrier.  We have to do this for
693   // both __weak and __strong, but __weak got filtered out above.
694   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
695     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
696     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
697     EmitARCRelease(oldValue, ARCImpreciseLifetime);
698     return;
699   }
700 
701   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
702 }
703 
704 /// EmitScalarInit - Initialize the given lvalue with the given object.
EmitScalarInit(llvm::Value * init,LValue lvalue)705 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
706   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
707   if (!lifetime)
708     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
709 
710   switch (lifetime) {
711   case Qualifiers::OCL_None:
712     llvm_unreachable("present but none");
713 
714   case Qualifiers::OCL_ExplicitNone:
715     // nothing to do
716     break;
717 
718   case Qualifiers::OCL_Strong:
719     init = EmitARCRetain(lvalue.getType(), init);
720     break;
721 
722   case Qualifiers::OCL_Weak:
723     // Initialize and then skip the primitive store.
724     EmitARCInitWeak(lvalue.getAddress(), init);
725     return;
726 
727   case Qualifiers::OCL_Autoreleasing:
728     init = EmitARCRetainAutorelease(lvalue.getType(), init);
729     break;
730   }
731 
732   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
733 }
734 
735 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
736 /// non-zero parts of the specified initializer with equal or fewer than
737 /// NumStores scalar stores.
canEmitInitWithFewStoresAfterMemset(llvm::Constant * Init,unsigned & NumStores)738 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
739                                                 unsigned &NumStores) {
740   // Zero and Undef never requires any extra stores.
741   if (isa<llvm::ConstantAggregateZero>(Init) ||
742       isa<llvm::ConstantPointerNull>(Init) ||
743       isa<llvm::UndefValue>(Init))
744     return true;
745   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
746       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
747       isa<llvm::ConstantExpr>(Init))
748     return Init->isNullValue() || NumStores--;
749 
750   // See if we can emit each element.
751   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
752     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
753       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
754       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
755         return false;
756     }
757     return true;
758   }
759 
760   if (llvm::ConstantDataSequential *CDS =
761         dyn_cast<llvm::ConstantDataSequential>(Init)) {
762     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
763       llvm::Constant *Elt = CDS->getElementAsConstant(i);
764       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
765         return false;
766     }
767     return true;
768   }
769 
770   // Anything else is hard and scary.
771   return false;
772 }
773 
774 /// emitStoresForInitAfterMemset - For inits that
775 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
776 /// stores that would be required.
emitStoresForInitAfterMemset(llvm::Constant * Init,llvm::Value * Loc,bool isVolatile,CGBuilderTy & Builder)777 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
778                                          bool isVolatile, CGBuilderTy &Builder) {
779   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
780          "called emitStoresForInitAfterMemset for zero or undef value.");
781 
782   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
783       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
784       isa<llvm::ConstantExpr>(Init)) {
785     Builder.CreateStore(Init, Loc, isVolatile);
786     return;
787   }
788 
789   if (llvm::ConstantDataSequential *CDS =
790         dyn_cast<llvm::ConstantDataSequential>(Init)) {
791     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
792       llvm::Constant *Elt = CDS->getElementAsConstant(i);
793 
794       // If necessary, get a pointer to the element and emit it.
795       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
796         emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
797                                      isVolatile, Builder);
798     }
799     return;
800   }
801 
802   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
803          "Unknown value type!");
804 
805   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
806     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
807 
808     // If necessary, get a pointer to the element and emit it.
809     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
810       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
811                                    isVolatile, Builder);
812   }
813 }
814 
815 
816 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
817 /// plus some stores to initialize a local variable instead of using a memcpy
818 /// from a constant global.  It is beneficial to use memset if the global is all
819 /// zeros, or mostly zeros and large.
shouldUseMemSetPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)820 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
821                                                   uint64_t GlobalSize) {
822   // If a global is all zeros, always use a memset.
823   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
824 
825   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
826   // do it if it will require 6 or fewer scalar stores.
827   // TODO: Should budget depends on the size?  Avoiding a large global warrants
828   // plopping in more stores.
829   unsigned StoreBudget = 6;
830   uint64_t SizeLimit = 32;
831 
832   return GlobalSize > SizeLimit &&
833          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
834 }
835 
836 /// Should we use the LLVM lifetime intrinsics for the given local variable?
shouldUseLifetimeMarkers(CodeGenFunction & CGF,const VarDecl & D,unsigned Size)837 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
838                                      unsigned Size) {
839   // For now, only in optimized builds.
840   if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
841     return false;
842 
843   // Limit the size of marked objects to 32 bytes. We don't want to increase
844   // compile time by marking tiny objects.
845   unsigned SizeThreshold = 32;
846 
847   return Size > SizeThreshold;
848 }
849 
850 
851 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
852 /// variable declaration with auto, register, or no storage class specifier.
853 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)854 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
855   AutoVarEmission emission = EmitAutoVarAlloca(D);
856   EmitAutoVarInit(emission);
857   EmitAutoVarCleanups(emission);
858 }
859 
860 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
861 /// local variable.  Does not emit initialization or destruction.
862 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)863 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
864   QualType Ty = D.getType();
865 
866   AutoVarEmission emission(D);
867 
868   bool isByRef = D.hasAttr<BlocksAttr>();
869   emission.IsByRef = isByRef;
870 
871   CharUnits alignment = getContext().getDeclAlign(&D);
872   emission.Alignment = alignment;
873 
874   // If the type is variably-modified, emit all the VLA sizes for it.
875   if (Ty->isVariablyModifiedType())
876     EmitVariablyModifiedType(Ty);
877 
878   llvm::Value *DeclPtr;
879   if (Ty->isConstantSizeType()) {
880     bool NRVO = getLangOpts().ElideConstructors &&
881       D.isNRVOVariable();
882 
883     // If this value is an array or struct with a statically determinable
884     // constant initializer, there are optimizations we can do.
885     //
886     // TODO: We should constant-evaluate the initializer of any variable,
887     // as long as it is initialized by a constant expression. Currently,
888     // isConstantInitializer produces wrong answers for structs with
889     // reference or bitfield members, and a few other cases, and checking
890     // for POD-ness protects us from some of these.
891     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
892         (D.isConstexpr() ||
893          ((Ty.isPODType(getContext()) ||
894            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
895           D.getInit()->isConstantInitializer(getContext(), false)))) {
896 
897       // If the variable's a const type, and it's neither an NRVO
898       // candidate nor a __block variable and has no mutable members,
899       // emit it as a global instead.
900       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
901           CGM.isTypeConstant(Ty, true)) {
902         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
903 
904         emission.Address = nullptr; // signal this condition to later callbacks
905         assert(emission.wasEmittedAsGlobal());
906         return emission;
907       }
908 
909       // Otherwise, tell the initialization code that we're in this case.
910       emission.IsConstantAggregate = true;
911     }
912 
913     // A normal fixed sized variable becomes an alloca in the entry block,
914     // unless it's an NRVO variable.
915     llvm::Type *LTy = ConvertTypeForMem(Ty);
916 
917     if (NRVO) {
918       // The named return value optimization: allocate this variable in the
919       // return slot, so that we can elide the copy when returning this
920       // variable (C++0x [class.copy]p34).
921       DeclPtr = ReturnValue;
922 
923       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
924         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
925           // Create a flag that is used to indicate when the NRVO was applied
926           // to this variable. Set it to zero to indicate that NRVO was not
927           // applied.
928           llvm::Value *Zero = Builder.getFalse();
929           llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
930           EnsureInsertPoint();
931           Builder.CreateStore(Zero, NRVOFlag);
932 
933           // Record the NRVO flag for this variable.
934           NRVOFlags[&D] = NRVOFlag;
935           emission.NRVOFlag = NRVOFlag;
936         }
937       }
938     } else {
939       if (isByRef)
940         LTy = BuildByRefType(&D);
941 
942       llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
943       Alloc->setName(D.getName());
944 
945       CharUnits allocaAlignment = alignment;
946       if (isByRef)
947         allocaAlignment = std::max(allocaAlignment,
948             getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
949       Alloc->setAlignment(allocaAlignment.getQuantity());
950       DeclPtr = Alloc;
951 
952       // Emit a lifetime intrinsic if meaningful.  There's no point
953       // in doing this if we don't have a valid insertion point (?).
954       uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
955       if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
956         llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
957 
958         emission.SizeForLifetimeMarkers = sizeV;
959         llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
960         Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
961           ->setDoesNotThrow();
962       } else {
963         assert(!emission.useLifetimeMarkers());
964       }
965     }
966   } else {
967     EnsureInsertPoint();
968 
969     if (!DidCallStackSave) {
970       // Save the stack.
971       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
972 
973       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
974       llvm::Value *V = Builder.CreateCall(F);
975 
976       Builder.CreateStore(V, Stack);
977 
978       DidCallStackSave = true;
979 
980       // Push a cleanup block and restore the stack there.
981       // FIXME: in general circumstances, this should be an EH cleanup.
982       pushStackRestore(NormalCleanup, Stack);
983     }
984 
985     llvm::Value *elementCount;
986     QualType elementType;
987     std::tie(elementCount, elementType) = getVLASize(Ty);
988 
989     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
990 
991     // Allocate memory for the array.
992     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
993     vla->setAlignment(alignment.getQuantity());
994 
995     DeclPtr = vla;
996   }
997 
998   llvm::Value *&DMEntry = LocalDeclMap[&D];
999   assert(!DMEntry && "Decl already exists in localdeclmap!");
1000   DMEntry = DeclPtr;
1001   emission.Address = DeclPtr;
1002 
1003   // Emit debug info for local var declaration.
1004   if (HaveInsertPoint())
1005     if (CGDebugInfo *DI = getDebugInfo()) {
1006       if (CGM.getCodeGenOpts().getDebugInfo()
1007             >= CodeGenOptions::LimitedDebugInfo) {
1008         DI->setLocation(D.getLocation());
1009         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
1010       }
1011     }
1012 
1013   if (D.hasAttr<AnnotateAttr>())
1014       EmitVarAnnotations(&D, emission.Address);
1015 
1016   return emission;
1017 }
1018 
1019 /// Determines whether the given __block variable is potentially
1020 /// captured by the given expression.
isCapturedBy(const VarDecl & var,const Expr * e)1021 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1022   // Skip the most common kinds of expressions that make
1023   // hierarchy-walking expensive.
1024   e = e->IgnoreParenCasts();
1025 
1026   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1027     const BlockDecl *block = be->getBlockDecl();
1028     for (const auto &I : block->captures()) {
1029       if (I.getVariable() == &var)
1030         return true;
1031     }
1032 
1033     // No need to walk into the subexpressions.
1034     return false;
1035   }
1036 
1037   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1038     const CompoundStmt *CS = SE->getSubStmt();
1039     for (const auto *BI : CS->body())
1040       if (const auto *E = dyn_cast<Expr>(BI)) {
1041         if (isCapturedBy(var, E))
1042             return true;
1043       }
1044       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1045           // special case declarations
1046           for (const auto *I : DS->decls()) {
1047               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1048                 const Expr *Init = VD->getInit();
1049                 if (Init && isCapturedBy(var, Init))
1050                   return true;
1051               }
1052           }
1053       }
1054       else
1055         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1056         // Later, provide code to poke into statements for capture analysis.
1057         return true;
1058     return false;
1059   }
1060 
1061   for (Stmt::const_child_range children = e->children(); children; ++children)
1062     if (isCapturedBy(var, cast<Expr>(*children)))
1063       return true;
1064 
1065   return false;
1066 }
1067 
1068 /// \brief Determine whether the given initializer is trivial in the sense
1069 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)1070 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1071   if (!Init)
1072     return true;
1073 
1074   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1075     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1076       if (Constructor->isTrivial() &&
1077           Constructor->isDefaultConstructor() &&
1078           !Construct->requiresZeroInitialization())
1079         return true;
1080 
1081   return false;
1082 }
EmitAutoVarInit(const AutoVarEmission & emission)1083 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1084   assert(emission.Variable && "emission was not valid!");
1085 
1086   // If this was emitted as a global constant, we're done.
1087   if (emission.wasEmittedAsGlobal()) return;
1088 
1089   const VarDecl &D = *emission.Variable;
1090   ApplyDebugLocation DL(*this, D.getLocation());
1091   QualType type = D.getType();
1092 
1093   // If this local has an initializer, emit it now.
1094   const Expr *Init = D.getInit();
1095 
1096   // If we are at an unreachable point, we don't need to emit the initializer
1097   // unless it contains a label.
1098   if (!HaveInsertPoint()) {
1099     if (!Init || !ContainsLabel(Init)) return;
1100     EnsureInsertPoint();
1101   }
1102 
1103   // Initialize the structure of a __block variable.
1104   if (emission.IsByRef)
1105     emitByrefStructureInit(emission);
1106 
1107   if (isTrivialInitializer(Init))
1108     return;
1109 
1110   CharUnits alignment = emission.Alignment;
1111 
1112   // Check whether this is a byref variable that's potentially
1113   // captured and moved by its own initializer.  If so, we'll need to
1114   // emit the initializer first, then copy into the variable.
1115   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1116 
1117   llvm::Value *Loc =
1118     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1119 
1120   llvm::Constant *constant = nullptr;
1121   if (emission.IsConstantAggregate || D.isConstexpr()) {
1122     assert(!capturedByInit && "constant init contains a capturing block?");
1123     constant = CGM.EmitConstantInit(D, this);
1124   }
1125 
1126   if (!constant) {
1127     LValue lv = MakeAddrLValue(Loc, type, alignment);
1128     lv.setNonGC(true);
1129     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1130   }
1131 
1132   if (!emission.IsConstantAggregate) {
1133     // For simple scalar/complex initialization, store the value directly.
1134     LValue lv = MakeAddrLValue(Loc, type, alignment);
1135     lv.setNonGC(true);
1136     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1137   }
1138 
1139   // If this is a simple aggregate initialization, we can optimize it
1140   // in various ways.
1141   bool isVolatile = type.isVolatileQualified();
1142 
1143   llvm::Value *SizeVal =
1144     llvm::ConstantInt::get(IntPtrTy,
1145                            getContext().getTypeSizeInChars(type).getQuantity());
1146 
1147   llvm::Type *BP = Int8PtrTy;
1148   if (Loc->getType() != BP)
1149     Loc = Builder.CreateBitCast(Loc, BP);
1150 
1151   // If the initializer is all or mostly zeros, codegen with memset then do
1152   // a few stores afterward.
1153   if (shouldUseMemSetPlusStoresToInitialize(constant,
1154                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1155     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1156                          alignment.getQuantity(), isVolatile);
1157     // Zero and undef don't require a stores.
1158     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1159       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1160       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1161     }
1162   } else {
1163     // Otherwise, create a temporary global with the initializer then
1164     // memcpy from the global to the alloca.
1165     std::string Name = getStaticDeclName(CGM, D);
1166     llvm::GlobalVariable *GV =
1167       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1168                                llvm::GlobalValue::PrivateLinkage,
1169                                constant, Name);
1170     GV->setAlignment(alignment.getQuantity());
1171     GV->setUnnamedAddr(true);
1172 
1173     llvm::Value *SrcPtr = GV;
1174     if (SrcPtr->getType() != BP)
1175       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1176 
1177     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1178                          isVolatile);
1179   }
1180 }
1181 
1182 /// Emit an expression as an initializer for a variable at the given
1183 /// location.  The expression is not necessarily the normal
1184 /// initializer for the variable, and the address is not necessarily
1185 /// its normal location.
1186 ///
1187 /// \param init the initializing expression
1188 /// \param var the variable to act as if we're initializing
1189 /// \param loc the address to initialize; its type is a pointer
1190 ///   to the LLVM mapping of the variable's type
1191 /// \param alignment the alignment of the address
1192 /// \param capturedByInit true if the variable is a __block variable
1193 ///   whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1194 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1195                                      LValue lvalue, bool capturedByInit) {
1196   QualType type = D->getType();
1197 
1198   if (type->isReferenceType()) {
1199     RValue rvalue = EmitReferenceBindingToExpr(init);
1200     if (capturedByInit)
1201       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1202     EmitStoreThroughLValue(rvalue, lvalue, true);
1203     return;
1204   }
1205   switch (getEvaluationKind(type)) {
1206   case TEK_Scalar:
1207     EmitScalarInit(init, D, lvalue, capturedByInit);
1208     return;
1209   case TEK_Complex: {
1210     ComplexPairTy complex = EmitComplexExpr(init);
1211     if (capturedByInit)
1212       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1213     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1214     return;
1215   }
1216   case TEK_Aggregate:
1217     if (type->isAtomicType()) {
1218       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1219     } else {
1220       // TODO: how can we delay here if D is captured by its initializer?
1221       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1222                                               AggValueSlot::IsDestructed,
1223                                          AggValueSlot::DoesNotNeedGCBarriers,
1224                                               AggValueSlot::IsNotAliased));
1225     }
1226     return;
1227   }
1228   llvm_unreachable("bad evaluation kind");
1229 }
1230 
1231 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1232 void CodeGenFunction::emitAutoVarTypeCleanup(
1233                             const CodeGenFunction::AutoVarEmission &emission,
1234                             QualType::DestructionKind dtorKind) {
1235   assert(dtorKind != QualType::DK_none);
1236 
1237   // Note that for __block variables, we want to destroy the
1238   // original stack object, not the possibly forwarded object.
1239   llvm::Value *addr = emission.getObjectAddress(*this);
1240 
1241   const VarDecl *var = emission.Variable;
1242   QualType type = var->getType();
1243 
1244   CleanupKind cleanupKind = NormalAndEHCleanup;
1245   CodeGenFunction::Destroyer *destroyer = nullptr;
1246 
1247   switch (dtorKind) {
1248   case QualType::DK_none:
1249     llvm_unreachable("no cleanup for trivially-destructible variable");
1250 
1251   case QualType::DK_cxx_destructor:
1252     // If there's an NRVO flag on the emission, we need a different
1253     // cleanup.
1254     if (emission.NRVOFlag) {
1255       assert(!type->isArrayType());
1256       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1257       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1258                                                emission.NRVOFlag);
1259       return;
1260     }
1261     break;
1262 
1263   case QualType::DK_objc_strong_lifetime:
1264     // Suppress cleanups for pseudo-strong variables.
1265     if (var->isARCPseudoStrong()) return;
1266 
1267     // Otherwise, consider whether to use an EH cleanup or not.
1268     cleanupKind = getARCCleanupKind();
1269 
1270     // Use the imprecise destroyer by default.
1271     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1272       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1273     break;
1274 
1275   case QualType::DK_objc_weak_lifetime:
1276     break;
1277   }
1278 
1279   // If we haven't chosen a more specific destroyer, use the default.
1280   if (!destroyer) destroyer = getDestroyer(dtorKind);
1281 
1282   // Use an EH cleanup in array destructors iff the destructor itself
1283   // is being pushed as an EH cleanup.
1284   bool useEHCleanup = (cleanupKind & EHCleanup);
1285   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1286                                      useEHCleanup);
1287 }
1288 
EmitAutoVarCleanups(const AutoVarEmission & emission)1289 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1290   assert(emission.Variable && "emission was not valid!");
1291 
1292   // If this was emitted as a global constant, we're done.
1293   if (emission.wasEmittedAsGlobal()) return;
1294 
1295   // If we don't have an insertion point, we're done.  Sema prevents
1296   // us from jumping into any of these scopes anyway.
1297   if (!HaveInsertPoint()) return;
1298 
1299   const VarDecl &D = *emission.Variable;
1300 
1301   // Make sure we call @llvm.lifetime.end.  This needs to happen
1302   // *last*, so the cleanup needs to be pushed *first*.
1303   if (emission.useLifetimeMarkers()) {
1304     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1305                                          emission.getAllocatedAddress(),
1306                                          emission.getSizeForLifetimeMarkers());
1307   }
1308 
1309   // Check the type for a cleanup.
1310   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1311     emitAutoVarTypeCleanup(emission, dtorKind);
1312 
1313   // In GC mode, honor objc_precise_lifetime.
1314   if (getLangOpts().getGC() != LangOptions::NonGC &&
1315       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1316     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1317   }
1318 
1319   // Handle the cleanup attribute.
1320   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1321     const FunctionDecl *FD = CA->getFunctionDecl();
1322 
1323     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1324     assert(F && "Could not find function!");
1325 
1326     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1327     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1328   }
1329 
1330   // If this is a block variable, call _Block_object_destroy
1331   // (on the unforwarded address).
1332   if (emission.IsByRef)
1333     enterByrefCleanup(emission);
1334 }
1335 
1336 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)1337 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1338   switch (kind) {
1339   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1340   case QualType::DK_cxx_destructor:
1341     return destroyCXXObject;
1342   case QualType::DK_objc_strong_lifetime:
1343     return destroyARCStrongPrecise;
1344   case QualType::DK_objc_weak_lifetime:
1345     return destroyARCWeak;
1346   }
1347   llvm_unreachable("Unknown DestructionKind");
1348 }
1349 
1350 /// pushEHDestroy - Push the standard destructor for the given type as
1351 /// an EH-only cleanup.
pushEHDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1352 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1353                                   llvm::Value *addr, QualType type) {
1354   assert(dtorKind && "cannot push destructor for trivial type");
1355   assert(needsEHCleanup(dtorKind));
1356 
1357   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1358 }
1359 
1360 /// pushDestroy - Push the standard destructor for the given type as
1361 /// at least a normal cleanup.
pushDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1362 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1363                                   llvm::Value *addr, QualType type) {
1364   assert(dtorKind && "cannot push destructor for trivial type");
1365 
1366   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1367   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1368               cleanupKind & EHCleanup);
1369 }
1370 
pushDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1371 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1372                                   QualType type, Destroyer *destroyer,
1373                                   bool useEHCleanupForArray) {
1374   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1375                                      destroyer, useEHCleanupForArray);
1376 }
1377 
pushStackRestore(CleanupKind Kind,llvm::Value * SPMem)1378 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1379   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1380 }
1381 
pushLifetimeExtendedDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1382 void CodeGenFunction::pushLifetimeExtendedDestroy(
1383     CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1384     Destroyer *destroyer, bool useEHCleanupForArray) {
1385   assert(!isInConditionalBranch() &&
1386          "performing lifetime extension from within conditional");
1387 
1388   // Push an EH-only cleanup for the object now.
1389   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1390   // around in case a temporary's destructor throws an exception.
1391   if (cleanupKind & EHCleanup)
1392     EHStack.pushCleanup<DestroyObject>(
1393         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1394         destroyer, useEHCleanupForArray);
1395 
1396   // Remember that we need to push a full cleanup for the object at the
1397   // end of the full-expression.
1398   pushCleanupAfterFullExpr<DestroyObject>(
1399       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1400 }
1401 
1402 /// emitDestroy - Immediately perform the destruction of the given
1403 /// object.
1404 ///
1405 /// \param addr - the address of the object; a type*
1406 /// \param type - the type of the object; if an array type, all
1407 ///   objects are destroyed in reverse order
1408 /// \param destroyer - the function to call to destroy individual
1409 ///   elements
1410 /// \param useEHCleanupForArray - whether an EH cleanup should be
1411 ///   used when destroying array elements, in case one of the
1412 ///   destructions throws an exception
emitDestroy(llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1413 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1414                                   Destroyer *destroyer,
1415                                   bool useEHCleanupForArray) {
1416   const ArrayType *arrayType = getContext().getAsArrayType(type);
1417   if (!arrayType)
1418     return destroyer(*this, addr, type);
1419 
1420   llvm::Value *begin = addr;
1421   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1422 
1423   // Normally we have to check whether the array is zero-length.
1424   bool checkZeroLength = true;
1425 
1426   // But if the array length is constant, we can suppress that.
1427   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1428     // ...and if it's constant zero, we can just skip the entire thing.
1429     if (constLength->isZero()) return;
1430     checkZeroLength = false;
1431   }
1432 
1433   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1434   emitArrayDestroy(begin, end, type, destroyer,
1435                    checkZeroLength, useEHCleanupForArray);
1436 }
1437 
1438 /// emitArrayDestroy - Destroys all the elements of the given array,
1439 /// beginning from last to first.  The array cannot be zero-length.
1440 ///
1441 /// \param begin - a type* denoting the first element of the array
1442 /// \param end - a type* denoting one past the end of the array
1443 /// \param type - the element type of the array
1444 /// \param destroyer - the function to call to destroy elements
1445 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1446 ///   the remaining elements in case the destruction of a single
1447 ///   element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType type,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)1448 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1449                                        llvm::Value *end,
1450                                        QualType type,
1451                                        Destroyer *destroyer,
1452                                        bool checkZeroLength,
1453                                        bool useEHCleanup) {
1454   assert(!type->isArrayType());
1455 
1456   // The basic structure here is a do-while loop, because we don't
1457   // need to check for the zero-element case.
1458   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1459   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1460 
1461   if (checkZeroLength) {
1462     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1463                                                 "arraydestroy.isempty");
1464     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1465   }
1466 
1467   // Enter the loop body, making that address the current address.
1468   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1469   EmitBlock(bodyBB);
1470   llvm::PHINode *elementPast =
1471     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1472   elementPast->addIncoming(end, entryBB);
1473 
1474   // Shift the address back by one element.
1475   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1476   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1477                                                    "arraydestroy.element");
1478 
1479   if (useEHCleanup)
1480     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1481 
1482   // Perform the actual destruction there.
1483   destroyer(*this, element, type);
1484 
1485   if (useEHCleanup)
1486     PopCleanupBlock();
1487 
1488   // Check whether we've reached the end.
1489   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1490   Builder.CreateCondBr(done, doneBB, bodyBB);
1491   elementPast->addIncoming(element, Builder.GetInsertBlock());
1492 
1493   // Done.
1494   EmitBlock(doneBB);
1495 }
1496 
1497 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1498 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CodeGenFunction::Destroyer * destroyer)1499 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1500                                     llvm::Value *begin, llvm::Value *end,
1501                                     QualType type,
1502                                     CodeGenFunction::Destroyer *destroyer) {
1503   // If the element type is itself an array, drill down.
1504   unsigned arrayDepth = 0;
1505   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1506     // VLAs don't require a GEP index to walk into.
1507     if (!isa<VariableArrayType>(arrayType))
1508       arrayDepth++;
1509     type = arrayType->getElementType();
1510   }
1511 
1512   if (arrayDepth) {
1513     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1514 
1515     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1516     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1517     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1518   }
1519 
1520   // Destroy the array.  We don't ever need an EH cleanup because we
1521   // assume that we're in an EH cleanup ourselves, so a throwing
1522   // destructor causes an immediate terminate.
1523   CGF.emitArrayDestroy(begin, end, type, destroyer,
1524                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1525 }
1526 
1527 namespace {
1528   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1529   /// array destroy where the end pointer is regularly determined and
1530   /// does not need to be loaded from a local.
1531   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1532     llvm::Value *ArrayBegin;
1533     llvm::Value *ArrayEnd;
1534     QualType ElementType;
1535     CodeGenFunction::Destroyer *Destroyer;
1536   public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CodeGenFunction::Destroyer * destroyer)1537     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1538                                QualType elementType,
1539                                CodeGenFunction::Destroyer *destroyer)
1540       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1541         ElementType(elementType), Destroyer(destroyer) {}
1542 
Emit(CodeGenFunction & CGF,Flags flags)1543     void Emit(CodeGenFunction &CGF, Flags flags) override {
1544       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1545                               ElementType, Destroyer);
1546     }
1547   };
1548 
1549   /// IrregularPartialArrayDestroy - a cleanup which performs a
1550   /// partial array destroy where the end pointer is irregularly
1551   /// determined and must be loaded from a local.
1552   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1553     llvm::Value *ArrayBegin;
1554     llvm::Value *ArrayEndPointer;
1555     QualType ElementType;
1556     CodeGenFunction::Destroyer *Destroyer;
1557   public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,CodeGenFunction::Destroyer * destroyer)1558     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1559                                  llvm::Value *arrayEndPointer,
1560                                  QualType elementType,
1561                                  CodeGenFunction::Destroyer *destroyer)
1562       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1563         ElementType(elementType), Destroyer(destroyer) {}
1564 
Emit(CodeGenFunction & CGF,Flags flags)1565     void Emit(CodeGenFunction &CGF, Flags flags) override {
1566       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1567       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1568                               ElementType, Destroyer);
1569     }
1570   };
1571 }
1572 
1573 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1574 /// already-constructed elements of the given array.  The cleanup
1575 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1576 ///
1577 /// \param elementType - the immediate element type of the array;
1578 ///   possibly still an array type
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,Destroyer * destroyer)1579 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1580                                                  llvm::Value *arrayEndPointer,
1581                                                        QualType elementType,
1582                                                        Destroyer *destroyer) {
1583   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1584                                                     arrayBegin, arrayEndPointer,
1585                                                     elementType, destroyer);
1586 }
1587 
1588 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1589 /// already-constructed elements of the given array.  The cleanup
1590 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1591 ///
1592 /// \param elementType - the immediate element type of the array;
1593 ///   possibly still an array type
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,Destroyer * destroyer)1594 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1595                                                      llvm::Value *arrayEnd,
1596                                                      QualType elementType,
1597                                                      Destroyer *destroyer) {
1598   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1599                                                   arrayBegin, arrayEnd,
1600                                                   elementType, destroyer);
1601 }
1602 
1603 /// Lazily declare the @llvm.lifetime.start intrinsic.
getLLVMLifetimeStartFn()1604 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1605   if (LifetimeStartFn) return LifetimeStartFn;
1606   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1607                                             llvm::Intrinsic::lifetime_start);
1608   return LifetimeStartFn;
1609 }
1610 
1611 /// Lazily declare the @llvm.lifetime.end intrinsic.
getLLVMLifetimeEndFn()1612 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1613   if (LifetimeEndFn) return LifetimeEndFn;
1614   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1615                                               llvm::Intrinsic::lifetime_end);
1616   return LifetimeEndFn;
1617 }
1618 
1619 namespace {
1620   /// A cleanup to perform a release of an object at the end of a
1621   /// function.  This is used to balance out the incoming +1 of a
1622   /// ns_consumed argument when we can't reasonably do that just by
1623   /// not doing the initial retain for a __block argument.
1624   struct ConsumeARCParameter : EHScopeStack::Cleanup {
ConsumeARCParameter__anondd60fe6b0311::ConsumeARCParameter1625     ConsumeARCParameter(llvm::Value *param,
1626                         ARCPreciseLifetime_t precise)
1627       : Param(param), Precise(precise) {}
1628 
1629     llvm::Value *Param;
1630     ARCPreciseLifetime_t Precise;
1631 
Emit__anondd60fe6b0311::ConsumeARCParameter1632     void Emit(CodeGenFunction &CGF, Flags flags) override {
1633       CGF.EmitARCRelease(Param, Precise);
1634     }
1635   };
1636 }
1637 
1638 /// Emit an alloca (or GlobalValue depending on target)
1639 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,llvm::Value * Arg,bool ArgIsPointer,unsigned ArgNo)1640 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1641                                    bool ArgIsPointer, unsigned ArgNo) {
1642   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1643   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1644          "Invalid argument to EmitParmDecl");
1645 
1646   Arg->setName(D.getName());
1647 
1648   QualType Ty = D.getType();
1649 
1650   // Use better IR generation for certain implicit parameters.
1651   if (isa<ImplicitParamDecl>(D)) {
1652     // The only implicit argument a block has is its literal.
1653     if (BlockInfo) {
1654       LocalDeclMap[&D] = Arg;
1655       llvm::Value *LocalAddr = nullptr;
1656       if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1657         // Allocate a stack slot to let the debug info survive the RA.
1658         llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1659                                                    D.getName() + ".addr");
1660         Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1661         LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1662         EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1663         LocalAddr = Builder.CreateLoad(Alloc);
1664       }
1665 
1666       if (CGDebugInfo *DI = getDebugInfo()) {
1667         if (CGM.getCodeGenOpts().getDebugInfo()
1668               >= CodeGenOptions::LimitedDebugInfo) {
1669           DI->setLocation(D.getLocation());
1670           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo,
1671                                                    LocalAddr, Builder);
1672         }
1673       }
1674 
1675       return;
1676     }
1677   }
1678 
1679   llvm::Value *DeclPtr;
1680   bool DoStore = false;
1681   bool IsScalar = hasScalarEvaluationKind(Ty);
1682   CharUnits Align = getContext().getDeclAlign(&D);
1683   // If we already have a pointer to the argument, reuse the input pointer.
1684   if (ArgIsPointer) {
1685     // If we have a prettier pointer type at this point, bitcast to that.
1686     unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1687     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1688     DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1689                                                                    D.getName());
1690     // Push a destructor cleanup for this parameter if the ABI requires it.
1691     // Don't push a cleanup in a thunk for a method that will also emit a
1692     // cleanup.
1693     if (!IsScalar && !CurFuncIsThunk &&
1694         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1695       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1696       if (RD && RD->hasNonTrivialDestructor())
1697         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1698     }
1699   } else {
1700     // Otherwise, create a temporary to hold the value.
1701     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1702                                                D.getName() + ".addr");
1703     Alloc->setAlignment(Align.getQuantity());
1704     DeclPtr = Alloc;
1705     DoStore = true;
1706   }
1707 
1708   LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1709   if (IsScalar) {
1710     Qualifiers qs = Ty.getQualifiers();
1711     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1712       // We honor __attribute__((ns_consumed)) for types with lifetime.
1713       // For __strong, it's handled by just skipping the initial retain;
1714       // otherwise we have to balance out the initial +1 with an extra
1715       // cleanup to do the release at the end of the function.
1716       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1717 
1718       // 'self' is always formally __strong, but if this is not an
1719       // init method then we don't want to retain it.
1720       if (D.isARCPseudoStrong()) {
1721         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1722         assert(&D == method->getSelfDecl());
1723         assert(lt == Qualifiers::OCL_Strong);
1724         assert(qs.hasConst());
1725         assert(method->getMethodFamily() != OMF_init);
1726         (void) method;
1727         lt = Qualifiers::OCL_ExplicitNone;
1728       }
1729 
1730       if (lt == Qualifiers::OCL_Strong) {
1731         if (!isConsumed) {
1732           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1733             // use objc_storeStrong(&dest, value) for retaining the
1734             // object. But first, store a null into 'dest' because
1735             // objc_storeStrong attempts to release its old value.
1736             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1737             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1738             EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1739             DoStore = false;
1740           }
1741           else
1742           // Don't use objc_retainBlock for block pointers, because we
1743           // don't want to Block_copy something just because we got it
1744           // as a parameter.
1745             Arg = EmitARCRetainNonBlock(Arg);
1746         }
1747       } else {
1748         // Push the cleanup for a consumed parameter.
1749         if (isConsumed) {
1750           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1751                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1752           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1753                                                    precise);
1754         }
1755 
1756         if (lt == Qualifiers::OCL_Weak) {
1757           EmitARCInitWeak(DeclPtr, Arg);
1758           DoStore = false; // The weak init is a store, no need to do two.
1759         }
1760       }
1761 
1762       // Enter the cleanup scope.
1763       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1764     }
1765   }
1766 
1767   // Store the initial value into the alloca.
1768   if (DoStore)
1769     EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1770 
1771   llvm::Value *&DMEntry = LocalDeclMap[&D];
1772   assert(!DMEntry && "Decl already exists in localdeclmap!");
1773   DMEntry = DeclPtr;
1774 
1775   // Emit debug info for param declaration.
1776   if (CGDebugInfo *DI = getDebugInfo()) {
1777     if (CGM.getCodeGenOpts().getDebugInfo()
1778           >= CodeGenOptions::LimitedDebugInfo) {
1779       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1780     }
1781   }
1782 
1783   if (D.hasAttr<AnnotateAttr>())
1784       EmitVarAnnotations(&D, DeclPtr);
1785 }
1786