1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
35                                       QualType ET,
36                                       const ObjCMethodDecl *Method,
37                                       RValue Result);
38 
39 /// Given the address of a variable of pointer type, find the correct
40 /// null to store into it.
getNullForVariable(llvm::Value * addr)41 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
42   llvm::Type *type =
43     cast<llvm::PointerType>(addr->getType())->getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46 
47 /// Emits an instance of NSConstantString representing the object.
EmitObjCStringLiteral(const ObjCStringLiteral * E)48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C =
51       CGM.getObjCRuntime().GenerateConstantString(E->getString());
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55 
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
59 ///
60 llvm::Value *
EmitObjCBoxedExpr(const ObjCBoxedExpr * E)61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
62   // Generate the correct selector for this literal's concrete type.
63   // Get the method.
64   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
65   assert(BoxingMethod && "BoxingMethod is null");
66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67   Selector Sel = BoxingMethod->getSelector();
68 
69   // Generate a reference to the class pointer, which will be the receiver.
70   // Assumes that the method was introduced in the class that should be
71   // messaged (avoids pulling it out of the result type).
72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75 
76   CallArgList Args;
77   EmitCallArgs(Args, BoxingMethod, E->arg_begin(), E->arg_end());
78 
79   RValue result = Runtime.GenerateMessageSend(
80       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
81       Args, ClassDecl, BoxingMethod);
82   return Builder.CreateBitCast(result.getScalarVal(),
83                                ConvertType(E->getType()));
84 }
85 
EmitObjCCollectionLiteral(const Expr * E,const ObjCMethodDecl * MethodWithObjects)86 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
87                                     const ObjCMethodDecl *MethodWithObjects) {
88   ASTContext &Context = CGM.getContext();
89   const ObjCDictionaryLiteral *DLE = nullptr;
90   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
91   if (!ALE)
92     DLE = cast<ObjCDictionaryLiteral>(E);
93 
94   // Compute the type of the array we're initializing.
95   uint64_t NumElements =
96     ALE ? ALE->getNumElements() : DLE->getNumElements();
97   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
98                             NumElements);
99   QualType ElementType = Context.getObjCIdType().withConst();
100   QualType ElementArrayType
101     = Context.getConstantArrayType(ElementType, APNumElements,
102                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
103 
104   // Allocate the temporary array(s).
105   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
106   llvm::Value *Keys = nullptr;
107   if (DLE)
108     Keys = CreateMemTemp(ElementArrayType, "keys");
109 
110   // In ARC, we may need to do extra work to keep all the keys and
111   // values alive until after the call.
112   SmallVector<llvm::Value *, 16> NeededObjects;
113   bool TrackNeededObjects =
114     (getLangOpts().ObjCAutoRefCount &&
115     CGM.getCodeGenOpts().OptimizationLevel != 0);
116 
117   // Perform the actual initialialization of the array(s).
118   for (uint64_t i = 0; i < NumElements; i++) {
119     if (ALE) {
120       // Emit the element and store it to the appropriate array slot.
121       const Expr *Rhs = ALE->getElement(i);
122       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
123                                    ElementType,
124                                    Context.getTypeAlignInChars(Rhs->getType()),
125                                    Context);
126 
127       llvm::Value *value = EmitScalarExpr(Rhs);
128       EmitStoreThroughLValue(RValue::get(value), LV, true);
129       if (TrackNeededObjects) {
130         NeededObjects.push_back(value);
131       }
132     } else {
133       // Emit the key and store it to the appropriate array slot.
134       const Expr *Key = DLE->getKeyValueElement(i).Key;
135       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
136                                       ElementType,
137                                     Context.getTypeAlignInChars(Key->getType()),
138                                       Context);
139       llvm::Value *keyValue = EmitScalarExpr(Key);
140       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
141 
142       // Emit the value and store it to the appropriate array slot.
143       const Expr *Value = DLE->getKeyValueElement(i).Value;
144       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
145                                         ElementType,
146                                   Context.getTypeAlignInChars(Value->getType()),
147                                         Context);
148       llvm::Value *valueValue = EmitScalarExpr(Value);
149       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
150       if (TrackNeededObjects) {
151         NeededObjects.push_back(keyValue);
152         NeededObjects.push_back(valueValue);
153       }
154     }
155   }
156 
157   // Generate the argument list.
158   CallArgList Args;
159   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
160   const ParmVarDecl *argDecl = *PI++;
161   QualType ArgQT = argDecl->getType().getUnqualifiedType();
162   Args.add(RValue::get(Objects), ArgQT);
163   if (DLE) {
164     argDecl = *PI++;
165     ArgQT = argDecl->getType().getUnqualifiedType();
166     Args.add(RValue::get(Keys), ArgQT);
167   }
168   argDecl = *PI;
169   ArgQT = argDecl->getType().getUnqualifiedType();
170   llvm::Value *Count =
171     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
172   Args.add(RValue::get(Count), ArgQT);
173 
174   // Generate a reference to the class pointer, which will be the receiver.
175   Selector Sel = MethodWithObjects->getSelector();
176   QualType ResultType = E->getType();
177   const ObjCObjectPointerType *InterfacePointerType
178     = ResultType->getAsObjCInterfacePointerType();
179   ObjCInterfaceDecl *Class
180     = InterfacePointerType->getObjectType()->getInterface();
181   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
182   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
183 
184   // Generate the message send.
185   RValue result = Runtime.GenerateMessageSend(
186       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
187       Receiver, Args, Class, MethodWithObjects);
188 
189   // The above message send needs these objects, but in ARC they are
190   // passed in a buffer that is essentially __unsafe_unretained.
191   // Therefore we must prevent the optimizer from releasing them until
192   // after the call.
193   if (TrackNeededObjects) {
194     EmitARCIntrinsicUse(NeededObjects);
195   }
196 
197   return Builder.CreateBitCast(result.getScalarVal(),
198                                ConvertType(E->getType()));
199 }
200 
EmitObjCArrayLiteral(const ObjCArrayLiteral * E)201 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
202   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
203 }
204 
EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral * E)205 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
206                                             const ObjCDictionaryLiteral *E) {
207   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
208 }
209 
210 /// Emit a selector.
EmitObjCSelectorExpr(const ObjCSelectorExpr * E)211 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
212   // Untyped selector.
213   // Note that this implementation allows for non-constant strings to be passed
214   // as arguments to @selector().  Currently, the only thing preventing this
215   // behaviour is the type checking in the front end.
216   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
217 }
218 
EmitObjCProtocolExpr(const ObjCProtocolExpr * E)219 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
220   // FIXME: This should pass the Decl not the name.
221   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
222 }
223 
224 /// \brief Adjust the type of the result of an Objective-C message send
225 /// expression when the method has a related result type.
AdjustRelatedResultType(CodeGenFunction & CGF,QualType ExpT,const ObjCMethodDecl * Method,RValue Result)226 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
227                                       QualType ExpT,
228                                       const ObjCMethodDecl *Method,
229                                       RValue Result) {
230   if (!Method)
231     return Result;
232 
233   if (!Method->hasRelatedResultType() ||
234       CGF.getContext().hasSameType(ExpT, Method->getReturnType()) ||
235       !Result.isScalar())
236     return Result;
237 
238   // We have applied a related result type. Cast the rvalue appropriately.
239   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
240                                                CGF.ConvertType(ExpT)));
241 }
242 
243 /// Decide whether to extend the lifetime of the receiver of a
244 /// returns-inner-pointer message.
245 static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr * message)246 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
247   switch (message->getReceiverKind()) {
248 
249   // For a normal instance message, we should extend unless the
250   // receiver is loaded from a variable with precise lifetime.
251   case ObjCMessageExpr::Instance: {
252     const Expr *receiver = message->getInstanceReceiver();
253     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
254     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
255     receiver = ice->getSubExpr()->IgnoreParens();
256 
257     // Only __strong variables.
258     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
259       return true;
260 
261     // All ivars and fields have precise lifetime.
262     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
263       return false;
264 
265     // Otherwise, check for variables.
266     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
267     if (!declRef) return true;
268     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
269     if (!var) return true;
270 
271     // All variables have precise lifetime except local variables with
272     // automatic storage duration that aren't specially marked.
273     return (var->hasLocalStorage() &&
274             !var->hasAttr<ObjCPreciseLifetimeAttr>());
275   }
276 
277   case ObjCMessageExpr::Class:
278   case ObjCMessageExpr::SuperClass:
279     // It's never necessary for class objects.
280     return false;
281 
282   case ObjCMessageExpr::SuperInstance:
283     // We generally assume that 'self' lives throughout a method call.
284     return false;
285   }
286 
287   llvm_unreachable("invalid receiver kind");
288 }
289 
EmitObjCMessageExpr(const ObjCMessageExpr * E,ReturnValueSlot Return)290 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
291                                             ReturnValueSlot Return) {
292   // Only the lookup mechanism and first two arguments of the method
293   // implementation vary between runtimes.  We can get the receiver and
294   // arguments in generic code.
295 
296   bool isDelegateInit = E->isDelegateInitCall();
297 
298   const ObjCMethodDecl *method = E->getMethodDecl();
299 
300   // We don't retain the receiver in delegate init calls, and this is
301   // safe because the receiver value is always loaded from 'self',
302   // which we zero out.  We don't want to Block_copy block receivers,
303   // though.
304   bool retainSelf =
305     (!isDelegateInit &&
306      CGM.getLangOpts().ObjCAutoRefCount &&
307      method &&
308      method->hasAttr<NSConsumesSelfAttr>());
309 
310   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
311   bool isSuperMessage = false;
312   bool isClassMessage = false;
313   ObjCInterfaceDecl *OID = nullptr;
314   // Find the receiver
315   QualType ReceiverType;
316   llvm::Value *Receiver = nullptr;
317   switch (E->getReceiverKind()) {
318   case ObjCMessageExpr::Instance:
319     ReceiverType = E->getInstanceReceiver()->getType();
320     if (retainSelf) {
321       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
322                                                    E->getInstanceReceiver());
323       Receiver = ter.getPointer();
324       if (ter.getInt()) retainSelf = false;
325     } else
326       Receiver = EmitScalarExpr(E->getInstanceReceiver());
327     break;
328 
329   case ObjCMessageExpr::Class: {
330     ReceiverType = E->getClassReceiver();
331     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
332     assert(ObjTy && "Invalid Objective-C class message send");
333     OID = ObjTy->getInterface();
334     assert(OID && "Invalid Objective-C class message send");
335     Receiver = Runtime.GetClass(*this, OID);
336     isClassMessage = true;
337     break;
338   }
339 
340   case ObjCMessageExpr::SuperInstance:
341     ReceiverType = E->getSuperType();
342     Receiver = LoadObjCSelf();
343     isSuperMessage = true;
344     break;
345 
346   case ObjCMessageExpr::SuperClass:
347     ReceiverType = E->getSuperType();
348     Receiver = LoadObjCSelf();
349     isSuperMessage = true;
350     isClassMessage = true;
351     break;
352   }
353 
354   if (retainSelf)
355     Receiver = EmitARCRetainNonBlock(Receiver);
356 
357   // In ARC, we sometimes want to "extend the lifetime"
358   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
359   // messages.
360   if (getLangOpts().ObjCAutoRefCount && method &&
361       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
362       shouldExtendReceiverForInnerPointerMessage(E))
363     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
364 
365   QualType ResultType = method ? method->getReturnType() : E->getType();
366 
367   CallArgList Args;
368   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
369 
370   // For delegate init calls in ARC, do an unsafe store of null into
371   // self.  This represents the call taking direct ownership of that
372   // value.  We have to do this after emitting the other call
373   // arguments because they might also reference self, but we don't
374   // have to worry about any of them modifying self because that would
375   // be an undefined read and write of an object in unordered
376   // expressions.
377   if (isDelegateInit) {
378     assert(getLangOpts().ObjCAutoRefCount &&
379            "delegate init calls should only be marked in ARC");
380 
381     // Do an unsafe store of null into self.
382     llvm::Value *selfAddr =
383       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
384     assert(selfAddr && "no self entry for a delegate init call?");
385 
386     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
387   }
388 
389   RValue result;
390   if (isSuperMessage) {
391     // super is only valid in an Objective-C method
392     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
393     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
394     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
395                                               E->getSelector(),
396                                               OMD->getClassInterface(),
397                                               isCategoryImpl,
398                                               Receiver,
399                                               isClassMessage,
400                                               Args,
401                                               method);
402   } else {
403     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
404                                          E->getSelector(),
405                                          Receiver, Args, OID,
406                                          method);
407   }
408 
409   // For delegate init calls in ARC, implicitly store the result of
410   // the call back into self.  This takes ownership of the value.
411   if (isDelegateInit) {
412     llvm::Value *selfAddr =
413       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
414     llvm::Value *newSelf = result.getScalarVal();
415 
416     // The delegate return type isn't necessarily a matching type; in
417     // fact, it's quite likely to be 'id'.
418     llvm::Type *selfTy =
419       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
420     newSelf = Builder.CreateBitCast(newSelf, selfTy);
421 
422     Builder.CreateStore(newSelf, selfAddr);
423   }
424 
425   return AdjustRelatedResultType(*this, E->getType(), method, result);
426 }
427 
428 namespace {
429 struct FinishARCDealloc : EHScopeStack::Cleanup {
Emit__anon2ab49d910111::FinishARCDealloc430   void Emit(CodeGenFunction &CGF, Flags flags) override {
431     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
432 
433     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
434     const ObjCInterfaceDecl *iface = impl->getClassInterface();
435     if (!iface->getSuperClass()) return;
436 
437     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
438 
439     // Call [super dealloc] if we have a superclass.
440     llvm::Value *self = CGF.LoadObjCSelf();
441 
442     CallArgList args;
443     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
444                                                       CGF.getContext().VoidTy,
445                                                       method->getSelector(),
446                                                       iface,
447                                                       isCategory,
448                                                       self,
449                                                       /*is class msg*/ false,
450                                                       args,
451                                                       method);
452   }
453 };
454 }
455 
456 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
457 /// the LLVM function and sets the other context used by
458 /// CodeGenFunction.
StartObjCMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)459 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
460                                       const ObjCContainerDecl *CD) {
461   SourceLocation StartLoc = OMD->getLocStart();
462   FunctionArgList args;
463   // Check if we should generate debug info for this method.
464   if (OMD->hasAttr<NoDebugAttr>())
465     DebugInfo = nullptr; // disable debug info indefinitely for this function
466 
467   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
468 
469   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
470   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
471 
472   args.push_back(OMD->getSelfDecl());
473   args.push_back(OMD->getCmdDecl());
474 
475   for (const auto *PI : OMD->params())
476     args.push_back(PI);
477 
478   CurGD = OMD;
479   CurEHLocation = OMD->getLocEnd();
480 
481   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
482                 OMD->getLocation(), StartLoc);
483 
484   // In ARC, certain methods get an extra cleanup.
485   if (CGM.getLangOpts().ObjCAutoRefCount &&
486       OMD->isInstanceMethod() &&
487       OMD->getSelector().isUnarySelector()) {
488     const IdentifierInfo *ident =
489       OMD->getSelector().getIdentifierInfoForSlot(0);
490     if (ident->isStr("dealloc"))
491       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
492   }
493 }
494 
495 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
496                                               LValue lvalue, QualType type);
497 
498 /// Generate an Objective-C method.  An Objective-C method is a C function with
499 /// its pointer, name, and types registered in the class struture.
GenerateObjCMethod(const ObjCMethodDecl * OMD)500 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
501   StartObjCMethod(OMD, OMD->getClassInterface());
502   PGO.assignRegionCounters(OMD, CurFn);
503   assert(isa<CompoundStmt>(OMD->getBody()));
504   RegionCounter Cnt = getPGORegionCounter(OMD->getBody());
505   Cnt.beginRegion(Builder);
506   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
507   FinishFunction(OMD->getBodyRBrace());
508 }
509 
510 /// emitStructGetterCall - Call the runtime function to load a property
511 /// into the return value slot.
emitStructGetterCall(CodeGenFunction & CGF,ObjCIvarDecl * ivar,bool isAtomic,bool hasStrong)512 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
513                                  bool isAtomic, bool hasStrong) {
514   ASTContext &Context = CGF.getContext();
515 
516   llvm::Value *src =
517     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
518                           ivar, 0).getAddress();
519 
520   // objc_copyStruct (ReturnValue, &structIvar,
521   //                  sizeof (Type of Ivar), isAtomic, false);
522   CallArgList args;
523 
524   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
525   args.add(RValue::get(dest), Context.VoidPtrTy);
526 
527   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
528   args.add(RValue::get(src), Context.VoidPtrTy);
529 
530   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
531   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
532   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
533   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
534 
535   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
536   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
537                                                       FunctionType::ExtInfo(),
538                                                       RequiredArgs::All),
539                fn, ReturnValueSlot(), args);
540 }
541 
542 /// Determine whether the given architecture supports unaligned atomic
543 /// accesses.  They don't have to be fast, just faster than a function
544 /// call and a mutex.
hasUnalignedAtomics(llvm::Triple::ArchType arch)545 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
546   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
547   // currently supported by the backend.)
548   return 0;
549 }
550 
551 /// Return the maximum size that permits atomic accesses for the given
552 /// architecture.
getMaxAtomicAccessSize(CodeGenModule & CGM,llvm::Triple::ArchType arch)553 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
554                                         llvm::Triple::ArchType arch) {
555   // ARM has 8-byte atomic accesses, but it's not clear whether we
556   // want to rely on them here.
557 
558   // In the default case, just assume that any size up to a pointer is
559   // fine given adequate alignment.
560   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
561 }
562 
563 namespace {
564   class PropertyImplStrategy {
565   public:
566     enum StrategyKind {
567       /// The 'native' strategy is to use the architecture's provided
568       /// reads and writes.
569       Native,
570 
571       /// Use objc_setProperty and objc_getProperty.
572       GetSetProperty,
573 
574       /// Use objc_setProperty for the setter, but use expression
575       /// evaluation for the getter.
576       SetPropertyAndExpressionGet,
577 
578       /// Use objc_copyStruct.
579       CopyStruct,
580 
581       /// The 'expression' strategy is to emit normal assignment or
582       /// lvalue-to-rvalue expressions.
583       Expression
584     };
585 
getKind() const586     StrategyKind getKind() const { return StrategyKind(Kind); }
587 
hasStrongMember() const588     bool hasStrongMember() const { return HasStrong; }
isAtomic() const589     bool isAtomic() const { return IsAtomic; }
isCopy() const590     bool isCopy() const { return IsCopy; }
591 
getIvarSize() const592     CharUnits getIvarSize() const { return IvarSize; }
getIvarAlignment() const593     CharUnits getIvarAlignment() const { return IvarAlignment; }
594 
595     PropertyImplStrategy(CodeGenModule &CGM,
596                          const ObjCPropertyImplDecl *propImpl);
597 
598   private:
599     unsigned Kind : 8;
600     unsigned IsAtomic : 1;
601     unsigned IsCopy : 1;
602     unsigned HasStrong : 1;
603 
604     CharUnits IvarSize;
605     CharUnits IvarAlignment;
606   };
607 }
608 
609 /// Pick an implementation strategy for the given property synthesis.
PropertyImplStrategy(CodeGenModule & CGM,const ObjCPropertyImplDecl * propImpl)610 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
611                                      const ObjCPropertyImplDecl *propImpl) {
612   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
613   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
614 
615   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
616   IsAtomic = prop->isAtomic();
617   HasStrong = false; // doesn't matter here.
618 
619   // Evaluate the ivar's size and alignment.
620   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
621   QualType ivarType = ivar->getType();
622   std::tie(IvarSize, IvarAlignment) =
623       CGM.getContext().getTypeInfoInChars(ivarType);
624 
625   // If we have a copy property, we always have to use getProperty/setProperty.
626   // TODO: we could actually use setProperty and an expression for non-atomics.
627   if (IsCopy) {
628     Kind = GetSetProperty;
629     return;
630   }
631 
632   // Handle retain.
633   if (setterKind == ObjCPropertyDecl::Retain) {
634     // In GC-only, there's nothing special that needs to be done.
635     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
636       // fallthrough
637 
638     // In ARC, if the property is non-atomic, use expression emission,
639     // which translates to objc_storeStrong.  This isn't required, but
640     // it's slightly nicer.
641     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
642       // Using standard expression emission for the setter is only
643       // acceptable if the ivar is __strong, which won't be true if
644       // the property is annotated with __attribute__((NSObject)).
645       // TODO: falling all the way back to objc_setProperty here is
646       // just laziness, though;  we could still use objc_storeStrong
647       // if we hacked it right.
648       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
649         Kind = Expression;
650       else
651         Kind = SetPropertyAndExpressionGet;
652       return;
653 
654     // Otherwise, we need to at least use setProperty.  However, if
655     // the property isn't atomic, we can use normal expression
656     // emission for the getter.
657     } else if (!IsAtomic) {
658       Kind = SetPropertyAndExpressionGet;
659       return;
660 
661     // Otherwise, we have to use both setProperty and getProperty.
662     } else {
663       Kind = GetSetProperty;
664       return;
665     }
666   }
667 
668   // If we're not atomic, just use expression accesses.
669   if (!IsAtomic) {
670     Kind = Expression;
671     return;
672   }
673 
674   // Properties on bitfield ivars need to be emitted using expression
675   // accesses even if they're nominally atomic.
676   if (ivar->isBitField()) {
677     Kind = Expression;
678     return;
679   }
680 
681   // GC-qualified or ARC-qualified ivars need to be emitted as
682   // expressions.  This actually works out to being atomic anyway,
683   // except for ARC __strong, but that should trigger the above code.
684   if (ivarType.hasNonTrivialObjCLifetime() ||
685       (CGM.getLangOpts().getGC() &&
686        CGM.getContext().getObjCGCAttrKind(ivarType))) {
687     Kind = Expression;
688     return;
689   }
690 
691   // Compute whether the ivar has strong members.
692   if (CGM.getLangOpts().getGC())
693     if (const RecordType *recordType = ivarType->getAs<RecordType>())
694       HasStrong = recordType->getDecl()->hasObjectMember();
695 
696   // We can never access structs with object members with a native
697   // access, because we need to use write barriers.  This is what
698   // objc_copyStruct is for.
699   if (HasStrong) {
700     Kind = CopyStruct;
701     return;
702   }
703 
704   // Otherwise, this is target-dependent and based on the size and
705   // alignment of the ivar.
706 
707   // If the size of the ivar is not a power of two, give up.  We don't
708   // want to get into the business of doing compare-and-swaps.
709   if (!IvarSize.isPowerOfTwo()) {
710     Kind = CopyStruct;
711     return;
712   }
713 
714   llvm::Triple::ArchType arch =
715     CGM.getTarget().getTriple().getArch();
716 
717   // Most architectures require memory to fit within a single cache
718   // line, so the alignment has to be at least the size of the access.
719   // Otherwise we have to grab a lock.
720   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
721     Kind = CopyStruct;
722     return;
723   }
724 
725   // If the ivar's size exceeds the architecture's maximum atomic
726   // access size, we have to use CopyStruct.
727   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
728     Kind = CopyStruct;
729     return;
730   }
731 
732   // Otherwise, we can use native loads and stores.
733   Kind = Native;
734 }
735 
736 /// \brief Generate an Objective-C property getter function.
737 ///
738 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
739 /// is illegal within a category.
GenerateObjCGetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)740 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
741                                          const ObjCPropertyImplDecl *PID) {
742   llvm::Constant *AtomicHelperFn =
743       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
744   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
745   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
746   assert(OMD && "Invalid call to generate getter (empty method)");
747   StartObjCMethod(OMD, IMP->getClassInterface());
748 
749   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
750 
751   FinishFunction();
752 }
753 
hasTrivialGetExpr(const ObjCPropertyImplDecl * propImpl)754 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
755   const Expr *getter = propImpl->getGetterCXXConstructor();
756   if (!getter) return true;
757 
758   // Sema only makes only of these when the ivar has a C++ class type,
759   // so the form is pretty constrained.
760 
761   // If the property has a reference type, we might just be binding a
762   // reference, in which case the result will be a gl-value.  We should
763   // treat this as a non-trivial operation.
764   if (getter->isGLValue())
765     return false;
766 
767   // If we selected a trivial copy-constructor, we're okay.
768   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
769     return (construct->getConstructor()->isTrivial());
770 
771   // The constructor might require cleanups (in which case it's never
772   // trivial).
773   assert(isa<ExprWithCleanups>(getter));
774   return false;
775 }
776 
777 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
778 /// copy the ivar into the resturn slot.
emitCPPObjectAtomicGetterCall(CodeGenFunction & CGF,llvm::Value * returnAddr,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)779 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
780                                           llvm::Value *returnAddr,
781                                           ObjCIvarDecl *ivar,
782                                           llvm::Constant *AtomicHelperFn) {
783   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
784   //                           AtomicHelperFn);
785   CallArgList args;
786 
787   // The 1st argument is the return Slot.
788   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
789 
790   // The 2nd argument is the address of the ivar.
791   llvm::Value *ivarAddr =
792   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
793                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
794   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
795   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
796 
797   // Third argument is the helper function.
798   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
799 
800   llvm::Value *copyCppAtomicObjectFn =
801     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
802   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
803                                                       args,
804                                                       FunctionType::ExtInfo(),
805                                                       RequiredArgs::All),
806                copyCppAtomicObjectFn, ReturnValueSlot(), args);
807 }
808 
809 void
generateObjCGetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,const ObjCMethodDecl * GetterMethodDecl,llvm::Constant * AtomicHelperFn)810 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
811                                         const ObjCPropertyImplDecl *propImpl,
812                                         const ObjCMethodDecl *GetterMethodDecl,
813                                         llvm::Constant *AtomicHelperFn) {
814   // If there's a non-trivial 'get' expression, we just have to emit that.
815   if (!hasTrivialGetExpr(propImpl)) {
816     if (!AtomicHelperFn) {
817       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
818                      /*nrvo*/ nullptr);
819       EmitReturnStmt(ret);
820     }
821     else {
822       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
823       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
824                                     ivar, AtomicHelperFn);
825     }
826     return;
827   }
828 
829   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
830   QualType propType = prop->getType();
831   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
832 
833   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
834 
835   // Pick an implementation strategy.
836   PropertyImplStrategy strategy(CGM, propImpl);
837   switch (strategy.getKind()) {
838   case PropertyImplStrategy::Native: {
839     // We don't need to do anything for a zero-size struct.
840     if (strategy.getIvarSize().isZero())
841       return;
842 
843     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
844 
845     // Currently, all atomic accesses have to be through integer
846     // types, so there's no point in trying to pick a prettier type.
847     llvm::Type *bitcastType =
848       llvm::Type::getIntNTy(getLLVMContext(),
849                             getContext().toBits(strategy.getIvarSize()));
850     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
851 
852     // Perform an atomic load.  This does not impose ordering constraints.
853     llvm::Value *ivarAddr = LV.getAddress();
854     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
855     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
856     load->setAlignment(strategy.getIvarAlignment().getQuantity());
857     load->setAtomic(llvm::Unordered);
858 
859     // Store that value into the return address.  Doing this with a
860     // bitcast is likely to produce some pretty ugly IR, but it's not
861     // the *most* terrible thing in the world.
862     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
863 
864     // Make sure we don't do an autorelease.
865     AutoreleaseResult = false;
866     return;
867   }
868 
869   case PropertyImplStrategy::GetSetProperty: {
870     llvm::Value *getPropertyFn =
871       CGM.getObjCRuntime().GetPropertyGetFunction();
872     if (!getPropertyFn) {
873       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
874       return;
875     }
876 
877     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
878     // FIXME: Can't this be simpler? This might even be worse than the
879     // corresponding gcc code.
880     llvm::Value *cmd =
881       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
882     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
883     llvm::Value *ivarOffset =
884       EmitIvarOffset(classImpl->getClassInterface(), ivar);
885 
886     CallArgList args;
887     args.add(RValue::get(self), getContext().getObjCIdType());
888     args.add(RValue::get(cmd), getContext().getObjCSelType());
889     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
890     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
891              getContext().BoolTy);
892 
893     // FIXME: We shouldn't need to get the function info here, the
894     // runtime already should have computed it to build the function.
895     llvm::Instruction *CallInstruction;
896     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
897                                                        FunctionType::ExtInfo(),
898                                                             RequiredArgs::All),
899                          getPropertyFn, ReturnValueSlot(), args, nullptr,
900                          &CallInstruction);
901     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
902       call->setTailCall();
903 
904     // We need to fix the type here. Ivars with copy & retain are
905     // always objects so we don't need to worry about complex or
906     // aggregates.
907     RV = RValue::get(Builder.CreateBitCast(
908         RV.getScalarVal(),
909         getTypes().ConvertType(getterMethod->getReturnType())));
910 
911     EmitReturnOfRValue(RV, propType);
912 
913     // objc_getProperty does an autorelease, so we should suppress ours.
914     AutoreleaseResult = false;
915 
916     return;
917   }
918 
919   case PropertyImplStrategy::CopyStruct:
920     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
921                          strategy.hasStrongMember());
922     return;
923 
924   case PropertyImplStrategy::Expression:
925   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
926     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
927 
928     QualType ivarType = ivar->getType();
929     switch (getEvaluationKind(ivarType)) {
930     case TEK_Complex: {
931       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
932       EmitStoreOfComplex(pair,
933                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
934                          /*init*/ true);
935       return;
936     }
937     case TEK_Aggregate:
938       // The return value slot is guaranteed to not be aliased, but
939       // that's not necessarily the same as "on the stack", so
940       // we still potentially need objc_memmove_collectable.
941       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
942       return;
943     case TEK_Scalar: {
944       llvm::Value *value;
945       if (propType->isReferenceType()) {
946         value = LV.getAddress();
947       } else {
948         // We want to load and autoreleaseReturnValue ARC __weak ivars.
949         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
950           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
951 
952         // Otherwise we want to do a simple load, suppressing the
953         // final autorelease.
954         } else {
955           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
956           AutoreleaseResult = false;
957         }
958 
959         value = Builder.CreateBitCast(value, ConvertType(propType));
960         value = Builder.CreateBitCast(
961             value, ConvertType(GetterMethodDecl->getReturnType()));
962       }
963 
964       EmitReturnOfRValue(RValue::get(value), propType);
965       return;
966     }
967     }
968     llvm_unreachable("bad evaluation kind");
969   }
970 
971   }
972   llvm_unreachable("bad @property implementation strategy!");
973 }
974 
975 /// emitStructSetterCall - Call the runtime function to store the value
976 /// from the first formal parameter into the given ivar.
emitStructSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar)977 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
978                                  ObjCIvarDecl *ivar) {
979   // objc_copyStruct (&structIvar, &Arg,
980   //                  sizeof (struct something), true, false);
981   CallArgList args;
982 
983   // The first argument is the address of the ivar.
984   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
985                                                 CGF.LoadObjCSelf(), ivar, 0)
986     .getAddress();
987   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
988   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
989 
990   // The second argument is the address of the parameter variable.
991   ParmVarDecl *argVar = *OMD->param_begin();
992   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
993                      VK_LValue, SourceLocation());
994   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
995   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
996   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
997 
998   // The third argument is the sizeof the type.
999   llvm::Value *size =
1000     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1001   args.add(RValue::get(size), CGF.getContext().getSizeType());
1002 
1003   // The fourth argument is the 'isAtomic' flag.
1004   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1005 
1006   // The fifth argument is the 'hasStrong' flag.
1007   // FIXME: should this really always be false?
1008   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1009 
1010   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1011   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1012                                                       args,
1013                                                       FunctionType::ExtInfo(),
1014                                                       RequiredArgs::All),
1015                copyStructFn, ReturnValueSlot(), args);
1016 }
1017 
1018 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1019 /// the value from the first formal parameter into the given ivar, using
1020 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
emitCPPObjectAtomicSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1021 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1022                                           ObjCMethodDecl *OMD,
1023                                           ObjCIvarDecl *ivar,
1024                                           llvm::Constant *AtomicHelperFn) {
1025   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1026   //                           AtomicHelperFn);
1027   CallArgList args;
1028 
1029   // The first argument is the address of the ivar.
1030   llvm::Value *ivarAddr =
1031     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1032                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
1033   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1034   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1035 
1036   // The second argument is the address of the parameter variable.
1037   ParmVarDecl *argVar = *OMD->param_begin();
1038   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1039                      VK_LValue, SourceLocation());
1040   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1041   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1042   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1043 
1044   // Third argument is the helper function.
1045   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1046 
1047   llvm::Value *copyCppAtomicObjectFn =
1048     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1049   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1050                                                       args,
1051                                                       FunctionType::ExtInfo(),
1052                                                       RequiredArgs::All),
1053                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1054 }
1055 
1056 
hasTrivialSetExpr(const ObjCPropertyImplDecl * PID)1057 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1058   Expr *setter = PID->getSetterCXXAssignment();
1059   if (!setter) return true;
1060 
1061   // Sema only makes only of these when the ivar has a C++ class type,
1062   // so the form is pretty constrained.
1063 
1064   // An operator call is trivial if the function it calls is trivial.
1065   // This also implies that there's nothing non-trivial going on with
1066   // the arguments, because operator= can only be trivial if it's a
1067   // synthesized assignment operator and therefore both parameters are
1068   // references.
1069   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1070     if (const FunctionDecl *callee
1071           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1072       if (callee->isTrivial())
1073         return true;
1074     return false;
1075   }
1076 
1077   assert(isa<ExprWithCleanups>(setter));
1078   return false;
1079 }
1080 
UseOptimizedSetter(CodeGenModule & CGM)1081 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1082   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1083     return false;
1084   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1085 }
1086 
1087 void
generateObjCSetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)1088 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1089                                         const ObjCPropertyImplDecl *propImpl,
1090                                         llvm::Constant *AtomicHelperFn) {
1091   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1092   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1093   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1094 
1095   // Just use the setter expression if Sema gave us one and it's
1096   // non-trivial.
1097   if (!hasTrivialSetExpr(propImpl)) {
1098     if (!AtomicHelperFn)
1099       // If non-atomic, assignment is called directly.
1100       EmitStmt(propImpl->getSetterCXXAssignment());
1101     else
1102       // If atomic, assignment is called via a locking api.
1103       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1104                                     AtomicHelperFn);
1105     return;
1106   }
1107 
1108   PropertyImplStrategy strategy(CGM, propImpl);
1109   switch (strategy.getKind()) {
1110   case PropertyImplStrategy::Native: {
1111     // We don't need to do anything for a zero-size struct.
1112     if (strategy.getIvarSize().isZero())
1113       return;
1114 
1115     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1116 
1117     LValue ivarLValue =
1118       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1119     llvm::Value *ivarAddr = ivarLValue.getAddress();
1120 
1121     // Currently, all atomic accesses have to be through integer
1122     // types, so there's no point in trying to pick a prettier type.
1123     llvm::Type *bitcastType =
1124       llvm::Type::getIntNTy(getLLVMContext(),
1125                             getContext().toBits(strategy.getIvarSize()));
1126     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1127 
1128     // Cast both arguments to the chosen operation type.
1129     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1130     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1131 
1132     // This bitcast load is likely to cause some nasty IR.
1133     llvm::Value *load = Builder.CreateLoad(argAddr);
1134 
1135     // Perform an atomic store.  There are no memory ordering requirements.
1136     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1137     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1138     store->setAtomic(llvm::Unordered);
1139     return;
1140   }
1141 
1142   case PropertyImplStrategy::GetSetProperty:
1143   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1144 
1145     llvm::Value *setOptimizedPropertyFn = nullptr;
1146     llvm::Value *setPropertyFn = nullptr;
1147     if (UseOptimizedSetter(CGM)) {
1148       // 10.8 and iOS 6.0 code and GC is off
1149       setOptimizedPropertyFn =
1150         CGM.getObjCRuntime()
1151            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1152                                             strategy.isCopy());
1153       if (!setOptimizedPropertyFn) {
1154         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1155         return;
1156       }
1157     }
1158     else {
1159       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1160       if (!setPropertyFn) {
1161         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1162         return;
1163       }
1164     }
1165 
1166     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1167     //                       <is-atomic>, <is-copy>).
1168     llvm::Value *cmd =
1169       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1170     llvm::Value *self =
1171       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1172     llvm::Value *ivarOffset =
1173       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1174     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1175     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1176 
1177     CallArgList args;
1178     args.add(RValue::get(self), getContext().getObjCIdType());
1179     args.add(RValue::get(cmd), getContext().getObjCSelType());
1180     if (setOptimizedPropertyFn) {
1181       args.add(RValue::get(arg), getContext().getObjCIdType());
1182       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1183       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1184                                                   FunctionType::ExtInfo(),
1185                                                   RequiredArgs::All),
1186                setOptimizedPropertyFn, ReturnValueSlot(), args);
1187     } else {
1188       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1189       args.add(RValue::get(arg), getContext().getObjCIdType());
1190       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1191                getContext().BoolTy);
1192       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1193                getContext().BoolTy);
1194       // FIXME: We shouldn't need to get the function info here, the runtime
1195       // already should have computed it to build the function.
1196       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1197                                                   FunctionType::ExtInfo(),
1198                                                   RequiredArgs::All),
1199                setPropertyFn, ReturnValueSlot(), args);
1200     }
1201 
1202     return;
1203   }
1204 
1205   case PropertyImplStrategy::CopyStruct:
1206     emitStructSetterCall(*this, setterMethod, ivar);
1207     return;
1208 
1209   case PropertyImplStrategy::Expression:
1210     break;
1211   }
1212 
1213   // Otherwise, fake up some ASTs and emit a normal assignment.
1214   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1215   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1216                    VK_LValue, SourceLocation());
1217   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1218                             selfDecl->getType(), CK_LValueToRValue, &self,
1219                             VK_RValue);
1220   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1221                           SourceLocation(), SourceLocation(),
1222                           &selfLoad, true, true);
1223 
1224   ParmVarDecl *argDecl = *setterMethod->param_begin();
1225   QualType argType = argDecl->getType().getNonReferenceType();
1226   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1227   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1228                            argType.getUnqualifiedType(), CK_LValueToRValue,
1229                            &arg, VK_RValue);
1230 
1231   // The property type can differ from the ivar type in some situations with
1232   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1233   // The following absurdity is just to ensure well-formed IR.
1234   CastKind argCK = CK_NoOp;
1235   if (ivarRef.getType()->isObjCObjectPointerType()) {
1236     if (argLoad.getType()->isObjCObjectPointerType())
1237       argCK = CK_BitCast;
1238     else if (argLoad.getType()->isBlockPointerType())
1239       argCK = CK_BlockPointerToObjCPointerCast;
1240     else
1241       argCK = CK_CPointerToObjCPointerCast;
1242   } else if (ivarRef.getType()->isBlockPointerType()) {
1243      if (argLoad.getType()->isBlockPointerType())
1244       argCK = CK_BitCast;
1245     else
1246       argCK = CK_AnyPointerToBlockPointerCast;
1247   } else if (ivarRef.getType()->isPointerType()) {
1248     argCK = CK_BitCast;
1249   }
1250   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1251                            ivarRef.getType(), argCK, &argLoad,
1252                            VK_RValue);
1253   Expr *finalArg = &argLoad;
1254   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1255                                            argLoad.getType()))
1256     finalArg = &argCast;
1257 
1258 
1259   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1260                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1261                         SourceLocation(), false);
1262   EmitStmt(&assign);
1263 }
1264 
1265 /// \brief Generate an Objective-C property setter function.
1266 ///
1267 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1268 /// is illegal within a category.
GenerateObjCSetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1269 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1270                                          const ObjCPropertyImplDecl *PID) {
1271   llvm::Constant *AtomicHelperFn =
1272       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1273   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1274   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1275   assert(OMD && "Invalid call to generate setter (empty method)");
1276   StartObjCMethod(OMD, IMP->getClassInterface());
1277 
1278   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1279 
1280   FinishFunction();
1281 }
1282 
1283 namespace {
1284   struct DestroyIvar : EHScopeStack::Cleanup {
1285   private:
1286     llvm::Value *addr;
1287     const ObjCIvarDecl *ivar;
1288     CodeGenFunction::Destroyer *destroyer;
1289     bool useEHCleanupForArray;
1290   public:
DestroyIvar__anon2ab49d910311::DestroyIvar1291     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1292                 CodeGenFunction::Destroyer *destroyer,
1293                 bool useEHCleanupForArray)
1294       : addr(addr), ivar(ivar), destroyer(destroyer),
1295         useEHCleanupForArray(useEHCleanupForArray) {}
1296 
Emit__anon2ab49d910311::DestroyIvar1297     void Emit(CodeGenFunction &CGF, Flags flags) override {
1298       LValue lvalue
1299         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1300       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1301                       flags.isForNormalCleanup() && useEHCleanupForArray);
1302     }
1303   };
1304 }
1305 
1306 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
destroyARCStrongWithStore(CodeGenFunction & CGF,llvm::Value * addr,QualType type)1307 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1308                                       llvm::Value *addr,
1309                                       QualType type) {
1310   llvm::Value *null = getNullForVariable(addr);
1311   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1312 }
1313 
emitCXXDestructMethod(CodeGenFunction & CGF,ObjCImplementationDecl * impl)1314 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1315                                   ObjCImplementationDecl *impl) {
1316   CodeGenFunction::RunCleanupsScope scope(CGF);
1317 
1318   llvm::Value *self = CGF.LoadObjCSelf();
1319 
1320   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1321   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1322        ivar; ivar = ivar->getNextIvar()) {
1323     QualType type = ivar->getType();
1324 
1325     // Check whether the ivar is a destructible type.
1326     QualType::DestructionKind dtorKind = type.isDestructedType();
1327     if (!dtorKind) continue;
1328 
1329     CodeGenFunction::Destroyer *destroyer = nullptr;
1330 
1331     // Use a call to objc_storeStrong to destroy strong ivars, for the
1332     // general benefit of the tools.
1333     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1334       destroyer = destroyARCStrongWithStore;
1335 
1336     // Otherwise use the default for the destruction kind.
1337     } else {
1338       destroyer = CGF.getDestroyer(dtorKind);
1339     }
1340 
1341     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1342 
1343     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1344                                          cleanupKind & EHCleanup);
1345   }
1346 
1347   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1348 }
1349 
GenerateObjCCtorDtorMethod(ObjCImplementationDecl * IMP,ObjCMethodDecl * MD,bool ctor)1350 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1351                                                  ObjCMethodDecl *MD,
1352                                                  bool ctor) {
1353   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1354   StartObjCMethod(MD, IMP->getClassInterface());
1355 
1356   // Emit .cxx_construct.
1357   if (ctor) {
1358     // Suppress the final autorelease in ARC.
1359     AutoreleaseResult = false;
1360 
1361     for (const auto *IvarInit : IMP->inits()) {
1362       FieldDecl *Field = IvarInit->getAnyMember();
1363       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1364       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1365                                     LoadObjCSelf(), Ivar, 0);
1366       EmitAggExpr(IvarInit->getInit(),
1367                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1368                                           AggValueSlot::DoesNotNeedGCBarriers,
1369                                           AggValueSlot::IsNotAliased));
1370     }
1371     // constructor returns 'self'.
1372     CodeGenTypes &Types = CGM.getTypes();
1373     QualType IdTy(CGM.getContext().getObjCIdType());
1374     llvm::Value *SelfAsId =
1375       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1376     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1377 
1378   // Emit .cxx_destruct.
1379   } else {
1380     emitCXXDestructMethod(*this, IMP);
1381   }
1382   FinishFunction();
1383 }
1384 
IndirectObjCSetterArg(const CGFunctionInfo & FI)1385 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1386   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1387   it++; it++;
1388   const ABIArgInfo &AI = it->info;
1389   // FIXME. Is this sufficient check?
1390   return (AI.getKind() == ABIArgInfo::Indirect);
1391 }
1392 
IvarTypeWithAggrGCObjects(QualType Ty)1393 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1394   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1395     return false;
1396   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1397     return FDTTy->getDecl()->hasObjectMember();
1398   return false;
1399 }
1400 
LoadObjCSelf()1401 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1402   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1403   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1404                   Self->getType(), VK_LValue, SourceLocation());
1405   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1406 }
1407 
TypeOfSelfObject()1408 QualType CodeGenFunction::TypeOfSelfObject() {
1409   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1410   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1411   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1412     getContext().getCanonicalType(selfDecl->getType()));
1413   return PTy->getPointeeType();
1414 }
1415 
EmitObjCForCollectionStmt(const ObjCForCollectionStmt & S)1416 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1417   llvm::Constant *EnumerationMutationFn =
1418     CGM.getObjCRuntime().EnumerationMutationFunction();
1419 
1420   if (!EnumerationMutationFn) {
1421     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1422     return;
1423   }
1424 
1425   CGDebugInfo *DI = getDebugInfo();
1426   if (DI)
1427     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1428 
1429   // The local variable comes into scope immediately.
1430   AutoVarEmission variable = AutoVarEmission::invalid();
1431   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1432     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1433 
1434   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1435 
1436   // Fast enumeration state.
1437   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1438   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1439   EmitNullInitialization(StatePtr, StateTy);
1440 
1441   // Number of elements in the items array.
1442   static const unsigned NumItems = 16;
1443 
1444   // Fetch the countByEnumeratingWithState:objects:count: selector.
1445   IdentifierInfo *II[] = {
1446     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1447     &CGM.getContext().Idents.get("objects"),
1448     &CGM.getContext().Idents.get("count")
1449   };
1450   Selector FastEnumSel =
1451     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1452 
1453   QualType ItemsTy =
1454     getContext().getConstantArrayType(getContext().getObjCIdType(),
1455                                       llvm::APInt(32, NumItems),
1456                                       ArrayType::Normal, 0);
1457   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1458 
1459   // Emit the collection pointer.  In ARC, we do a retain.
1460   llvm::Value *Collection;
1461   if (getLangOpts().ObjCAutoRefCount) {
1462     Collection = EmitARCRetainScalarExpr(S.getCollection());
1463 
1464     // Enter a cleanup to do the release.
1465     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1466   } else {
1467     Collection = EmitScalarExpr(S.getCollection());
1468   }
1469 
1470   // The 'continue' label needs to appear within the cleanup for the
1471   // collection object.
1472   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1473 
1474   // Send it our message:
1475   CallArgList Args;
1476 
1477   // The first argument is a temporary of the enumeration-state type.
1478   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1479 
1480   // The second argument is a temporary array with space for NumItems
1481   // pointers.  We'll actually be loading elements from the array
1482   // pointer written into the control state; this buffer is so that
1483   // collections that *aren't* backed by arrays can still queue up
1484   // batches of elements.
1485   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1486 
1487   // The third argument is the capacity of that temporary array.
1488   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1489   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1490   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1491 
1492   // Start the enumeration.
1493   RValue CountRV =
1494     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1495                                              getContext().UnsignedLongTy,
1496                                              FastEnumSel,
1497                                              Collection, Args);
1498 
1499   // The initial number of objects that were returned in the buffer.
1500   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1501 
1502   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1503   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1504 
1505   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1506 
1507   // If the limit pointer was zero to begin with, the collection is
1508   // empty; skip all this. Set the branch weight assuming this has the same
1509   // probability of exiting the loop as any other loop exit.
1510   uint64_t EntryCount = PGO.getCurrentRegionCount();
1511   RegionCounter Cnt = getPGORegionCounter(&S);
1512   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1513                        EmptyBB, LoopInitBB,
1514                        PGO.createBranchWeights(EntryCount, Cnt.getCount()));
1515 
1516   // Otherwise, initialize the loop.
1517   EmitBlock(LoopInitBB);
1518 
1519   // Save the initial mutations value.  This is the value at an
1520   // address that was written into the state object by
1521   // countByEnumeratingWithState:objects:count:.
1522   llvm::Value *StateMutationsPtrPtr =
1523     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1524   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1525                                                       "mutationsptr");
1526 
1527   llvm::Value *initialMutations =
1528     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1529 
1530   // Start looping.  This is the point we return to whenever we have a
1531   // fresh, non-empty batch of objects.
1532   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1533   EmitBlock(LoopBodyBB);
1534 
1535   // The current index into the buffer.
1536   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1537   index->addIncoming(zero, LoopInitBB);
1538 
1539   // The current buffer size.
1540   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1541   count->addIncoming(initialBufferLimit, LoopInitBB);
1542 
1543   Cnt.beginRegion(Builder);
1544 
1545   // Check whether the mutations value has changed from where it was
1546   // at start.  StateMutationsPtr should actually be invariant between
1547   // refreshes.
1548   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1549   llvm::Value *currentMutations
1550     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1551 
1552   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1553   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1554 
1555   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1556                        WasNotMutatedBB, WasMutatedBB);
1557 
1558   // If so, call the enumeration-mutation function.
1559   EmitBlock(WasMutatedBB);
1560   llvm::Value *V =
1561     Builder.CreateBitCast(Collection,
1562                           ConvertType(getContext().getObjCIdType()));
1563   CallArgList Args2;
1564   Args2.add(RValue::get(V), getContext().getObjCIdType());
1565   // FIXME: We shouldn't need to get the function info here, the runtime already
1566   // should have computed it to build the function.
1567   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1568                                                   FunctionType::ExtInfo(),
1569                                                   RequiredArgs::All),
1570            EnumerationMutationFn, ReturnValueSlot(), Args2);
1571 
1572   // Otherwise, or if the mutation function returns, just continue.
1573   EmitBlock(WasNotMutatedBB);
1574 
1575   // Initialize the element variable.
1576   RunCleanupsScope elementVariableScope(*this);
1577   bool elementIsVariable;
1578   LValue elementLValue;
1579   QualType elementType;
1580   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1581     // Initialize the variable, in case it's a __block variable or something.
1582     EmitAutoVarInit(variable);
1583 
1584     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1585     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1586                         VK_LValue, SourceLocation());
1587     elementLValue = EmitLValue(&tempDRE);
1588     elementType = D->getType();
1589     elementIsVariable = true;
1590 
1591     if (D->isARCPseudoStrong())
1592       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1593   } else {
1594     elementLValue = LValue(); // suppress warning
1595     elementType = cast<Expr>(S.getElement())->getType();
1596     elementIsVariable = false;
1597   }
1598   llvm::Type *convertedElementType = ConvertType(elementType);
1599 
1600   // Fetch the buffer out of the enumeration state.
1601   // TODO: this pointer should actually be invariant between
1602   // refreshes, which would help us do certain loop optimizations.
1603   llvm::Value *StateItemsPtr =
1604     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1605   llvm::Value *EnumStateItems =
1606     Builder.CreateLoad(StateItemsPtr, "stateitems");
1607 
1608   // Fetch the value at the current index from the buffer.
1609   llvm::Value *CurrentItemPtr =
1610     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1611   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1612 
1613   // Cast that value to the right type.
1614   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1615                                       "currentitem");
1616 
1617   // Make sure we have an l-value.  Yes, this gets evaluated every
1618   // time through the loop.
1619   if (!elementIsVariable) {
1620     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1621     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1622   } else {
1623     EmitScalarInit(CurrentItem, elementLValue);
1624   }
1625 
1626   // If we do have an element variable, this assignment is the end of
1627   // its initialization.
1628   if (elementIsVariable)
1629     EmitAutoVarCleanups(variable);
1630 
1631   // Perform the loop body, setting up break and continue labels.
1632   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1633   {
1634     RunCleanupsScope Scope(*this);
1635     EmitStmt(S.getBody());
1636   }
1637   BreakContinueStack.pop_back();
1638 
1639   // Destroy the element variable now.
1640   elementVariableScope.ForceCleanup();
1641 
1642   // Check whether there are more elements.
1643   EmitBlock(AfterBody.getBlock());
1644 
1645   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1646 
1647   // First we check in the local buffer.
1648   llvm::Value *indexPlusOne
1649     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1650 
1651   // If we haven't overrun the buffer yet, we can continue.
1652   // Set the branch weights based on the simplifying assumption that this is
1653   // like a while-loop, i.e., ignoring that the false branch fetches more
1654   // elements and then returns to the loop.
1655   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1656                        LoopBodyBB, FetchMoreBB,
1657                        PGO.createBranchWeights(Cnt.getCount(), EntryCount));
1658 
1659   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1660   count->addIncoming(count, AfterBody.getBlock());
1661 
1662   // Otherwise, we have to fetch more elements.
1663   EmitBlock(FetchMoreBB);
1664 
1665   CountRV =
1666     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1667                                              getContext().UnsignedLongTy,
1668                                              FastEnumSel,
1669                                              Collection, Args);
1670 
1671   // If we got a zero count, we're done.
1672   llvm::Value *refetchCount = CountRV.getScalarVal();
1673 
1674   // (note that the message send might split FetchMoreBB)
1675   index->addIncoming(zero, Builder.GetInsertBlock());
1676   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1677 
1678   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1679                        EmptyBB, LoopBodyBB);
1680 
1681   // No more elements.
1682   EmitBlock(EmptyBB);
1683 
1684   if (!elementIsVariable) {
1685     // If the element was not a declaration, set it to be null.
1686 
1687     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1688     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1689     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1690   }
1691 
1692   if (DI)
1693     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1694 
1695   // Leave the cleanup we entered in ARC.
1696   if (getLangOpts().ObjCAutoRefCount)
1697     PopCleanupBlock();
1698 
1699   EmitBlock(LoopEnd.getBlock());
1700 }
1701 
EmitObjCAtTryStmt(const ObjCAtTryStmt & S)1702 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1703   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1704 }
1705 
EmitObjCAtThrowStmt(const ObjCAtThrowStmt & S)1706 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1707   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1708 }
1709 
EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt & S)1710 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1711                                               const ObjCAtSynchronizedStmt &S) {
1712   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1713 }
1714 
1715 /// Produce the code for a CK_ARCProduceObject.  Just does a
1716 /// primitive retain.
EmitObjCProduceObject(QualType type,llvm::Value * value)1717 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1718                                                     llvm::Value *value) {
1719   return EmitARCRetain(type, value);
1720 }
1721 
1722 namespace {
1723   struct CallObjCRelease : EHScopeStack::Cleanup {
CallObjCRelease__anon2ab49d910411::CallObjCRelease1724     CallObjCRelease(llvm::Value *object) : object(object) {}
1725     llvm::Value *object;
1726 
Emit__anon2ab49d910411::CallObjCRelease1727     void Emit(CodeGenFunction &CGF, Flags flags) override {
1728       // Releases at the end of the full-expression are imprecise.
1729       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1730     }
1731   };
1732 }
1733 
1734 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1735 /// release at the end of the full-expression.
EmitObjCConsumeObject(QualType type,llvm::Value * object)1736 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1737                                                     llvm::Value *object) {
1738   // If we're in a conditional branch, we need to make the cleanup
1739   // conditional.
1740   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1741   return object;
1742 }
1743 
EmitObjCExtendObjectLifetime(QualType type,llvm::Value * value)1744 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1745                                                            llvm::Value *value) {
1746   return EmitARCRetainAutorelease(type, value);
1747 }
1748 
1749 /// Given a number of pointers, inform the optimizer that they're
1750 /// being intrinsically used up until this point in the program.
EmitARCIntrinsicUse(ArrayRef<llvm::Value * > values)1751 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1752   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1753   if (!fn) {
1754     llvm::FunctionType *fnType =
1755       llvm::FunctionType::get(CGM.VoidTy, None, true);
1756     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1757   }
1758 
1759   // This isn't really a "runtime" function, but as an intrinsic it
1760   // doesn't really matter as long as we align things up.
1761   EmitNounwindRuntimeCall(fn, values);
1762 }
1763 
1764 
createARCRuntimeFunction(CodeGenModule & CGM,llvm::FunctionType * type,StringRef fnName)1765 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1766                                                 llvm::FunctionType *type,
1767                                                 StringRef fnName) {
1768   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1769 
1770   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1771     // If the target runtime doesn't naturally support ARC, emit weak
1772     // references to the runtime support library.  We don't really
1773     // permit this to fail, but we need a particular relocation style.
1774     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1775       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1776     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1777       // If we have Native ARC, set nonlazybind attribute for these APIs for
1778       // performance.
1779       f->addFnAttr(llvm::Attribute::NonLazyBind);
1780     }
1781   }
1782 
1783   return fn;
1784 }
1785 
1786 /// Perform an operation having the signature
1787 ///   i8* (i8*)
1788 /// where a null input causes a no-op and returns null.
emitARCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool isTailCall=false)1789 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1790                                           llvm::Value *value,
1791                                           llvm::Constant *&fn,
1792                                           StringRef fnName,
1793                                           bool isTailCall = false) {
1794   if (isa<llvm::ConstantPointerNull>(value)) return value;
1795 
1796   if (!fn) {
1797     llvm::FunctionType *fnType =
1798       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1799     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1800   }
1801 
1802   // Cast the argument to 'id'.
1803   llvm::Type *origType = value->getType();
1804   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1805 
1806   // Call the function.
1807   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1808   if (isTailCall)
1809     call->setTailCall();
1810 
1811   // Cast the result back to the original type.
1812   return CGF.Builder.CreateBitCast(call, origType);
1813 }
1814 
1815 /// Perform an operation having the following signature:
1816 ///   i8* (i8**)
emitARCLoadOperation(CodeGenFunction & CGF,llvm::Value * addr,llvm::Constant * & fn,StringRef fnName)1817 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1818                                          llvm::Value *addr,
1819                                          llvm::Constant *&fn,
1820                                          StringRef fnName) {
1821   if (!fn) {
1822     llvm::FunctionType *fnType =
1823       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1824     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1825   }
1826 
1827   // Cast the argument to 'id*'.
1828   llvm::Type *origType = addr->getType();
1829   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1830 
1831   // Call the function.
1832   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1833 
1834   // Cast the result back to a dereference of the original type.
1835   if (origType != CGF.Int8PtrPtrTy)
1836     result = CGF.Builder.CreateBitCast(result,
1837                         cast<llvm::PointerType>(origType)->getElementType());
1838 
1839   return result;
1840 }
1841 
1842 /// Perform an operation having the following signature:
1843 ///   i8* (i8**, i8*)
emitARCStoreOperation(CodeGenFunction & CGF,llvm::Value * addr,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool ignored)1844 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1845                                           llvm::Value *addr,
1846                                           llvm::Value *value,
1847                                           llvm::Constant *&fn,
1848                                           StringRef fnName,
1849                                           bool ignored) {
1850   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1851            == value->getType());
1852 
1853   if (!fn) {
1854     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1855 
1856     llvm::FunctionType *fnType
1857       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1858     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1859   }
1860 
1861   llvm::Type *origType = value->getType();
1862 
1863   llvm::Value *args[] = {
1864     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1865     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1866   };
1867   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1868 
1869   if (ignored) return nullptr;
1870 
1871   return CGF.Builder.CreateBitCast(result, origType);
1872 }
1873 
1874 /// Perform an operation having the following signature:
1875 ///   void (i8**, i8**)
emitARCCopyOperation(CodeGenFunction & CGF,llvm::Value * dst,llvm::Value * src,llvm::Constant * & fn,StringRef fnName)1876 static void emitARCCopyOperation(CodeGenFunction &CGF,
1877                                  llvm::Value *dst,
1878                                  llvm::Value *src,
1879                                  llvm::Constant *&fn,
1880                                  StringRef fnName) {
1881   assert(dst->getType() == src->getType());
1882 
1883   if (!fn) {
1884     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1885 
1886     llvm::FunctionType *fnType
1887       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1888     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1889   }
1890 
1891   llvm::Value *args[] = {
1892     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1893     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1894   };
1895   CGF.EmitNounwindRuntimeCall(fn, args);
1896 }
1897 
1898 /// Produce the code to do a retain.  Based on the type, calls one of:
1899 ///   call i8* \@objc_retain(i8* %value)
1900 ///   call i8* \@objc_retainBlock(i8* %value)
EmitARCRetain(QualType type,llvm::Value * value)1901 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1902   if (type->isBlockPointerType())
1903     return EmitARCRetainBlock(value, /*mandatory*/ false);
1904   else
1905     return EmitARCRetainNonBlock(value);
1906 }
1907 
1908 /// Retain the given object, with normal retain semantics.
1909 ///   call i8* \@objc_retain(i8* %value)
EmitARCRetainNonBlock(llvm::Value * value)1910 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1911   return emitARCValueOperation(*this, value,
1912                                CGM.getARCEntrypoints().objc_retain,
1913                                "objc_retain");
1914 }
1915 
1916 /// Retain the given block, with _Block_copy semantics.
1917 ///   call i8* \@objc_retainBlock(i8* %value)
1918 ///
1919 /// \param mandatory - If false, emit the call with metadata
1920 /// indicating that it's okay for the optimizer to eliminate this call
1921 /// if it can prove that the block never escapes except down the stack.
EmitARCRetainBlock(llvm::Value * value,bool mandatory)1922 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1923                                                  bool mandatory) {
1924   llvm::Value *result
1925     = emitARCValueOperation(*this, value,
1926                             CGM.getARCEntrypoints().objc_retainBlock,
1927                             "objc_retainBlock");
1928 
1929   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1930   // tell the optimizer that it doesn't need to do this copy if the
1931   // block doesn't escape, where being passed as an argument doesn't
1932   // count as escaping.
1933   if (!mandatory && isa<llvm::Instruction>(result)) {
1934     llvm::CallInst *call
1935       = cast<llvm::CallInst>(result->stripPointerCasts());
1936     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1937 
1938     call->setMetadata("clang.arc.copy_on_escape",
1939                       llvm::MDNode::get(Builder.getContext(), None));
1940   }
1941 
1942   return result;
1943 }
1944 
1945 /// Retain the given object which is the result of a function call.
1946 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1947 ///
1948 /// Yes, this function name is one character away from a different
1949 /// call with completely different semantics.
1950 llvm::Value *
EmitARCRetainAutoreleasedReturnValue(llvm::Value * value)1951 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1952   // Fetch the void(void) inline asm which marks that we're going to
1953   // retain the autoreleased return value.
1954   llvm::InlineAsm *&marker
1955     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1956   if (!marker) {
1957     StringRef assembly
1958       = CGM.getTargetCodeGenInfo()
1959            .getARCRetainAutoreleasedReturnValueMarker();
1960 
1961     // If we have an empty assembly string, there's nothing to do.
1962     if (assembly.empty()) {
1963 
1964     // Otherwise, at -O0, build an inline asm that we're going to call
1965     // in a moment.
1966     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1967       llvm::FunctionType *type =
1968         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1969 
1970       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1971 
1972     // If we're at -O1 and above, we don't want to litter the code
1973     // with this marker yet, so leave a breadcrumb for the ARC
1974     // optimizer to pick up.
1975     } else {
1976       llvm::NamedMDNode *metadata =
1977         CGM.getModule().getOrInsertNamedMetadata(
1978                             "clang.arc.retainAutoreleasedReturnValueMarker");
1979       assert(metadata->getNumOperands() <= 1);
1980       if (metadata->getNumOperands() == 0) {
1981         metadata->addOperand(llvm::MDNode::get(
1982             getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly)));
1983       }
1984     }
1985   }
1986 
1987   // Call the marker asm if we made one, which we do only at -O0.
1988   if (marker) Builder.CreateCall(marker);
1989 
1990   return emitARCValueOperation(*this, value,
1991                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1992                                "objc_retainAutoreleasedReturnValue");
1993 }
1994 
1995 /// Release the given object.
1996 ///   call void \@objc_release(i8* %value)
EmitARCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)1997 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
1998                                      ARCPreciseLifetime_t precise) {
1999   if (isa<llvm::ConstantPointerNull>(value)) return;
2000 
2001   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
2002   if (!fn) {
2003     llvm::FunctionType *fnType =
2004       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2005     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2006   }
2007 
2008   // Cast the argument to 'id'.
2009   value = Builder.CreateBitCast(value, Int8PtrTy);
2010 
2011   // Call objc_release.
2012   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2013 
2014   if (precise == ARCImpreciseLifetime) {
2015     call->setMetadata("clang.imprecise_release",
2016                       llvm::MDNode::get(Builder.getContext(), None));
2017   }
2018 }
2019 
2020 /// Destroy a __strong variable.
2021 ///
2022 /// At -O0, emit a call to store 'null' into the address;
2023 /// instrumenting tools prefer this because the address is exposed,
2024 /// but it's relatively cumbersome to optimize.
2025 ///
2026 /// At -O1 and above, just load and call objc_release.
2027 ///
2028 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
EmitARCDestroyStrong(llvm::Value * addr,ARCPreciseLifetime_t precise)2029 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2030                                            ARCPreciseLifetime_t precise) {
2031   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2032     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2033     llvm::Value *null = llvm::ConstantPointerNull::get(
2034                           cast<llvm::PointerType>(addrTy->getElementType()));
2035     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2036     return;
2037   }
2038 
2039   llvm::Value *value = Builder.CreateLoad(addr);
2040   EmitARCRelease(value, precise);
2041 }
2042 
2043 /// Store into a strong object.  Always calls this:
2044 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
EmitARCStoreStrongCall(llvm::Value * addr,llvm::Value * value,bool ignored)2045 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2046                                                      llvm::Value *value,
2047                                                      bool ignored) {
2048   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2049            == value->getType());
2050 
2051   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2052   if (!fn) {
2053     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2054     llvm::FunctionType *fnType
2055       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2056     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2057   }
2058 
2059   llvm::Value *args[] = {
2060     Builder.CreateBitCast(addr, Int8PtrPtrTy),
2061     Builder.CreateBitCast(value, Int8PtrTy)
2062   };
2063   EmitNounwindRuntimeCall(fn, args);
2064 
2065   if (ignored) return nullptr;
2066   return value;
2067 }
2068 
2069 /// Store into a strong object.  Sometimes calls this:
2070 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2071 /// Other times, breaks it down into components.
EmitARCStoreStrong(LValue dst,llvm::Value * newValue,bool ignored)2072 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2073                                                  llvm::Value *newValue,
2074                                                  bool ignored) {
2075   QualType type = dst.getType();
2076   bool isBlock = type->isBlockPointerType();
2077 
2078   // Use a store barrier at -O0 unless this is a block type or the
2079   // lvalue is inadequately aligned.
2080   if (shouldUseFusedARCCalls() &&
2081       !isBlock &&
2082       (dst.getAlignment().isZero() ||
2083        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2084     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2085   }
2086 
2087   // Otherwise, split it out.
2088 
2089   // Retain the new value.
2090   newValue = EmitARCRetain(type, newValue);
2091 
2092   // Read the old value.
2093   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2094 
2095   // Store.  We do this before the release so that any deallocs won't
2096   // see the old value.
2097   EmitStoreOfScalar(newValue, dst);
2098 
2099   // Finally, release the old value.
2100   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2101 
2102   return newValue;
2103 }
2104 
2105 /// Autorelease the given object.
2106 ///   call i8* \@objc_autorelease(i8* %value)
EmitARCAutorelease(llvm::Value * value)2107 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2108   return emitARCValueOperation(*this, value,
2109                                CGM.getARCEntrypoints().objc_autorelease,
2110                                "objc_autorelease");
2111 }
2112 
2113 /// Autorelease the given object.
2114 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2115 llvm::Value *
EmitARCAutoreleaseReturnValue(llvm::Value * value)2116 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2117   return emitARCValueOperation(*this, value,
2118                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2119                                "objc_autoreleaseReturnValue",
2120                                /*isTailCall*/ true);
2121 }
2122 
2123 /// Do a fused retain/autorelease of the given object.
2124 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2125 llvm::Value *
EmitARCRetainAutoreleaseReturnValue(llvm::Value * value)2126 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2127   return emitARCValueOperation(*this, value,
2128                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2129                                "objc_retainAutoreleaseReturnValue",
2130                                /*isTailCall*/ true);
2131 }
2132 
2133 /// Do a fused retain/autorelease of the given object.
2134 ///   call i8* \@objc_retainAutorelease(i8* %value)
2135 /// or
2136 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2137 ///   call i8* \@objc_autorelease(i8* %retain)
EmitARCRetainAutorelease(QualType type,llvm::Value * value)2138 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2139                                                        llvm::Value *value) {
2140   if (!type->isBlockPointerType())
2141     return EmitARCRetainAutoreleaseNonBlock(value);
2142 
2143   if (isa<llvm::ConstantPointerNull>(value)) return value;
2144 
2145   llvm::Type *origType = value->getType();
2146   value = Builder.CreateBitCast(value, Int8PtrTy);
2147   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2148   value = EmitARCAutorelease(value);
2149   return Builder.CreateBitCast(value, origType);
2150 }
2151 
2152 /// Do a fused retain/autorelease of the given object.
2153 ///   call i8* \@objc_retainAutorelease(i8* %value)
2154 llvm::Value *
EmitARCRetainAutoreleaseNonBlock(llvm::Value * value)2155 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2156   return emitARCValueOperation(*this, value,
2157                                CGM.getARCEntrypoints().objc_retainAutorelease,
2158                                "objc_retainAutorelease");
2159 }
2160 
2161 /// i8* \@objc_loadWeak(i8** %addr)
2162 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
EmitARCLoadWeak(llvm::Value * addr)2163 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2164   return emitARCLoadOperation(*this, addr,
2165                               CGM.getARCEntrypoints().objc_loadWeak,
2166                               "objc_loadWeak");
2167 }
2168 
2169 /// i8* \@objc_loadWeakRetained(i8** %addr)
EmitARCLoadWeakRetained(llvm::Value * addr)2170 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2171   return emitARCLoadOperation(*this, addr,
2172                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2173                               "objc_loadWeakRetained");
2174 }
2175 
2176 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2177 /// Returns %value.
EmitARCStoreWeak(llvm::Value * addr,llvm::Value * value,bool ignored)2178 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2179                                                llvm::Value *value,
2180                                                bool ignored) {
2181   return emitARCStoreOperation(*this, addr, value,
2182                                CGM.getARCEntrypoints().objc_storeWeak,
2183                                "objc_storeWeak", ignored);
2184 }
2185 
2186 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2187 /// Returns %value.  %addr is known to not have a current weak entry.
2188 /// Essentially equivalent to:
2189 ///   *addr = nil; objc_storeWeak(addr, value);
EmitARCInitWeak(llvm::Value * addr,llvm::Value * value)2190 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2191   // If we're initializing to null, just write null to memory; no need
2192   // to get the runtime involved.  But don't do this if optimization
2193   // is enabled, because accounting for this would make the optimizer
2194   // much more complicated.
2195   if (isa<llvm::ConstantPointerNull>(value) &&
2196       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2197     Builder.CreateStore(value, addr);
2198     return;
2199   }
2200 
2201   emitARCStoreOperation(*this, addr, value,
2202                         CGM.getARCEntrypoints().objc_initWeak,
2203                         "objc_initWeak", /*ignored*/ true);
2204 }
2205 
2206 /// void \@objc_destroyWeak(i8** %addr)
2207 /// Essentially objc_storeWeak(addr, nil).
EmitARCDestroyWeak(llvm::Value * addr)2208 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2209   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2210   if (!fn) {
2211     llvm::FunctionType *fnType =
2212       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2213     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2214   }
2215 
2216   // Cast the argument to 'id*'.
2217   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2218 
2219   EmitNounwindRuntimeCall(fn, addr);
2220 }
2221 
2222 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2223 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2224 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
EmitARCMoveWeak(llvm::Value * dst,llvm::Value * src)2225 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2226   emitARCCopyOperation(*this, dst, src,
2227                        CGM.getARCEntrypoints().objc_moveWeak,
2228                        "objc_moveWeak");
2229 }
2230 
2231 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2232 /// Disregards the current value in %dest.  Essentially
2233 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
EmitARCCopyWeak(llvm::Value * dst,llvm::Value * src)2234 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2235   emitARCCopyOperation(*this, dst, src,
2236                        CGM.getARCEntrypoints().objc_copyWeak,
2237                        "objc_copyWeak");
2238 }
2239 
2240 /// Produce the code to do a objc_autoreleasepool_push.
2241 ///   call i8* \@objc_autoreleasePoolPush(void)
EmitObjCAutoreleasePoolPush()2242 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2243   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2244   if (!fn) {
2245     llvm::FunctionType *fnType =
2246       llvm::FunctionType::get(Int8PtrTy, false);
2247     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2248   }
2249 
2250   return EmitNounwindRuntimeCall(fn);
2251 }
2252 
2253 /// Produce the code to do a primitive release.
2254 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
EmitObjCAutoreleasePoolPop(llvm::Value * value)2255 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2256   assert(value->getType() == Int8PtrTy);
2257 
2258   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2259   if (!fn) {
2260     llvm::FunctionType *fnType =
2261       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2262 
2263     // We don't want to use a weak import here; instead we should not
2264     // fall into this path.
2265     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2266   }
2267 
2268   // objc_autoreleasePoolPop can throw.
2269   EmitRuntimeCallOrInvoke(fn, value);
2270 }
2271 
2272 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2273 /// Which is: [[NSAutoreleasePool alloc] init];
2274 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2275 /// init is declared as: - (id) init; in its NSObject super class.
2276 ///
EmitObjCMRRAutoreleasePoolPush()2277 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2278   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2279   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2280   // [NSAutoreleasePool alloc]
2281   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2282   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2283   CallArgList Args;
2284   RValue AllocRV =
2285     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2286                                 getContext().getObjCIdType(),
2287                                 AllocSel, Receiver, Args);
2288 
2289   // [Receiver init]
2290   Receiver = AllocRV.getScalarVal();
2291   II = &CGM.getContext().Idents.get("init");
2292   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2293   RValue InitRV =
2294     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2295                                 getContext().getObjCIdType(),
2296                                 InitSel, Receiver, Args);
2297   return InitRV.getScalarVal();
2298 }
2299 
2300 /// Produce the code to do a primitive release.
2301 /// [tmp drain];
EmitObjCMRRAutoreleasePoolPop(llvm::Value * Arg)2302 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2303   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2304   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2305   CallArgList Args;
2306   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2307                               getContext().VoidTy, DrainSel, Arg, Args);
2308 }
2309 
destroyARCStrongPrecise(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2310 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2311                                               llvm::Value *addr,
2312                                               QualType type) {
2313   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2314 }
2315 
destroyARCStrongImprecise(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2316 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2317                                                 llvm::Value *addr,
2318                                                 QualType type) {
2319   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2320 }
2321 
destroyARCWeak(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2322 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2323                                      llvm::Value *addr,
2324                                      QualType type) {
2325   CGF.EmitARCDestroyWeak(addr);
2326 }
2327 
2328 namespace {
2329   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2330     llvm::Value *Token;
2331 
CallObjCAutoreleasePoolObject__anon2ab49d910511::CallObjCAutoreleasePoolObject2332     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2333 
Emit__anon2ab49d910511::CallObjCAutoreleasePoolObject2334     void Emit(CodeGenFunction &CGF, Flags flags) override {
2335       CGF.EmitObjCAutoreleasePoolPop(Token);
2336     }
2337   };
2338   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2339     llvm::Value *Token;
2340 
CallObjCMRRAutoreleasePoolObject__anon2ab49d910511::CallObjCMRRAutoreleasePoolObject2341     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2342 
Emit__anon2ab49d910511::CallObjCMRRAutoreleasePoolObject2343     void Emit(CodeGenFunction &CGF, Flags flags) override {
2344       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2345     }
2346   };
2347 }
2348 
EmitObjCAutoreleasePoolCleanup(llvm::Value * Ptr)2349 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2350   if (CGM.getLangOpts().ObjCAutoRefCount)
2351     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2352   else
2353     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2354 }
2355 
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2356 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2357                                                   LValue lvalue,
2358                                                   QualType type) {
2359   switch (type.getObjCLifetime()) {
2360   case Qualifiers::OCL_None:
2361   case Qualifiers::OCL_ExplicitNone:
2362   case Qualifiers::OCL_Strong:
2363   case Qualifiers::OCL_Autoreleasing:
2364     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2365                                               SourceLocation()).getScalarVal(),
2366                          false);
2367 
2368   case Qualifiers::OCL_Weak:
2369     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2370                          true);
2371   }
2372 
2373   llvm_unreachable("impossible lifetime!");
2374 }
2375 
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,const Expr * e)2376 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2377                                                   const Expr *e) {
2378   e = e->IgnoreParens();
2379   QualType type = e->getType();
2380 
2381   // If we're loading retained from a __strong xvalue, we can avoid
2382   // an extra retain/release pair by zeroing out the source of this
2383   // "move" operation.
2384   if (e->isXValue() &&
2385       !type.isConstQualified() &&
2386       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2387     // Emit the lvalue.
2388     LValue lv = CGF.EmitLValue(e);
2389 
2390     // Load the object pointer.
2391     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2392                                                SourceLocation()).getScalarVal();
2393 
2394     // Set the source pointer to NULL.
2395     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2396 
2397     return TryEmitResult(result, true);
2398   }
2399 
2400   // As a very special optimization, in ARC++, if the l-value is the
2401   // result of a non-volatile assignment, do a simple retain of the
2402   // result of the call to objc_storeWeak instead of reloading.
2403   if (CGF.getLangOpts().CPlusPlus &&
2404       !type.isVolatileQualified() &&
2405       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2406       isa<BinaryOperator>(e) &&
2407       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2408     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2409 
2410   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2411 }
2412 
2413 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2414                                            llvm::Value *value);
2415 
2416 /// Given that the given expression is some sort of call (which does
2417 /// not return retained), emit a retain following it.
emitARCRetainCall(CodeGenFunction & CGF,const Expr * e)2418 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2419   llvm::Value *value = CGF.EmitScalarExpr(e);
2420   return emitARCRetainAfterCall(CGF, value);
2421 }
2422 
emitARCRetainAfterCall(CodeGenFunction & CGF,llvm::Value * value)2423 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2424                                            llvm::Value *value) {
2425   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2426     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2427 
2428     // Place the retain immediately following the call.
2429     CGF.Builder.SetInsertPoint(call->getParent(),
2430                                ++llvm::BasicBlock::iterator(call));
2431     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2432 
2433     CGF.Builder.restoreIP(ip);
2434     return value;
2435   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2436     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2437 
2438     // Place the retain at the beginning of the normal destination block.
2439     llvm::BasicBlock *BB = invoke->getNormalDest();
2440     CGF.Builder.SetInsertPoint(BB, BB->begin());
2441     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2442 
2443     CGF.Builder.restoreIP(ip);
2444     return value;
2445 
2446   // Bitcasts can arise because of related-result returns.  Rewrite
2447   // the operand.
2448   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2449     llvm::Value *operand = bitcast->getOperand(0);
2450     operand = emitARCRetainAfterCall(CGF, operand);
2451     bitcast->setOperand(0, operand);
2452     return bitcast;
2453 
2454   // Generic fall-back case.
2455   } else {
2456     // Retain using the non-block variant: we never need to do a copy
2457     // of a block that's been returned to us.
2458     return CGF.EmitARCRetainNonBlock(value);
2459   }
2460 }
2461 
2462 /// Determine whether it might be important to emit a separate
2463 /// objc_retain_block on the result of the given expression, or
2464 /// whether it's okay to just emit it in a +1 context.
shouldEmitSeparateBlockRetain(const Expr * e)2465 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2466   assert(e->getType()->isBlockPointerType());
2467   e = e->IgnoreParens();
2468 
2469   // For future goodness, emit block expressions directly in +1
2470   // contexts if we can.
2471   if (isa<BlockExpr>(e))
2472     return false;
2473 
2474   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2475     switch (cast->getCastKind()) {
2476     // Emitting these operations in +1 contexts is goodness.
2477     case CK_LValueToRValue:
2478     case CK_ARCReclaimReturnedObject:
2479     case CK_ARCConsumeObject:
2480     case CK_ARCProduceObject:
2481       return false;
2482 
2483     // These operations preserve a block type.
2484     case CK_NoOp:
2485     case CK_BitCast:
2486       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2487 
2488     // These operations are known to be bad (or haven't been considered).
2489     case CK_AnyPointerToBlockPointerCast:
2490     default:
2491       return true;
2492     }
2493   }
2494 
2495   return true;
2496 }
2497 
2498 /// Try to emit a PseudoObjectExpr at +1.
2499 ///
2500 /// This massively duplicates emitPseudoObjectRValue.
tryEmitARCRetainPseudoObject(CodeGenFunction & CGF,const PseudoObjectExpr * E)2501 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2502                                                   const PseudoObjectExpr *E) {
2503   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2504 
2505   // Find the result expression.
2506   const Expr *resultExpr = E->getResultExpr();
2507   assert(resultExpr);
2508   TryEmitResult result;
2509 
2510   for (PseudoObjectExpr::const_semantics_iterator
2511          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2512     const Expr *semantic = *i;
2513 
2514     // If this semantic expression is an opaque value, bind it
2515     // to the result of its source expression.
2516     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2517       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2518       OVMA opaqueData;
2519 
2520       // If this semantic is the result of the pseudo-object
2521       // expression, try to evaluate the source as +1.
2522       if (ov == resultExpr) {
2523         assert(!OVMA::shouldBindAsLValue(ov));
2524         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2525         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2526 
2527       // Otherwise, just bind it.
2528       } else {
2529         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2530       }
2531       opaques.push_back(opaqueData);
2532 
2533     // Otherwise, if the expression is the result, evaluate it
2534     // and remember the result.
2535     } else if (semantic == resultExpr) {
2536       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2537 
2538     // Otherwise, evaluate the expression in an ignored context.
2539     } else {
2540       CGF.EmitIgnoredExpr(semantic);
2541     }
2542   }
2543 
2544   // Unbind all the opaques now.
2545   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2546     opaques[i].unbind(CGF);
2547 
2548   return result;
2549 }
2550 
2551 static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction & CGF,const Expr * e)2552 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2553   // We should *never* see a nested full-expression here, because if
2554   // we fail to emit at +1, our caller must not retain after we close
2555   // out the full-expression.
2556   assert(!isa<ExprWithCleanups>(e));
2557 
2558   // The desired result type, if it differs from the type of the
2559   // ultimate opaque expression.
2560   llvm::Type *resultType = nullptr;
2561 
2562   while (true) {
2563     e = e->IgnoreParens();
2564 
2565     // There's a break at the end of this if-chain;  anything
2566     // that wants to keep looping has to explicitly continue.
2567     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2568       switch (ce->getCastKind()) {
2569       // No-op casts don't change the type, so we just ignore them.
2570       case CK_NoOp:
2571         e = ce->getSubExpr();
2572         continue;
2573 
2574       case CK_LValueToRValue: {
2575         TryEmitResult loadResult
2576           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2577         if (resultType) {
2578           llvm::Value *value = loadResult.getPointer();
2579           value = CGF.Builder.CreateBitCast(value, resultType);
2580           loadResult.setPointer(value);
2581         }
2582         return loadResult;
2583       }
2584 
2585       // These casts can change the type, so remember that and
2586       // soldier on.  We only need to remember the outermost such
2587       // cast, though.
2588       case CK_CPointerToObjCPointerCast:
2589       case CK_BlockPointerToObjCPointerCast:
2590       case CK_AnyPointerToBlockPointerCast:
2591       case CK_BitCast:
2592         if (!resultType)
2593           resultType = CGF.ConvertType(ce->getType());
2594         e = ce->getSubExpr();
2595         assert(e->getType()->hasPointerRepresentation());
2596         continue;
2597 
2598       // For consumptions, just emit the subexpression and thus elide
2599       // the retain/release pair.
2600       case CK_ARCConsumeObject: {
2601         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2602         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2603         return TryEmitResult(result, true);
2604       }
2605 
2606       // Block extends are net +0.  Naively, we could just recurse on
2607       // the subexpression, but actually we need to ensure that the
2608       // value is copied as a block, so there's a little filter here.
2609       case CK_ARCExtendBlockObject: {
2610         llvm::Value *result; // will be a +0 value
2611 
2612         // If we can't safely assume the sub-expression will produce a
2613         // block-copied value, emit the sub-expression at +0.
2614         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2615           result = CGF.EmitScalarExpr(ce->getSubExpr());
2616 
2617         // Otherwise, try to emit the sub-expression at +1 recursively.
2618         } else {
2619           TryEmitResult subresult
2620             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2621           result = subresult.getPointer();
2622 
2623           // If that produced a retained value, just use that,
2624           // possibly casting down.
2625           if (subresult.getInt()) {
2626             if (resultType)
2627               result = CGF.Builder.CreateBitCast(result, resultType);
2628             return TryEmitResult(result, true);
2629           }
2630 
2631           // Otherwise it's +0.
2632         }
2633 
2634         // Retain the object as a block, then cast down.
2635         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2636         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2637         return TryEmitResult(result, true);
2638       }
2639 
2640       // For reclaims, emit the subexpression as a retained call and
2641       // skip the consumption.
2642       case CK_ARCReclaimReturnedObject: {
2643         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2644         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2645         return TryEmitResult(result, true);
2646       }
2647 
2648       default:
2649         break;
2650       }
2651 
2652     // Skip __extension__.
2653     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2654       if (op->getOpcode() == UO_Extension) {
2655         e = op->getSubExpr();
2656         continue;
2657       }
2658 
2659     // For calls and message sends, use the retained-call logic.
2660     // Delegate inits are a special case in that they're the only
2661     // returns-retained expression that *isn't* surrounded by
2662     // a consume.
2663     } else if (isa<CallExpr>(e) ||
2664                (isa<ObjCMessageExpr>(e) &&
2665                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2666       llvm::Value *result = emitARCRetainCall(CGF, e);
2667       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2668       return TryEmitResult(result, true);
2669 
2670     // Look through pseudo-object expressions.
2671     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2672       TryEmitResult result
2673         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2674       if (resultType) {
2675         llvm::Value *value = result.getPointer();
2676         value = CGF.Builder.CreateBitCast(value, resultType);
2677         result.setPointer(value);
2678       }
2679       return result;
2680     }
2681 
2682     // Conservatively halt the search at any other expression kind.
2683     break;
2684   }
2685 
2686   // We didn't find an obvious production, so emit what we've got and
2687   // tell the caller that we didn't manage to retain.
2688   llvm::Value *result = CGF.EmitScalarExpr(e);
2689   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2690   return TryEmitResult(result, false);
2691 }
2692 
emitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2693 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2694                                                 LValue lvalue,
2695                                                 QualType type) {
2696   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2697   llvm::Value *value = result.getPointer();
2698   if (!result.getInt())
2699     value = CGF.EmitARCRetain(type, value);
2700   return value;
2701 }
2702 
2703 /// EmitARCRetainScalarExpr - Semantically equivalent to
2704 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2705 /// best-effort attempt to peephole expressions that naturally produce
2706 /// retained objects.
EmitARCRetainScalarExpr(const Expr * e)2707 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2708   // The retain needs to happen within the full-expression.
2709   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2710     enterFullExpression(cleanups);
2711     RunCleanupsScope scope(*this);
2712     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2713   }
2714 
2715   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2716   llvm::Value *value = result.getPointer();
2717   if (!result.getInt())
2718     value = EmitARCRetain(e->getType(), value);
2719   return value;
2720 }
2721 
2722 llvm::Value *
EmitARCRetainAutoreleaseScalarExpr(const Expr * e)2723 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2724   // The retain needs to happen within the full-expression.
2725   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2726     enterFullExpression(cleanups);
2727     RunCleanupsScope scope(*this);
2728     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2729   }
2730 
2731   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2732   llvm::Value *value = result.getPointer();
2733   if (result.getInt())
2734     value = EmitARCAutorelease(value);
2735   else
2736     value = EmitARCRetainAutorelease(e->getType(), value);
2737   return value;
2738 }
2739 
EmitARCExtendBlockObject(const Expr * e)2740 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2741   llvm::Value *result;
2742   bool doRetain;
2743 
2744   if (shouldEmitSeparateBlockRetain(e)) {
2745     result = EmitScalarExpr(e);
2746     doRetain = true;
2747   } else {
2748     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2749     result = subresult.getPointer();
2750     doRetain = !subresult.getInt();
2751   }
2752 
2753   if (doRetain)
2754     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2755   return EmitObjCConsumeObject(e->getType(), result);
2756 }
2757 
EmitObjCThrowOperand(const Expr * expr)2758 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2759   // In ARC, retain and autorelease the expression.
2760   if (getLangOpts().ObjCAutoRefCount) {
2761     // Do so before running any cleanups for the full-expression.
2762     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2763     return EmitARCRetainAutoreleaseScalarExpr(expr);
2764   }
2765 
2766   // Otherwise, use the normal scalar-expression emission.  The
2767   // exception machinery doesn't do anything special with the
2768   // exception like retaining it, so there's no safety associated with
2769   // only running cleanups after the throw has started, and when it
2770   // matters it tends to be substantially inferior code.
2771   return EmitScalarExpr(expr);
2772 }
2773 
2774 std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator * e,bool ignored)2775 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2776                                     bool ignored) {
2777   // Evaluate the RHS first.
2778   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2779   llvm::Value *value = result.getPointer();
2780 
2781   bool hasImmediateRetain = result.getInt();
2782 
2783   // If we didn't emit a retained object, and the l-value is of block
2784   // type, then we need to emit the block-retain immediately in case
2785   // it invalidates the l-value.
2786   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2787     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2788     hasImmediateRetain = true;
2789   }
2790 
2791   LValue lvalue = EmitLValue(e->getLHS());
2792 
2793   // If the RHS was emitted retained, expand this.
2794   if (hasImmediateRetain) {
2795     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2796     EmitStoreOfScalar(value, lvalue);
2797     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2798   } else {
2799     value = EmitARCStoreStrong(lvalue, value, ignored);
2800   }
2801 
2802   return std::pair<LValue,llvm::Value*>(lvalue, value);
2803 }
2804 
2805 std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator * e)2806 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2807   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2808   LValue lvalue = EmitLValue(e->getLHS());
2809 
2810   EmitStoreOfScalar(value, lvalue);
2811 
2812   return std::pair<LValue,llvm::Value*>(lvalue, value);
2813 }
2814 
EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt & ARPS)2815 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2816                                           const ObjCAutoreleasePoolStmt &ARPS) {
2817   const Stmt *subStmt = ARPS.getSubStmt();
2818   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2819 
2820   CGDebugInfo *DI = getDebugInfo();
2821   if (DI)
2822     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2823 
2824   // Keep track of the current cleanup stack depth.
2825   RunCleanupsScope Scope(*this);
2826   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2827     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2828     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2829   } else {
2830     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2831     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2832   }
2833 
2834   for (const auto *I : S.body())
2835     EmitStmt(I);
2836 
2837   if (DI)
2838     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2839 }
2840 
2841 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2842 /// make sure it survives garbage collection until this point.
EmitExtendGCLifetime(llvm::Value * object)2843 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2844   // We just use an inline assembly.
2845   llvm::FunctionType *extenderType
2846     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2847   llvm::Value *extender
2848     = llvm::InlineAsm::get(extenderType,
2849                            /* assembly */ "",
2850                            /* constraints */ "r",
2851                            /* side effects */ true);
2852 
2853   object = Builder.CreateBitCast(object, VoidPtrTy);
2854   EmitNounwindRuntimeCall(extender, object);
2855 }
2856 
2857 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2858 /// non-trivial copy assignment function, produce following helper function.
2859 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2860 ///
2861 llvm::Constant *
GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)2862 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2863                                         const ObjCPropertyImplDecl *PID) {
2864   if (!getLangOpts().CPlusPlus ||
2865       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2866     return nullptr;
2867   QualType Ty = PID->getPropertyIvarDecl()->getType();
2868   if (!Ty->isRecordType())
2869     return nullptr;
2870   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2871   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2872     return nullptr;
2873   llvm::Constant *HelperFn = nullptr;
2874   if (hasTrivialSetExpr(PID))
2875     return nullptr;
2876   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2877   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2878     return HelperFn;
2879 
2880   ASTContext &C = getContext();
2881   IdentifierInfo *II
2882     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2883   FunctionDecl *FD = FunctionDecl::Create(C,
2884                                           C.getTranslationUnitDecl(),
2885                                           SourceLocation(),
2886                                           SourceLocation(), II, C.VoidTy,
2887                                           nullptr, SC_Static,
2888                                           false,
2889                                           false);
2890 
2891   QualType DestTy = C.getPointerType(Ty);
2892   QualType SrcTy = Ty;
2893   SrcTy.addConst();
2894   SrcTy = C.getPointerType(SrcTy);
2895 
2896   FunctionArgList args;
2897   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2898   args.push_back(&dstDecl);
2899   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2900   args.push_back(&srcDecl);
2901 
2902   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2903       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2904 
2905   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2906 
2907   llvm::Function *Fn =
2908     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2909                            "__assign_helper_atomic_property_",
2910                            &CGM.getModule());
2911 
2912   StartFunction(FD, C.VoidTy, Fn, FI, args);
2913 
2914   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2915                       VK_RValue, SourceLocation());
2916   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2917                     VK_LValue, OK_Ordinary, SourceLocation());
2918 
2919   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2920                       VK_RValue, SourceLocation());
2921   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2922                     VK_LValue, OK_Ordinary, SourceLocation());
2923 
2924   Expr *Args[2] = { &DST, &SRC };
2925   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2926   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2927                               Args, DestTy->getPointeeType(),
2928                               VK_LValue, SourceLocation(), false);
2929 
2930   EmitStmt(&TheCall);
2931 
2932   FinishFunction();
2933   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2934   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2935   return HelperFn;
2936 }
2937 
2938 llvm::Constant *
GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)2939 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2940                                             const ObjCPropertyImplDecl *PID) {
2941   if (!getLangOpts().CPlusPlus ||
2942       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2943     return nullptr;
2944   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2945   QualType Ty = PD->getType();
2946   if (!Ty->isRecordType())
2947     return nullptr;
2948   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2949     return nullptr;
2950   llvm::Constant *HelperFn = nullptr;
2951 
2952   if (hasTrivialGetExpr(PID))
2953     return nullptr;
2954   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2955   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2956     return HelperFn;
2957 
2958 
2959   ASTContext &C = getContext();
2960   IdentifierInfo *II
2961   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2962   FunctionDecl *FD = FunctionDecl::Create(C,
2963                                           C.getTranslationUnitDecl(),
2964                                           SourceLocation(),
2965                                           SourceLocation(), II, C.VoidTy,
2966                                           nullptr, SC_Static,
2967                                           false,
2968                                           false);
2969 
2970   QualType DestTy = C.getPointerType(Ty);
2971   QualType SrcTy = Ty;
2972   SrcTy.addConst();
2973   SrcTy = C.getPointerType(SrcTy);
2974 
2975   FunctionArgList args;
2976   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2977   args.push_back(&dstDecl);
2978   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2979   args.push_back(&srcDecl);
2980 
2981   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2982       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2983 
2984   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2985 
2986   llvm::Function *Fn =
2987   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2988                          "__copy_helper_atomic_property_", &CGM.getModule());
2989 
2990   StartFunction(FD, C.VoidTy, Fn, FI, args);
2991 
2992   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2993                       VK_RValue, SourceLocation());
2994 
2995   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2996                     VK_LValue, OK_Ordinary, SourceLocation());
2997 
2998   CXXConstructExpr *CXXConstExpr =
2999     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3000 
3001   SmallVector<Expr*, 4> ConstructorArgs;
3002   ConstructorArgs.push_back(&SRC);
3003   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3004   ++A;
3005 
3006   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3007        A != AEnd; ++A)
3008     ConstructorArgs.push_back(*A);
3009 
3010   CXXConstructExpr *TheCXXConstructExpr =
3011     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3012                              CXXConstExpr->getConstructor(),
3013                              CXXConstExpr->isElidable(),
3014                              ConstructorArgs,
3015                              CXXConstExpr->hadMultipleCandidates(),
3016                              CXXConstExpr->isListInitialization(),
3017                              CXXConstExpr->isStdInitListInitialization(),
3018                              CXXConstExpr->requiresZeroInitialization(),
3019                              CXXConstExpr->getConstructionKind(),
3020                              SourceRange());
3021 
3022   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3023                       VK_RValue, SourceLocation());
3024 
3025   RValue DV = EmitAnyExpr(&DstExpr);
3026   CharUnits Alignment
3027     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3028   EmitAggExpr(TheCXXConstructExpr,
3029               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3030                                     AggValueSlot::IsDestructed,
3031                                     AggValueSlot::DoesNotNeedGCBarriers,
3032                                     AggValueSlot::IsNotAliased));
3033 
3034   FinishFunction();
3035   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3036   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3037   return HelperFn;
3038 }
3039 
3040 llvm::Value *
EmitBlockCopyAndAutorelease(llvm::Value * Block,QualType Ty)3041 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3042   // Get selectors for retain/autorelease.
3043   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3044   Selector CopySelector =
3045       getContext().Selectors.getNullarySelector(CopyID);
3046   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3047   Selector AutoreleaseSelector =
3048       getContext().Selectors.getNullarySelector(AutoreleaseID);
3049 
3050   // Emit calls to retain/autorelease.
3051   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3052   llvm::Value *Val = Block;
3053   RValue Result;
3054   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3055                                        Ty, CopySelector,
3056                                        Val, CallArgList(), nullptr, nullptr);
3057   Val = Result.getScalarVal();
3058   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3059                                        Ty, AutoreleaseSelector,
3060                                        Val, CallArgList(), nullptr, nullptr);
3061   Val = Result.getScalarVal();
3062   return Val;
3063 }
3064 
3065 
~CGObjCRuntime()3066 CGObjCRuntime::~CGObjCRuntime() {}
3067