1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend is responsible for emitting arm_neon.h, which includes
11 // a declaration and definition of each function specified by the ARM NEON
12 // compiler interface.  See ARM document DUI0348B.
13 //
14 // Each NEON instruction is implemented in terms of 1 or more functions which
15 // are suffixed with the element type of the input vectors.  Functions may be
16 // implemented in terms of generic vector operations such as +, *, -, etc. or
17 // by calling a __builtin_-prefixed function which will be handled by clang's
18 // CodeGen library.
19 //
20 // Additional validation code can be generated by this file when runHeader() is
21 // called, rather than the normal run() entry point.
22 //
23 // See also the documentation in include/clang/Basic/arm_neon.td.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/StringMap.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/TableGen/Error.h"
34 #include "llvm/TableGen/Record.h"
35 #include "llvm/TableGen/SetTheory.h"
36 #include "llvm/TableGen/TableGenBackend.h"
37 #include <algorithm>
38 #include <map>
39 #include <sstream>
40 #include <string>
41 #include <vector>
42 using namespace llvm;
43 
44 namespace {
45 
46 // While globals are generally bad, this one allows us to perform assertions
47 // liberally and somehow still trace them back to the def they indirectly
48 // came from.
49 static Record *CurrentRecord = nullptr;
assert_with_loc(bool Assertion,const std::string & Str)50 static void assert_with_loc(bool Assertion, const std::string &Str) {
51   if (!Assertion) {
52     if (CurrentRecord)
53       PrintFatalError(CurrentRecord->getLoc(), Str);
54     else
55       PrintFatalError(Str);
56   }
57 }
58 
59 enum ClassKind {
60   ClassNone,
61   ClassI,     // generic integer instruction, e.g., "i8" suffix
62   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
63   ClassW,     // width-specific instruction, e.g., "8" suffix
64   ClassB,     // bitcast arguments with enum argument to specify type
65   ClassL,     // Logical instructions which are op instructions
66               // but we need to not emit any suffix for in our
67               // tests.
68   ClassNoTest // Instructions which we do not test since they are
69               // not TRUE instructions.
70 };
71 
72 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
73 /// builtins.  These must be kept in sync with the flags in
74 /// include/clang/Basic/TargetBuiltins.h.
75 namespace NeonTypeFlags {
76 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
77 
78 enum EltType {
79   Int8,
80   Int16,
81   Int32,
82   Int64,
83   Poly8,
84   Poly16,
85   Poly64,
86   Poly128,
87   Float16,
88   Float32,
89   Float64
90 };
91 }
92 
93 class Intrinsic;
94 class NeonEmitter;
95 class Type;
96 class Variable;
97 
98 //===----------------------------------------------------------------------===//
99 // TypeSpec
100 //===----------------------------------------------------------------------===//
101 
102 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
103 /// for strong typing purposes.
104 ///
105 /// A TypeSpec can be used to create a type.
106 class TypeSpec : public std::string {
107 public:
fromTypeSpecs(StringRef Str)108   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
109     std::vector<TypeSpec> Ret;
110     TypeSpec Acc;
111     for (char I : Str.str()) {
112       if (islower(I)) {
113         Acc.push_back(I);
114         Ret.push_back(TypeSpec(Acc));
115         Acc.clear();
116       } else {
117         Acc.push_back(I);
118       }
119     }
120     return Ret;
121   }
122 };
123 
124 //===----------------------------------------------------------------------===//
125 // Type
126 //===----------------------------------------------------------------------===//
127 
128 /// A Type. Not much more to say here.
129 class Type {
130 private:
131   TypeSpec TS;
132 
133   bool Float, Signed, Void, Poly, Constant, Pointer;
134   // ScalarForMangling and NoManglingQ are really not suited to live here as
135   // they are not related to the type. But they live in the TypeSpec (not the
136   // prototype), so this is really the only place to store them.
137   bool ScalarForMangling, NoManglingQ;
138   unsigned Bitwidth, ElementBitwidth, NumVectors;
139 
140 public:
Type()141   Type()
142       : Float(false), Signed(false), Void(true), Poly(false), Constant(false),
143         Pointer(false), ScalarForMangling(false), NoManglingQ(false),
144         Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
145 
Type(TypeSpec TS,char CharMod)146   Type(TypeSpec TS, char CharMod)
147       : TS(TS), Float(false), Signed(false), Void(false), Poly(false),
148         Constant(false), Pointer(false), ScalarForMangling(false),
149         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
150     applyModifier(CharMod);
151   }
152 
153   /// Returns a type representing "void".
getVoid()154   static Type getVoid() { return Type(); }
155 
operator ==(const Type & Other) const156   bool operator==(const Type &Other) const { return str() == Other.str(); }
operator !=(const Type & Other) const157   bool operator!=(const Type &Other) const { return !operator==(Other); }
158 
159   //
160   // Query functions
161   //
isScalarForMangling() const162   bool isScalarForMangling() const { return ScalarForMangling; }
noManglingQ() const163   bool noManglingQ() const { return NoManglingQ; }
164 
isPointer() const165   bool isPointer() const { return Pointer; }
isFloating() const166   bool isFloating() const { return Float; }
isInteger() const167   bool isInteger() const { return !Float && !Poly; }
isSigned() const168   bool isSigned() const { return Signed; }
isScalar() const169   bool isScalar() const { return NumVectors == 0; }
isVector() const170   bool isVector() const { return NumVectors > 0; }
isFloat() const171   bool isFloat() const { return Float && ElementBitwidth == 32; }
isDouble() const172   bool isDouble() const { return Float && ElementBitwidth == 64; }
isHalf() const173   bool isHalf() const { return Float && ElementBitwidth == 16; }
isPoly() const174   bool isPoly() const { return Poly; }
isChar() const175   bool isChar() const { return ElementBitwidth == 8; }
isShort() const176   bool isShort() const { return !Float && ElementBitwidth == 16; }
isInt() const177   bool isInt() const { return !Float && ElementBitwidth == 32; }
isLong() const178   bool isLong() const { return !Float && ElementBitwidth == 64; }
isVoid() const179   bool isVoid() const { return Void; }
getNumElements() const180   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
getSizeInBits() const181   unsigned getSizeInBits() const { return Bitwidth; }
getElementSizeInBits() const182   unsigned getElementSizeInBits() const { return ElementBitwidth; }
getNumVectors() const183   unsigned getNumVectors() const { return NumVectors; }
184 
185   //
186   // Mutator functions
187   //
makeUnsigned()188   void makeUnsigned() { Signed = false; }
makeSigned()189   void makeSigned() { Signed = true; }
makeInteger(unsigned ElemWidth,bool Sign)190   void makeInteger(unsigned ElemWidth, bool Sign) {
191     Float = false;
192     Poly = false;
193     Signed = Sign;
194     ElementBitwidth = ElemWidth;
195   }
makeScalar()196   void makeScalar() {
197     Bitwidth = ElementBitwidth;
198     NumVectors = 0;
199   }
makeOneVector()200   void makeOneVector() {
201     assert(isVector());
202     NumVectors = 1;
203   }
doubleLanes()204   void doubleLanes() {
205     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
206     Bitwidth = 128;
207   }
halveLanes()208   void halveLanes() {
209     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
210     Bitwidth = 64;
211   }
212 
213   /// Return the C string representation of a type, which is the typename
214   /// defined in stdint.h or arm_neon.h.
215   std::string str() const;
216 
217   /// Return the string representation of a type, which is an encoded
218   /// string for passing to the BUILTIN() macro in Builtins.def.
219   std::string builtin_str() const;
220 
221   /// Return the value in NeonTypeFlags for this type.
222   unsigned getNeonEnum() const;
223 
224   /// Parse a type from a stdint.h or arm_neon.h typedef name,
225   /// for example uint32x2_t or int64_t.
226   static Type fromTypedefName(StringRef Name);
227 
228 private:
229   /// Creates the type based on the typespec string in TS.
230   /// Sets "Quad" to true if the "Q" or "H" modifiers were
231   /// seen. This is needed by applyModifier as some modifiers
232   /// only take effect if the type size was changed by "Q" or "H".
233   void applyTypespec(bool &Quad);
234   /// Applies a prototype modifier to the type.
235   void applyModifier(char Mod);
236 };
237 
238 //===----------------------------------------------------------------------===//
239 // Variable
240 //===----------------------------------------------------------------------===//
241 
242 /// A variable is a simple class that just has a type and a name.
243 class Variable {
244   Type T;
245   std::string N;
246 
247 public:
Variable()248   Variable() : T(Type::getVoid()), N("") {}
Variable(Type T,std::string N)249   Variable(Type T, std::string N) : T(T), N(N) {}
250 
getType() const251   Type getType() const { return T; }
getName() const252   std::string getName() const { return "__" + N; }
253 };
254 
255 //===----------------------------------------------------------------------===//
256 // Intrinsic
257 //===----------------------------------------------------------------------===//
258 
259 /// The main grunt class. This represents an instantiation of an intrinsic with
260 /// a particular typespec and prototype.
261 class Intrinsic {
262   friend class DagEmitter;
263 
264   /// The Record this intrinsic was created from.
265   Record *R;
266   /// The unmangled name and prototype.
267   std::string Name, Proto;
268   /// The input and output typespecs. InTS == OutTS except when
269   /// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
270   TypeSpec OutTS, InTS;
271   /// The base class kind. Most intrinsics use ClassS, which has full type
272   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
273   /// signedness (i32), while some (ClassB) have no type at all, only a width
274   /// (32).
275   ClassKind CK;
276   /// The list of DAGs for the body. May be empty, in which case we should
277   /// emit a builtin call.
278   ListInit *Body;
279   /// The architectural #ifdef guard.
280   std::string Guard;
281   /// Set if the Unvailable bit is 1. This means we don't generate a body,
282   /// just an "unavailable" attribute on a declaration.
283   bool IsUnavailable;
284   /// Is this intrinsic safe for big-endian? or does it need its arguments
285   /// reversing?
286   bool BigEndianSafe;
287 
288   /// The types of return value [0] and parameters [1..].
289   std::vector<Type> Types;
290   /// The local variables defined.
291   std::map<std::string, Variable> Variables;
292   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
293   bool NeededEarly;
294   /// UseMacro - set if we should implement using a macro or unset for a
295   ///            function.
296   bool UseMacro;
297   /// The set of intrinsics that this intrinsic uses/requires.
298   std::set<Intrinsic *> Dependencies;
299   /// The "base type", which is Type('d', OutTS). InBaseType is only
300   /// different if CartesianProductOfTypes = 1 (for vreinterpret).
301   Type BaseType, InBaseType;
302   /// The return variable.
303   Variable RetVar;
304   /// A postfix to apply to every variable. Defaults to "".
305   std::string VariablePostfix;
306 
307   NeonEmitter &Emitter;
308   std::stringstream OS;
309 
310 public:
Intrinsic(Record * R,StringRef Name,StringRef Proto,TypeSpec OutTS,TypeSpec InTS,ClassKind CK,ListInit * Body,NeonEmitter & Emitter,StringRef Guard,bool IsUnavailable,bool BigEndianSafe)311   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
312             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
313             StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
314       : R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS),
315         CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable),
316         BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false),
317         BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) {
318     // If this builtin takes an immediate argument, we need to #define it rather
319     // than use a standard declaration, so that SemaChecking can range check
320     // the immediate passed by the user.
321     if (Proto.find('i') != std::string::npos)
322       UseMacro = true;
323 
324     // Pointer arguments need to use macros to avoid hiding aligned attributes
325     // from the pointer type.
326     if (Proto.find('p') != std::string::npos ||
327         Proto.find('c') != std::string::npos)
328       UseMacro = true;
329 
330     // It is not permitted to pass or return an __fp16 by value, so intrinsics
331     // taking a scalar float16_t must be implemented as macros.
332     if (OutTS.find('h') != std::string::npos &&
333         Proto.find('s') != std::string::npos)
334       UseMacro = true;
335 
336     // Modify the TypeSpec per-argument to get a concrete Type, and create
337     // known variables for each.
338     // Types[0] is the return value.
339     Types.push_back(Type(OutTS, Proto[0]));
340     for (unsigned I = 1; I < Proto.size(); ++I)
341       Types.push_back(Type(InTS, Proto[I]));
342   }
343 
344   /// Get the Record that this intrinsic is based off.
getRecord() const345   Record *getRecord() const { return R; }
346   /// Get the set of Intrinsics that this intrinsic calls.
347   /// this is the set of immediate dependencies, NOT the
348   /// transitive closure.
getDependencies() const349   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
350   /// Get the architectural guard string (#ifdef).
getGuard() const351   std::string getGuard() const { return Guard; }
352   /// Get the non-mangled name.
getName() const353   std::string getName() const { return Name; }
354 
355   /// Return true if the intrinsic takes an immediate operand.
hasImmediate() const356   bool hasImmediate() const {
357     return Proto.find('i') != std::string::npos;
358   }
359   /// Return the parameter index of the immediate operand.
getImmediateIdx() const360   unsigned getImmediateIdx() const {
361     assert(hasImmediate());
362     unsigned Idx = Proto.find('i');
363     assert(Idx > 0 && "Can't return an immediate!");
364     return Idx - 1;
365   }
366 
367   /// Return true if the intrinsic takes an splat operand.
hasSplat() const368   bool hasSplat() const { return Proto.find('a') != std::string::npos; }
369   /// Return the parameter index of the splat operand.
getSplatIdx() const370   unsigned getSplatIdx() const {
371     assert(hasSplat());
372     unsigned Idx = Proto.find('a');
373     assert(Idx > 0 && "Can't return a splat!");
374     return Idx - 1;
375   }
376 
getNumParams() const377   unsigned getNumParams() const { return Proto.size() - 1; }
getReturnType() const378   Type getReturnType() const { return Types[0]; }
getParamType(unsigned I) const379   Type getParamType(unsigned I) const { return Types[I + 1]; }
getBaseType() const380   Type getBaseType() const { return BaseType; }
381   /// Return the raw prototype string.
getProto() const382   std::string getProto() const { return Proto; }
383 
384   /// Return true if the prototype has a scalar argument.
385   /// This does not return true for the "splat" code ('a').
386   bool protoHasScalar();
387 
388   /// Return the index that parameter PIndex will sit at
389   /// in a generated function call. This is often just PIndex,
390   /// but may not be as things such as multiple-vector operands
391   /// and sret parameters need to be taken into accont.
getGeneratedParamIdx(unsigned PIndex)392   unsigned getGeneratedParamIdx(unsigned PIndex) {
393     unsigned Idx = 0;
394     if (getReturnType().getNumVectors() > 1)
395       // Multiple vectors are passed as sret.
396       ++Idx;
397 
398     for (unsigned I = 0; I < PIndex; ++I)
399       Idx += std::max(1U, getParamType(I).getNumVectors());
400 
401     return Idx;
402   }
403 
hasBody() const404   bool hasBody() const { return Body && Body->getValues().size() > 0; }
405 
setNeededEarly()406   void setNeededEarly() { NeededEarly = true; }
407 
operator <(const Intrinsic & Other) const408   bool operator<(const Intrinsic &Other) const {
409     // Sort lexicographically on a two-tuple (Guard, Name)
410     if (Guard != Other.Guard)
411       return Guard < Other.Guard;
412     return Name < Other.Name;
413   }
414 
getClassKind(bool UseClassBIfScalar=false)415   ClassKind getClassKind(bool UseClassBIfScalar = false) {
416     if (UseClassBIfScalar && !protoHasScalar())
417       return ClassB;
418     return CK;
419   }
420 
421   /// Return the name, mangled with type information.
422   /// If ForceClassS is true, use ClassS (u32/s32) instead
423   /// of the intrinsic's own type class.
424   std::string getMangledName(bool ForceClassS = false);
425   /// Return the type code for a builtin function call.
426   std::string getInstTypeCode(Type T, ClassKind CK);
427   /// Return the type string for a BUILTIN() macro in Builtins.def.
428   std::string getBuiltinTypeStr();
429 
430   /// Generate the intrinsic, returning code.
431   std::string generate();
432   /// Perform type checking and populate the dependency graph, but
433   /// don't generate code yet.
434   void indexBody();
435 
436 private:
437   std::string mangleName(std::string Name, ClassKind CK);
438 
439   void initVariables();
440   std::string replaceParamsIn(std::string S);
441 
442   void emitBodyAsBuiltinCall();
443 
444   void generateImpl(bool ReverseArguments,
445                     StringRef NamePrefix, StringRef CallPrefix);
446   void emitReturn();
447   void emitBody(StringRef CallPrefix);
448   void emitShadowedArgs();
449   void emitArgumentReversal();
450   void emitReturnReversal();
451   void emitReverseVariable(Variable &Dest, Variable &Src);
452   void emitNewLine();
453   void emitClosingBrace();
454   void emitOpeningBrace();
455   void emitPrototype(StringRef NamePrefix);
456 
457   class DagEmitter {
458     Intrinsic &Intr;
459     StringRef CallPrefix;
460 
461   public:
DagEmitter(Intrinsic & Intr,StringRef CallPrefix)462     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
463       Intr(Intr), CallPrefix(CallPrefix) {
464     }
465     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
466     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
467     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
468     std::pair<Type, std::string> emitDagDup(DagInit *DI);
469     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
470     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
471     std::pair<Type, std::string> emitDagCall(DagInit *DI);
472     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
473     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
474     std::pair<Type, std::string> emitDagOp(DagInit *DI);
475     std::pair<Type, std::string> emitDag(DagInit *DI);
476   };
477 
478 };
479 
480 //===----------------------------------------------------------------------===//
481 // NeonEmitter
482 //===----------------------------------------------------------------------===//
483 
484 class NeonEmitter {
485   RecordKeeper &Records;
486   DenseMap<Record *, ClassKind> ClassMap;
487   std::map<std::string, std::vector<Intrinsic *>> IntrinsicMap;
488   unsigned UniqueNumber;
489 
490   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
491   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
492   void genOverloadTypeCheckCode(raw_ostream &OS,
493                                 SmallVectorImpl<Intrinsic *> &Defs);
494   void genIntrinsicRangeCheckCode(raw_ostream &OS,
495                                   SmallVectorImpl<Intrinsic *> &Defs);
496 
497 public:
498   /// Called by Intrinsic - this attempts to get an intrinsic that takes
499   /// the given types as arguments.
500   Intrinsic *getIntrinsic(StringRef Name, ArrayRef<Type> Types);
501 
502   /// Called by Intrinsic - returns a globally-unique number.
getUniqueNumber()503   unsigned getUniqueNumber() { return UniqueNumber++; }
504 
NeonEmitter(RecordKeeper & R)505   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
506     Record *SI = R.getClass("SInst");
507     Record *II = R.getClass("IInst");
508     Record *WI = R.getClass("WInst");
509     Record *SOpI = R.getClass("SOpInst");
510     Record *IOpI = R.getClass("IOpInst");
511     Record *WOpI = R.getClass("WOpInst");
512     Record *LOpI = R.getClass("LOpInst");
513     Record *NoTestOpI = R.getClass("NoTestOpInst");
514 
515     ClassMap[SI] = ClassS;
516     ClassMap[II] = ClassI;
517     ClassMap[WI] = ClassW;
518     ClassMap[SOpI] = ClassS;
519     ClassMap[IOpI] = ClassI;
520     ClassMap[WOpI] = ClassW;
521     ClassMap[LOpI] = ClassL;
522     ClassMap[NoTestOpI] = ClassNoTest;
523   }
524 
525   // run - Emit arm_neon.h.inc
526   void run(raw_ostream &o);
527 
528   // runHeader - Emit all the __builtin prototypes used in arm_neon.h
529   void runHeader(raw_ostream &o);
530 
531   // runTests - Emit tests for all the Neon intrinsics.
532   void runTests(raw_ostream &o);
533 };
534 
535 } // end anonymous namespace
536 
537 //===----------------------------------------------------------------------===//
538 // Type implementation
539 //===----------------------------------------------------------------------===//
540 
str() const541 std::string Type::str() const {
542   if (Void)
543     return "void";
544   std::string S;
545 
546   if (!Signed && isInteger())
547     S += "u";
548 
549   if (Poly)
550     S += "poly";
551   else if (Float)
552     S += "float";
553   else
554     S += "int";
555 
556   S += utostr(ElementBitwidth);
557   if (isVector())
558     S += "x" + utostr(getNumElements());
559   if (NumVectors > 1)
560     S += "x" + utostr(NumVectors);
561   S += "_t";
562 
563   if (Constant)
564     S += " const";
565   if (Pointer)
566     S += " *";
567 
568   return S;
569 }
570 
builtin_str() const571 std::string Type::builtin_str() const {
572   std::string S;
573   if (isVoid())
574     return "v";
575 
576   if (Pointer)
577     // All pointers are void pointers.
578     S += "v";
579   else if (isInteger())
580     switch (ElementBitwidth) {
581     case 8: S += "c"; break;
582     case 16: S += "s"; break;
583     case 32: S += "i"; break;
584     case 64: S += "Wi"; break;
585     case 128: S += "LLLi"; break;
586     default: llvm_unreachable("Unhandled case!");
587     }
588   else
589     switch (ElementBitwidth) {
590     case 16: S += "h"; break;
591     case 32: S += "f"; break;
592     case 64: S += "d"; break;
593     default: llvm_unreachable("Unhandled case!");
594     }
595 
596   if (isChar() && !Pointer)
597     // Make chars explicitly signed.
598     S = "S" + S;
599   else if (isInteger() && !Pointer && !Signed)
600     S = "U" + S;
601 
602   if (isScalar()) {
603     if (Constant) S += "C";
604     if (Pointer) S += "*";
605     return S;
606   }
607 
608   std::string Ret;
609   for (unsigned I = 0; I < NumVectors; ++I)
610     Ret += "V" + utostr(getNumElements()) + S;
611 
612   return Ret;
613 }
614 
getNeonEnum() const615 unsigned Type::getNeonEnum() const {
616   unsigned Addend;
617   switch (ElementBitwidth) {
618   case 8: Addend = 0; break;
619   case 16: Addend = 1; break;
620   case 32: Addend = 2; break;
621   case 64: Addend = 3; break;
622   case 128: Addend = 4; break;
623   default: llvm_unreachable("Unhandled element bitwidth!");
624   }
625 
626   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
627   if (Poly) {
628     // Adjustment needed because Poly32 doesn't exist.
629     if (Addend >= 2)
630       --Addend;
631     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
632   }
633   if (Float) {
634     assert(Addend != 0 && "Float8 doesn't exist!");
635     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
636   }
637 
638   if (Bitwidth == 128)
639     Base |= (unsigned)NeonTypeFlags::QuadFlag;
640   if (isInteger() && !Signed)
641     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
642 
643   return Base;
644 }
645 
fromTypedefName(StringRef Name)646 Type Type::fromTypedefName(StringRef Name) {
647   Type T;
648   T.Void = false;
649   T.Float = false;
650   T.Poly = false;
651 
652   if (Name.front() == 'u') {
653     T.Signed = false;
654     Name = Name.drop_front();
655   } else {
656     T.Signed = true;
657   }
658 
659   if (Name.startswith("float")) {
660     T.Float = true;
661     Name = Name.drop_front(5);
662   } else if (Name.startswith("poly")) {
663     T.Poly = true;
664     Name = Name.drop_front(4);
665   } else {
666     assert(Name.startswith("int"));
667     Name = Name.drop_front(3);
668   }
669 
670   unsigned I = 0;
671   for (I = 0; I < Name.size(); ++I) {
672     if (!isdigit(Name[I]))
673       break;
674   }
675   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
676   Name = Name.drop_front(I);
677 
678   T.Bitwidth = T.ElementBitwidth;
679   T.NumVectors = 1;
680 
681   if (Name.front() == 'x') {
682     Name = Name.drop_front();
683     unsigned I = 0;
684     for (I = 0; I < Name.size(); ++I) {
685       if (!isdigit(Name[I]))
686         break;
687     }
688     unsigned NumLanes;
689     Name.substr(0, I).getAsInteger(10, NumLanes);
690     Name = Name.drop_front(I);
691     T.Bitwidth = T.ElementBitwidth * NumLanes;
692   } else {
693     // Was scalar.
694     T.NumVectors = 0;
695   }
696   if (Name.front() == 'x') {
697     Name = Name.drop_front();
698     unsigned I = 0;
699     for (I = 0; I < Name.size(); ++I) {
700       if (!isdigit(Name[I]))
701         break;
702     }
703     Name.substr(0, I).getAsInteger(10, T.NumVectors);
704     Name = Name.drop_front(I);
705   }
706 
707   assert(Name.startswith("_t") && "Malformed typedef!");
708   return T;
709 }
710 
applyTypespec(bool & Quad)711 void Type::applyTypespec(bool &Quad) {
712   std::string S = TS;
713   ScalarForMangling = false;
714   Void = false;
715   Poly = Float = false;
716   ElementBitwidth = ~0U;
717   Signed = true;
718   NumVectors = 1;
719 
720   for (char I : S) {
721     switch (I) {
722     case 'S':
723       ScalarForMangling = true;
724       break;
725     case 'H':
726       NoManglingQ = true;
727       Quad = true;
728       break;
729     case 'Q':
730       Quad = true;
731       break;
732     case 'P':
733       Poly = true;
734       break;
735     case 'U':
736       Signed = false;
737       break;
738     case 'c':
739       ElementBitwidth = 8;
740       break;
741     case 'h':
742       Float = true;
743     // Fall through
744     case 's':
745       ElementBitwidth = 16;
746       break;
747     case 'f':
748       Float = true;
749     // Fall through
750     case 'i':
751       ElementBitwidth = 32;
752       break;
753     case 'd':
754       Float = true;
755     // Fall through
756     case 'l':
757       ElementBitwidth = 64;
758       break;
759     case 'k':
760       ElementBitwidth = 128;
761       // Poly doesn't have a 128x1 type.
762       if (Poly)
763         NumVectors = 0;
764       break;
765     default:
766       llvm_unreachable("Unhandled type code!");
767     }
768   }
769   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
770 
771   Bitwidth = Quad ? 128 : 64;
772 }
773 
applyModifier(char Mod)774 void Type::applyModifier(char Mod) {
775   bool AppliedQuad = false;
776   applyTypespec(AppliedQuad);
777 
778   switch (Mod) {
779   case 'v':
780     Void = true;
781     break;
782   case 't':
783     if (Poly) {
784       Poly = false;
785       Signed = false;
786     }
787     break;
788   case 'b':
789     Signed = false;
790     Float = false;
791     Poly = false;
792     NumVectors = 0;
793     Bitwidth = ElementBitwidth;
794     break;
795   case '$':
796     Signed = true;
797     Float = false;
798     Poly = false;
799     NumVectors = 0;
800     Bitwidth = ElementBitwidth;
801     break;
802   case 'u':
803     Signed = false;
804     Poly = false;
805     Float = false;
806     break;
807   case 'x':
808     Signed = true;
809     assert(!Poly && "'u' can't be used with poly types!");
810     Float = false;
811     break;
812   case 'o':
813     Bitwidth = ElementBitwidth = 64;
814     NumVectors = 0;
815     Float = true;
816     break;
817   case 'y':
818     Bitwidth = ElementBitwidth = 32;
819     NumVectors = 0;
820     Float = true;
821     break;
822   case 'f':
823     // Special case - if we're half-precision, a floating
824     // point argument needs to be 128-bits (double size).
825     if (isHalf())
826       Bitwidth = 128;
827     Float = true;
828     ElementBitwidth = 32;
829     break;
830   case 'F':
831     Float = true;
832     ElementBitwidth = 64;
833     break;
834   case 'g':
835     if (AppliedQuad)
836       Bitwidth /= 2;
837     break;
838   case 'j':
839     if (!AppliedQuad)
840       Bitwidth *= 2;
841     break;
842   case 'w':
843     ElementBitwidth *= 2;
844     Bitwidth *= 2;
845     break;
846   case 'n':
847     ElementBitwidth *= 2;
848     break;
849   case 'i':
850     Float = false;
851     Poly = false;
852     ElementBitwidth = Bitwidth = 32;
853     NumVectors = 0;
854     Signed = true;
855     break;
856   case 'l':
857     Float = false;
858     Poly = false;
859     ElementBitwidth = Bitwidth = 64;
860     NumVectors = 0;
861     Signed = false;
862     break;
863   case 'z':
864     ElementBitwidth /= 2;
865     Bitwidth = ElementBitwidth;
866     NumVectors = 0;
867     break;
868   case 'r':
869     ElementBitwidth *= 2;
870     Bitwidth = ElementBitwidth;
871     NumVectors = 0;
872     break;
873   case 's':
874   case 'a':
875     Bitwidth = ElementBitwidth;
876     NumVectors = 0;
877     break;
878   case 'k':
879     Bitwidth *= 2;
880     break;
881   case 'c':
882     Constant = true;
883   // Fall through
884   case 'p':
885     Pointer = true;
886     Bitwidth = ElementBitwidth;
887     NumVectors = 0;
888     break;
889   case 'h':
890     ElementBitwidth /= 2;
891     break;
892   case 'q':
893     ElementBitwidth /= 2;
894     Bitwidth *= 2;
895     break;
896   case 'e':
897     ElementBitwidth /= 2;
898     Signed = false;
899     break;
900   case 'm':
901     ElementBitwidth /= 2;
902     Bitwidth /= 2;
903     break;
904   case 'd':
905     break;
906   case '2':
907     NumVectors = 2;
908     break;
909   case '3':
910     NumVectors = 3;
911     break;
912   case '4':
913     NumVectors = 4;
914     break;
915   case 'B':
916     NumVectors = 2;
917     if (!AppliedQuad)
918       Bitwidth *= 2;
919     break;
920   case 'C':
921     NumVectors = 3;
922     if (!AppliedQuad)
923       Bitwidth *= 2;
924     break;
925   case 'D':
926     NumVectors = 4;
927     if (!AppliedQuad)
928       Bitwidth *= 2;
929     break;
930   default:
931     llvm_unreachable("Unhandled character!");
932   }
933 }
934 
935 //===----------------------------------------------------------------------===//
936 // Intrinsic implementation
937 //===----------------------------------------------------------------------===//
938 
getInstTypeCode(Type T,ClassKind CK)939 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) {
940   char typeCode = '\0';
941   bool printNumber = true;
942 
943   if (CK == ClassB)
944     return "";
945 
946   if (T.isPoly())
947     typeCode = 'p';
948   else if (T.isInteger())
949     typeCode = T.isSigned() ? 's' : 'u';
950   else
951     typeCode = 'f';
952 
953   if (CK == ClassI) {
954     switch (typeCode) {
955     default:
956       break;
957     case 's':
958     case 'u':
959     case 'p':
960       typeCode = 'i';
961       break;
962     }
963   }
964   if (CK == ClassB) {
965     typeCode = '\0';
966   }
967 
968   std::string S;
969   if (typeCode != '\0')
970     S.push_back(typeCode);
971   if (printNumber)
972     S += utostr(T.getElementSizeInBits());
973 
974   return S;
975 }
976 
getBuiltinTypeStr()977 std::string Intrinsic::getBuiltinTypeStr() {
978   ClassKind LocalCK = getClassKind(true);
979   std::string S;
980 
981   Type RetT = getReturnType();
982   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
983       !RetT.isFloating())
984     RetT.makeInteger(RetT.getElementSizeInBits(), false);
985 
986   // Since the return value must be one type, return a vector type of the
987   // appropriate width which we will bitcast.  An exception is made for
988   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
989   // fashion, storing them to a pointer arg.
990   if (RetT.getNumVectors() > 1) {
991     S += "vv*"; // void result with void* first argument
992   } else {
993     if (RetT.isPoly())
994       RetT.makeInteger(RetT.getElementSizeInBits(), false);
995     if (!RetT.isScalar() && !RetT.isSigned())
996       RetT.makeSigned();
997 
998     bool ForcedVectorFloatingType = Proto[0] == 'F' || Proto[0] == 'f';
999     if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType)
1000       // Cast to vector of 8-bit elements.
1001       RetT.makeInteger(8, true);
1002 
1003     S += RetT.builtin_str();
1004   }
1005 
1006   for (unsigned I = 0; I < getNumParams(); ++I) {
1007     Type T = getParamType(I);
1008     if (T.isPoly())
1009       T.makeInteger(T.getElementSizeInBits(), false);
1010 
1011     bool ForcedFloatingType = Proto[I + 1] == 'F' || Proto[I + 1] == 'f';
1012     if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType)
1013       T.makeInteger(8, true);
1014     // Halves always get converted to 8-bit elements.
1015     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1016       T.makeInteger(8, true);
1017 
1018     if (LocalCK == ClassI)
1019       T.makeSigned();
1020 
1021     // Constant indices are always just "int".
1022     if (hasImmediate() && getImmediateIdx() == I)
1023       T.makeInteger(32, true);
1024 
1025     S += T.builtin_str();
1026   }
1027 
1028   // Extra constant integer to hold type class enum for this function, e.g. s8
1029   if (LocalCK == ClassB)
1030     S += "i";
1031 
1032   return S;
1033 }
1034 
getMangledName(bool ForceClassS)1035 std::string Intrinsic::getMangledName(bool ForceClassS) {
1036   // Check if the prototype has a scalar operand with the type of the vector
1037   // elements.  If not, bitcasting the args will take care of arg checking.
1038   // The actual signedness etc. will be taken care of with special enums.
1039   ClassKind LocalCK = CK;
1040   if (!protoHasScalar())
1041     LocalCK = ClassB;
1042 
1043   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1044 }
1045 
mangleName(std::string Name,ClassKind LocalCK)1046 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) {
1047   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1048   std::string S = Name;
1049 
1050   if (Name == "vcvt_f32_f16" || Name == "vcvt_f32_f64" ||
1051       Name == "vcvt_f64_f32")
1052     return Name;
1053 
1054   if (typeCode.size() > 0) {
1055     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1056     if (Name.size() >= 3 && isdigit(Name.back()) &&
1057         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1058       S.insert(S.length() - 3, "_" + typeCode);
1059     else
1060       S += "_" + typeCode;
1061   }
1062 
1063   if (BaseType != InBaseType) {
1064     // A reinterpret - out the input base type at the end.
1065     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1066   }
1067 
1068   if (LocalCK == ClassB)
1069     S += "_v";
1070 
1071   // Insert a 'q' before the first '_' character so that it ends up before
1072   // _lane or _n on vector-scalar operations.
1073   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1074     size_t Pos = S.find('_');
1075     S.insert(Pos, "q");
1076   }
1077 
1078   char Suffix = '\0';
1079   if (BaseType.isScalarForMangling()) {
1080     switch (BaseType.getElementSizeInBits()) {
1081     case 8: Suffix = 'b'; break;
1082     case 16: Suffix = 'h'; break;
1083     case 32: Suffix = 's'; break;
1084     case 64: Suffix = 'd'; break;
1085     default: llvm_unreachable("Bad suffix!");
1086     }
1087   }
1088   if (Suffix != '\0') {
1089     size_t Pos = S.find('_');
1090     S.insert(Pos, &Suffix, 1);
1091   }
1092 
1093   return S;
1094 }
1095 
replaceParamsIn(std::string S)1096 std::string Intrinsic::replaceParamsIn(std::string S) {
1097   while (S.find('$') != std::string::npos) {
1098     size_t Pos = S.find('$');
1099     size_t End = Pos + 1;
1100     while (isalpha(S[End]))
1101       ++End;
1102 
1103     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1104     assert_with_loc(Variables.find(VarName) != Variables.end(),
1105                     "Variable not defined!");
1106     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1107   }
1108 
1109   return S;
1110 }
1111 
initVariables()1112 void Intrinsic::initVariables() {
1113   Variables.clear();
1114 
1115   // Modify the TypeSpec per-argument to get a concrete Type, and create
1116   // known variables for each.
1117   for (unsigned I = 1; I < Proto.size(); ++I) {
1118     char NameC = '0' + (I - 1);
1119     std::string Name = "p";
1120     Name.push_back(NameC);
1121 
1122     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1123   }
1124   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1125 }
1126 
emitPrototype(StringRef NamePrefix)1127 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1128   if (UseMacro)
1129     OS << "#define ";
1130   else
1131     OS << "__ai " << Types[0].str() << " ";
1132 
1133   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1134 
1135   for (unsigned I = 0; I < getNumParams(); ++I) {
1136     if (I != 0)
1137       OS << ", ";
1138 
1139     char NameC = '0' + I;
1140     std::string Name = "p";
1141     Name.push_back(NameC);
1142     assert(Variables.find(Name) != Variables.end());
1143     Variable &V = Variables[Name];
1144 
1145     if (!UseMacro)
1146       OS << V.getType().str() << " ";
1147     OS << V.getName();
1148   }
1149 
1150   OS << ")";
1151 }
1152 
emitOpeningBrace()1153 void Intrinsic::emitOpeningBrace() {
1154   if (UseMacro)
1155     OS << " __extension__ ({";
1156   else
1157     OS << " {";
1158   emitNewLine();
1159 }
1160 
emitClosingBrace()1161 void Intrinsic::emitClosingBrace() {
1162   if (UseMacro)
1163     OS << "})";
1164   else
1165     OS << "}";
1166 }
1167 
emitNewLine()1168 void Intrinsic::emitNewLine() {
1169   if (UseMacro)
1170     OS << " \\\n";
1171   else
1172     OS << "\n";
1173 }
1174 
emitReverseVariable(Variable & Dest,Variable & Src)1175 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1176   if (Dest.getType().getNumVectors() > 1) {
1177     emitNewLine();
1178 
1179     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1180       OS << "  " << Dest.getName() << ".val[" << utostr(K) << "] = "
1181          << "__builtin_shufflevector("
1182          << Src.getName() << ".val[" << utostr(K) << "], "
1183          << Src.getName() << ".val[" << utostr(K) << "]";
1184       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1185         OS << ", " << utostr(J);
1186       OS << ");";
1187       emitNewLine();
1188     }
1189   } else {
1190     OS << "  " << Dest.getName()
1191        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1192     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1193       OS << ", " << utostr(J);
1194     OS << ");";
1195     emitNewLine();
1196   }
1197 }
1198 
emitArgumentReversal()1199 void Intrinsic::emitArgumentReversal() {
1200   if (BigEndianSafe)
1201     return;
1202 
1203   // Reverse all vector arguments.
1204   for (unsigned I = 0; I < getNumParams(); ++I) {
1205     std::string Name = "p" + utostr(I);
1206     std::string NewName = "rev" + utostr(I);
1207 
1208     Variable &V = Variables[Name];
1209     Variable NewV(V.getType(), NewName + VariablePostfix);
1210 
1211     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1212       continue;
1213 
1214     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1215     emitReverseVariable(NewV, V);
1216     V = NewV;
1217   }
1218 }
1219 
emitReturnReversal()1220 void Intrinsic::emitReturnReversal() {
1221   if (BigEndianSafe)
1222     return;
1223   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1224       getReturnType().getNumElements() == 1)
1225     return;
1226   emitReverseVariable(RetVar, RetVar);
1227 }
1228 
1229 
emitShadowedArgs()1230 void Intrinsic::emitShadowedArgs() {
1231   // Macro arguments are not type-checked like inline function arguments,
1232   // so assign them to local temporaries to get the right type checking.
1233   if (!UseMacro)
1234     return;
1235 
1236   for (unsigned I = 0; I < getNumParams(); ++I) {
1237     // Do not create a temporary for an immediate argument.
1238     // That would defeat the whole point of using a macro!
1239     if (hasImmediate() && Proto[I+1] == 'i')
1240       continue;
1241     // Do not create a temporary for pointer arguments. The input
1242     // pointer may have an alignment hint.
1243     if (getParamType(I).isPointer())
1244       continue;
1245 
1246     std::string Name = "p" + utostr(I);
1247 
1248     assert(Variables.find(Name) != Variables.end());
1249     Variable &V = Variables[Name];
1250 
1251     std::string NewName = "s" + utostr(I);
1252     Variable V2(V.getType(), NewName + VariablePostfix);
1253 
1254     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1255        << V.getName() << ";";
1256     emitNewLine();
1257 
1258     V = V2;
1259   }
1260 }
1261 
1262 // We don't check 'a' in this function, because for builtin function the
1263 // argument matching to 'a' uses a vector type splatted from a scalar type.
protoHasScalar()1264 bool Intrinsic::protoHasScalar() {
1265   return (Proto.find('s') != std::string::npos ||
1266           Proto.find('z') != std::string::npos ||
1267           Proto.find('r') != std::string::npos ||
1268           Proto.find('b') != std::string::npos ||
1269           Proto.find('$') != std::string::npos ||
1270           Proto.find('y') != std::string::npos ||
1271           Proto.find('o') != std::string::npos);
1272 }
1273 
emitBodyAsBuiltinCall()1274 void Intrinsic::emitBodyAsBuiltinCall() {
1275   std::string S;
1276 
1277   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1278   // sret-like argument.
1279   bool SRet = getReturnType().getNumVectors() >= 2;
1280 
1281   StringRef N = Name;
1282   if (hasSplat()) {
1283     // Call the non-splat builtin: chop off the "_n" suffix from the name.
1284     assert(N.endswith("_n"));
1285     N = N.drop_back(2);
1286   }
1287 
1288   ClassKind LocalCK = CK;
1289   if (!protoHasScalar())
1290     LocalCK = ClassB;
1291 
1292   if (!getReturnType().isVoid() && !SRet)
1293     S += "(" + RetVar.getType().str() + ") ";
1294 
1295   S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";
1296 
1297   if (SRet)
1298     S += "&" + RetVar.getName() + ", ";
1299 
1300   for (unsigned I = 0; I < getNumParams(); ++I) {
1301     Variable &V = Variables["p" + utostr(I)];
1302     Type T = V.getType();
1303 
1304     // Handle multiple-vector values specially, emitting each subvector as an
1305     // argument to the builtin.
1306     if (T.getNumVectors() > 1) {
1307       // Check if an explicit cast is needed.
1308       std::string Cast;
1309       if (T.isChar() || T.isPoly() || !T.isSigned()) {
1310         Type T2 = T;
1311         T2.makeOneVector();
1312         T2.makeInteger(8, /*Signed=*/true);
1313         Cast = "(" + T2.str() + ")";
1314       }
1315 
1316       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1317         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1318       continue;
1319     }
1320 
1321     std::string Arg;
1322     Type CastToType = T;
1323     if (hasSplat() && I == getSplatIdx()) {
1324       Arg = "(" + BaseType.str() + ") {";
1325       for (unsigned J = 0; J < BaseType.getNumElements(); ++J) {
1326         if (J != 0)
1327           Arg += ", ";
1328         Arg += V.getName();
1329       }
1330       Arg += "}";
1331 
1332       CastToType = BaseType;
1333     } else {
1334       Arg = V.getName();
1335     }
1336 
1337     // Check if an explicit cast is needed.
1338     if (CastToType.isVector()) {
1339       CastToType.makeInteger(8, true);
1340       Arg = "(" + CastToType.str() + ")" + Arg;
1341     }
1342 
1343     S += Arg + ", ";
1344   }
1345 
1346   // Extra constant integer to hold type class enum for this function, e.g. s8
1347   if (getClassKind(true) == ClassB) {
1348     Type ThisTy = getReturnType();
1349     if (Proto[0] == 'v' || Proto[0] == 'f' || Proto[0] == 'F')
1350       ThisTy = getParamType(0);
1351     if (ThisTy.isPointer())
1352       ThisTy = getParamType(1);
1353 
1354     S += utostr(ThisTy.getNeonEnum());
1355   } else {
1356     // Remove extraneous ", ".
1357     S.pop_back();
1358     S.pop_back();
1359   }
1360   S += ");";
1361 
1362   std::string RetExpr;
1363   if (!SRet && !RetVar.getType().isVoid())
1364     RetExpr = RetVar.getName() + " = ";
1365 
1366   OS << "  " << RetExpr << S;
1367   emitNewLine();
1368 }
1369 
emitBody(StringRef CallPrefix)1370 void Intrinsic::emitBody(StringRef CallPrefix) {
1371   std::vector<std::string> Lines;
1372 
1373   assert(RetVar.getType() == Types[0]);
1374   // Create a return variable, if we're not void.
1375   if (!RetVar.getType().isVoid()) {
1376     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1377     emitNewLine();
1378   }
1379 
1380   if (!Body || Body->getValues().size() == 0) {
1381     // Nothing specific to output - must output a builtin.
1382     emitBodyAsBuiltinCall();
1383     return;
1384   }
1385 
1386   // We have a list of "things to output". The last should be returned.
1387   for (auto *I : Body->getValues()) {
1388     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1389       Lines.push_back(replaceParamsIn(SI->getAsString()));
1390     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1391       DagEmitter DE(*this, CallPrefix);
1392       Lines.push_back(DE.emitDag(DI).second + ";");
1393     }
1394   }
1395 
1396   assert(Lines.size() && "Empty def?");
1397   if (!RetVar.getType().isVoid())
1398     Lines.back().insert(0, RetVar.getName() + " = ");
1399 
1400   for (auto &L : Lines) {
1401     OS << "  " << L;
1402     emitNewLine();
1403   }
1404 }
1405 
emitReturn()1406 void Intrinsic::emitReturn() {
1407   if (RetVar.getType().isVoid())
1408     return;
1409   if (UseMacro)
1410     OS << "  " << RetVar.getName() << ";";
1411   else
1412     OS << "  return " << RetVar.getName() << ";";
1413   emitNewLine();
1414 }
1415 
emitDag(DagInit * DI)1416 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1417   // At this point we should only be seeing a def.
1418   DefInit *DefI = cast<DefInit>(DI->getOperator());
1419   std::string Op = DefI->getAsString();
1420 
1421   if (Op == "cast" || Op == "bitcast")
1422     return emitDagCast(DI, Op == "bitcast");
1423   if (Op == "shuffle")
1424     return emitDagShuffle(DI);
1425   if (Op == "dup")
1426     return emitDagDup(DI);
1427   if (Op == "splat")
1428     return emitDagSplat(DI);
1429   if (Op == "save_temp")
1430     return emitDagSaveTemp(DI);
1431   if (Op == "op")
1432     return emitDagOp(DI);
1433   if (Op == "call")
1434     return emitDagCall(DI);
1435   if (Op == "name_replace")
1436     return emitDagNameReplace(DI);
1437   if (Op == "literal")
1438     return emitDagLiteral(DI);
1439   assert_with_loc(false, "Unknown operation!");
1440   return std::make_pair(Type::getVoid(), "");
1441 }
1442 
emitDagOp(DagInit * DI)1443 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1444   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1445   if (DI->getNumArgs() == 2) {
1446     // Unary op.
1447     std::pair<Type, std::string> R =
1448         emitDagArg(DI->getArg(1), DI->getArgName(1));
1449     return std::make_pair(R.first, Op + R.second);
1450   } else {
1451     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1452     std::pair<Type, std::string> R1 =
1453         emitDagArg(DI->getArg(1), DI->getArgName(1));
1454     std::pair<Type, std::string> R2 =
1455         emitDagArg(DI->getArg(2), DI->getArgName(2));
1456     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1457     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1458   }
1459 }
1460 
emitDagCall(DagInit * DI)1461 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
1462   std::vector<Type> Types;
1463   std::vector<std::string> Values;
1464   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1465     std::pair<Type, std::string> R =
1466         emitDagArg(DI->getArg(I + 1), DI->getArgName(I + 1));
1467     Types.push_back(R.first);
1468     Values.push_back(R.second);
1469   }
1470 
1471   // Look up the called intrinsic.
1472   std::string N;
1473   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1474     N = SI->getAsUnquotedString();
1475   else
1476     N = emitDagArg(DI->getArg(0), "").second;
1477   Intrinsic *Callee = Intr.Emitter.getIntrinsic(N, Types);
1478   assert(Callee && "getIntrinsic should not return us nullptr!");
1479 
1480   // Make sure the callee is known as an early def.
1481   Callee->setNeededEarly();
1482   Intr.Dependencies.insert(Callee);
1483 
1484   // Now create the call itself.
1485   std::string S = CallPrefix.str() + Callee->getMangledName(true) + "(";
1486   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1487     if (I != 0)
1488       S += ", ";
1489     S += Values[I];
1490   }
1491   S += ")";
1492 
1493   return std::make_pair(Callee->getReturnType(), S);
1494 }
1495 
emitDagCast(DagInit * DI,bool IsBitCast)1496 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1497                                                                 bool IsBitCast){
1498   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1499   std::pair<Type, std::string> R = emitDagArg(
1500       DI->getArg(DI->getNumArgs() - 1), DI->getArgName(DI->getNumArgs() - 1));
1501   Type castToType = R.first;
1502   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1503 
1504     // MOD can take several forms:
1505     //   1. $X - take the type of parameter / variable X.
1506     //   2. The value "R" - take the type of the return type.
1507     //   3. a type string
1508     //   4. The value "U" or "S" to switch the signedness.
1509     //   5. The value "H" or "D" to half or double the bitwidth.
1510     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1511     if (DI->getArgName(ArgIdx).size()) {
1512       assert_with_loc(Intr.Variables.find(DI->getArgName(ArgIdx)) !=
1513                       Intr.Variables.end(),
1514                       "Variable not found");
1515       castToType = Intr.Variables[DI->getArgName(ArgIdx)].getType();
1516     } else {
1517       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1518       assert_with_loc(SI, "Expected string type or $Name for cast type");
1519 
1520       if (SI->getAsUnquotedString() == "R") {
1521         castToType = Intr.getReturnType();
1522       } else if (SI->getAsUnquotedString() == "U") {
1523         castToType.makeUnsigned();
1524       } else if (SI->getAsUnquotedString() == "S") {
1525         castToType.makeSigned();
1526       } else if (SI->getAsUnquotedString() == "H") {
1527         castToType.halveLanes();
1528       } else if (SI->getAsUnquotedString() == "D") {
1529         castToType.doubleLanes();
1530       } else if (SI->getAsUnquotedString() == "8") {
1531         castToType.makeInteger(8, true);
1532       } else {
1533         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1534         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1535       }
1536     }
1537   }
1538 
1539   std::string S;
1540   if (IsBitCast) {
1541     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1542     // a temporary.
1543     std::string N = "reint";
1544     unsigned I = 0;
1545     while (Intr.Variables.find(N) != Intr.Variables.end())
1546       N = "reint" + utostr(++I);
1547     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1548 
1549     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1550             << R.second << ";";
1551     Intr.emitNewLine();
1552 
1553     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1554   } else {
1555     // Emit a normal (static) cast.
1556     S = "(" + castToType.str() + ")(" + R.second + ")";
1557   }
1558 
1559   return std::make_pair(castToType, S);
1560 }
1561 
emitDagShuffle(DagInit * DI)1562 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1563   // See the documentation in arm_neon.td for a description of these operators.
1564   class LowHalf : public SetTheory::Operator {
1565   public:
1566     virtual void anchor() {}
1567     virtual ~LowHalf() {}
1568     virtual void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1569                        ArrayRef<SMLoc> Loc) {
1570       SetTheory::RecSet Elts2;
1571       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1572       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1573     }
1574   };
1575   class HighHalf : public SetTheory::Operator {
1576   public:
1577     virtual void anchor() {}
1578     virtual ~HighHalf() {}
1579     virtual void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1580                        ArrayRef<SMLoc> Loc) {
1581       SetTheory::RecSet Elts2;
1582       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1583       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1584     }
1585   };
1586   class Rev : public SetTheory::Operator {
1587     unsigned ElementSize;
1588 
1589   public:
1590     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1591     virtual void anchor() {}
1592     virtual ~Rev() {}
1593     virtual void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1594                        ArrayRef<SMLoc> Loc) {
1595       SetTheory::RecSet Elts2;
1596       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1597 
1598       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1599       VectorSize /= ElementSize;
1600 
1601       std::vector<Record *> Revved;
1602       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1603         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1604           Revved.push_back(Elts2[VI + LI]);
1605         }
1606       }
1607 
1608       Elts.insert(Revved.begin(), Revved.end());
1609     }
1610   };
1611   class MaskExpander : public SetTheory::Expander {
1612     unsigned N;
1613 
1614   public:
1615     MaskExpander(unsigned N) : N(N) {}
1616     virtual void anchor() {}
1617     virtual ~MaskExpander() {}
1618     virtual void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) {
1619       unsigned Addend = 0;
1620       if (R->getName() == "mask0")
1621         Addend = 0;
1622       else if (R->getName() == "mask1")
1623         Addend = N;
1624       else
1625         return;
1626       for (unsigned I = 0; I < N; ++I)
1627         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1628     }
1629   };
1630 
1631   // (shuffle arg1, arg2, sequence)
1632   std::pair<Type, std::string> Arg1 =
1633       emitDagArg(DI->getArg(0), DI->getArgName(0));
1634   std::pair<Type, std::string> Arg2 =
1635       emitDagArg(DI->getArg(1), DI->getArgName(1));
1636   assert_with_loc(Arg1.first == Arg2.first,
1637                   "Different types in arguments to shuffle!");
1638 
1639   SetTheory ST;
1640   LowHalf LH;
1641   HighHalf HH;
1642   MaskExpander ME(Arg1.first.getNumElements());
1643   Rev R(Arg1.first.getElementSizeInBits());
1644   SetTheory::RecSet Elts;
1645   ST.addOperator("lowhalf", &LH);
1646   ST.addOperator("highhalf", &HH);
1647   ST.addOperator("rev", &R);
1648   ST.addExpander("MaskExpand", &ME);
1649   ST.evaluate(DI->getArg(2), Elts, None);
1650 
1651   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1652   for (auto &E : Elts) {
1653     StringRef Name = E->getName();
1654     assert_with_loc(Name.startswith("sv"),
1655                     "Incorrect element kind in shuffle mask!");
1656     S += ", " + Name.drop_front(2).str();
1657   }
1658   S += ")";
1659 
1660   // Recalculate the return type - the shuffle may have halved or doubled it.
1661   Type T(Arg1.first);
1662   if (Elts.size() > T.getNumElements()) {
1663     assert_with_loc(
1664         Elts.size() == T.getNumElements() * 2,
1665         "Can only double or half the number of elements in a shuffle!");
1666     T.doubleLanes();
1667   } else if (Elts.size() < T.getNumElements()) {
1668     assert_with_loc(
1669         Elts.size() == T.getNumElements() / 2,
1670         "Can only double or half the number of elements in a shuffle!");
1671     T.halveLanes();
1672   }
1673 
1674   return std::make_pair(T, S);
1675 }
1676 
emitDagDup(DagInit * DI)1677 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1678   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1679   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
1680   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1681 
1682   Type T = Intr.getBaseType();
1683   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1684   std::string S = "(" + T.str() + ") {";
1685   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1686     if (I != 0)
1687       S += ", ";
1688     S += A.second;
1689   }
1690   S += "}";
1691 
1692   return std::make_pair(T, S);
1693 }
1694 
emitDagSplat(DagInit * DI)1695 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1696   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1697   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
1698   std::pair<Type, std::string> B = emitDagArg(DI->getArg(1), DI->getArgName(1));
1699 
1700   assert_with_loc(B.first.isScalar(),
1701                   "splat() requires a scalar int as the second argument");
1702 
1703   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1704   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1705     S += ", " + B.second;
1706   }
1707   S += ")";
1708 
1709   return std::make_pair(Intr.getBaseType(), S);
1710 }
1711 
emitDagSaveTemp(DagInit * DI)1712 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1713   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1714   std::pair<Type, std::string> A = emitDagArg(DI->getArg(1), DI->getArgName(1));
1715 
1716   assert_with_loc(!A.first.isVoid(),
1717                   "Argument to save_temp() must have non-void type!");
1718 
1719   std::string N = DI->getArgName(0);
1720   assert_with_loc(N.size(), "save_temp() expects a name as the first argument");
1721 
1722   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1723                   "Variable already defined!");
1724   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1725 
1726   std::string S =
1727       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1728 
1729   return std::make_pair(Type::getVoid(), S);
1730 }
1731 
1732 std::pair<Type, std::string>
emitDagNameReplace(DagInit * DI)1733 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1734   std::string S = Intr.Name;
1735 
1736   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1737   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1738   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1739 
1740   size_t Idx = S.find(ToReplace);
1741 
1742   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1743   S.replace(Idx, ToReplace.size(), ReplaceWith);
1744 
1745   return std::make_pair(Type::getVoid(), S);
1746 }
1747 
emitDagLiteral(DagInit * DI)1748 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1749   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1750   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1751   return std::make_pair(Type::fromTypedefName(Ty), Value);
1752 }
1753 
1754 std::pair<Type, std::string>
emitDagArg(Init * Arg,std::string ArgName)1755 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1756   if (ArgName.size()) {
1757     assert_with_loc(!Arg->isComplete(),
1758                     "Arguments must either be DAGs or names, not both!");
1759     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1760                     "Variable not defined!");
1761     Variable &V = Intr.Variables[ArgName];
1762     return std::make_pair(V.getType(), V.getName());
1763   }
1764 
1765   assert(Arg && "Neither ArgName nor Arg?!");
1766   DagInit *DI = dyn_cast<DagInit>(Arg);
1767   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1768 
1769   return emitDag(DI);
1770 }
1771 
generate()1772 std::string Intrinsic::generate() {
1773   // Little endian intrinsics are simple and don't require any argument
1774   // swapping.
1775   OS << "#ifdef __LITTLE_ENDIAN__\n";
1776 
1777   generateImpl(false, "", "");
1778 
1779   OS << "#else\n";
1780 
1781   // Big endian intrinsics are more complex. The user intended these
1782   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1783   // but we load as-if (V)LD1. So we should swap all arguments and
1784   // swap the return value too.
1785   //
1786   // If we call sub-intrinsics, we should call a version that does
1787   // not re-swap the arguments!
1788   generateImpl(true, "", "__noswap_");
1789 
1790   // If we're needed early, create a non-swapping variant for
1791   // big-endian.
1792   if (NeededEarly) {
1793     generateImpl(false, "__noswap_", "__noswap_");
1794   }
1795   OS << "#endif\n\n";
1796 
1797   return OS.str();
1798 }
1799 
generateImpl(bool ReverseArguments,StringRef NamePrefix,StringRef CallPrefix)1800 void Intrinsic::generateImpl(bool ReverseArguments,
1801                              StringRef NamePrefix, StringRef CallPrefix) {
1802   CurrentRecord = R;
1803 
1804   // If we call a macro, our local variables may be corrupted due to
1805   // lack of proper lexical scoping. So, add a globally unique postfix
1806   // to every variable.
1807   //
1808   // indexBody() should have set up the Dependencies set by now.
1809   for (auto *I : Dependencies)
1810     if (I->UseMacro) {
1811       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1812       break;
1813     }
1814 
1815   initVariables();
1816 
1817   emitPrototype(NamePrefix);
1818 
1819   if (IsUnavailable) {
1820     OS << " __attribute__((unavailable));";
1821   } else {
1822     emitOpeningBrace();
1823     emitShadowedArgs();
1824     if (ReverseArguments)
1825       emitArgumentReversal();
1826     emitBody(CallPrefix);
1827     if (ReverseArguments)
1828       emitReturnReversal();
1829     emitReturn();
1830     emitClosingBrace();
1831   }
1832   OS << "\n";
1833 
1834   CurrentRecord = nullptr;
1835 }
1836 
indexBody()1837 void Intrinsic::indexBody() {
1838   CurrentRecord = R;
1839 
1840   initVariables();
1841   emitBody("");
1842   OS.str("");
1843 
1844   CurrentRecord = nullptr;
1845 }
1846 
1847 //===----------------------------------------------------------------------===//
1848 // NeonEmitter implementation
1849 //===----------------------------------------------------------------------===//
1850 
getIntrinsic(StringRef Name,ArrayRef<Type> Types)1851 Intrinsic *NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
1852   // First, look up the name in the intrinsic map.
1853   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1854                   ("Intrinsic '" + Name + "' not found!").str());
1855   std::vector<Intrinsic *> &V = IntrinsicMap[Name.str()];
1856   std::vector<Intrinsic *> GoodVec;
1857 
1858   // Create a string to print if we end up failing.
1859   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1860   for (unsigned I = 0; I < Types.size(); ++I) {
1861     if (I != 0)
1862       ErrMsg += ", ";
1863     ErrMsg += Types[I].str();
1864   }
1865   ErrMsg += ")'\n";
1866   ErrMsg += "Available overloads:\n";
1867 
1868   // Now, look through each intrinsic implementation and see if the types are
1869   // compatible.
1870   for (auto *I : V) {
1871     ErrMsg += "  - " + I->getReturnType().str() + " " + I->getMangledName();
1872     ErrMsg += "(";
1873     for (unsigned A = 0; A < I->getNumParams(); ++A) {
1874       if (A != 0)
1875         ErrMsg += ", ";
1876       ErrMsg += I->getParamType(A).str();
1877     }
1878     ErrMsg += ")\n";
1879 
1880     if (I->getNumParams() != Types.size())
1881       continue;
1882 
1883     bool Good = true;
1884     for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
1885       if (I->getParamType(Arg) != Types[Arg]) {
1886         Good = false;
1887         break;
1888       }
1889     }
1890     if (Good)
1891       GoodVec.push_back(I);
1892   }
1893 
1894   assert_with_loc(GoodVec.size() > 0,
1895                   "No compatible intrinsic found - " + ErrMsg);
1896   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1897 
1898   return GoodVec.front();
1899 }
1900 
createIntrinsic(Record * R,SmallVectorImpl<Intrinsic * > & Out)1901 void NeonEmitter::createIntrinsic(Record *R,
1902                                   SmallVectorImpl<Intrinsic *> &Out) {
1903   std::string Name = R->getValueAsString("Name");
1904   std::string Proto = R->getValueAsString("Prototype");
1905   std::string Types = R->getValueAsString("Types");
1906   Record *OperationRec = R->getValueAsDef("Operation");
1907   bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
1908   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1909   std::string Guard = R->getValueAsString("ArchGuard");
1910   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1911 
1912   // Set the global current record. This allows assert_with_loc to produce
1913   // decent location information even when highly nested.
1914   CurrentRecord = R;
1915 
1916   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1917 
1918   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1919 
1920   ClassKind CK = ClassNone;
1921   if (R->getSuperClasses().size() >= 2)
1922     CK = ClassMap[R->getSuperClasses()[1]];
1923 
1924   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1925   for (auto TS : TypeSpecs) {
1926     if (CartesianProductOfTypes) {
1927       Type DefaultT(TS, 'd');
1928       for (auto SrcTS : TypeSpecs) {
1929         Type DefaultSrcT(SrcTS, 'd');
1930         if (TS == SrcTS ||
1931             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1932           continue;
1933         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1934       }
1935     } else {
1936       NewTypeSpecs.push_back(std::make_pair(TS, TS));
1937     }
1938   }
1939 
1940   std::sort(NewTypeSpecs.begin(), NewTypeSpecs.end());
1941   std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end());
1942 
1943   for (auto &I : NewTypeSpecs) {
1944     Intrinsic *IT = new Intrinsic(R, Name, Proto, I.first, I.second, CK, Body,
1945                                   *this, Guard, IsUnavailable, BigEndianSafe);
1946 
1947     IntrinsicMap[Name].push_back(IT);
1948     Out.push_back(IT);
1949   }
1950 
1951   CurrentRecord = nullptr;
1952 }
1953 
1954 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
1955 /// declaration of builtins, checking for unique builtin declarations.
genBuiltinsDef(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)1956 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
1957                                  SmallVectorImpl<Intrinsic *> &Defs) {
1958   OS << "#ifdef GET_NEON_BUILTINS\n";
1959 
1960   // We only want to emit a builtin once, and we want to emit them in
1961   // alphabetical order, so use a std::set.
1962   std::set<std::string> Builtins;
1963 
1964   for (auto *Def : Defs) {
1965     if (Def->hasBody())
1966       continue;
1967     // Functions with 'a' (the splat code) in the type prototype should not get
1968     // their own builtin as they use the non-splat variant.
1969     if (Def->hasSplat())
1970       continue;
1971 
1972     std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
1973 
1974     S += Def->getBuiltinTypeStr();
1975     S += "\", \"n\")";
1976 
1977     Builtins.insert(S);
1978   }
1979 
1980   for (auto &S : Builtins)
1981     OS << S << "\n";
1982   OS << "#endif\n\n";
1983 }
1984 
1985 /// Generate the ARM and AArch64 overloaded type checking code for
1986 /// SemaChecking.cpp, checking for unique builtin declarations.
genOverloadTypeCheckCode(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)1987 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
1988                                            SmallVectorImpl<Intrinsic *> &Defs) {
1989   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
1990 
1991   // We record each overload check line before emitting because subsequent Inst
1992   // definitions may extend the number of permitted types (i.e. augment the
1993   // Mask). Use std::map to avoid sorting the table by hash number.
1994   struct OverloadInfo {
1995     uint64_t Mask;
1996     int PtrArgNum;
1997     bool HasConstPtr;
1998     OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
1999   };
2000   std::map<std::string, OverloadInfo> OverloadMap;
2001 
2002   for (auto *Def : Defs) {
2003     // If the def has a body (that is, it has Operation DAGs), it won't call
2004     // __builtin_neon_* so we don't need to generate a definition for it.
2005     if (Def->hasBody())
2006       continue;
2007     // Functions with 'a' (the splat code) in the type prototype should not get
2008     // their own builtin as they use the non-splat variant.
2009     if (Def->hasSplat())
2010       continue;
2011     // Functions which have a scalar argument cannot be overloaded, no need to
2012     // check them if we are emitting the type checking code.
2013     if (Def->protoHasScalar())
2014       continue;
2015 
2016     uint64_t Mask = 0ULL;
2017     Type Ty = Def->getReturnType();
2018     if (Def->getProto()[0] == 'v' || Def->getProto()[0] == 'f' ||
2019         Def->getProto()[0] == 'F')
2020       Ty = Def->getParamType(0);
2021     if (Ty.isPointer())
2022       Ty = Def->getParamType(1);
2023 
2024     Mask |= 1ULL << Ty.getNeonEnum();
2025 
2026     // Check if the function has a pointer or const pointer argument.
2027     std::string Proto = Def->getProto();
2028     int PtrArgNum = -1;
2029     bool HasConstPtr = false;
2030     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2031       char ArgType = Proto[I + 1];
2032       if (ArgType == 'c') {
2033         HasConstPtr = true;
2034         PtrArgNum = I;
2035         break;
2036       }
2037       if (ArgType == 'p') {
2038         PtrArgNum = I;
2039         break;
2040       }
2041     }
2042     // For sret builtins, adjust the pointer argument index.
2043     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2044       PtrArgNum += 1;
2045 
2046     std::string Name = Def->getName();
2047     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2048     // and vst1_lane intrinsics.  Using a pointer to the vector element
2049     // type with one of those operations causes codegen to select an aligned
2050     // load/store instruction.  If you want an unaligned operation,
2051     // the pointer argument needs to have less alignment than element type,
2052     // so just accept any pointer type.
2053     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2054       PtrArgNum = -1;
2055       HasConstPtr = false;
2056     }
2057 
2058     if (Mask) {
2059       std::string Name = Def->getMangledName();
2060       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2061       OverloadInfo &OI = OverloadMap[Name];
2062       OI.Mask |= Mask;
2063       OI.PtrArgNum |= PtrArgNum;
2064       OI.HasConstPtr = HasConstPtr;
2065     }
2066   }
2067 
2068   for (auto &I : OverloadMap) {
2069     OverloadInfo &OI = I.second;
2070 
2071     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2072     OS << "mask = 0x" << utohexstr(OI.Mask) << "ULL";
2073     if (OI.PtrArgNum >= 0)
2074       OS << "; PtrArgNum = " << OI.PtrArgNum;
2075     if (OI.HasConstPtr)
2076       OS << "; HasConstPtr = true";
2077     OS << "; break;\n";
2078   }
2079   OS << "#endif\n\n";
2080 }
2081 
2082 void
genIntrinsicRangeCheckCode(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)2083 NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2084                                         SmallVectorImpl<Intrinsic *> &Defs) {
2085   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2086 
2087   std::set<std::string> Emitted;
2088 
2089   for (auto *Def : Defs) {
2090     if (Def->hasBody())
2091       continue;
2092     // Functions with 'a' (the splat code) in the type prototype should not get
2093     // their own builtin as they use the non-splat variant.
2094     if (Def->hasSplat())
2095       continue;
2096     // Functions which do not have an immediate do not need to have range
2097     // checking code emitted.
2098     if (!Def->hasImmediate())
2099       continue;
2100     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2101       continue;
2102 
2103     std::string LowerBound, UpperBound;
2104 
2105     Record *R = Def->getRecord();
2106     if (R->getValueAsBit("isVCVT_N")) {
2107       // VCVT between floating- and fixed-point values takes an immediate
2108       // in the range [1, 32) for f32 or [1, 64) for f64.
2109       LowerBound = "1";
2110       if (Def->getBaseType().getElementSizeInBits() == 32)
2111         UpperBound = "31";
2112       else
2113         UpperBound = "63";
2114     } else if (R->getValueAsBit("isScalarShift")) {
2115       // Right shifts have an 'r' in the name, left shifts do not. Convert
2116       // instructions have the same bounds and right shifts.
2117       if (Def->getName().find('r') != std::string::npos ||
2118           Def->getName().find("cvt") != std::string::npos)
2119         LowerBound = "1";
2120 
2121       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2122     } else if (R->getValueAsBit("isShift")) {
2123       // Builtins which are overloaded by type will need to have their upper
2124       // bound computed at Sema time based on the type constant.
2125 
2126       // Right shifts have an 'r' in the name, left shifts do not.
2127       if (Def->getName().find('r') != std::string::npos)
2128         LowerBound = "1";
2129       UpperBound = "RFT(TV, true)";
2130     } else if (Def->getClassKind(true) == ClassB) {
2131       // ClassB intrinsics have a type (and hence lane number) that is only
2132       // known at runtime.
2133       if (R->getValueAsBit("isLaneQ"))
2134         UpperBound = "RFT(TV, false, true)";
2135       else
2136         UpperBound = "RFT(TV, false, false)";
2137     } else {
2138       // The immediate generally refers to a lane in the preceding argument.
2139       assert(Def->getImmediateIdx() > 0);
2140       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2141       UpperBound = utostr(T.getNumElements() - 1);
2142     }
2143 
2144     // Calculate the index of the immediate that should be range checked.
2145     unsigned Idx = Def->getNumParams();
2146     if (Def->hasImmediate())
2147       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2148 
2149     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2150        << "i = " << Idx << ";";
2151     if (LowerBound.size())
2152       OS << " l = " << LowerBound << ";";
2153     if (UpperBound.size())
2154       OS << " u = " << UpperBound << ";";
2155     OS << " break;\n";
2156 
2157     Emitted.insert(Def->getMangledName());
2158   }
2159 
2160   OS << "#endif\n\n";
2161 }
2162 
2163 /// runHeader - Emit a file with sections defining:
2164 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2165 /// 2. the SemaChecking code for the type overload checking.
2166 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
runHeader(raw_ostream & OS)2167 void NeonEmitter::runHeader(raw_ostream &OS) {
2168   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2169 
2170   SmallVector<Intrinsic *, 128> Defs;
2171   for (auto *R : RV)
2172     createIntrinsic(R, Defs);
2173 
2174   // Generate shared BuiltinsXXX.def
2175   genBuiltinsDef(OS, Defs);
2176 
2177   // Generate ARM overloaded type checking code for SemaChecking.cpp
2178   genOverloadTypeCheckCode(OS, Defs);
2179 
2180   // Generate ARM range checking code for shift/lane immediates.
2181   genIntrinsicRangeCheckCode(OS, Defs);
2182 }
2183 
2184 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2185 /// is comprised of type definitions and function declarations.
run(raw_ostream & OS)2186 void NeonEmitter::run(raw_ostream &OS) {
2187   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2188         "------------------------------"
2189         "---===\n"
2190         " *\n"
2191         " * Permission is hereby granted, free of charge, to any person "
2192         "obtaining "
2193         "a copy\n"
2194         " * of this software and associated documentation files (the "
2195         "\"Software\"),"
2196         " to deal\n"
2197         " * in the Software without restriction, including without limitation "
2198         "the "
2199         "rights\n"
2200         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2201         "and/or sell\n"
2202         " * copies of the Software, and to permit persons to whom the Software "
2203         "is\n"
2204         " * furnished to do so, subject to the following conditions:\n"
2205         " *\n"
2206         " * The above copyright notice and this permission notice shall be "
2207         "included in\n"
2208         " * all copies or substantial portions of the Software.\n"
2209         " *\n"
2210         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2211         "EXPRESS OR\n"
2212         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2213         "MERCHANTABILITY,\n"
2214         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2215         "SHALL THE\n"
2216         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2217         "OTHER\n"
2218         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2219         "ARISING FROM,\n"
2220         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2221         "DEALINGS IN\n"
2222         " * THE SOFTWARE.\n"
2223         " *\n"
2224         " *===-----------------------------------------------------------------"
2225         "---"
2226         "---===\n"
2227         " */\n\n";
2228 
2229   OS << "#ifndef __ARM_NEON_H\n";
2230   OS << "#define __ARM_NEON_H\n\n";
2231 
2232   OS << "#if !defined(__ARM_NEON)\n";
2233   OS << "#error \"NEON support not enabled\"\n";
2234   OS << "#endif\n\n";
2235 
2236   OS << "#include <stdint.h>\n\n";
2237 
2238   // Emit NEON-specific scalar typedefs.
2239   OS << "typedef float float32_t;\n";
2240   OS << "typedef __fp16 float16_t;\n";
2241 
2242   OS << "#ifdef __aarch64__\n";
2243   OS << "typedef double float64_t;\n";
2244   OS << "#endif\n\n";
2245 
2246   // For now, signedness of polynomial types depends on target
2247   OS << "#ifdef __aarch64__\n";
2248   OS << "typedef uint8_t poly8_t;\n";
2249   OS << "typedef uint16_t poly16_t;\n";
2250   OS << "typedef uint64_t poly64_t;\n";
2251   OS << "typedef __uint128_t poly128_t;\n";
2252   OS << "#else\n";
2253   OS << "typedef int8_t poly8_t;\n";
2254   OS << "typedef int16_t poly16_t;\n";
2255   OS << "#endif\n";
2256 
2257   // Emit Neon vector typedefs.
2258   std::string TypedefTypes(
2259       "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
2260   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2261 
2262   // Emit vector typedefs.
2263   bool InIfdef = false;
2264   for (auto &TS : TDTypeVec) {
2265     bool IsA64 = false;
2266     Type T(TS, 'd');
2267     if (T.isDouble() || (T.isPoly() && T.isLong()))
2268       IsA64 = true;
2269 
2270     if (InIfdef && !IsA64) {
2271       OS << "#endif\n";
2272       InIfdef = false;
2273     }
2274     if (!InIfdef && IsA64) {
2275       OS << "#ifdef __aarch64__\n";
2276       InIfdef = true;
2277     }
2278 
2279     if (T.isPoly())
2280       OS << "typedef __attribute__((neon_polyvector_type(";
2281     else
2282       OS << "typedef __attribute__((neon_vector_type(";
2283 
2284     Type T2 = T;
2285     T2.makeScalar();
2286     OS << utostr(T.getNumElements()) << "))) ";
2287     OS << T2.str();
2288     OS << " " << T.str() << ";\n";
2289   }
2290   if (InIfdef)
2291     OS << "#endif\n";
2292   OS << "\n";
2293 
2294   // Emit struct typedefs.
2295   InIfdef = false;
2296   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2297     for (auto &TS : TDTypeVec) {
2298       bool IsA64 = false;
2299       Type T(TS, 'd');
2300       if (T.isDouble() || (T.isPoly() && T.isLong()))
2301         IsA64 = true;
2302 
2303       if (InIfdef && !IsA64) {
2304         OS << "#endif\n";
2305         InIfdef = false;
2306       }
2307       if (!InIfdef && IsA64) {
2308         OS << "#ifdef __aarch64__\n";
2309         InIfdef = true;
2310       }
2311 
2312       char M = '2' + (NumMembers - 2);
2313       Type VT(TS, M);
2314       OS << "typedef struct " << VT.str() << " {\n";
2315       OS << "  " << T.str() << " val";
2316       OS << "[" << utostr(NumMembers) << "]";
2317       OS << ";\n} ";
2318       OS << VT.str() << ";\n";
2319       OS << "\n";
2320     }
2321   }
2322   if (InIfdef)
2323     OS << "#endif\n";
2324   OS << "\n";
2325 
2326   OS << "#define __ai static inline __attribute__((__always_inline__, "
2327         "__nodebug__))\n\n";
2328 
2329   SmallVector<Intrinsic *, 128> Defs;
2330   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2331   for (auto *R : RV)
2332     createIntrinsic(R, Defs);
2333 
2334   for (auto *I : Defs)
2335     I->indexBody();
2336 
2337   std::stable_sort(
2338       Defs.begin(), Defs.end(),
2339       [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; });
2340 
2341   // Only emit a def when its requirements have been met.
2342   // FIXME: This loop could be made faster, but it's fast enough for now.
2343   bool MadeProgress = true;
2344   std::string InGuard = "";
2345   while (!Defs.empty() && MadeProgress) {
2346     MadeProgress = false;
2347 
2348     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2349          I != Defs.end(); /*No step*/) {
2350       bool DependenciesSatisfied = true;
2351       for (auto *II : (*I)->getDependencies()) {
2352         if (std::find(Defs.begin(), Defs.end(), II) != Defs.end())
2353           DependenciesSatisfied = false;
2354       }
2355       if (!DependenciesSatisfied) {
2356         // Try the next one.
2357         ++I;
2358         continue;
2359       }
2360 
2361       // Emit #endif/#if pair if needed.
2362       if ((*I)->getGuard() != InGuard) {
2363         if (!InGuard.empty())
2364           OS << "#endif\n";
2365         InGuard = (*I)->getGuard();
2366         if (!InGuard.empty())
2367           OS << "#if " << InGuard << "\n";
2368       }
2369 
2370       // Actually generate the intrinsic code.
2371       OS << (*I)->generate();
2372 
2373       MadeProgress = true;
2374       I = Defs.erase(I);
2375     }
2376   }
2377   assert(Defs.empty() && "Some requirements were not satisfied!");
2378   if (!InGuard.empty())
2379     OS << "#endif\n";
2380 
2381   OS << "\n";
2382   OS << "#undef __ai\n\n";
2383   OS << "#endif /* __ARM_NEON_H */\n";
2384 }
2385 
2386 namespace clang {
EmitNeon(RecordKeeper & Records,raw_ostream & OS)2387 void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2388   NeonEmitter(Records).run(OS);
2389 }
EmitNeonSema(RecordKeeper & Records,raw_ostream & OS)2390 void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2391   NeonEmitter(Records).runHeader(OS);
2392 }
EmitNeonTest(RecordKeeper & Records,raw_ostream & OS)2393 void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2394   llvm_unreachable("Neon test generation no longer implemented!");
2395 }
2396 } // End namespace clang
2397