1================================
2Source Level Debugging with LLVM
3================================
4
5.. contents::
6   :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM.  It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information.  Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here.  The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26  compiler.  No transformations, analyses, or code generators should need to
27  be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30  ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33  LLVM-to-LLVM tools should not need to know anything about the semantics of
34  the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37  LLVM should not put any restrictions of the flavor of the source-language,
38  and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41  to compile a program to native machine code and standard debugging
42  formats.  This allows compatibility with traditional machine-code level
43  debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects.  The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information.  As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process.  This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger.  Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis.  In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86  the source-level state of the program**, regardless of which LLVM
87  optimizations have been run, and without any modification to the
88  optimizations themselves.  However, some optimizations may impact the
89  ability to modify the current state of the program with a debugger, such
90  as setting program variables, or calling functions that have been
91  deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94  debugging information, allowing them to update the debugging information
95  as they perform aggressive optimizations.  This means that, with effort,
96  the LLVM optimizers could optimize debug code just as well as non-debug
97  code.
98
99* LLVM debug information does not prevent optimizations from
100  happening (for example inlining, basic block reordering/merging/cleanup,
101  tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104  the program, using existing facilities.  For example, duplicate
105  information is automatically merged by the linker, and unused information
106  is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger.  Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information.  It can be run like this:
119
120.. code-block:: bash
121
122  % cd llvm/projects/test-suite/MultiSource/Benchmarks  # or some other level
123  % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes.  If
126debugging information influences optimization passes then it will be reported
127as a failure.  See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information.  In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc).  It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum.  The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`.  These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language.  :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
172information appended at the end that is source-language specific.  All debugging
173information objects start with a tag to indicate what type of object it is.
174The source-language is allowed to define its own objects, by using unreserved
175tag numbers.  We recommend using with tags in the range 0x1000 through 0x2000
176(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
177
178The fields of debug descriptors used internally by LLVM are restricted to only
179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
180``mdnode``.
181
182.. code-block:: llvm
183
184  !1 = metadata !{
185    i32,   ;; A tag
186    ...
187  }
188
189Most of the string and integer fields in descriptors are packed into a single,
190null-separated ``mdstring``.  The first field of the header is always an
191``i32`` containing the DWARF tag value identifying the content of the
192descriptor.
193
194For clarity of definition in this document, these header fields are described
195below split inside an imaginary ``DIHeader`` construct.  This is invalid
196assembly syntax.  In valid IR, these fields are stringified and concatenated,
197separated by ``\00``.
198
199The details of the various descriptors follow.
200
201Compile unit descriptors
202^^^^^^^^^^^^^^^^^^^^^^^^
203
204.. code-block:: llvm
205
206  !0 = metadata !{
207    DIHeader(
208      i32,       ;; Tag = 17 (DW_TAG_compile_unit)
209      i32,       ;; DWARF language identifier (ex. DW_LANG_C89)
210      mdstring,  ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
211      i1,        ;; True if this is optimized.
212      mdstring,  ;; Flags
213      i32,       ;; Runtime version
214      mdstring,  ;; Split debug filename
215      i32        ;; Debug info emission kind (1 = Full Debug Info, 2 = Line Tables Only)
216    ),
217    metadata,  ;; Source directory (including trailing slash) & file pair
218    metadata,  ;; List of enums types
219    metadata,  ;; List of retained types
220    metadata,  ;; List of subprograms
221    metadata,  ;; List of global variables
222    metadata   ;; List of imported entities
223  }
224
225These descriptors contain a source language ID for the file (we use the DWARF
2263.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
227``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of
228strings for the source file name and the working directory, as well as an
229identifier string for the compiler that produced it.
230
231Compile unit descriptors provide the root context for objects declared in a
232specific compilation unit.  File descriptors are defined using this context.
233These descriptors are collected by a named metadata ``!llvm.dbg.cu``.  They
234keep track of subprograms, global variables, type information, and imported
235entities (declarations and namespaces).
236
237.. _format_files:
238
239File descriptors
240^^^^^^^^^^^^^^^^
241
242.. code-block:: llvm
243
244  !0 = metadata !{
245    DIHeader(
246      i32       ;; Tag = 41 (DW_TAG_file_type)
247    ),
248    metadata  ;; Source directory (including trailing slash) & file pair
249  }
250
251These descriptors contain information for a file.  Global variables and top
252level functions would be defined using this context.  File descriptors also
253provide context for source line correspondence.
254
255Each input file is encoded as a separate file descriptor in LLVM debugging
256information output.
257
258.. _format_global_variables:
259
260Global variable descriptors
261^^^^^^^^^^^^^^^^^^^^^^^^^^^
262
263.. code-block:: llvm
264
265  !1 = metadata !{
266    DIHeader(
267      i32,      ;; Tag = 52 (DW_TAG_variable)
268      mdstring, ;; Name
269      mdstring, ;; Display name (fully qualified C++ name)
270      mdstring, ;; MIPS linkage name (for C++)
271      i32,      ;; Line number where defined
272      i1,       ;; True if the global is local to compile unit (static)
273      i1        ;; True if the global is defined in the compile unit (not extern)
274    ),
275    metadata, ;; Reference to context descriptor
276    metadata, ;; Reference to file where defined
277    metadata, ;; Reference to type descriptor
278    {}*,      ;; Reference to the global variable
279    metadata, ;; The static member declaration, if any
280  }
281
282These descriptors provide debug information about global variables.  They
283provide details such as name, type and where the variable is defined.  All
284global variables are collected inside the named metadata ``!llvm.dbg.cu``.
285
286.. _format_subprograms:
287
288Subprogram descriptors
289^^^^^^^^^^^^^^^^^^^^^^
290
291.. code-block:: llvm
292
293  !2 = metadata !{
294    DIHeader(
295      i32,      ;; Tag = 46 (DW_TAG_subprogram)
296      mdstring, ;; Name
297      mdstring, ;; Display name (fully qualified C++ name)
298      mdstring, ;; MIPS linkage name (for C++)
299      i32,      ;; Line number where defined
300      i1,       ;; True if the global is local to compile unit (static)
301      i1,       ;; True if the global is defined in the compile unit (not extern)
302      i32,      ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
303      i32,      ;; Index into a virtual function
304      i32,      ;; Flags - Artificial, Private, Protected, Explicit, Prototyped.
305      i1,       ;; isOptimized
306      i32       ;; Line number where the scope of the subprogram begins
307    ),
308    metadata, ;; Source directory (including trailing slash) & file pair
309    metadata, ;; Reference to context descriptor
310    metadata, ;; Reference to type descriptor
311    metadata, ;; indicates which base type contains the vtable pointer for the
312              ;; derived class
313    {}*,      ;; Reference to the LLVM function
314    metadata, ;; Lists function template parameters
315    metadata, ;; Function declaration descriptor
316    metadata  ;; List of function variables
317  }
318
319These descriptors provide debug information about functions, methods and
320subprograms.  They provide details such as name, return types and the source
321location where the subprogram is defined.
322
323Block descriptors
324^^^^^^^^^^^^^^^^^
325
326.. code-block:: llvm
327
328  !3 = metadata !{
329    DIHeader(
330      i32,      ;; Tag = 11 (DW_TAG_lexical_block)
331      i32,      ;; Line number
332      i32,      ;; Column number
333      i32       ;; Unique ID to identify blocks from a template function
334    ),
335    metadata, ;; Source directory (including trailing slash) & file pair
336    metadata  ;; Reference to context descriptor
337  }
338
339This descriptor provides debug information about nested blocks within a
340subprogram.  The line number and column numbers are used to dinstinguish two
341lexical blocks at same depth.
342
343.. code-block:: llvm
344
345  !3 = metadata !{
346    DIHeader(
347      i32,      ;; Tag = 11 (DW_TAG_lexical_block)
348      i32       ;; DWARF path discriminator value
349    ),
350    metadata, ;; Source directory (including trailing slash) & file pair
351    metadata  ;; Reference to the scope we're annotating with a file change
352  }
353
354This descriptor provides a wrapper around a lexical scope to handle file
355changes in the middle of a lexical block.
356
357.. _format_basic_type:
358
359Basic type descriptors
360^^^^^^^^^^^^^^^^^^^^^^
361
362.. code-block:: llvm
363
364  !4 = metadata !{
365    DIHeader(
366      i32,      ;; Tag = 36 (DW_TAG_base_type)
367      mdstring, ;; Name (may be "" for anonymous types)
368      i32,      ;; Line number where defined (may be 0)
369      i64,      ;; Size in bits
370      i64,      ;; Alignment in bits
371      i64,      ;; Offset in bits
372      i32,      ;; Flags
373      i32       ;; DWARF type encoding
374    ),
375    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
376    metadata  ;; Reference to context
377  }
378
379These descriptors define primitive types used in the code.  Example ``int``,
380``bool`` and ``float``.  The context provides the scope of the type, which is
381usually the top level.  Since basic types are not usually user defined the
382context and line number can be left as NULL and 0.  The size, alignment and
383offset are expressed in bits and can be 64 bit values.  The alignment is used
384to round the offset when embedded in a :ref:`composite type
385<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
386The offset is the bit offset if embedded in a :ref:`composite type
387<format_composite_type>`.
388
389The type encoding provides the details of the type.  The values are typically
390one of the following:
391
392.. code-block:: llvm
393
394  DW_ATE_address       = 1
395  DW_ATE_boolean       = 2
396  DW_ATE_float         = 4
397  DW_ATE_signed        = 5
398  DW_ATE_signed_char   = 6
399  DW_ATE_unsigned      = 7
400  DW_ATE_unsigned_char = 8
401
402.. _format_derived_type:
403
404Derived type descriptors
405^^^^^^^^^^^^^^^^^^^^^^^^
406
407.. code-block:: llvm
408
409  !5 = metadata !{
410    DIHeader(
411      i32,      ;; Tag (see below)
412      mdstring, ;; Name (may be "" for anonymous types)
413      i32,      ;; Line number where defined (may be 0)
414      i64,      ;; Size in bits
415      i64,      ;; Alignment in bits
416      i64,      ;; Offset in bits
417      i32       ;; Flags to encode attributes, e.g. private
418    ),
419    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
420    metadata, ;; Reference to context
421    metadata, ;; Reference to type derived from
422    metadata  ;; (optional) Objective C property node
423  }
424
425These descriptors are used to define types derived from other types.  The value
426of the tag varies depending on the meaning.  The following are possible tag
427values:
428
429.. code-block:: llvm
430
431  DW_TAG_formal_parameter   = 5
432  DW_TAG_member             = 13
433  DW_TAG_pointer_type       = 15
434  DW_TAG_reference_type     = 16
435  DW_TAG_typedef            = 22
436  DW_TAG_ptr_to_member_type = 31
437  DW_TAG_const_type         = 38
438  DW_TAG_volatile_type      = 53
439  DW_TAG_restrict_type      = 55
440
441``DW_TAG_member`` is used to define a member of a :ref:`composite type
442<format_composite_type>` or :ref:`subprogram <format_subprograms>`.  The type
443of the member is the :ref:`derived type <format_derived_type>`.
444``DW_TAG_formal_parameter`` is used to define a member which is a formal
445argument of a subprogram.
446
447``DW_TAG_typedef`` is used to provide a name for the derived type.
448
449``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
450``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
451:ref:`derived type <format_derived_type>`.
452
453:ref:`Derived type <format_derived_type>` location can be determined from the
454context and line number.  The size, alignment and offset are expressed in bits
455and can be 64 bit values.  The alignment is used to round the offset when
456embedded in a :ref:`composite type <format_composite_type>`  (example to keep
457float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
458in a :ref:`composite type <format_composite_type>`.
459
460Note that the ``void *`` type is expressed as a type derived from NULL.
461
462.. _format_composite_type:
463
464Composite type descriptors
465^^^^^^^^^^^^^^^^^^^^^^^^^^
466
467.. code-block:: llvm
468
469  !6 = metadata !{
470    DIHeader(
471      i32,      ;; Tag (see below)
472      mdstring, ;; Name (may be "" for anonymous types)
473      i32,      ;; Line number where defined (may be 0)
474      i64,      ;; Size in bits
475      i64,      ;; Alignment in bits
476      i64,      ;; Offset in bits
477      i32,      ;; Flags
478      i32       ;; Runtime languages
479    ),
480    metadata, ;; Source directory (including trailing slash) & file pair (may be null)
481    metadata, ;; Reference to context
482    metadata, ;; Reference to type derived from
483    metadata, ;; Reference to array of member descriptors
484    metadata, ;; Base type containing the vtable pointer for this type
485    metadata, ;; Template parameters
486    mdstring  ;; A unique identifier for type uniquing purpose (may be null)
487  }
488
489These descriptors are used to define types that are composed of 0 or more
490elements.  The value of the tag varies depending on the meaning.  The following
491are possible tag values:
492
493.. code-block:: llvm
494
495  DW_TAG_array_type       = 1
496  DW_TAG_enumeration_type = 4
497  DW_TAG_structure_type   = 19
498  DW_TAG_union_type       = 23
499  DW_TAG_subroutine_type  = 21
500  DW_TAG_inheritance      = 28
501
502The vector flag indicates that an array type is a native packed vector.
503
504The members of array types (tag = ``DW_TAG_array_type``) are
505:ref:`subrange descriptors <format_subrange>`, each
506representing the range of subscripts at that level of indexing.
507
508The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
509:ref:`enumerator descriptors <format_enumerator>`, each representing the
510definition of enumeration value for the set.  All enumeration type descriptors
511are collected inside the named metadata ``!llvm.dbg.cu``.
512
513The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
514``DW_TAG_union_type``) types are any one of the :ref:`basic
515<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
516<format_composite_type>` type descriptors, each representing a field member of
517the structure or union.
518
519For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
520information about base classes, static members and member functions.  If a
521member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
522of ``DW_TAG_inheritance``, then the type represents a base class.  If the member
523of is a :ref:`global variable descriptor <format_global_variables>` then it
524represents a static member.  And, if the member is a :ref:`subprogram
525descriptor <format_subprograms>` then it represents a member function.  For
526static members and member functions, ``getName()`` returns the members link or
527the C++ mangled name.  ``getDisplayName()`` the simplied version of the name.
528
529The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
530is the return type for the subroutine.  The remaining elements are the formal
531arguments to the subroutine.
532
533:ref:`Composite type <format_composite_type>` location can be determined from
534the context and line number.  The size, alignment and offset are expressed in
535bits and can be 64 bit values.  The alignment is used to round the offset when
536embedded in a :ref:`composite type <format_composite_type>` (as an example, to
537keep float doubles on 64 bit boundaries).  The offset is the bit offset if
538embedded in a :ref:`composite type <format_composite_type>`.
539
540.. _format_subrange:
541
542Subrange descriptors
543^^^^^^^^^^^^^^^^^^^^
544
545.. code-block:: llvm
546
547  !42 = metadata !{
548    DIHeader(
549      i32,      ;; Tag = 33 (DW_TAG_subrange_type)
550      i64,      ;; Low value
551      i64       ;; High value
552    )
553  }
554
555These descriptors are used to define ranges of array subscripts for an array
556:ref:`composite type <format_composite_type>`.  The low value defines the lower
557bounds typically zero for C/C++.  The high value is the upper bounds.  Values
558are 64 bit.  ``High - Low + 1`` is the size of the array.  If ``Low > High``
559the array bounds are not included in generated debugging information.
560
561.. _format_enumerator:
562
563Enumerator descriptors
564^^^^^^^^^^^^^^^^^^^^^^
565
566.. code-block:: llvm
567
568  !6 = metadata !{
569    DIHeader(
570      i32,      ;; Tag = 40 (DW_TAG_enumerator)
571      mdstring, ;; Name
572      i64       ;; Value
573    )
574  }
575
576These descriptors are used to define members of an enumeration :ref:`composite
577type <format_composite_type>`, it associates the name to the value.
578
579Local variables
580^^^^^^^^^^^^^^^
581
582.. code-block:: llvm
583
584  !7 = metadata !{
585    DIHeader(
586      i32,      ;; Tag (see below)
587      mdstring, ;; Name
588      i32,      ;; 24 bit - Line number where defined
589                ;; 8 bit - Argument number. 1 indicates 1st argument.
590      i32       ;; flags
591    ),
592    metadata, ;; Context
593    metadata, ;; Reference to file where defined
594    metadata, ;; Reference to the type descriptor
595    metadata  ;; (optional) Reference to inline location
596  }
597
598These descriptors are used to define variables local to a sub program.  The
599value of the tag depends on the usage of the variable:
600
601.. code-block:: llvm
602
603  DW_TAG_auto_variable   = 256
604  DW_TAG_arg_variable    = 257
605
606An auto variable is any variable declared in the body of the function.  An
607argument variable is any variable that appears as a formal argument to the
608function.
609
610The context is either the subprogram or block where the variable is defined.
611Name the source variable name.  Context and line indicate where the variable
612was defined.  Type descriptor defines the declared type of the variable.
613
614Complex Expressions
615^^^^^^^^^^^^^^^^^^^
616.. code-block:: llvm
617
618  !8 = metadata !{
619    i32,      ;; DW_TAG_expression
620    ...
621  }
622
623Complex expressions describe variable storage locations in terms of
624prefix-notated DWARF expressions. Currently the only supported
625operators are ``DW_OP_plus``, ``DW_OP_deref``, and ``DW_OP_piece``.
626
627The ``DW_OP_piece`` operator is used for (typically larger aggregate)
628variables that are fragmented across several locations. It takes two
629i32 arguments, an offset and a size in bytes to describe which piece
630of the variable is at this location.
631
632
633.. _format_common_intrinsics:
634
635Debugger intrinsic functions
636^^^^^^^^^^^^^^^^^^^^^^^^^^^^
637
638LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
639provide debug information at various points in generated code.
640
641``llvm.dbg.declare``
642^^^^^^^^^^^^^^^^^^^^
643
644.. code-block:: llvm
645
646  void %llvm.dbg.declare(metadata, metadata)
647
648This intrinsic provides information about a local element (e.g., variable).
649The first argument is metadata holding the alloca for the variable.  The second
650argument is metadata containing a description of the variable.
651
652``llvm.dbg.value``
653^^^^^^^^^^^^^^^^^^
654
655.. code-block:: llvm
656
657  void %llvm.dbg.value(metadata, i64, metadata)
658
659This intrinsic provides information when a user source variable is set to a new
660value.  The first argument is the new value (wrapped as metadata).  The second
661argument is the offset in the user source variable where the new value is
662written.  The third argument is metadata containing a description of the user
663source variable.
664
665Object lifetimes and scoping
666============================
667
668In many languages, the local variables in functions can have their lifetimes or
669scopes limited to a subset of a function.  In the C family of languages, for
670example, variables are only live (readable and writable) within the source
671block that they are defined in.  In functional languages, values are only
672readable after they have been defined.  Though this is a very obvious concept,
673it is non-trivial to model in LLVM, because it has no notion of scoping in this
674sense, and does not want to be tied to a language's scoping rules.
675
676In order to handle this, the LLVM debug format uses the metadata attached to
677llvm instructions to encode line number and scoping information.  Consider the
678following C fragment, for example:
679
680.. code-block:: c
681
682  1.  void foo() {
683  2.    int X = 21;
684  3.    int Y = 22;
685  4.    {
686  5.      int Z = 23;
687  6.      Z = X;
688  7.    }
689  8.    X = Y;
690  9.  }
691
692Compiled to LLVM, this function would be represented like this:
693
694.. code-block:: llvm
695
696  define void @foo() #0 {
697  entry:
698   %X = alloca i32, align 4
699    %Y = alloca i32, align 4
700    %Z = alloca i32, align 4
701    call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
702      ; [debug line = 2:7] [debug variable = X]
703    store i32 21, i32* %X, align 4, !dbg !12
704    call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14
705      ; [debug line = 3:7] [debug variable = Y]
706    store i32 22, i32* %Y, align 4, !dbg !14
707    call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
708      ; [debug line = 5:9] [debug variable = Z]
709    store i32 23, i32* %Z, align 4, !dbg !17
710    %0 = load i32* %X, align 4, !dbg !18
711      [debug line = 6:5]
712    store i32 %0, i32* %Z, align 4, !dbg !18
713    %1 = load i32* %Y, align 4, !dbg !19
714      [debug line = 8:3]
715    store i32 %1, i32* %X, align 4, !dbg !19
716    ret void, !dbg !20
717  }
718
719  ; Function Attrs: nounwind readnone
720  declare void @llvm.dbg.declare(metadata, metadata) #1
721
722  attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false"
723    "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"
724    "no-infs-fp-math"="false" "no-nans-fp-math"="false"
725    "stack-protector-buffer-size"="8" "unsafe-fp-math"="false"
726    "use-soft-float"="false" }
727  attributes #1 = { nounwind readnone }
728
729  !llvm.dbg.cu = !{!0}
730  !llvm.module.flags = !{!8}
731  !llvm.ident = !{!9}
732
733  !0 = metadata !{i32 786449, metadata !1, i32 12,
734                  metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)",
735                  i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3,
736                  metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \
737                    [/private/tmp/foo.c] \
738                    [DW_LANG_C99]
739  !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"}
740  !2 = metadata !{i32 0}
741  !3 = metadata !{metadata !4}
742  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
743                  metadata !"foo", metadata !"", i32 1, metadata !6,
744                  i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
745                  void ()* @foo, null, null, metadata !2, i32 1}
746                  ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
747  !5 = metadata !{i32 786473, metadata !1}  ; [ DW_TAG_file_type ] \
748                    [/private/tmp/t.c]
749  !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0,
750                  i64 0, i32 0, null, metadata !7, i32 0, null, null, null}
751                  ; [ DW_TAG_subroutine_type ] \
752                    [line 0, size 0, align 0, offset 0] [from ]
753  !7 = metadata !{null}
754  !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2}
755  !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"}
756  !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2,
757                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \
758                     [line 2]
759  !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32,
760                   i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \
761                     [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
762  !12 = metadata !{i32 2, i32 0, metadata !4, null}
763  !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3,
764                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \
765                     [line 3]
766  !14 = metadata !{i32 3, i32 0, metadata !4, null}
767  !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5,
768                   metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \
769                     [line 5]
770  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \
771                   ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
772  !17 = metadata !{i32 5, i32 0, metadata !16, null}
773  !18 = metadata !{i32 6, i32 0, metadata !16, null}
774  !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ]
775  !20 = metadata !{i32 9, i32 0, metadata !4, null}
776
777This example illustrates a few important details about LLVM debugging
778information.  In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
779location information, which are attached to an instruction, are applied
780together to allow a debugger to analyze the relationship between statements,
781variable definitions, and the code used to implement the function.
782
783.. code-block:: llvm
784
785  call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
786    ; [debug line = 2:7] [debug variable = X]
787
788The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
789variable ``X``.  The metadata ``!dbg !12`` attached to the intrinsic provides
790scope information for the variable ``X``.
791
792.. code-block:: llvm
793
794  !12 = metadata !{i32 2, i32 0, metadata !4, null}
795  !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
796                  metadata !"foo", metadata !"", i32 1, metadata !6,
797                  i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
798                  void ()* @foo, null, null, metadata !2, i32 1}
799                    ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
800
801Here ``!12`` is metadata providing location information.  It has four fields:
802line number, column number, scope, and original scope.  The original scope
803represents inline location if this instruction is inlined inside a caller, and
804is null otherwise.  In this example, scope is encoded by ``!4``, a
805:ref:`subprogram descriptor <format_subprograms>`.  This way the location
806information attached to the intrinsics indicates that the variable ``X`` is
807declared at line number 2 at a function level scope in function ``foo``.
808
809Now lets take another example.
810
811.. code-block:: llvm
812
813  call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
814    ; [debug line = 5:9] [debug variable = Z]
815
816The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
817variable ``Z``.  The metadata ``!dbg !17`` attached to the intrinsic provides
818scope information for the variable ``Z``.
819
820.. code-block:: llvm
821
822  !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \
823                   ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
824  !17 = metadata !{i32 5, i32 0, metadata !16, null}
825
826Here ``!15`` indicates that ``Z`` is declared at line number 5 and
827column number 0 inside of lexical scope ``!16``.  The lexical scope itself
828resides inside of subprogram ``!4`` described above.
829
830The scope information attached with each instruction provides a straightforward
831way to find instructions covered by a scope.
832
833.. _ccxx_frontend:
834
835C/C++ front-end specific debug information
836==========================================
837
838The C and C++ front-ends represent information about the program in a format
839that is effectively identical to `DWARF 3.0
840<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
841content.  This allows code generators to trivially support native debuggers by
842generating standard dwarf information, and contains enough information for
843non-dwarf targets to translate it as needed.
844
845This section describes the forms used to represent C and C++ programs.  Other
846languages could pattern themselves after this (which itself is tuned to
847representing programs in the same way that DWARF 3 does), or they could choose
848to provide completely different forms if they don't fit into the DWARF model.
849As support for debugging information gets added to the various LLVM
850source-language front-ends, the information used should be documented here.
851
852The following sections provide examples of a few C/C++ constructs and the debug
853information that would best describe those constructs.  The canonical
854references are the ``DIDescriptor`` classes defined in
855``include/llvm/IR/DebugInfo.h`` and the implementations of the helper functions
856in ``lib/IR/DIBuilder.cpp``.
857
858C/C++ source file information
859-----------------------------
860
861``llvm::Instruction`` provides easy access to metadata attached with an
862instruction.  One can extract line number information encoded in LLVM IR using
863``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
864
865.. code-block:: c++
866
867  if (MDNode *N = I->getMetadata("dbg")) {  // Here I is an LLVM instruction
868    DILocation Loc(N);                      // DILocation is in DebugInfo.h
869    unsigned Line = Loc.getLineNumber();
870    StringRef File = Loc.getFilename();
871    StringRef Dir = Loc.getDirectory();
872  }
873
874C/C++ global variable information
875---------------------------------
876
877Given an integer global variable declared as follows:
878
879.. code-block:: c
880
881  int MyGlobal = 100;
882
883a C/C++ front-end would generate the following descriptors:
884
885.. code-block:: llvm
886
887  ;;
888  ;; Define the global itself.
889  ;;
890  @MyGlobal = global i32 100, align 4
891  ...
892  ;;
893  ;; List of debug info of globals
894  ;;
895  !llvm.dbg.cu = !{!0}
896
897  ;; Define the compile unit.
898  !0 = metadata !{
899    ; Header(
900    ;   i32 17,                           ;; Tag
901    ;   i32 0,                            ;; Context
902    ;   i32 4,                            ;; Language
903    ;   metadata !"clang version 3.6.0 ", ;; Producer
904    ;   i1 false,                         ;; "isOptimized"?
905    ;   metadata !"",                     ;; Flags
906    ;   i32 0,                            ;; Runtime Version
907    ;   "",                               ;; Split debug filename
908    ;   1                                 ;; Full debug info
909    ; )
910    metadata !"0x11\0012\00clang version 3.6.0 \000\00\000\00\001",
911    metadata !1,                          ;; File
912    metadata !2,                          ;; Enum Types
913    metadata !2,                          ;; Retained Types
914    metadata !2,                          ;; Subprograms
915    metadata !3,                          ;; Global Variables
916    metadata !2                           ;; Imported entities
917  } ; [ DW_TAG_compile_unit ]
918
919  ;; The file/directory pair.
920  !1 = metadata !{
921    metadata !"foo.c",                                 ;; Filename
922    metadata !"/Users/dexonsmith/data/llvm/debug-info" ;; Directory
923  }
924
925  ;; An empty array.
926  !2 = metadata !{}
927
928  ;; The Array of Global Variables
929  !3 = metadata !{
930    metadata !4
931  }
932
933  ;;
934  ;; Define the global variable itself.
935  ;;
936  !4 = metadata !{
937    ; Header(
938    ;   i32 52,                        ;; Tag
939    ;   metadata !"MyGlobal",          ;; Name
940    ;   metadata !"MyGlobal",          ;; Display Name
941    ;   metadata !"",                  ;; Linkage Name
942    ;   i32 1,                         ;; Line
943    ;   i32 0,                         ;; IsLocalToUnit
944    ;   i32 1                          ;; IsDefinition
945    ; )
946    metadata !"0x34\00MyGlobal\00MyGlobal\00\001\000\001",
947    null,                              ;; Unused
948    metadata !5,                       ;; File
949    metadata !6,                       ;; Type
950    i32* @MyGlobal,                    ;; LLVM-IR Value
951    null                               ;; Static member declaration
952  } ; [ DW_TAG_variable ]
953
954  ;;
955  ;; Define the file
956  ;;
957  !5 = metadata !{
958    ; Header(
959    ;   i32 41             ;; Tag
960    ; )
961    metadata !"0x29",
962    metadata !1            ;; File/directory pair
963  } ; [ DW_TAG_file_type ]
964
965  ;;
966  ;; Define the type
967  ;;
968  !6 = metadata !{
969    ; Header(
970    ;   i32 36,                       ;; Tag
971    ;   metadata !"int",              ;; Name
972    ;   i32 0,                        ;; Line
973    ;   i64 32,                       ;; Size in Bits
974    ;   i64 32,                       ;; Align in Bits
975    ;   i64 0,                        ;; Offset
976    ;   i32 0,                        ;; Flags
977    ;   i32 5                         ;; Encoding
978    ; )
979    metadata !"0x24\00int\000\0032\0032\000\000\005",
980    null,                             ;; Unused
981    null                              ;; Unused
982  } ; [ DW_TAG_base_type ]
983
984C/C++ function information
985--------------------------
986
987Given a function declared as follows:
988
989.. code-block:: c
990
991  int main(int argc, char *argv[]) {
992    return 0;
993  }
994
995a C/C++ front-end would generate the following descriptors:
996
997.. code-block:: llvm
998
999  ;;
1000  ;; Define the anchor for subprograms.
1001  ;;
1002  !6 = metadata !{
1003    ; Header(
1004    ;   i32 46,             ;; Tag
1005    ;   metadata !"main",   ;; Name
1006    ;   metadata !"main",   ;; Display name
1007    ;   metadata !"",       ;; Linkage name
1008    ;   i32 1,              ;; Line number
1009    ;   i1 false,           ;; Is local
1010    ;   i1 true,            ;; Is definition
1011    ;   i32 0,              ;; Virtuality attribute, e.g. pure virtual function
1012    ;   i32 0,              ;; Index into virtual table for C++ methods
1013    ;   i32 256,            ;; Flags
1014    ;   i1 0,               ;; True if this function is optimized
1015    ;   1                   ;; Line number of the opening '{' of the function
1016    ; )
1017    metadata !"0x2e\00main\00main\00\001\000\001\000\000\00256\000\001",
1018    metadata !1,            ;; File
1019    metadata !5,            ;; Context
1020    metadata !6,            ;; Type
1021    null,                   ;; Containing type
1022    i32 (i32, i8**)* @main, ;; Pointer to llvm::Function
1023    null,                   ;; Function template parameters
1024    null,                   ;; Function declaration
1025    metadata !2             ;; List of function variables (emitted when optimizing)
1026  }
1027
1028  ;;
1029  ;; Define the subprogram itself.
1030  ;;
1031  define i32 @main(i32 %argc, i8** %argv) {
1032  ...
1033  }
1034
1035Debugging information format
1036============================
1037
1038Debugging Information Extension for Objective C Properties
1039----------------------------------------------------------
1040
1041Introduction
1042^^^^^^^^^^^^
1043
1044Objective C provides a simpler way to declare and define accessor methods using
1045declared properties.  The language provides features to declare a property and
1046to let compiler synthesize accessor methods.
1047
1048The debugger lets developer inspect Objective C interfaces and their instance
1049variables and class variables.  However, the debugger does not know anything
1050about the properties defined in Objective C interfaces.  The debugger consumes
1051information generated by compiler in DWARF format.  The format does not support
1052encoding of Objective C properties.  This proposal describes DWARF extensions to
1053encode Objective C properties, which the debugger can use to let developers
1054inspect Objective C properties.
1055
1056Proposal
1057^^^^^^^^
1058
1059Objective C properties exist separately from class members.  A property can be
1060defined only by "setter" and "getter" selectors, and be calculated anew on each
1061access.  Or a property can just be a direct access to some declared ivar.
1062Finally it can have an ivar "automatically synthesized" for it by the compiler,
1063in which case the property can be referred to in user code directly using the
1064standard C dereference syntax as well as through the property "dot" syntax, but
1065there is no entry in the ``@interface`` declaration corresponding to this ivar.
1066
1067To facilitate debugging, these properties we will add a new DWARF TAG into the
1068``DW_TAG_structure_type`` definition for the class to hold the description of a
1069given property, and a set of DWARF attributes that provide said description.
1070The property tag will also contain the name and declared type of the property.
1071
1072If there is a related ivar, there will also be a DWARF property attribute placed
1073in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1074for that property.  And in the case where the compiler synthesizes the ivar
1075directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1076ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1077to access this ivar directly in code, and with the property attribute pointing
1078back to the property it is backing.
1079
1080The following examples will serve as illustration for our discussion:
1081
1082.. code-block:: objc
1083
1084  @interface I1 {
1085    int n2;
1086  }
1087
1088  @property int p1;
1089  @property int p2;
1090  @end
1091
1092  @implementation I1
1093  @synthesize p1;
1094  @synthesize p2 = n2;
1095  @end
1096
1097This produces the following DWARF (this is a "pseudo dwarfdump" output):
1098
1099.. code-block:: none
1100
1101  0x00000100:  TAG_structure_type [7] *
1102                 AT_APPLE_runtime_class( 0x10 )
1103                 AT_name( "I1" )
1104                 AT_decl_file( "Objc_Property.m" )
1105                 AT_decl_line( 3 )
1106
1107  0x00000110    TAG_APPLE_property
1108                  AT_name ( "p1" )
1109                  AT_type ( {0x00000150} ( int ) )
1110
1111  0x00000120:   TAG_APPLE_property
1112                  AT_name ( "p2" )
1113                  AT_type ( {0x00000150} ( int ) )
1114
1115  0x00000130:   TAG_member [8]
1116                  AT_name( "_p1" )
1117                  AT_APPLE_property ( {0x00000110} "p1" )
1118                  AT_type( {0x00000150} ( int ) )
1119                  AT_artificial ( 0x1 )
1120
1121  0x00000140:    TAG_member [8]
1122                   AT_name( "n2" )
1123                   AT_APPLE_property ( {0x00000120} "p2" )
1124                   AT_type( {0x00000150} ( int ) )
1125
1126  0x00000150:  AT_type( ( int ) )
1127
1128Note, the current convention is that the name of the ivar for an
1129auto-synthesized property is the name of the property from which it derives
1130with an underscore prepended, as is shown in the example.  But we actually
1131don't need to know this convention, since we are given the name of the ivar
1132directly.
1133
1134Also, it is common practice in ObjC to have different property declarations in
1135the @interface and @implementation - e.g. to provide a read-only property in
1136the interface,and a read-write interface in the implementation.  In that case,
1137the compiler should emit whichever property declaration will be in force in the
1138current translation unit.
1139
1140Developers can decorate a property with attributes which are encoded using
1141``DW_AT_APPLE_property_attribute``.
1142
1143.. code-block:: objc
1144
1145  @property (readonly, nonatomic) int pr;
1146
1147.. code-block:: none
1148
1149  TAG_APPLE_property [8]
1150    AT_name( "pr" )
1151    AT_type ( {0x00000147} (int) )
1152    AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1153
1154The setter and getter method names are attached to the property using
1155``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1156
1157.. code-block:: objc
1158
1159  @interface I1
1160  @property (setter=myOwnP3Setter:) int p3;
1161  -(void)myOwnP3Setter:(int)a;
1162  @end
1163
1164  @implementation I1
1165  @synthesize p3;
1166  -(void)myOwnP3Setter:(int)a{ }
1167  @end
1168
1169The DWARF for this would be:
1170
1171.. code-block:: none
1172
1173  0x000003bd: TAG_structure_type [7] *
1174                AT_APPLE_runtime_class( 0x10 )
1175                AT_name( "I1" )
1176                AT_decl_file( "Objc_Property.m" )
1177                AT_decl_line( 3 )
1178
1179  0x000003cd      TAG_APPLE_property
1180                    AT_name ( "p3" )
1181                    AT_APPLE_property_setter ( "myOwnP3Setter:" )
1182                    AT_type( {0x00000147} ( int ) )
1183
1184  0x000003f3:     TAG_member [8]
1185                    AT_name( "_p3" )
1186                    AT_type ( {0x00000147} ( int ) )
1187                    AT_APPLE_property ( {0x000003cd} )
1188                    AT_artificial ( 0x1 )
1189
1190New DWARF Tags
1191^^^^^^^^^^^^^^
1192
1193+-----------------------+--------+
1194| TAG                   | Value  |
1195+=======================+========+
1196| DW_TAG_APPLE_property | 0x4200 |
1197+-----------------------+--------+
1198
1199New DWARF Attributes
1200^^^^^^^^^^^^^^^^^^^^
1201
1202+--------------------------------+--------+-----------+
1203| Attribute                      | Value  | Classes   |
1204+================================+========+===========+
1205| DW_AT_APPLE_property           | 0x3fed | Reference |
1206+--------------------------------+--------+-----------+
1207| DW_AT_APPLE_property_getter    | 0x3fe9 | String    |
1208+--------------------------------+--------+-----------+
1209| DW_AT_APPLE_property_setter    | 0x3fea | String    |
1210+--------------------------------+--------+-----------+
1211| DW_AT_APPLE_property_attribute | 0x3feb | Constant  |
1212+--------------------------------+--------+-----------+
1213
1214New DWARF Constants
1215^^^^^^^^^^^^^^^^^^^
1216
1217+--------------------------------------+-------+
1218| Name                                 | Value |
1219+======================================+=======+
1220| DW_APPLE_PROPERTY_readonly           | 0x01  |
1221+--------------------------------------+-------+
1222| DW_APPLE_PROPERTY_getter             | 0x02  |
1223+--------------------------------------+-------+
1224| DW_APPLE_PROPERTY_assign             | 0x04  |
1225+--------------------------------------+-------+
1226| DW_APPLE_PROPERTY_readwrite          | 0x08  |
1227+--------------------------------------+-------+
1228| DW_APPLE_PROPERTY_retain             | 0x10  |
1229+--------------------------------------+-------+
1230| DW_APPLE_PROPERTY_copy               | 0x20  |
1231+--------------------------------------+-------+
1232| DW_APPLE_PROPERTY_nonatomic          | 0x40  |
1233+--------------------------------------+-------+
1234| DW_APPLE_PROPERTY_setter             | 0x80  |
1235+--------------------------------------+-------+
1236| DW_APPLE_PROPERTY_atomic             | 0x100 |
1237+--------------------------------------+-------+
1238| DW_APPLE_PROPERTY_weak               | 0x200 |
1239+--------------------------------------+-------+
1240| DW_APPLE_PROPERTY_strong             | 0x400 |
1241+--------------------------------------+-------+
1242| DW_APPLE_PROPERTY_unsafe_unretained  | 0x800 |
1243+--------------------------------+-----+-------+
1244
1245Name Accelerator Tables
1246-----------------------
1247
1248Introduction
1249^^^^^^^^^^^^
1250
1251The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1252debugger needs.  The "``pub``" in the section name indicates that the entries
1253in the table are publicly visible names only.  This means no static or hidden
1254functions show up in the "``.debug_pubnames``".  No static variables or private
1255class variables are in the "``.debug_pubtypes``".  Many compilers add different
1256things to these tables, so we can't rely upon the contents between gcc, icc, or
1257clang.
1258
1259The typical query given by users tends not to match up with the contents of
1260these tables.  For example, the DWARF spec states that "In the case of the name
1261of a function member or static data member of a C++ structure, class or union,
1262the name presented in the "``.debug_pubnames``" section is not the simple name
1263given by the ``DW_AT_name attribute`` of the referenced debugging information
1264entry, but rather the fully qualified name of the data or function member."
1265So the only names in these tables for complex C++ entries is a fully
1266qualified name.  Debugger users tend not to enter their search strings as
1267"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1268"``a::b::c``".  So the name entered in the name table must be demangled in
1269order to chop it up appropriately and additional names must be manually entered
1270into the table to make it effective as a name lookup table for debuggers to
1271se.
1272
1273All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1274its inconsistent and useless public-only name content making it a waste of
1275space in the object file.  These tables, when they are written to disk, are not
1276sorted in any way, leaving every debugger to do its own parsing and sorting.
1277These tables also include an inlined copy of the string values in the table
1278itself making the tables much larger than they need to be on disk, especially
1279for large C++ programs.
1280
1281Can't we just fix the sections by adding all of the names we need to this
1282table? No, because that is not what the tables are defined to contain and we
1283won't know the difference between the old bad tables and the new good tables.
1284At best we could make our own renamed sections that contain all of the data we
1285need.
1286
1287These tables are also insufficient for what a debugger like LLDB needs.  LLDB
1288uses clang for its expression parsing where LLDB acts as a PCH.  LLDB is then
1289often asked to look for type "``foo``" or namespace "``bar``", or list items in
1290namespace "``baz``".  Namespaces are not included in the pubnames or pubtypes
1291tables.  Since clang asks a lot of questions when it is parsing an expression,
1292we need to be very fast when looking up names, as it happens a lot.  Having new
1293accelerator tables that are optimized for very quick lookups will benefit this
1294type of debugging experience greatly.
1295
1296We would like to generate name lookup tables that can be mapped into memory
1297from disk, and used as is, with little or no up-front parsing.  We would also
1298be able to control the exact content of these different tables so they contain
1299exactly what we need.  The Name Accelerator Tables were designed to fix these
1300issues.  In order to solve these issues we need to:
1301
1302* Have a format that can be mapped into memory from disk and used as is
1303* Lookups should be very fast
1304* Extensible table format so these tables can be made by many producers
1305* Contain all of the names needed for typical lookups out of the box
1306* Strict rules for the contents of tables
1307
1308Table size is important and the accelerator table format should allow the reuse
1309of strings from common string tables so the strings for the names are not
1310duplicated.  We also want to make sure the table is ready to be used as-is by
1311simply mapping the table into memory with minimal header parsing.
1312
1313The name lookups need to be fast and optimized for the kinds of lookups that
1314debuggers tend to do.  Optimally we would like to touch as few parts of the
1315mapped table as possible when doing a name lookup and be able to quickly find
1316the name entry we are looking for, or discover there are no matches.  In the
1317case of debuggers we optimized for lookups that fail most of the time.
1318
1319Each table that is defined should have strict rules on exactly what is in the
1320accelerator tables and documented so clients can rely on the content.
1321
1322Hash Tables
1323^^^^^^^^^^^
1324
1325Standard Hash Tables
1326""""""""""""""""""""
1327
1328Typical hash tables have a header, buckets, and each bucket points to the
1329bucket contents:
1330
1331.. code-block:: none
1332
1333  .------------.
1334  |  HEADER    |
1335  |------------|
1336  |  BUCKETS   |
1337  |------------|
1338  |  DATA      |
1339  `------------'
1340
1341The BUCKETS are an array of offsets to DATA for each hash:
1342
1343.. code-block:: none
1344
1345  .------------.
1346  | 0x00001000 | BUCKETS[0]
1347  | 0x00002000 | BUCKETS[1]
1348  | 0x00002200 | BUCKETS[2]
1349  | 0x000034f0 | BUCKETS[3]
1350  |            | ...
1351  | 0xXXXXXXXX | BUCKETS[n_buckets]
1352  '------------'
1353
1354So for ``bucket[3]`` in the example above, we have an offset into the table
13550x000034f0 which points to a chain of entries for the bucket.  Each bucket must
1356contain a next pointer, full 32 bit hash value, the string itself, and the data
1357for the current string value.
1358
1359.. code-block:: none
1360
1361              .------------.
1362  0x000034f0: | 0x00003500 | next pointer
1363              | 0x12345678 | 32 bit hash
1364              | "erase"    | string value
1365              | data[n]    | HashData for this bucket
1366              |------------|
1367  0x00003500: | 0x00003550 | next pointer
1368              | 0x29273623 | 32 bit hash
1369              | "dump"     | string value
1370              | data[n]    | HashData for this bucket
1371              |------------|
1372  0x00003550: | 0x00000000 | next pointer
1373              | 0x82638293 | 32 bit hash
1374              | "main"     | string value
1375              | data[n]    | HashData for this bucket
1376              `------------'
1377
1378The problem with this layout for debuggers is that we need to optimize for the
1379negative lookup case where the symbol we're searching for is not present.  So
1380if we were to lookup "``printf``" in the table above, we would make a 32 hash
1381for "``printf``", it might match ``bucket[3]``.  We would need to go to the
1382offset 0x000034f0 and start looking to see if our 32 bit hash matches.  To do
1383so, we need to read the next pointer, then read the hash, compare it, and skip
1384to the next bucket.  Each time we are skipping many bytes in memory and
1385touching new cache pages just to do the compare on the full 32 bit hash.  All
1386of these accesses then tell us that we didn't have a match.
1387
1388Name Hash Tables
1389""""""""""""""""
1390
1391To solve the issues mentioned above we have structured the hash tables a bit
1392differently: a header, buckets, an array of all unique 32 bit hash values,
1393followed by an array of hash value data offsets, one for each hash value, then
1394the data for all hash values:
1395
1396.. code-block:: none
1397
1398  .-------------.
1399  |  HEADER     |
1400  |-------------|
1401  |  BUCKETS    |
1402  |-------------|
1403  |  HASHES     |
1404  |-------------|
1405  |  OFFSETS    |
1406  |-------------|
1407  |  DATA       |
1408  `-------------'
1409
1410The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array.  By
1411making all of the full 32 bit hash values contiguous in memory, we allow
1412ourselves to efficiently check for a match while touching as little memory as
1413possible.  Most often checking the 32 bit hash values is as far as the lookup
1414goes.  If it does match, it usually is a match with no collisions.  So for a
1415table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1416values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1417``OFFSETS`` as:
1418
1419.. code-block:: none
1420
1421  .-------------------------.
1422  |  HEADER.magic           | uint32_t
1423  |  HEADER.version         | uint16_t
1424  |  HEADER.hash_function   | uint16_t
1425  |  HEADER.bucket_count    | uint32_t
1426  |  HEADER.hashes_count    | uint32_t
1427  |  HEADER.header_data_len | uint32_t
1428  |  HEADER_DATA            | HeaderData
1429  |-------------------------|
1430  |  BUCKETS                | uint32_t[n_buckets] // 32 bit hash indexes
1431  |-------------------------|
1432  |  HASHES                 | uint32_t[n_hashes] // 32 bit hash values
1433  |-------------------------|
1434  |  OFFSETS                | uint32_t[n_hashes] // 32 bit offsets to hash value data
1435  |-------------------------|
1436  |  ALL HASH DATA          |
1437  `-------------------------'
1438
1439So taking the exact same data from the standard hash example above we end up
1440with:
1441
1442.. code-block:: none
1443
1444              .------------.
1445              | HEADER     |
1446              |------------|
1447              |          0 | BUCKETS[0]
1448              |          2 | BUCKETS[1]
1449              |          5 | BUCKETS[2]
1450              |          6 | BUCKETS[3]
1451              |            | ...
1452              |        ... | BUCKETS[n_buckets]
1453              |------------|
1454              | 0x........ | HASHES[0]
1455              | 0x........ | HASHES[1]
1456              | 0x........ | HASHES[2]
1457              | 0x........ | HASHES[3]
1458              | 0x........ | HASHES[4]
1459              | 0x........ | HASHES[5]
1460              | 0x12345678 | HASHES[6]    hash for BUCKETS[3]
1461              | 0x29273623 | HASHES[7]    hash for BUCKETS[3]
1462              | 0x82638293 | HASHES[8]    hash for BUCKETS[3]
1463              | 0x........ | HASHES[9]
1464              | 0x........ | HASHES[10]
1465              | 0x........ | HASHES[11]
1466              | 0x........ | HASHES[12]
1467              | 0x........ | HASHES[13]
1468              | 0x........ | HASHES[n_hashes]
1469              |------------|
1470              | 0x........ | OFFSETS[0]
1471              | 0x........ | OFFSETS[1]
1472              | 0x........ | OFFSETS[2]
1473              | 0x........ | OFFSETS[3]
1474              | 0x........ | OFFSETS[4]
1475              | 0x........ | OFFSETS[5]
1476              | 0x000034f0 | OFFSETS[6]   offset for BUCKETS[3]
1477              | 0x00003500 | OFFSETS[7]   offset for BUCKETS[3]
1478              | 0x00003550 | OFFSETS[8]   offset for BUCKETS[3]
1479              | 0x........ | OFFSETS[9]
1480              | 0x........ | OFFSETS[10]
1481              | 0x........ | OFFSETS[11]
1482              | 0x........ | OFFSETS[12]
1483              | 0x........ | OFFSETS[13]
1484              | 0x........ | OFFSETS[n_hashes]
1485              |------------|
1486              |            |
1487              |            |
1488              |            |
1489              |            |
1490              |            |
1491              |------------|
1492  0x000034f0: | 0x00001203 | .debug_str ("erase")
1493              | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1494              | 0x........ | HashData[0]
1495              | 0x........ | HashData[1]
1496              | 0x........ | HashData[2]
1497              | 0x........ | HashData[3]
1498              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1499              |------------|
1500  0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1501              | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1502              | 0x........ | HashData[0]
1503              | 0x........ | HashData[1]
1504              | 0x00001203 | String offset into .debug_str ("dump")
1505              | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1506              | 0x........ | HashData[0]
1507              | 0x........ | HashData[1]
1508              | 0x........ | HashData[2]
1509              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1510              |------------|
1511  0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1512              | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1513              | 0x........ | HashData[0]
1514              | 0x........ | HashData[1]
1515              | 0x........ | HashData[2]
1516              | 0x........ | HashData[3]
1517              | 0x........ | HashData[4]
1518              | 0x........ | HashData[5]
1519              | 0x........ | HashData[6]
1520              | 0x........ | HashData[7]
1521              | 0x........ | HashData[8]
1522              | 0x00000000 | String offset into .debug_str (terminate data for hash)
1523              `------------'
1524
1525So we still have all of the same data, we just organize it more efficiently for
1526debugger lookup.  If we repeat the same "``printf``" lookup from above, we
1527would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1528hash value and modulo it by ``n_buckets``.  ``BUCKETS[3]`` contains "6" which
1529is the index into the ``HASHES`` table.  We would then compare any consecutive
153032 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1531``BUCKETS[3]``.  We do this by verifying that each subsequent hash value modulo
1532``n_buckets`` is still 3.  In the case of a failed lookup we would access the
1533memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1534before we know that we have no match.  We don't end up marching through
1535multiple words of memory and we really keep the number of processor data cache
1536lines being accessed as small as possible.
1537
1538The string hash that is used for these lookup tables is the Daniel J.
1539Bernstein hash which is also used in the ELF ``GNU_HASH`` sections.  It is a
1540very good hash for all kinds of names in programs with very few hash
1541collisions.
1542
1543Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1544
1545Details
1546^^^^^^^
1547
1548These name hash tables are designed to be generic where specializations of the
1549table get to define additional data that goes into the header ("``HeaderData``"),
1550how the string value is stored ("``KeyType``") and the content of the data for each
1551hash value.
1552
1553Header Layout
1554"""""""""""""
1555
1556The header has a fixed part, and the specialized part.  The exact format of the
1557header is:
1558
1559.. code-block:: c
1560
1561  struct Header
1562  {
1563    uint32_t   magic;           // 'HASH' magic value to allow endian detection
1564    uint16_t   version;         // Version number
1565    uint16_t   hash_function;   // The hash function enumeration that was used
1566    uint32_t   bucket_count;    // The number of buckets in this hash table
1567    uint32_t   hashes_count;    // The total number of unique hash values and hash data offsets in this table
1568    uint32_t   header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1569                                // Specifically the length of the following HeaderData field - this does not
1570                                // include the size of the preceding fields
1571    HeaderData header_data;     // Implementation specific header data
1572  };
1573
1574The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1575encoded as an ASCII integer.  This allows the detection of the start of the
1576hash table and also allows the table's byte order to be determined so the table
1577can be correctly extracted.  The "``magic``" value is followed by a 16 bit
1578``version`` number which allows the table to be revised and modified in the
1579future.  The current version number is 1. ``hash_function`` is a ``uint16_t``
1580enumeration that specifies which hash function was used to produce this table.
1581The current values for the hash function enumerations include:
1582
1583.. code-block:: c
1584
1585  enum HashFunctionType
1586  {
1587    eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
1588  };
1589
1590``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
1591are in the ``BUCKETS`` array.  ``hashes_count`` is the number of unique 32 bit
1592hash values that are in the ``HASHES`` array, and is the same number of offsets
1593are contained in the ``OFFSETS`` array.  ``header_data_len`` specifies the size
1594in bytes of the ``HeaderData`` that is filled in by specialized versions of
1595this table.
1596
1597Fixed Lookup
1598""""""""""""
1599
1600The header is followed by the buckets, hashes, offsets, and hash value data.
1601
1602.. code-block:: c
1603
1604  struct FixedTable
1605  {
1606    uint32_t buckets[Header.bucket_count];  // An array of hash indexes into the "hashes[]" array below
1607    uint32_t hashes [Header.hashes_count];  // Every unique 32 bit hash for the entire table is in this table
1608    uint32_t offsets[Header.hashes_count];  // An offset that corresponds to each item in the "hashes[]" array above
1609  };
1610
1611``buckets`` is an array of 32 bit indexes into the ``hashes`` array.  The
1612``hashes`` array contains all of the 32 bit hash values for all names in the
1613hash table.  Each hash in the ``hashes`` table has an offset in the ``offsets``
1614array that points to the data for the hash value.
1615
1616This table setup makes it very easy to repurpose these tables to contain
1617different data, while keeping the lookup mechanism the same for all tables.
1618This layout also makes it possible to save the table to disk and map it in
1619later and do very efficient name lookups with little or no parsing.
1620
1621DWARF lookup tables can be implemented in a variety of ways and can store a lot
1622of information for each name.  We want to make the DWARF tables extensible and
1623able to store the data efficiently so we have used some of the DWARF features
1624that enable efficient data storage to define exactly what kind of data we store
1625for each name.
1626
1627The ``HeaderData`` contains a definition of the contents of each HashData chunk.
1628We might want to store an offset to all of the debug information entries (DIEs)
1629for each name.  To keep things extensible, we create a list of items, or
1630Atoms, that are contained in the data for each name.  First comes the type of
1631the data in each atom:
1632
1633.. code-block:: c
1634
1635  enum AtomType
1636  {
1637    eAtomTypeNULL       = 0u,
1638    eAtomTypeDIEOffset  = 1u,   // DIE offset, check form for encoding
1639    eAtomTypeCUOffset   = 2u,   // DIE offset of the compiler unit header that contains the item in question
1640    eAtomTypeTag        = 3u,   // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
1641    eAtomTypeNameFlags  = 4u,   // Flags from enum NameFlags
1642    eAtomTypeTypeFlags  = 5u,   // Flags from enum TypeFlags
1643  };
1644
1645The enumeration values and their meanings are:
1646
1647.. code-block:: none
1648
1649  eAtomTypeNULL       - a termination atom that specifies the end of the atom list
1650  eAtomTypeDIEOffset  - an offset into the .debug_info section for the DWARF DIE for this name
1651  eAtomTypeCUOffset   - an offset into the .debug_info section for the CU that contains the DIE
1652  eAtomTypeDIETag     - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
1653  eAtomTypeNameFlags  - Flags for functions and global variables (isFunction, isInlined, isExternal...)
1654  eAtomTypeTypeFlags  - Flags for types (isCXXClass, isObjCClass, ...)
1655
1656Then we allow each atom type to define the atom type and how the data for each
1657atom type data is encoded:
1658
1659.. code-block:: c
1660
1661  struct Atom
1662  {
1663    uint16_t type;  // AtomType enum value
1664    uint16_t form;  // DWARF DW_FORM_XXX defines
1665  };
1666
1667The ``form`` type above is from the DWARF specification and defines the exact
1668encoding of the data for the Atom type.  See the DWARF specification for the
1669``DW_FORM_`` definitions.
1670
1671.. code-block:: c
1672
1673  struct HeaderData
1674  {
1675    uint32_t die_offset_base;
1676    uint32_t atom_count;
1677    Atoms    atoms[atom_count0];
1678  };
1679
1680``HeaderData`` defines the base DIE offset that should be added to any atoms
1681that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
1682``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``.  It also defines
1683what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
1684each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
1685should be interpreted.
1686
1687For the current implementations of the "``.apple_names``" (all functions +
1688globals), the "``.apple_types``" (names of all types that are defined), and
1689the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
1690array to be:
1691
1692.. code-block:: c
1693
1694  HeaderData.atom_count = 1;
1695  HeaderData.atoms[0].type = eAtomTypeDIEOffset;
1696  HeaderData.atoms[0].form = DW_FORM_data4;
1697
1698This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
1699encoded as a 32 bit value (DW_FORM_data4).  This allows a single name to have
1700multiple matching DIEs in a single file, which could come up with an inlined
1701function for instance.  Future tables could include more information about the
1702DIE such as flags indicating if the DIE is a function, method, block,
1703or inlined.
1704
1705The KeyType for the DWARF table is a 32 bit string table offset into the
1706".debug_str" table.  The ".debug_str" is the string table for the DWARF which
1707may already contain copies of all of the strings.  This helps make sure, with
1708help from the compiler, that we reuse the strings between all of the DWARF
1709sections and keeps the hash table size down.  Another benefit to having the
1710compiler generate all strings as DW_FORM_strp in the debug info, is that
1711DWARF parsing can be made much faster.
1712
1713After a lookup is made, we get an offset into the hash data.  The hash data
1714needs to be able to deal with 32 bit hash collisions, so the chunk of data
1715at the offset in the hash data consists of a triple:
1716
1717.. code-block:: c
1718
1719  uint32_t str_offset
1720  uint32_t hash_data_count
1721  HashData[hash_data_count]
1722
1723If "str_offset" is zero, then the bucket contents are done. 99.9% of the
1724hash data chunks contain a single item (no 32 bit hash collision):
1725
1726.. code-block:: none
1727
1728  .------------.
1729  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
1730  | 0x00000004 | uint32_t HashData count
1731  | 0x........ | uint32_t HashData[0] DIE offset
1732  | 0x........ | uint32_t HashData[1] DIE offset
1733  | 0x........ | uint32_t HashData[2] DIE offset
1734  | 0x........ | uint32_t HashData[3] DIE offset
1735  | 0x00000000 | uint32_t KeyType (end of hash chain)
1736  `------------'
1737
1738If there are collisions, you will have multiple valid string offsets:
1739
1740.. code-block:: none
1741
1742  .------------.
1743  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
1744  | 0x00000004 | uint32_t HashData count
1745  | 0x........ | uint32_t HashData[0] DIE offset
1746  | 0x........ | uint32_t HashData[1] DIE offset
1747  | 0x........ | uint32_t HashData[2] DIE offset
1748  | 0x........ | uint32_t HashData[3] DIE offset
1749  | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
1750  | 0x00000002 | uint32_t HashData count
1751  | 0x........ | uint32_t HashData[0] DIE offset
1752  | 0x........ | uint32_t HashData[1] DIE offset
1753  | 0x00000000 | uint32_t KeyType (end of hash chain)
1754  `------------'
1755
1756Current testing with real world C++ binaries has shown that there is around 1
175732 bit hash collision per 100,000 name entries.
1758
1759Contents
1760^^^^^^^^
1761
1762As we said, we want to strictly define exactly what is included in the
1763different tables.  For DWARF, we have 3 tables: "``.apple_names``",
1764"``.apple_types``", and "``.apple_namespaces``".
1765
1766"``.apple_names``" sections should contain an entry for each DWARF DIE whose
1767``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
1768``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
1769``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``.  It also contains
1770``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
1771static variables).  All global and static variables should be included,
1772including those scoped within functions and classes.  For example using the
1773following code:
1774
1775.. code-block:: c
1776
1777  static int var = 0;
1778
1779  void f ()
1780  {
1781    static int var = 0;
1782  }
1783
1784Both of the static ``var`` variables would be included in the table.  All
1785functions should emit both their full names and their basenames.  For C or C++,
1786the full name is the mangled name (if available) which is usually in the
1787``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
1788function basename.  If global or static variables have a mangled name in a
1789``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
1790simple name found in the ``DW_AT_name`` attribute.
1791
1792"``.apple_types``" sections should contain an entry for each DWARF DIE whose
1793tag is one of:
1794
1795* DW_TAG_array_type
1796* DW_TAG_class_type
1797* DW_TAG_enumeration_type
1798* DW_TAG_pointer_type
1799* DW_TAG_reference_type
1800* DW_TAG_string_type
1801* DW_TAG_structure_type
1802* DW_TAG_subroutine_type
1803* DW_TAG_typedef
1804* DW_TAG_union_type
1805* DW_TAG_ptr_to_member_type
1806* DW_TAG_set_type
1807* DW_TAG_subrange_type
1808* DW_TAG_base_type
1809* DW_TAG_const_type
1810* DW_TAG_constant
1811* DW_TAG_file_type
1812* DW_TAG_namelist
1813* DW_TAG_packed_type
1814* DW_TAG_volatile_type
1815* DW_TAG_restrict_type
1816* DW_TAG_interface_type
1817* DW_TAG_unspecified_type
1818* DW_TAG_shared_type
1819
1820Only entries with a ``DW_AT_name`` attribute are included, and the entry must
1821not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
1822value).  For example, using the following code:
1823
1824.. code-block:: c
1825
1826  int main ()
1827  {
1828    int *b = 0;
1829    return *b;
1830  }
1831
1832We get a few type DIEs:
1833
1834.. code-block:: none
1835
1836  0x00000067:     TAG_base_type [5]
1837                  AT_encoding( DW_ATE_signed )
1838                  AT_name( "int" )
1839                  AT_byte_size( 0x04 )
1840
1841  0x0000006e:     TAG_pointer_type [6]
1842                  AT_type( {0x00000067} ( int ) )
1843                  AT_byte_size( 0x08 )
1844
1845The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
1846
1847"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
1848If we run into a namespace that has no name this is an anonymous namespace, and
1849the name should be output as "``(anonymous namespace)``" (without the quotes).
1850Why?  This matches the output of the ``abi::cxa_demangle()`` that is in the
1851standard C++ library that demangles mangled names.
1852
1853
1854Language Extensions and File Format Changes
1855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1856
1857Objective-C Extensions
1858""""""""""""""""""""""
1859
1860"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
1861Objective-C class.  The name used in the hash table is the name of the
1862Objective-C class itself.  If the Objective-C class has a category, then an
1863entry is made for both the class name without the category, and for the class
1864name with the category.  So if we have a DIE at offset 0x1234 with a name of
1865method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
1866an entry for "``NSString``" that points to DIE 0x1234, and an entry for
1867"``NSString(my_additions)``" that points to 0x1234.  This allows us to quickly
1868track down all Objective-C methods for an Objective-C class when doing
1869expressions.  It is needed because of the dynamic nature of Objective-C where
1870anyone can add methods to a class.  The DWARF for Objective-C methods is also
1871emitted differently from C++ classes where the methods are not usually
1872contained in the class definition, they are scattered about across one or more
1873compile units.  Categories can also be defined in different shared libraries.
1874So we need to be able to quickly find all of the methods and class functions
1875given the Objective-C class name, or quickly find all methods and class
1876functions for a class + category name.  This table does not contain any
1877selector names, it just maps Objective-C class names (or class names +
1878category) to all of the methods and class functions.  The selectors are added
1879as function basenames in the "``.debug_names``" section.
1880
1881In the "``.apple_names``" section for Objective-C functions, the full name is
1882the entire function name with the brackets ("``-[NSString
1883stringWithCString:]``") and the basename is the selector only
1884("``stringWithCString:``").
1885
1886Mach-O Changes
1887""""""""""""""
1888
1889The sections names for the apple hash tables are for non-mach-o files.  For
1890mach-o files, the sections should be contained in the ``__DWARF`` segment with
1891names as follows:
1892
1893* "``.apple_names``" -> "``__apple_names``"
1894* "``.apple_types``" -> "``__apple_types``"
1895* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
1896* "``.apple_objc``" -> "``__apple_objc``"
1897
1898