1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetLowering.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 using namespace llvm;
51 
52 extern cl::opt<bool> EnableARMLongCalls;
53 
54 namespace {
55 
56   // All possible address modes, plus some.
57   typedef struct Address {
58     enum {
59       RegBase,
60       FrameIndexBase
61     } BaseType;
62 
63     union {
64       unsigned Reg;
65       int FI;
66     } Base;
67 
68     int Offset;
69 
70     // Innocuous defaults for our address.
Address__anon551bec9b0111::Address71     Address()
72      : BaseType(RegBase), Offset(0) {
73        Base.Reg = 0;
74      }
75   } Address;
76 
77 class ARMFastISel final : public FastISel {
78 
79   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
80   /// make the right decision when generating code for different targets.
81   const ARMSubtarget *Subtarget;
82   Module &M;
83   const TargetMachine &TM;
84   const TargetInstrInfo &TII;
85   const TargetLowering &TLI;
86   ARMFunctionInfo *AFI;
87 
88   // Convenience variables to avoid some queries.
89   bool isThumb2;
90   LLVMContext *Context;
91 
92   public:
ARMFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)93     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
94                          const TargetLibraryInfo *libInfo)
95         : FastISel(funcInfo, libInfo),
96           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
97           TM(funcInfo.MF->getTarget()),
98           TII(*TM.getSubtargetImpl()->getInstrInfo()),
99           TLI(*TM.getSubtargetImpl()->getTargetLowering()) {
100       Subtarget = &TM.getSubtarget<ARMSubtarget>();
101       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
102       isThumb2 = AFI->isThumbFunction();
103       Context = &funcInfo.Fn->getContext();
104     }
105 
106     // Code from FastISel.cpp.
107   private:
108     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
109                             const TargetRegisterClass *RC,
110                             unsigned Op0, bool Op0IsKill);
111     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
112                              const TargetRegisterClass *RC,
113                              unsigned Op0, bool Op0IsKill,
114                              unsigned Op1, bool Op1IsKill);
115     unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
116                               const TargetRegisterClass *RC,
117                               unsigned Op0, bool Op0IsKill,
118                               unsigned Op1, bool Op1IsKill,
119                               unsigned Op2, bool Op2IsKill);
120     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
121                              const TargetRegisterClass *RC,
122                              unsigned Op0, bool Op0IsKill,
123                              uint64_t Imm);
124     unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
125                               const TargetRegisterClass *RC,
126                               unsigned Op0, bool Op0IsKill,
127                               unsigned Op1, bool Op1IsKill,
128                               uint64_t Imm);
129     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
130                             const TargetRegisterClass *RC,
131                             uint64_t Imm);
132 
133     // Backend specific FastISel code.
134   private:
135     bool fastSelectInstruction(const Instruction *I) override;
136     unsigned fastMaterializeConstant(const Constant *C) override;
137     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
138     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
139                              const LoadInst *LI) override;
140     bool fastLowerArguments() override;
141   private:
142   #include "ARMGenFastISel.inc"
143 
144     // Instruction selection routines.
145   private:
146     bool SelectLoad(const Instruction *I);
147     bool SelectStore(const Instruction *I);
148     bool SelectBranch(const Instruction *I);
149     bool SelectIndirectBr(const Instruction *I);
150     bool SelectCmp(const Instruction *I);
151     bool SelectFPExt(const Instruction *I);
152     bool SelectFPTrunc(const Instruction *I);
153     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
154     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
155     bool SelectIToFP(const Instruction *I, bool isSigned);
156     bool SelectFPToI(const Instruction *I, bool isSigned);
157     bool SelectDiv(const Instruction *I, bool isSigned);
158     bool SelectRem(const Instruction *I, bool isSigned);
159     bool SelectCall(const Instruction *I, const char *IntrMemName);
160     bool SelectIntrinsicCall(const IntrinsicInst &I);
161     bool SelectSelect(const Instruction *I);
162     bool SelectRet(const Instruction *I);
163     bool SelectTrunc(const Instruction *I);
164     bool SelectIntExt(const Instruction *I);
165     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
166 
167     // Utility routines.
168   private:
169     bool isTypeLegal(Type *Ty, MVT &VT);
170     bool isLoadTypeLegal(Type *Ty, MVT &VT);
171     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
172                     bool isZExt);
173     bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
174                      unsigned Alignment = 0, bool isZExt = true,
175                      bool allocReg = true);
176     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
177                       unsigned Alignment = 0);
178     bool ARMComputeAddress(const Value *Obj, Address &Addr);
179     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
180     bool ARMIsMemCpySmall(uint64_t Len);
181     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
182                                unsigned Alignment);
183     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
184     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
185     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
186     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
187     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
188     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
189     unsigned ARMSelectCallOp(bool UseReg);
190     unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
191 
getTargetLowering()192     const TargetLowering *getTargetLowering() {
193       return TM.getSubtargetImpl()->getTargetLowering();
194     }
195 
196     // Call handling routines.
197   private:
198     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
199                                   bool Return,
200                                   bool isVarArg);
201     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
202                          SmallVectorImpl<unsigned> &ArgRegs,
203                          SmallVectorImpl<MVT> &ArgVTs,
204                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
205                          SmallVectorImpl<unsigned> &RegArgs,
206                          CallingConv::ID CC,
207                          unsigned &NumBytes,
208                          bool isVarArg);
209     unsigned getLibcallReg(const Twine &Name);
210     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
211                     const Instruction *I, CallingConv::ID CC,
212                     unsigned &NumBytes, bool isVarArg);
213     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
214 
215     // OptionalDef handling routines.
216   private:
217     bool isARMNEONPred(const MachineInstr *MI);
218     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
219     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
220     void AddLoadStoreOperands(MVT VT, Address &Addr,
221                               const MachineInstrBuilder &MIB,
222                               unsigned Flags, bool useAM3);
223 };
224 
225 } // end anonymous namespace
226 
227 #include "ARMGenCallingConv.inc"
228 
229 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
230 // we don't care about implicit defs here, just places we'll need to add a
231 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
DefinesOptionalPredicate(MachineInstr * MI,bool * CPSR)232 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
233   if (!MI->hasOptionalDef())
234     return false;
235 
236   // Look to see if our OptionalDef is defining CPSR or CCR.
237   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
238     const MachineOperand &MO = MI->getOperand(i);
239     if (!MO.isReg() || !MO.isDef()) continue;
240     if (MO.getReg() == ARM::CPSR)
241       *CPSR = true;
242   }
243   return true;
244 }
245 
isARMNEONPred(const MachineInstr * MI)246 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
247   const MCInstrDesc &MCID = MI->getDesc();
248 
249   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
250   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
251        AFI->isThumb2Function())
252     return MI->isPredicable();
253 
254   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
255     if (MCID.OpInfo[i].isPredicate())
256       return true;
257 
258   return false;
259 }
260 
261 // If the machine is predicable go ahead and add the predicate operands, if
262 // it needs default CC operands add those.
263 // TODO: If we want to support thumb1 then we'll need to deal with optional
264 // CPSR defs that need to be added before the remaining operands. See s_cc_out
265 // for descriptions why.
266 const MachineInstrBuilder &
AddOptionalDefs(const MachineInstrBuilder & MIB)267 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
268   MachineInstr *MI = &*MIB;
269 
270   // Do we use a predicate? or...
271   // Are we NEON in ARM mode and have a predicate operand? If so, I know
272   // we're not predicable but add it anyways.
273   if (isARMNEONPred(MI))
274     AddDefaultPred(MIB);
275 
276   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
277   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
278   bool CPSR = false;
279   if (DefinesOptionalPredicate(MI, &CPSR)) {
280     if (CPSR)
281       AddDefaultT1CC(MIB);
282     else
283       AddDefaultCC(MIB);
284   }
285   return MIB;
286 }
287 
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)288 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
289                                      const TargetRegisterClass *RC,
290                                      unsigned Op0, bool Op0IsKill) {
291   unsigned ResultReg = createResultReg(RC);
292   const MCInstrDesc &II = TII.get(MachineInstOpcode);
293 
294   // Make sure the input operand is sufficiently constrained to be legal
295   // for this instruction.
296   Op0 = constrainOperandRegClass(II, Op0, 1);
297   if (II.getNumDefs() >= 1) {
298     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
299                             ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
300   } else {
301     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
302                    .addReg(Op0, Op0IsKill * RegState::Kill));
303     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
304                    TII.get(TargetOpcode::COPY), ResultReg)
305                    .addReg(II.ImplicitDefs[0]));
306   }
307   return ResultReg;
308 }
309 
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)310 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
311                                       const TargetRegisterClass *RC,
312                                       unsigned Op0, bool Op0IsKill,
313                                       unsigned Op1, bool Op1IsKill) {
314   unsigned ResultReg = createResultReg(RC);
315   const MCInstrDesc &II = TII.get(MachineInstOpcode);
316 
317   // Make sure the input operands are sufficiently constrained to be legal
318   // for this instruction.
319   Op0 = constrainOperandRegClass(II, Op0, 1);
320   Op1 = constrainOperandRegClass(II, Op1, 2);
321 
322   if (II.getNumDefs() >= 1) {
323     AddOptionalDefs(
324         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
325             .addReg(Op0, Op0IsKill * RegState::Kill)
326             .addReg(Op1, Op1IsKill * RegState::Kill));
327   } else {
328     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
329                    .addReg(Op0, Op0IsKill * RegState::Kill)
330                    .addReg(Op1, Op1IsKill * RegState::Kill));
331     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
332                            TII.get(TargetOpcode::COPY), ResultReg)
333                    .addReg(II.ImplicitDefs[0]));
334   }
335   return ResultReg;
336 }
337 
fastEmitInst_rrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,unsigned Op2,bool Op2IsKill)338 unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
339                                        const TargetRegisterClass *RC,
340                                        unsigned Op0, bool Op0IsKill,
341                                        unsigned Op1, bool Op1IsKill,
342                                        unsigned Op2, bool Op2IsKill) {
343   unsigned ResultReg = createResultReg(RC);
344   const MCInstrDesc &II = TII.get(MachineInstOpcode);
345 
346   // Make sure the input operands are sufficiently constrained to be legal
347   // for this instruction.
348   Op0 = constrainOperandRegClass(II, Op0, 1);
349   Op1 = constrainOperandRegClass(II, Op1, 2);
350   Op2 = constrainOperandRegClass(II, Op1, 3);
351 
352   if (II.getNumDefs() >= 1) {
353     AddOptionalDefs(
354         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
355             .addReg(Op0, Op0IsKill * RegState::Kill)
356             .addReg(Op1, Op1IsKill * RegState::Kill)
357             .addReg(Op2, Op2IsKill * RegState::Kill));
358   } else {
359     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
360                    .addReg(Op0, Op0IsKill * RegState::Kill)
361                    .addReg(Op1, Op1IsKill * RegState::Kill)
362                    .addReg(Op2, Op2IsKill * RegState::Kill));
363     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
364                            TII.get(TargetOpcode::COPY), ResultReg)
365                    .addReg(II.ImplicitDefs[0]));
366   }
367   return ResultReg;
368 }
369 
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)370 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
371                                       const TargetRegisterClass *RC,
372                                       unsigned Op0, bool Op0IsKill,
373                                       uint64_t Imm) {
374   unsigned ResultReg = createResultReg(RC);
375   const MCInstrDesc &II = TII.get(MachineInstOpcode);
376 
377   // Make sure the input operand is sufficiently constrained to be legal
378   // for this instruction.
379   Op0 = constrainOperandRegClass(II, Op0, 1);
380   if (II.getNumDefs() >= 1) {
381     AddOptionalDefs(
382         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
383             .addReg(Op0, Op0IsKill * RegState::Kill)
384             .addImm(Imm));
385   } else {
386     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
387                    .addReg(Op0, Op0IsKill * RegState::Kill)
388                    .addImm(Imm));
389     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
390                            TII.get(TargetOpcode::COPY), ResultReg)
391                    .addReg(II.ImplicitDefs[0]));
392   }
393   return ResultReg;
394 }
395 
fastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,uint64_t Imm)396 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
397                                        const TargetRegisterClass *RC,
398                                        unsigned Op0, bool Op0IsKill,
399                                        unsigned Op1, bool Op1IsKill,
400                                        uint64_t Imm) {
401   unsigned ResultReg = createResultReg(RC);
402   const MCInstrDesc &II = TII.get(MachineInstOpcode);
403 
404   // Make sure the input operands are sufficiently constrained to be legal
405   // for this instruction.
406   Op0 = constrainOperandRegClass(II, Op0, 1);
407   Op1 = constrainOperandRegClass(II, Op1, 2);
408   if (II.getNumDefs() >= 1) {
409     AddOptionalDefs(
410         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
411             .addReg(Op0, Op0IsKill * RegState::Kill)
412             .addReg(Op1, Op1IsKill * RegState::Kill)
413             .addImm(Imm));
414   } else {
415     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
416                    .addReg(Op0, Op0IsKill * RegState::Kill)
417                    .addReg(Op1, Op1IsKill * RegState::Kill)
418                    .addImm(Imm));
419     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
420                            TII.get(TargetOpcode::COPY), ResultReg)
421                    .addReg(II.ImplicitDefs[0]));
422   }
423   return ResultReg;
424 }
425 
fastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)426 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
427                                      const TargetRegisterClass *RC,
428                                      uint64_t Imm) {
429   unsigned ResultReg = createResultReg(RC);
430   const MCInstrDesc &II = TII.get(MachineInstOpcode);
431 
432   if (II.getNumDefs() >= 1) {
433     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
434                             ResultReg).addImm(Imm));
435   } else {
436     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
437                    .addImm(Imm));
438     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
439                            TII.get(TargetOpcode::COPY), ResultReg)
440                    .addReg(II.ImplicitDefs[0]));
441   }
442   return ResultReg;
443 }
444 
445 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
446 // checks from the various callers.
ARMMoveToFPReg(MVT VT,unsigned SrcReg)447 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
448   if (VT == MVT::f64) return 0;
449 
450   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
451   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
452                           TII.get(ARM::VMOVSR), MoveReg)
453                   .addReg(SrcReg));
454   return MoveReg;
455 }
456 
ARMMoveToIntReg(MVT VT,unsigned SrcReg)457 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
458   if (VT == MVT::i64) return 0;
459 
460   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
461   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
462                           TII.get(ARM::VMOVRS), MoveReg)
463                   .addReg(SrcReg));
464   return MoveReg;
465 }
466 
467 // For double width floating point we need to materialize two constants
468 // (the high and the low) into integer registers then use a move to get
469 // the combined constant into an FP reg.
ARMMaterializeFP(const ConstantFP * CFP,MVT VT)470 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
471   const APFloat Val = CFP->getValueAPF();
472   bool is64bit = VT == MVT::f64;
473 
474   // This checks to see if we can use VFP3 instructions to materialize
475   // a constant, otherwise we have to go through the constant pool.
476   if (TLI.isFPImmLegal(Val, VT)) {
477     int Imm;
478     unsigned Opc;
479     if (is64bit) {
480       Imm = ARM_AM::getFP64Imm(Val);
481       Opc = ARM::FCONSTD;
482     } else {
483       Imm = ARM_AM::getFP32Imm(Val);
484       Opc = ARM::FCONSTS;
485     }
486     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
487     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
488                             TII.get(Opc), DestReg).addImm(Imm));
489     return DestReg;
490   }
491 
492   // Require VFP2 for loading fp constants.
493   if (!Subtarget->hasVFP2()) return false;
494 
495   // MachineConstantPool wants an explicit alignment.
496   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
497   if (Align == 0) {
498     // TODO: Figure out if this is correct.
499     Align = DL.getTypeAllocSize(CFP->getType());
500   }
501   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
502   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
503   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
504 
505   // The extra reg is for addrmode5.
506   AddOptionalDefs(
507       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
508           .addConstantPoolIndex(Idx)
509           .addReg(0));
510   return DestReg;
511 }
512 
ARMMaterializeInt(const Constant * C,MVT VT)513 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
514 
515   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
516     return 0;
517 
518   // If we can do this in a single instruction without a constant pool entry
519   // do so now.
520   const ConstantInt *CI = cast<ConstantInt>(C);
521   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
522     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
523     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
524       &ARM::GPRRegClass;
525     unsigned ImmReg = createResultReg(RC);
526     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
527                             TII.get(Opc), ImmReg)
528                     .addImm(CI->getZExtValue()));
529     return ImmReg;
530   }
531 
532   // Use MVN to emit negative constants.
533   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
534     unsigned Imm = (unsigned)~(CI->getSExtValue());
535     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
536       (ARM_AM::getSOImmVal(Imm) != -1);
537     if (UseImm) {
538       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
539       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
540                                                  &ARM::GPRRegClass;
541       unsigned ImmReg = createResultReg(RC);
542       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
543                               TII.get(Opc), ImmReg)
544                       .addImm(Imm));
545       return ImmReg;
546     }
547   }
548 
549   unsigned ResultReg = 0;
550   if (Subtarget->useMovt(*FuncInfo.MF))
551     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
552 
553   if (ResultReg)
554     return ResultReg;
555 
556   // Load from constant pool.  For now 32-bit only.
557   if (VT != MVT::i32)
558     return 0;
559 
560   // MachineConstantPool wants an explicit alignment.
561   unsigned Align = DL.getPrefTypeAlignment(C->getType());
562   if (Align == 0) {
563     // TODO: Figure out if this is correct.
564     Align = DL.getTypeAllocSize(C->getType());
565   }
566   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
567   ResultReg = createResultReg(TLI.getRegClassFor(VT));
568   if (isThumb2)
569     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
570                             TII.get(ARM::t2LDRpci), ResultReg)
571                       .addConstantPoolIndex(Idx));
572   else {
573     // The extra immediate is for addrmode2.
574     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
575     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
576                             TII.get(ARM::LDRcp), ResultReg)
577                       .addConstantPoolIndex(Idx)
578                       .addImm(0));
579   }
580   return ResultReg;
581 }
582 
ARMMaterializeGV(const GlobalValue * GV,MVT VT)583 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
584   // For now 32-bit only.
585   if (VT != MVT::i32) return 0;
586 
587   Reloc::Model RelocM = TM.getRelocationModel();
588   bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
589   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
590                                            : &ARM::GPRRegClass;
591   unsigned DestReg = createResultReg(RC);
592 
593   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
594   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
595   bool IsThreadLocal = GVar && GVar->isThreadLocal();
596   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
597 
598   // Use movw+movt when possible, it avoids constant pool entries.
599   // Non-darwin targets only support static movt relocations in FastISel.
600   if (Subtarget->useMovt(*FuncInfo.MF) &&
601       (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) {
602     unsigned Opc;
603     unsigned char TF = 0;
604     if (Subtarget->isTargetMachO())
605       TF = ARMII::MO_NONLAZY;
606 
607     switch (RelocM) {
608     case Reloc::PIC_:
609       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
610       break;
611     default:
612       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
613       break;
614     }
615     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
616                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
617   } else {
618     // MachineConstantPool wants an explicit alignment.
619     unsigned Align = DL.getPrefTypeAlignment(GV->getType());
620     if (Align == 0) {
621       // TODO: Figure out if this is correct.
622       Align = DL.getTypeAllocSize(GV->getType());
623     }
624 
625     if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
626       return ARMLowerPICELF(GV, Align, VT);
627 
628     // Grab index.
629     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
630       (Subtarget->isThumb() ? 4 : 8);
631     unsigned Id = AFI->createPICLabelUId();
632     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
633                                                                 ARMCP::CPValue,
634                                                                 PCAdj);
635     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
636 
637     // Load value.
638     MachineInstrBuilder MIB;
639     if (isThumb2) {
640       unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
641       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
642                     DestReg).addConstantPoolIndex(Idx);
643       if (RelocM == Reloc::PIC_)
644         MIB.addImm(Id);
645       AddOptionalDefs(MIB);
646     } else {
647       // The extra immediate is for addrmode2.
648       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
649       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
650                     TII.get(ARM::LDRcp), DestReg)
651                 .addConstantPoolIndex(Idx)
652                 .addImm(0);
653       AddOptionalDefs(MIB);
654 
655       if (RelocM == Reloc::PIC_) {
656         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
657         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
658 
659         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
660                                           DbgLoc, TII.get(Opc), NewDestReg)
661                                   .addReg(DestReg)
662                                   .addImm(Id);
663         AddOptionalDefs(MIB);
664         return NewDestReg;
665       }
666     }
667   }
668 
669   if (IsIndirect) {
670     MachineInstrBuilder MIB;
671     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
672     if (isThumb2)
673       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
674                     TII.get(ARM::t2LDRi12), NewDestReg)
675             .addReg(DestReg)
676             .addImm(0);
677     else
678       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
679                     TII.get(ARM::LDRi12), NewDestReg)
680                 .addReg(DestReg)
681                 .addImm(0);
682     DestReg = NewDestReg;
683     AddOptionalDefs(MIB);
684   }
685 
686   return DestReg;
687 }
688 
fastMaterializeConstant(const Constant * C)689 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
690   EVT CEVT = TLI.getValueType(C->getType(), true);
691 
692   // Only handle simple types.
693   if (!CEVT.isSimple()) return 0;
694   MVT VT = CEVT.getSimpleVT();
695 
696   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
697     return ARMMaterializeFP(CFP, VT);
698   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
699     return ARMMaterializeGV(GV, VT);
700   else if (isa<ConstantInt>(C))
701     return ARMMaterializeInt(C, VT);
702 
703   return 0;
704 }
705 
706 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
707 
fastMaterializeAlloca(const AllocaInst * AI)708 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
709   // Don't handle dynamic allocas.
710   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
711 
712   MVT VT;
713   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
714 
715   DenseMap<const AllocaInst*, int>::iterator SI =
716     FuncInfo.StaticAllocaMap.find(AI);
717 
718   // This will get lowered later into the correct offsets and registers
719   // via rewriteXFrameIndex.
720   if (SI != FuncInfo.StaticAllocaMap.end()) {
721     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
722     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
723     unsigned ResultReg = createResultReg(RC);
724     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
725 
726     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
727                             TII.get(Opc), ResultReg)
728                             .addFrameIndex(SI->second)
729                             .addImm(0));
730     return ResultReg;
731   }
732 
733   return 0;
734 }
735 
isTypeLegal(Type * Ty,MVT & VT)736 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
737   EVT evt = TLI.getValueType(Ty, true);
738 
739   // Only handle simple types.
740   if (evt == MVT::Other || !evt.isSimple()) return false;
741   VT = evt.getSimpleVT();
742 
743   // Handle all legal types, i.e. a register that will directly hold this
744   // value.
745   return TLI.isTypeLegal(VT);
746 }
747 
isLoadTypeLegal(Type * Ty,MVT & VT)748 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
749   if (isTypeLegal(Ty, VT)) return true;
750 
751   // If this is a type than can be sign or zero-extended to a basic operation
752   // go ahead and accept it now.
753   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
754     return true;
755 
756   return false;
757 }
758 
759 // Computes the address to get to an object.
ARMComputeAddress(const Value * Obj,Address & Addr)760 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
761   // Some boilerplate from the X86 FastISel.
762   const User *U = nullptr;
763   unsigned Opcode = Instruction::UserOp1;
764   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
765     // Don't walk into other basic blocks unless the object is an alloca from
766     // another block, otherwise it may not have a virtual register assigned.
767     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
768         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
769       Opcode = I->getOpcode();
770       U = I;
771     }
772   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
773     Opcode = C->getOpcode();
774     U = C;
775   }
776 
777   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
778     if (Ty->getAddressSpace() > 255)
779       // Fast instruction selection doesn't support the special
780       // address spaces.
781       return false;
782 
783   switch (Opcode) {
784     default:
785     break;
786     case Instruction::BitCast:
787       // Look through bitcasts.
788       return ARMComputeAddress(U->getOperand(0), Addr);
789     case Instruction::IntToPtr:
790       // Look past no-op inttoptrs.
791       if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
792         return ARMComputeAddress(U->getOperand(0), Addr);
793       break;
794     case Instruction::PtrToInt:
795       // Look past no-op ptrtoints.
796       if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
797         return ARMComputeAddress(U->getOperand(0), Addr);
798       break;
799     case Instruction::GetElementPtr: {
800       Address SavedAddr = Addr;
801       int TmpOffset = Addr.Offset;
802 
803       // Iterate through the GEP folding the constants into offsets where
804       // we can.
805       gep_type_iterator GTI = gep_type_begin(U);
806       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
807            i != e; ++i, ++GTI) {
808         const Value *Op = *i;
809         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
810           const StructLayout *SL = DL.getStructLayout(STy);
811           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
812           TmpOffset += SL->getElementOffset(Idx);
813         } else {
814           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
815           for (;;) {
816             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
817               // Constant-offset addressing.
818               TmpOffset += CI->getSExtValue() * S;
819               break;
820             }
821             if (canFoldAddIntoGEP(U, Op)) {
822               // A compatible add with a constant operand. Fold the constant.
823               ConstantInt *CI =
824               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
825               TmpOffset += CI->getSExtValue() * S;
826               // Iterate on the other operand.
827               Op = cast<AddOperator>(Op)->getOperand(0);
828               continue;
829             }
830             // Unsupported
831             goto unsupported_gep;
832           }
833         }
834       }
835 
836       // Try to grab the base operand now.
837       Addr.Offset = TmpOffset;
838       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
839 
840       // We failed, restore everything and try the other options.
841       Addr = SavedAddr;
842 
843       unsupported_gep:
844       break;
845     }
846     case Instruction::Alloca: {
847       const AllocaInst *AI = cast<AllocaInst>(Obj);
848       DenseMap<const AllocaInst*, int>::iterator SI =
849         FuncInfo.StaticAllocaMap.find(AI);
850       if (SI != FuncInfo.StaticAllocaMap.end()) {
851         Addr.BaseType = Address::FrameIndexBase;
852         Addr.Base.FI = SI->second;
853         return true;
854       }
855       break;
856     }
857   }
858 
859   // Try to get this in a register if nothing else has worked.
860   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
861   return Addr.Base.Reg != 0;
862 }
863 
ARMSimplifyAddress(Address & Addr,MVT VT,bool useAM3)864 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
865   bool needsLowering = false;
866   switch (VT.SimpleTy) {
867     default: llvm_unreachable("Unhandled load/store type!");
868     case MVT::i1:
869     case MVT::i8:
870     case MVT::i16:
871     case MVT::i32:
872       if (!useAM3) {
873         // Integer loads/stores handle 12-bit offsets.
874         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
875         // Handle negative offsets.
876         if (needsLowering && isThumb2)
877           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
878                             Addr.Offset > -256);
879       } else {
880         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
881         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
882       }
883       break;
884     case MVT::f32:
885     case MVT::f64:
886       // Floating point operands handle 8-bit offsets.
887       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
888       break;
889   }
890 
891   // If this is a stack pointer and the offset needs to be simplified then
892   // put the alloca address into a register, set the base type back to
893   // register and continue. This should almost never happen.
894   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
895     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
896                                              : &ARM::GPRRegClass;
897     unsigned ResultReg = createResultReg(RC);
898     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
899     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
900                             TII.get(Opc), ResultReg)
901                             .addFrameIndex(Addr.Base.FI)
902                             .addImm(0));
903     Addr.Base.Reg = ResultReg;
904     Addr.BaseType = Address::RegBase;
905   }
906 
907   // Since the offset is too large for the load/store instruction
908   // get the reg+offset into a register.
909   if (needsLowering) {
910     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
911                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
912     Addr.Offset = 0;
913   }
914 }
915 
AddLoadStoreOperands(MVT VT,Address & Addr,const MachineInstrBuilder & MIB,unsigned Flags,bool useAM3)916 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
917                                        const MachineInstrBuilder &MIB,
918                                        unsigned Flags, bool useAM3) {
919   // addrmode5 output depends on the selection dag addressing dividing the
920   // offset by 4 that it then later multiplies. Do this here as well.
921   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
922     Addr.Offset /= 4;
923 
924   // Frame base works a bit differently. Handle it separately.
925   if (Addr.BaseType == Address::FrameIndexBase) {
926     int FI = Addr.Base.FI;
927     int Offset = Addr.Offset;
928     MachineMemOperand *MMO =
929           FuncInfo.MF->getMachineMemOperand(
930                                   MachinePointerInfo::getFixedStack(FI, Offset),
931                                   Flags,
932                                   MFI.getObjectSize(FI),
933                                   MFI.getObjectAlignment(FI));
934     // Now add the rest of the operands.
935     MIB.addFrameIndex(FI);
936 
937     // ARM halfword load/stores and signed byte loads need an additional
938     // operand.
939     if (useAM3) {
940       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
941       MIB.addReg(0);
942       MIB.addImm(Imm);
943     } else {
944       MIB.addImm(Addr.Offset);
945     }
946     MIB.addMemOperand(MMO);
947   } else {
948     // Now add the rest of the operands.
949     MIB.addReg(Addr.Base.Reg);
950 
951     // ARM halfword load/stores and signed byte loads need an additional
952     // operand.
953     if (useAM3) {
954       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
955       MIB.addReg(0);
956       MIB.addImm(Imm);
957     } else {
958       MIB.addImm(Addr.Offset);
959     }
960   }
961   AddOptionalDefs(MIB);
962 }
963 
ARMEmitLoad(MVT VT,unsigned & ResultReg,Address & Addr,unsigned Alignment,bool isZExt,bool allocReg)964 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
965                               unsigned Alignment, bool isZExt, bool allocReg) {
966   unsigned Opc;
967   bool useAM3 = false;
968   bool needVMOV = false;
969   const TargetRegisterClass *RC;
970   switch (VT.SimpleTy) {
971     // This is mostly going to be Neon/vector support.
972     default: return false;
973     case MVT::i1:
974     case MVT::i8:
975       if (isThumb2) {
976         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
977           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
978         else
979           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
980       } else {
981         if (isZExt) {
982           Opc = ARM::LDRBi12;
983         } else {
984           Opc = ARM::LDRSB;
985           useAM3 = true;
986         }
987       }
988       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
989       break;
990     case MVT::i16:
991       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
992         return false;
993 
994       if (isThumb2) {
995         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
996           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
997         else
998           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
999       } else {
1000         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1001         useAM3 = true;
1002       }
1003       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1004       break;
1005     case MVT::i32:
1006       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1007         return false;
1008 
1009       if (isThumb2) {
1010         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1011           Opc = ARM::t2LDRi8;
1012         else
1013           Opc = ARM::t2LDRi12;
1014       } else {
1015         Opc = ARM::LDRi12;
1016       }
1017       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1018       break;
1019     case MVT::f32:
1020       if (!Subtarget->hasVFP2()) return false;
1021       // Unaligned loads need special handling. Floats require word-alignment.
1022       if (Alignment && Alignment < 4) {
1023         needVMOV = true;
1024         VT = MVT::i32;
1025         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1026         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1027       } else {
1028         Opc = ARM::VLDRS;
1029         RC = TLI.getRegClassFor(VT);
1030       }
1031       break;
1032     case MVT::f64:
1033       if (!Subtarget->hasVFP2()) return false;
1034       // FIXME: Unaligned loads need special handling.  Doublewords require
1035       // word-alignment.
1036       if (Alignment && Alignment < 4)
1037         return false;
1038 
1039       Opc = ARM::VLDRD;
1040       RC = TLI.getRegClassFor(VT);
1041       break;
1042   }
1043   // Simplify this down to something we can handle.
1044   ARMSimplifyAddress(Addr, VT, useAM3);
1045 
1046   // Create the base instruction, then add the operands.
1047   if (allocReg)
1048     ResultReg = createResultReg(RC);
1049   assert (ResultReg > 255 && "Expected an allocated virtual register.");
1050   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1051                                     TII.get(Opc), ResultReg);
1052   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1053 
1054   // If we had an unaligned load of a float we've converted it to an regular
1055   // load.  Now we must move from the GRP to the FP register.
1056   if (needVMOV) {
1057     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1058     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1059                             TII.get(ARM::VMOVSR), MoveReg)
1060                     .addReg(ResultReg));
1061     ResultReg = MoveReg;
1062   }
1063   return true;
1064 }
1065 
SelectLoad(const Instruction * I)1066 bool ARMFastISel::SelectLoad(const Instruction *I) {
1067   // Atomic loads need special handling.
1068   if (cast<LoadInst>(I)->isAtomic())
1069     return false;
1070 
1071   // Verify we have a legal type before going any further.
1072   MVT VT;
1073   if (!isLoadTypeLegal(I->getType(), VT))
1074     return false;
1075 
1076   // See if we can handle this address.
1077   Address Addr;
1078   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1079 
1080   unsigned ResultReg;
1081   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1082     return false;
1083   updateValueMap(I, ResultReg);
1084   return true;
1085 }
1086 
ARMEmitStore(MVT VT,unsigned SrcReg,Address & Addr,unsigned Alignment)1087 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1088                                unsigned Alignment) {
1089   unsigned StrOpc;
1090   bool useAM3 = false;
1091   switch (VT.SimpleTy) {
1092     // This is mostly going to be Neon/vector support.
1093     default: return false;
1094     case MVT::i1: {
1095       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1096                                               : &ARM::GPRRegClass);
1097       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1098       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1099       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1100                               TII.get(Opc), Res)
1101                       .addReg(SrcReg).addImm(1));
1102       SrcReg = Res;
1103     } // Fallthrough here.
1104     case MVT::i8:
1105       if (isThumb2) {
1106         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1107           StrOpc = ARM::t2STRBi8;
1108         else
1109           StrOpc = ARM::t2STRBi12;
1110       } else {
1111         StrOpc = ARM::STRBi12;
1112       }
1113       break;
1114     case MVT::i16:
1115       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1116         return false;
1117 
1118       if (isThumb2) {
1119         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1120           StrOpc = ARM::t2STRHi8;
1121         else
1122           StrOpc = ARM::t2STRHi12;
1123       } else {
1124         StrOpc = ARM::STRH;
1125         useAM3 = true;
1126       }
1127       break;
1128     case MVT::i32:
1129       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1130         return false;
1131 
1132       if (isThumb2) {
1133         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1134           StrOpc = ARM::t2STRi8;
1135         else
1136           StrOpc = ARM::t2STRi12;
1137       } else {
1138         StrOpc = ARM::STRi12;
1139       }
1140       break;
1141     case MVT::f32:
1142       if (!Subtarget->hasVFP2()) return false;
1143       // Unaligned stores need special handling. Floats require word-alignment.
1144       if (Alignment && Alignment < 4) {
1145         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1146         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1147                                 TII.get(ARM::VMOVRS), MoveReg)
1148                         .addReg(SrcReg));
1149         SrcReg = MoveReg;
1150         VT = MVT::i32;
1151         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1152       } else {
1153         StrOpc = ARM::VSTRS;
1154       }
1155       break;
1156     case MVT::f64:
1157       if (!Subtarget->hasVFP2()) return false;
1158       // FIXME: Unaligned stores need special handling.  Doublewords require
1159       // word-alignment.
1160       if (Alignment && Alignment < 4)
1161           return false;
1162 
1163       StrOpc = ARM::VSTRD;
1164       break;
1165   }
1166   // Simplify this down to something we can handle.
1167   ARMSimplifyAddress(Addr, VT, useAM3);
1168 
1169   // Create the base instruction, then add the operands.
1170   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1171   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1172                                     TII.get(StrOpc))
1173                             .addReg(SrcReg);
1174   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1175   return true;
1176 }
1177 
SelectStore(const Instruction * I)1178 bool ARMFastISel::SelectStore(const Instruction *I) {
1179   Value *Op0 = I->getOperand(0);
1180   unsigned SrcReg = 0;
1181 
1182   // Atomic stores need special handling.
1183   if (cast<StoreInst>(I)->isAtomic())
1184     return false;
1185 
1186   // Verify we have a legal type before going any further.
1187   MVT VT;
1188   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1189     return false;
1190 
1191   // Get the value to be stored into a register.
1192   SrcReg = getRegForValue(Op0);
1193   if (SrcReg == 0) return false;
1194 
1195   // See if we can handle this address.
1196   Address Addr;
1197   if (!ARMComputeAddress(I->getOperand(1), Addr))
1198     return false;
1199 
1200   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1201     return false;
1202   return true;
1203 }
1204 
getComparePred(CmpInst::Predicate Pred)1205 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1206   switch (Pred) {
1207     // Needs two compares...
1208     case CmpInst::FCMP_ONE:
1209     case CmpInst::FCMP_UEQ:
1210     default:
1211       // AL is our "false" for now. The other two need more compares.
1212       return ARMCC::AL;
1213     case CmpInst::ICMP_EQ:
1214     case CmpInst::FCMP_OEQ:
1215       return ARMCC::EQ;
1216     case CmpInst::ICMP_SGT:
1217     case CmpInst::FCMP_OGT:
1218       return ARMCC::GT;
1219     case CmpInst::ICMP_SGE:
1220     case CmpInst::FCMP_OGE:
1221       return ARMCC::GE;
1222     case CmpInst::ICMP_UGT:
1223     case CmpInst::FCMP_UGT:
1224       return ARMCC::HI;
1225     case CmpInst::FCMP_OLT:
1226       return ARMCC::MI;
1227     case CmpInst::ICMP_ULE:
1228     case CmpInst::FCMP_OLE:
1229       return ARMCC::LS;
1230     case CmpInst::FCMP_ORD:
1231       return ARMCC::VC;
1232     case CmpInst::FCMP_UNO:
1233       return ARMCC::VS;
1234     case CmpInst::FCMP_UGE:
1235       return ARMCC::PL;
1236     case CmpInst::ICMP_SLT:
1237     case CmpInst::FCMP_ULT:
1238       return ARMCC::LT;
1239     case CmpInst::ICMP_SLE:
1240     case CmpInst::FCMP_ULE:
1241       return ARMCC::LE;
1242     case CmpInst::FCMP_UNE:
1243     case CmpInst::ICMP_NE:
1244       return ARMCC::NE;
1245     case CmpInst::ICMP_UGE:
1246       return ARMCC::HS;
1247     case CmpInst::ICMP_ULT:
1248       return ARMCC::LO;
1249   }
1250 }
1251 
SelectBranch(const Instruction * I)1252 bool ARMFastISel::SelectBranch(const Instruction *I) {
1253   const BranchInst *BI = cast<BranchInst>(I);
1254   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1255   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1256 
1257   // Simple branch support.
1258 
1259   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1260   // behavior.
1261   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1262     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1263 
1264       // Get the compare predicate.
1265       // Try to take advantage of fallthrough opportunities.
1266       CmpInst::Predicate Predicate = CI->getPredicate();
1267       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1268         std::swap(TBB, FBB);
1269         Predicate = CmpInst::getInversePredicate(Predicate);
1270       }
1271 
1272       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1273 
1274       // We may not handle every CC for now.
1275       if (ARMPred == ARMCC::AL) return false;
1276 
1277       // Emit the compare.
1278       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1279         return false;
1280 
1281       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1282       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1283       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1284       fastEmitBranch(FBB, DbgLoc);
1285       FuncInfo.MBB->addSuccessor(TBB);
1286       return true;
1287     }
1288   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1289     MVT SourceVT;
1290     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1291         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1292       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1293       unsigned OpReg = getRegForValue(TI->getOperand(0));
1294       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1295       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1296                               TII.get(TstOpc))
1297                       .addReg(OpReg).addImm(1));
1298 
1299       unsigned CCMode = ARMCC::NE;
1300       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1301         std::swap(TBB, FBB);
1302         CCMode = ARMCC::EQ;
1303       }
1304 
1305       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1306       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1307       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1308 
1309       fastEmitBranch(FBB, DbgLoc);
1310       FuncInfo.MBB->addSuccessor(TBB);
1311       return true;
1312     }
1313   } else if (const ConstantInt *CI =
1314              dyn_cast<ConstantInt>(BI->getCondition())) {
1315     uint64_t Imm = CI->getZExtValue();
1316     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1317     fastEmitBranch(Target, DbgLoc);
1318     return true;
1319   }
1320 
1321   unsigned CmpReg = getRegForValue(BI->getCondition());
1322   if (CmpReg == 0) return false;
1323 
1324   // We've been divorced from our compare!  Our block was split, and
1325   // now our compare lives in a predecessor block.  We musn't
1326   // re-compare here, as the children of the compare aren't guaranteed
1327   // live across the block boundary (we *could* check for this).
1328   // Regardless, the compare has been done in the predecessor block,
1329   // and it left a value for us in a virtual register.  Ergo, we test
1330   // the one-bit value left in the virtual register.
1331   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1332   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1333   AddOptionalDefs(
1334       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1335           .addReg(CmpReg)
1336           .addImm(1));
1337 
1338   unsigned CCMode = ARMCC::NE;
1339   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1340     std::swap(TBB, FBB);
1341     CCMode = ARMCC::EQ;
1342   }
1343 
1344   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1345   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1346                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1347   fastEmitBranch(FBB, DbgLoc);
1348   FuncInfo.MBB->addSuccessor(TBB);
1349   return true;
1350 }
1351 
SelectIndirectBr(const Instruction * I)1352 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1353   unsigned AddrReg = getRegForValue(I->getOperand(0));
1354   if (AddrReg == 0) return false;
1355 
1356   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1357   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1358                           TII.get(Opc)).addReg(AddrReg));
1359 
1360   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1361   for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1362     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1363 
1364   return true;
1365 }
1366 
ARMEmitCmp(const Value * Src1Value,const Value * Src2Value,bool isZExt)1367 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1368                              bool isZExt) {
1369   Type *Ty = Src1Value->getType();
1370   EVT SrcEVT = TLI.getValueType(Ty, true);
1371   if (!SrcEVT.isSimple()) return false;
1372   MVT SrcVT = SrcEVT.getSimpleVT();
1373 
1374   bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1375   if (isFloat && !Subtarget->hasVFP2())
1376     return false;
1377 
1378   // Check to see if the 2nd operand is a constant that we can encode directly
1379   // in the compare.
1380   int Imm = 0;
1381   bool UseImm = false;
1382   bool isNegativeImm = false;
1383   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1384   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1385   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1386     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1387         SrcVT == MVT::i1) {
1388       const APInt &CIVal = ConstInt->getValue();
1389       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1390       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1391       // then a cmn, because there is no way to represent 2147483648 as a
1392       // signed 32-bit int.
1393       if (Imm < 0 && Imm != (int)0x80000000) {
1394         isNegativeImm = true;
1395         Imm = -Imm;
1396       }
1397       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1398         (ARM_AM::getSOImmVal(Imm) != -1);
1399     }
1400   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1401     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1402       if (ConstFP->isZero() && !ConstFP->isNegative())
1403         UseImm = true;
1404   }
1405 
1406   unsigned CmpOpc;
1407   bool isICmp = true;
1408   bool needsExt = false;
1409   switch (SrcVT.SimpleTy) {
1410     default: return false;
1411     // TODO: Verify compares.
1412     case MVT::f32:
1413       isICmp = false;
1414       CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1415       break;
1416     case MVT::f64:
1417       isICmp = false;
1418       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1419       break;
1420     case MVT::i1:
1421     case MVT::i8:
1422     case MVT::i16:
1423       needsExt = true;
1424     // Intentional fall-through.
1425     case MVT::i32:
1426       if (isThumb2) {
1427         if (!UseImm)
1428           CmpOpc = ARM::t2CMPrr;
1429         else
1430           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1431       } else {
1432         if (!UseImm)
1433           CmpOpc = ARM::CMPrr;
1434         else
1435           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1436       }
1437       break;
1438   }
1439 
1440   unsigned SrcReg1 = getRegForValue(Src1Value);
1441   if (SrcReg1 == 0) return false;
1442 
1443   unsigned SrcReg2 = 0;
1444   if (!UseImm) {
1445     SrcReg2 = getRegForValue(Src2Value);
1446     if (SrcReg2 == 0) return false;
1447   }
1448 
1449   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1450   if (needsExt) {
1451     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1452     if (SrcReg1 == 0) return false;
1453     if (!UseImm) {
1454       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1455       if (SrcReg2 == 0) return false;
1456     }
1457   }
1458 
1459   const MCInstrDesc &II = TII.get(CmpOpc);
1460   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1461   if (!UseImm) {
1462     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1463     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1464                     .addReg(SrcReg1).addReg(SrcReg2));
1465   } else {
1466     MachineInstrBuilder MIB;
1467     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1468       .addReg(SrcReg1);
1469 
1470     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1471     if (isICmp)
1472       MIB.addImm(Imm);
1473     AddOptionalDefs(MIB);
1474   }
1475 
1476   // For floating point we need to move the result to a comparison register
1477   // that we can then use for branches.
1478   if (Ty->isFloatTy() || Ty->isDoubleTy())
1479     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1480                             TII.get(ARM::FMSTAT)));
1481   return true;
1482 }
1483 
SelectCmp(const Instruction * I)1484 bool ARMFastISel::SelectCmp(const Instruction *I) {
1485   const CmpInst *CI = cast<CmpInst>(I);
1486 
1487   // Get the compare predicate.
1488   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1489 
1490   // We may not handle every CC for now.
1491   if (ARMPred == ARMCC::AL) return false;
1492 
1493   // Emit the compare.
1494   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1495     return false;
1496 
1497   // Now set a register based on the comparison. Explicitly set the predicates
1498   // here.
1499   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1500   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1501                                            : &ARM::GPRRegClass;
1502   unsigned DestReg = createResultReg(RC);
1503   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1504   unsigned ZeroReg = fastMaterializeConstant(Zero);
1505   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1506   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1507           .addReg(ZeroReg).addImm(1)
1508           .addImm(ARMPred).addReg(ARM::CPSR);
1509 
1510   updateValueMap(I, DestReg);
1511   return true;
1512 }
1513 
SelectFPExt(const Instruction * I)1514 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1515   // Make sure we have VFP and that we're extending float to double.
1516   if (!Subtarget->hasVFP2()) return false;
1517 
1518   Value *V = I->getOperand(0);
1519   if (!I->getType()->isDoubleTy() ||
1520       !V->getType()->isFloatTy()) return false;
1521 
1522   unsigned Op = getRegForValue(V);
1523   if (Op == 0) return false;
1524 
1525   unsigned Result = createResultReg(&ARM::DPRRegClass);
1526   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1527                           TII.get(ARM::VCVTDS), Result)
1528                   .addReg(Op));
1529   updateValueMap(I, Result);
1530   return true;
1531 }
1532 
SelectFPTrunc(const Instruction * I)1533 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1534   // Make sure we have VFP and that we're truncating double to float.
1535   if (!Subtarget->hasVFP2()) return false;
1536 
1537   Value *V = I->getOperand(0);
1538   if (!(I->getType()->isFloatTy() &&
1539         V->getType()->isDoubleTy())) return false;
1540 
1541   unsigned Op = getRegForValue(V);
1542   if (Op == 0) return false;
1543 
1544   unsigned Result = createResultReg(&ARM::SPRRegClass);
1545   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1546                           TII.get(ARM::VCVTSD), Result)
1547                   .addReg(Op));
1548   updateValueMap(I, Result);
1549   return true;
1550 }
1551 
SelectIToFP(const Instruction * I,bool isSigned)1552 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1553   // Make sure we have VFP.
1554   if (!Subtarget->hasVFP2()) return false;
1555 
1556   MVT DstVT;
1557   Type *Ty = I->getType();
1558   if (!isTypeLegal(Ty, DstVT))
1559     return false;
1560 
1561   Value *Src = I->getOperand(0);
1562   EVT SrcEVT = TLI.getValueType(Src->getType(), true);
1563   if (!SrcEVT.isSimple())
1564     return false;
1565   MVT SrcVT = SrcEVT.getSimpleVT();
1566   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1567     return false;
1568 
1569   unsigned SrcReg = getRegForValue(Src);
1570   if (SrcReg == 0) return false;
1571 
1572   // Handle sign-extension.
1573   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1574     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1575                                        /*isZExt*/!isSigned);
1576     if (SrcReg == 0) return false;
1577   }
1578 
1579   // The conversion routine works on fp-reg to fp-reg and the operand above
1580   // was an integer, move it to the fp registers if possible.
1581   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1582   if (FP == 0) return false;
1583 
1584   unsigned Opc;
1585   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1586   else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1587   else return false;
1588 
1589   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1590   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1591                           TII.get(Opc), ResultReg).addReg(FP));
1592   updateValueMap(I, ResultReg);
1593   return true;
1594 }
1595 
SelectFPToI(const Instruction * I,bool isSigned)1596 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1597   // Make sure we have VFP.
1598   if (!Subtarget->hasVFP2()) return false;
1599 
1600   MVT DstVT;
1601   Type *RetTy = I->getType();
1602   if (!isTypeLegal(RetTy, DstVT))
1603     return false;
1604 
1605   unsigned Op = getRegForValue(I->getOperand(0));
1606   if (Op == 0) return false;
1607 
1608   unsigned Opc;
1609   Type *OpTy = I->getOperand(0)->getType();
1610   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1611   else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1612   else return false;
1613 
1614   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1615   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1616   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1617                           TII.get(Opc), ResultReg).addReg(Op));
1618 
1619   // This result needs to be in an integer register, but the conversion only
1620   // takes place in fp-regs.
1621   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1622   if (IntReg == 0) return false;
1623 
1624   updateValueMap(I, IntReg);
1625   return true;
1626 }
1627 
SelectSelect(const Instruction * I)1628 bool ARMFastISel::SelectSelect(const Instruction *I) {
1629   MVT VT;
1630   if (!isTypeLegal(I->getType(), VT))
1631     return false;
1632 
1633   // Things need to be register sized for register moves.
1634   if (VT != MVT::i32) return false;
1635 
1636   unsigned CondReg = getRegForValue(I->getOperand(0));
1637   if (CondReg == 0) return false;
1638   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1639   if (Op1Reg == 0) return false;
1640 
1641   // Check to see if we can use an immediate in the conditional move.
1642   int Imm = 0;
1643   bool UseImm = false;
1644   bool isNegativeImm = false;
1645   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1646     assert (VT == MVT::i32 && "Expecting an i32.");
1647     Imm = (int)ConstInt->getValue().getZExtValue();
1648     if (Imm < 0) {
1649       isNegativeImm = true;
1650       Imm = ~Imm;
1651     }
1652     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1653       (ARM_AM::getSOImmVal(Imm) != -1);
1654   }
1655 
1656   unsigned Op2Reg = 0;
1657   if (!UseImm) {
1658     Op2Reg = getRegForValue(I->getOperand(2));
1659     if (Op2Reg == 0) return false;
1660   }
1661 
1662   unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1663   CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0);
1664   AddOptionalDefs(
1665       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
1666           .addReg(CondReg)
1667           .addImm(0));
1668 
1669   unsigned MovCCOpc;
1670   const TargetRegisterClass *RC;
1671   if (!UseImm) {
1672     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1673     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1674   } else {
1675     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1676     if (!isNegativeImm)
1677       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1678     else
1679       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1680   }
1681   unsigned ResultReg = createResultReg(RC);
1682   if (!UseImm) {
1683     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1684     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1685     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1686             ResultReg)
1687         .addReg(Op2Reg)
1688         .addReg(Op1Reg)
1689         .addImm(ARMCC::NE)
1690         .addReg(ARM::CPSR);
1691   } else {
1692     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1693     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1694             ResultReg)
1695         .addReg(Op1Reg)
1696         .addImm(Imm)
1697         .addImm(ARMCC::EQ)
1698         .addReg(ARM::CPSR);
1699   }
1700   updateValueMap(I, ResultReg);
1701   return true;
1702 }
1703 
SelectDiv(const Instruction * I,bool isSigned)1704 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1705   MVT VT;
1706   Type *Ty = I->getType();
1707   if (!isTypeLegal(Ty, VT))
1708     return false;
1709 
1710   // If we have integer div support we should have selected this automagically.
1711   // In case we have a real miss go ahead and return false and we'll pick
1712   // it up later.
1713   if (Subtarget->hasDivide()) return false;
1714 
1715   // Otherwise emit a libcall.
1716   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1717   if (VT == MVT::i8)
1718     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1719   else if (VT == MVT::i16)
1720     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1721   else if (VT == MVT::i32)
1722     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1723   else if (VT == MVT::i64)
1724     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1725   else if (VT == MVT::i128)
1726     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1727   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1728 
1729   return ARMEmitLibcall(I, LC);
1730 }
1731 
SelectRem(const Instruction * I,bool isSigned)1732 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1733   MVT VT;
1734   Type *Ty = I->getType();
1735   if (!isTypeLegal(Ty, VT))
1736     return false;
1737 
1738   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1739   if (VT == MVT::i8)
1740     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1741   else if (VT == MVT::i16)
1742     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1743   else if (VT == MVT::i32)
1744     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1745   else if (VT == MVT::i64)
1746     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1747   else if (VT == MVT::i128)
1748     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1749   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1750 
1751   return ARMEmitLibcall(I, LC);
1752 }
1753 
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1754 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1755   EVT DestVT  = TLI.getValueType(I->getType(), true);
1756 
1757   // We can get here in the case when we have a binary operation on a non-legal
1758   // type and the target independent selector doesn't know how to handle it.
1759   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1760     return false;
1761 
1762   unsigned Opc;
1763   switch (ISDOpcode) {
1764     default: return false;
1765     case ISD::ADD:
1766       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1767       break;
1768     case ISD::OR:
1769       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1770       break;
1771     case ISD::SUB:
1772       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1773       break;
1774   }
1775 
1776   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1777   if (SrcReg1 == 0) return false;
1778 
1779   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1780   // in the instruction, rather then materializing the value in a register.
1781   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1782   if (SrcReg2 == 0) return false;
1783 
1784   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1785   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1786   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1787   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1788                           TII.get(Opc), ResultReg)
1789                   .addReg(SrcReg1).addReg(SrcReg2));
1790   updateValueMap(I, ResultReg);
1791   return true;
1792 }
1793 
SelectBinaryFPOp(const Instruction * I,unsigned ISDOpcode)1794 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1795   EVT FPVT = TLI.getValueType(I->getType(), true);
1796   if (!FPVT.isSimple()) return false;
1797   MVT VT = FPVT.getSimpleVT();
1798 
1799   // We can get here in the case when we want to use NEON for our fp
1800   // operations, but can't figure out how to. Just use the vfp instructions
1801   // if we have them.
1802   // FIXME: It'd be nice to use NEON instructions.
1803   Type *Ty = I->getType();
1804   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1805   if (isFloat && !Subtarget->hasVFP2())
1806     return false;
1807 
1808   unsigned Opc;
1809   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1810   switch (ISDOpcode) {
1811     default: return false;
1812     case ISD::FADD:
1813       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1814       break;
1815     case ISD::FSUB:
1816       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1817       break;
1818     case ISD::FMUL:
1819       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1820       break;
1821   }
1822   unsigned Op1 = getRegForValue(I->getOperand(0));
1823   if (Op1 == 0) return false;
1824 
1825   unsigned Op2 = getRegForValue(I->getOperand(1));
1826   if (Op2 == 0) return false;
1827 
1828   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1829   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1830                           TII.get(Opc), ResultReg)
1831                   .addReg(Op1).addReg(Op2));
1832   updateValueMap(I, ResultReg);
1833   return true;
1834 }
1835 
1836 // Call Handling Code
1837 
1838 // This is largely taken directly from CCAssignFnForNode
1839 // TODO: We may not support all of this.
CCAssignFnForCall(CallingConv::ID CC,bool Return,bool isVarArg)1840 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1841                                            bool Return,
1842                                            bool isVarArg) {
1843   switch (CC) {
1844   default:
1845     llvm_unreachable("Unsupported calling convention");
1846   case CallingConv::Fast:
1847     if (Subtarget->hasVFP2() && !isVarArg) {
1848       if (!Subtarget->isAAPCS_ABI())
1849         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1850       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1851       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1852     }
1853     // Fallthrough
1854   case CallingConv::C:
1855     // Use target triple & subtarget features to do actual dispatch.
1856     if (Subtarget->isAAPCS_ABI()) {
1857       if (Subtarget->hasVFP2() &&
1858           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1859         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1860       else
1861         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1862     } else
1863         return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1864   case CallingConv::ARM_AAPCS_VFP:
1865     if (!isVarArg)
1866       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1867     // Fall through to soft float variant, variadic functions don't
1868     // use hard floating point ABI.
1869   case CallingConv::ARM_AAPCS:
1870     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1871   case CallingConv::ARM_APCS:
1872     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1873   case CallingConv::GHC:
1874     if (Return)
1875       llvm_unreachable("Can't return in GHC call convention");
1876     else
1877       return CC_ARM_APCS_GHC;
1878   }
1879 }
1880 
ProcessCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool isVarArg)1881 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1882                                   SmallVectorImpl<unsigned> &ArgRegs,
1883                                   SmallVectorImpl<MVT> &ArgVTs,
1884                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1885                                   SmallVectorImpl<unsigned> &RegArgs,
1886                                   CallingConv::ID CC,
1887                                   unsigned &NumBytes,
1888                                   bool isVarArg) {
1889   SmallVector<CCValAssign, 16> ArgLocs;
1890   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1891   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1892                              CCAssignFnForCall(CC, false, isVarArg));
1893 
1894   // Check that we can handle all of the arguments. If we can't, then bail out
1895   // now before we add code to the MBB.
1896   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1897     CCValAssign &VA = ArgLocs[i];
1898     MVT ArgVT = ArgVTs[VA.getValNo()];
1899 
1900     // We don't handle NEON/vector parameters yet.
1901     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1902       return false;
1903 
1904     // Now copy/store arg to correct locations.
1905     if (VA.isRegLoc() && !VA.needsCustom()) {
1906       continue;
1907     } else if (VA.needsCustom()) {
1908       // TODO: We need custom lowering for vector (v2f64) args.
1909       if (VA.getLocVT() != MVT::f64 ||
1910           // TODO: Only handle register args for now.
1911           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1912         return false;
1913     } else {
1914       switch (ArgVT.SimpleTy) {
1915       default:
1916         return false;
1917       case MVT::i1:
1918       case MVT::i8:
1919       case MVT::i16:
1920       case MVT::i32:
1921         break;
1922       case MVT::f32:
1923         if (!Subtarget->hasVFP2())
1924           return false;
1925         break;
1926       case MVT::f64:
1927         if (!Subtarget->hasVFP2())
1928           return false;
1929         break;
1930       }
1931     }
1932   }
1933 
1934   // At the point, we are able to handle the call's arguments in fast isel.
1935 
1936   // Get a count of how many bytes are to be pushed on the stack.
1937   NumBytes = CCInfo.getNextStackOffset();
1938 
1939   // Issue CALLSEQ_START
1940   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1941   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1942                           TII.get(AdjStackDown))
1943                   .addImm(NumBytes));
1944 
1945   // Process the args.
1946   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1947     CCValAssign &VA = ArgLocs[i];
1948     const Value *ArgVal = Args[VA.getValNo()];
1949     unsigned Arg = ArgRegs[VA.getValNo()];
1950     MVT ArgVT = ArgVTs[VA.getValNo()];
1951 
1952     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1953            "We don't handle NEON/vector parameters yet.");
1954 
1955     // Handle arg promotion, etc.
1956     switch (VA.getLocInfo()) {
1957       case CCValAssign::Full: break;
1958       case CCValAssign::SExt: {
1959         MVT DestVT = VA.getLocVT();
1960         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1961         assert (Arg != 0 && "Failed to emit a sext");
1962         ArgVT = DestVT;
1963         break;
1964       }
1965       case CCValAssign::AExt:
1966         // Intentional fall-through.  Handle AExt and ZExt.
1967       case CCValAssign::ZExt: {
1968         MVT DestVT = VA.getLocVT();
1969         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1970         assert (Arg != 0 && "Failed to emit a zext");
1971         ArgVT = DestVT;
1972         break;
1973       }
1974       case CCValAssign::BCvt: {
1975         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1976                                  /*TODO: Kill=*/false);
1977         assert(BC != 0 && "Failed to emit a bitcast!");
1978         Arg = BC;
1979         ArgVT = VA.getLocVT();
1980         break;
1981       }
1982       default: llvm_unreachable("Unknown arg promotion!");
1983     }
1984 
1985     // Now copy/store arg to correct locations.
1986     if (VA.isRegLoc() && !VA.needsCustom()) {
1987       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1988               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1989       RegArgs.push_back(VA.getLocReg());
1990     } else if (VA.needsCustom()) {
1991       // TODO: We need custom lowering for vector (v2f64) args.
1992       assert(VA.getLocVT() == MVT::f64 &&
1993              "Custom lowering for v2f64 args not available");
1994 
1995       CCValAssign &NextVA = ArgLocs[++i];
1996 
1997       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1998              "We only handle register args!");
1999 
2000       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2001                               TII.get(ARM::VMOVRRD), VA.getLocReg())
2002                       .addReg(NextVA.getLocReg(), RegState::Define)
2003                       .addReg(Arg));
2004       RegArgs.push_back(VA.getLocReg());
2005       RegArgs.push_back(NextVA.getLocReg());
2006     } else {
2007       assert(VA.isMemLoc());
2008       // Need to store on the stack.
2009 
2010       // Don't emit stores for undef values.
2011       if (isa<UndefValue>(ArgVal))
2012         continue;
2013 
2014       Address Addr;
2015       Addr.BaseType = Address::RegBase;
2016       Addr.Base.Reg = ARM::SP;
2017       Addr.Offset = VA.getLocMemOffset();
2018 
2019       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2020       assert(EmitRet && "Could not emit a store for argument!");
2021     }
2022   }
2023 
2024   return true;
2025 }
2026 
FinishCall(MVT RetVT,SmallVectorImpl<unsigned> & UsedRegs,const Instruction * I,CallingConv::ID CC,unsigned & NumBytes,bool isVarArg)2027 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2028                              const Instruction *I, CallingConv::ID CC,
2029                              unsigned &NumBytes, bool isVarArg) {
2030   // Issue CALLSEQ_END
2031   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2032   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2033                           TII.get(AdjStackUp))
2034                   .addImm(NumBytes).addImm(0));
2035 
2036   // Now the return value.
2037   if (RetVT != MVT::isVoid) {
2038     SmallVector<CCValAssign, 16> RVLocs;
2039     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2040     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2041 
2042     // Copy all of the result registers out of their specified physreg.
2043     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2044       // For this move we copy into two registers and then move into the
2045       // double fp reg we want.
2046       MVT DestVT = RVLocs[0].getValVT();
2047       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2048       unsigned ResultReg = createResultReg(DstRC);
2049       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2050                               TII.get(ARM::VMOVDRR), ResultReg)
2051                       .addReg(RVLocs[0].getLocReg())
2052                       .addReg(RVLocs[1].getLocReg()));
2053 
2054       UsedRegs.push_back(RVLocs[0].getLocReg());
2055       UsedRegs.push_back(RVLocs[1].getLocReg());
2056 
2057       // Finally update the result.
2058       updateValueMap(I, ResultReg);
2059     } else {
2060       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2061       MVT CopyVT = RVLocs[0].getValVT();
2062 
2063       // Special handling for extended integers.
2064       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2065         CopyVT = MVT::i32;
2066 
2067       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2068 
2069       unsigned ResultReg = createResultReg(DstRC);
2070       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2071               TII.get(TargetOpcode::COPY),
2072               ResultReg).addReg(RVLocs[0].getLocReg());
2073       UsedRegs.push_back(RVLocs[0].getLocReg());
2074 
2075       // Finally update the result.
2076       updateValueMap(I, ResultReg);
2077     }
2078   }
2079 
2080   return true;
2081 }
2082 
SelectRet(const Instruction * I)2083 bool ARMFastISel::SelectRet(const Instruction *I) {
2084   const ReturnInst *Ret = cast<ReturnInst>(I);
2085   const Function &F = *I->getParent()->getParent();
2086 
2087   if (!FuncInfo.CanLowerReturn)
2088     return false;
2089 
2090   // Build a list of return value registers.
2091   SmallVector<unsigned, 4> RetRegs;
2092 
2093   CallingConv::ID CC = F.getCallingConv();
2094   if (Ret->getNumOperands() > 0) {
2095     SmallVector<ISD::OutputArg, 4> Outs;
2096     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
2097 
2098     // Analyze operands of the call, assigning locations to each operand.
2099     SmallVector<CCValAssign, 16> ValLocs;
2100     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2101     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2102                                                  F.isVarArg()));
2103 
2104     const Value *RV = Ret->getOperand(0);
2105     unsigned Reg = getRegForValue(RV);
2106     if (Reg == 0)
2107       return false;
2108 
2109     // Only handle a single return value for now.
2110     if (ValLocs.size() != 1)
2111       return false;
2112 
2113     CCValAssign &VA = ValLocs[0];
2114 
2115     // Don't bother handling odd stuff for now.
2116     if (VA.getLocInfo() != CCValAssign::Full)
2117       return false;
2118     // Only handle register returns for now.
2119     if (!VA.isRegLoc())
2120       return false;
2121 
2122     unsigned SrcReg = Reg + VA.getValNo();
2123     EVT RVEVT = TLI.getValueType(RV->getType());
2124     if (!RVEVT.isSimple()) return false;
2125     MVT RVVT = RVEVT.getSimpleVT();
2126     MVT DestVT = VA.getValVT();
2127     // Special handling for extended integers.
2128     if (RVVT != DestVT) {
2129       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2130         return false;
2131 
2132       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2133 
2134       // Perform extension if flagged as either zext or sext.  Otherwise, do
2135       // nothing.
2136       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2137         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2138         if (SrcReg == 0) return false;
2139       }
2140     }
2141 
2142     // Make the copy.
2143     unsigned DstReg = VA.getLocReg();
2144     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2145     // Avoid a cross-class copy. This is very unlikely.
2146     if (!SrcRC->contains(DstReg))
2147       return false;
2148     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2149             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2150 
2151     // Add register to return instruction.
2152     RetRegs.push_back(VA.getLocReg());
2153   }
2154 
2155   unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2156   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2157                                     TII.get(RetOpc));
2158   AddOptionalDefs(MIB);
2159   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
2160     MIB.addReg(RetRegs[i], RegState::Implicit);
2161   return true;
2162 }
2163 
ARMSelectCallOp(bool UseReg)2164 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2165   if (UseReg)
2166     return isThumb2 ? ARM::tBLXr : ARM::BLX;
2167   else
2168     return isThumb2 ? ARM::tBL : ARM::BL;
2169 }
2170 
getLibcallReg(const Twine & Name)2171 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2172   // Manually compute the global's type to avoid building it when unnecessary.
2173   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2174   EVT LCREVT = TLI.getValueType(GVTy);
2175   if (!LCREVT.isSimple()) return 0;
2176 
2177   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2178                                        GlobalValue::ExternalLinkage, nullptr,
2179                                        Name);
2180   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2181   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2182 }
2183 
2184 // A quick function that will emit a call for a named libcall in F with the
2185 // vector of passed arguments for the Instruction in I. We can assume that we
2186 // can emit a call for any libcall we can produce. This is an abridged version
2187 // of the full call infrastructure since we won't need to worry about things
2188 // like computed function pointers or strange arguments at call sites.
2189 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2190 // with X86.
ARMEmitLibcall(const Instruction * I,RTLIB::Libcall Call)2191 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2192   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2193 
2194   // Handle *simple* calls for now.
2195   Type *RetTy = I->getType();
2196   MVT RetVT;
2197   if (RetTy->isVoidTy())
2198     RetVT = MVT::isVoid;
2199   else if (!isTypeLegal(RetTy, RetVT))
2200     return false;
2201 
2202   // Can't handle non-double multi-reg retvals.
2203   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2204     SmallVector<CCValAssign, 16> RVLocs;
2205     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2206     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2207     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2208       return false;
2209   }
2210 
2211   // Set up the argument vectors.
2212   SmallVector<Value*, 8> Args;
2213   SmallVector<unsigned, 8> ArgRegs;
2214   SmallVector<MVT, 8> ArgVTs;
2215   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2216   Args.reserve(I->getNumOperands());
2217   ArgRegs.reserve(I->getNumOperands());
2218   ArgVTs.reserve(I->getNumOperands());
2219   ArgFlags.reserve(I->getNumOperands());
2220   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2221     Value *Op = I->getOperand(i);
2222     unsigned Arg = getRegForValue(Op);
2223     if (Arg == 0) return false;
2224 
2225     Type *ArgTy = Op->getType();
2226     MVT ArgVT;
2227     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2228 
2229     ISD::ArgFlagsTy Flags;
2230     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2231     Flags.setOrigAlign(OriginalAlignment);
2232 
2233     Args.push_back(Op);
2234     ArgRegs.push_back(Arg);
2235     ArgVTs.push_back(ArgVT);
2236     ArgFlags.push_back(Flags);
2237   }
2238 
2239   // Handle the arguments now that we've gotten them.
2240   SmallVector<unsigned, 4> RegArgs;
2241   unsigned NumBytes;
2242   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2243                        RegArgs, CC, NumBytes, false))
2244     return false;
2245 
2246   unsigned CalleeReg = 0;
2247   if (EnableARMLongCalls) {
2248     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2249     if (CalleeReg == 0) return false;
2250   }
2251 
2252   // Issue the call.
2253   unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
2254   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2255                                     DbgLoc, TII.get(CallOpc));
2256   // BL / BLX don't take a predicate, but tBL / tBLX do.
2257   if (isThumb2)
2258     AddDefaultPred(MIB);
2259   if (EnableARMLongCalls)
2260     MIB.addReg(CalleeReg);
2261   else
2262     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2263 
2264   // Add implicit physical register uses to the call.
2265   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2266     MIB.addReg(RegArgs[i], RegState::Implicit);
2267 
2268   // Add a register mask with the call-preserved registers.
2269   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2270   MIB.addRegMask(TRI.getCallPreservedMask(CC));
2271 
2272   // Finish off the call including any return values.
2273   SmallVector<unsigned, 4> UsedRegs;
2274   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2275 
2276   // Set all unused physreg defs as dead.
2277   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2278 
2279   return true;
2280 }
2281 
SelectCall(const Instruction * I,const char * IntrMemName=nullptr)2282 bool ARMFastISel::SelectCall(const Instruction *I,
2283                              const char *IntrMemName = nullptr) {
2284   const CallInst *CI = cast<CallInst>(I);
2285   const Value *Callee = CI->getCalledValue();
2286 
2287   // Can't handle inline asm.
2288   if (isa<InlineAsm>(Callee)) return false;
2289 
2290   // Allow SelectionDAG isel to handle tail calls.
2291   if (CI->isTailCall()) return false;
2292 
2293   // Check the calling convention.
2294   ImmutableCallSite CS(CI);
2295   CallingConv::ID CC = CS.getCallingConv();
2296 
2297   // TODO: Avoid some calling conventions?
2298 
2299   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2300   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2301   bool isVarArg = FTy->isVarArg();
2302 
2303   // Handle *simple* calls for now.
2304   Type *RetTy = I->getType();
2305   MVT RetVT;
2306   if (RetTy->isVoidTy())
2307     RetVT = MVT::isVoid;
2308   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2309            RetVT != MVT::i8  && RetVT != MVT::i1)
2310     return false;
2311 
2312   // Can't handle non-double multi-reg retvals.
2313   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2314       RetVT != MVT::i16 && RetVT != MVT::i32) {
2315     SmallVector<CCValAssign, 16> RVLocs;
2316     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2317     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2318     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2319       return false;
2320   }
2321 
2322   // Set up the argument vectors.
2323   SmallVector<Value*, 8> Args;
2324   SmallVector<unsigned, 8> ArgRegs;
2325   SmallVector<MVT, 8> ArgVTs;
2326   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2327   unsigned arg_size = CS.arg_size();
2328   Args.reserve(arg_size);
2329   ArgRegs.reserve(arg_size);
2330   ArgVTs.reserve(arg_size);
2331   ArgFlags.reserve(arg_size);
2332   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2333        i != e; ++i) {
2334     // If we're lowering a memory intrinsic instead of a regular call, skip the
2335     // last two arguments, which shouldn't be passed to the underlying function.
2336     if (IntrMemName && e-i <= 2)
2337       break;
2338 
2339     ISD::ArgFlagsTy Flags;
2340     unsigned AttrInd = i - CS.arg_begin() + 1;
2341     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2342       Flags.setSExt();
2343     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2344       Flags.setZExt();
2345 
2346     // FIXME: Only handle *easy* calls for now.
2347     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2348         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2349         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2350         CS.paramHasAttr(AttrInd, Attribute::ByVal))
2351       return false;
2352 
2353     Type *ArgTy = (*i)->getType();
2354     MVT ArgVT;
2355     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2356         ArgVT != MVT::i1)
2357       return false;
2358 
2359     unsigned Arg = getRegForValue(*i);
2360     if (Arg == 0)
2361       return false;
2362 
2363     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2364     Flags.setOrigAlign(OriginalAlignment);
2365 
2366     Args.push_back(*i);
2367     ArgRegs.push_back(Arg);
2368     ArgVTs.push_back(ArgVT);
2369     ArgFlags.push_back(Flags);
2370   }
2371 
2372   // Handle the arguments now that we've gotten them.
2373   SmallVector<unsigned, 4> RegArgs;
2374   unsigned NumBytes;
2375   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2376                        RegArgs, CC, NumBytes, isVarArg))
2377     return false;
2378 
2379   bool UseReg = false;
2380   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2381   if (!GV || EnableARMLongCalls) UseReg = true;
2382 
2383   unsigned CalleeReg = 0;
2384   if (UseReg) {
2385     if (IntrMemName)
2386       CalleeReg = getLibcallReg(IntrMemName);
2387     else
2388       CalleeReg = getRegForValue(Callee);
2389 
2390     if (CalleeReg == 0) return false;
2391   }
2392 
2393   // Issue the call.
2394   unsigned CallOpc = ARMSelectCallOp(UseReg);
2395   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2396                                     DbgLoc, TII.get(CallOpc));
2397 
2398   unsigned char OpFlags = 0;
2399 
2400   // Add MO_PLT for global address or external symbol in the PIC relocation
2401   // model.
2402   if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_)
2403     OpFlags = ARMII::MO_PLT;
2404 
2405   // ARM calls don't take a predicate, but tBL / tBLX do.
2406   if(isThumb2)
2407     AddDefaultPred(MIB);
2408   if (UseReg)
2409     MIB.addReg(CalleeReg);
2410   else if (!IntrMemName)
2411     MIB.addGlobalAddress(GV, 0, OpFlags);
2412   else
2413     MIB.addExternalSymbol(IntrMemName, OpFlags);
2414 
2415   // Add implicit physical register uses to the call.
2416   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2417     MIB.addReg(RegArgs[i], RegState::Implicit);
2418 
2419   // Add a register mask with the call-preserved registers.
2420   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2421   MIB.addRegMask(TRI.getCallPreservedMask(CC));
2422 
2423   // Finish off the call including any return values.
2424   SmallVector<unsigned, 4> UsedRegs;
2425   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2426     return false;
2427 
2428   // Set all unused physreg defs as dead.
2429   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2430 
2431   return true;
2432 }
2433 
ARMIsMemCpySmall(uint64_t Len)2434 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2435   return Len <= 16;
2436 }
2437 
ARMTryEmitSmallMemCpy(Address Dest,Address Src,uint64_t Len,unsigned Alignment)2438 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2439                                         uint64_t Len, unsigned Alignment) {
2440   // Make sure we don't bloat code by inlining very large memcpy's.
2441   if (!ARMIsMemCpySmall(Len))
2442     return false;
2443 
2444   while (Len) {
2445     MVT VT;
2446     if (!Alignment || Alignment >= 4) {
2447       if (Len >= 4)
2448         VT = MVT::i32;
2449       else if (Len >= 2)
2450         VT = MVT::i16;
2451       else {
2452         assert (Len == 1 && "Expected a length of 1!");
2453         VT = MVT::i8;
2454       }
2455     } else {
2456       // Bound based on alignment.
2457       if (Len >= 2 && Alignment == 2)
2458         VT = MVT::i16;
2459       else {
2460         VT = MVT::i8;
2461       }
2462     }
2463 
2464     bool RV;
2465     unsigned ResultReg;
2466     RV = ARMEmitLoad(VT, ResultReg, Src);
2467     assert (RV == true && "Should be able to handle this load.");
2468     RV = ARMEmitStore(VT, ResultReg, Dest);
2469     assert (RV == true && "Should be able to handle this store.");
2470     (void)RV;
2471 
2472     unsigned Size = VT.getSizeInBits()/8;
2473     Len -= Size;
2474     Dest.Offset += Size;
2475     Src.Offset += Size;
2476   }
2477 
2478   return true;
2479 }
2480 
SelectIntrinsicCall(const IntrinsicInst & I)2481 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2482   // FIXME: Handle more intrinsics.
2483   switch (I.getIntrinsicID()) {
2484   default: return false;
2485   case Intrinsic::frameaddress: {
2486     MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2487     MFI->setFrameAddressIsTaken(true);
2488 
2489     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2490     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2491                                              : &ARM::GPRRegClass;
2492 
2493     const ARMBaseRegisterInfo *RegInfo =
2494         static_cast<const ARMBaseRegisterInfo *>(
2495             TM.getSubtargetImpl()->getRegisterInfo());
2496     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2497     unsigned SrcReg = FramePtr;
2498 
2499     // Recursively load frame address
2500     // ldr r0 [fp]
2501     // ldr r0 [r0]
2502     // ldr r0 [r0]
2503     // ...
2504     unsigned DestReg;
2505     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2506     while (Depth--) {
2507       DestReg = createResultReg(RC);
2508       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2509                               TII.get(LdrOpc), DestReg)
2510                       .addReg(SrcReg).addImm(0));
2511       SrcReg = DestReg;
2512     }
2513     updateValueMap(&I, SrcReg);
2514     return true;
2515   }
2516   case Intrinsic::memcpy:
2517   case Intrinsic::memmove: {
2518     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2519     // Don't handle volatile.
2520     if (MTI.isVolatile())
2521       return false;
2522 
2523     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2524     // we would emit dead code because we don't currently handle memmoves.
2525     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2526     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2527       // Small memcpy's are common enough that we want to do them without a call
2528       // if possible.
2529       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2530       if (ARMIsMemCpySmall(Len)) {
2531         Address Dest, Src;
2532         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2533             !ARMComputeAddress(MTI.getRawSource(), Src))
2534           return false;
2535         unsigned Alignment = MTI.getAlignment();
2536         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2537           return true;
2538       }
2539     }
2540 
2541     if (!MTI.getLength()->getType()->isIntegerTy(32))
2542       return false;
2543 
2544     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2545       return false;
2546 
2547     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2548     return SelectCall(&I, IntrMemName);
2549   }
2550   case Intrinsic::memset: {
2551     const MemSetInst &MSI = cast<MemSetInst>(I);
2552     // Don't handle volatile.
2553     if (MSI.isVolatile())
2554       return false;
2555 
2556     if (!MSI.getLength()->getType()->isIntegerTy(32))
2557       return false;
2558 
2559     if (MSI.getDestAddressSpace() > 255)
2560       return false;
2561 
2562     return SelectCall(&I, "memset");
2563   }
2564   case Intrinsic::trap: {
2565     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
2566       Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2567     return true;
2568   }
2569   }
2570 }
2571 
SelectTrunc(const Instruction * I)2572 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2573   // The high bits for a type smaller than the register size are assumed to be
2574   // undefined.
2575   Value *Op = I->getOperand(0);
2576 
2577   EVT SrcVT, DestVT;
2578   SrcVT = TLI.getValueType(Op->getType(), true);
2579   DestVT = TLI.getValueType(I->getType(), true);
2580 
2581   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2582     return false;
2583   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2584     return false;
2585 
2586   unsigned SrcReg = getRegForValue(Op);
2587   if (!SrcReg) return false;
2588 
2589   // Because the high bits are undefined, a truncate doesn't generate
2590   // any code.
2591   updateValueMap(I, SrcReg);
2592   return true;
2593 }
2594 
ARMEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)2595 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2596                                     bool isZExt) {
2597   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2598     return 0;
2599   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2600     return 0;
2601 
2602   // Table of which combinations can be emitted as a single instruction,
2603   // and which will require two.
2604   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2605     //            ARM                     Thumb
2606     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2607     //    ext:     s  z      s  z          s  z      s  z
2608     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2609     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2610     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2611   };
2612 
2613   // Target registers for:
2614   //  - For ARM can never be PC.
2615   //  - For 16-bit Thumb are restricted to lower 8 registers.
2616   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2617   static const TargetRegisterClass *RCTbl[2][2] = {
2618     // Instructions: Two                     Single
2619     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2620     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2621   };
2622 
2623   // Table governing the instruction(s) to be emitted.
2624   static const struct InstructionTable {
2625     uint32_t Opc   : 16;
2626     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2627     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2628     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2629   } IT[2][2][3][2] = {
2630     { // Two instructions (first is left shift, second is in this table).
2631       { // ARM                Opc           S  Shift             Imm
2632         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2633         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2634         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2635         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2636         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2637         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2638       },
2639       { // Thumb              Opc           S  Shift             Imm
2640         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2641         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2642         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2643         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2644         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2645         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2646       }
2647     },
2648     { // Single instruction.
2649       { // ARM                Opc           S  Shift             Imm
2650         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2651         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2652         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2653         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2654         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2655         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2656       },
2657       { // Thumb              Opc           S  Shift             Imm
2658         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2659         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2660         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2661         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2662         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2663         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2664       }
2665     }
2666   };
2667 
2668   unsigned SrcBits = SrcVT.getSizeInBits();
2669   unsigned DestBits = DestVT.getSizeInBits();
2670   (void) DestBits;
2671   assert((SrcBits < DestBits) && "can only extend to larger types");
2672   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2673          "other sizes unimplemented");
2674   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2675          "other sizes unimplemented");
2676 
2677   bool hasV6Ops = Subtarget->hasV6Ops();
2678   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2679   assert((Bitness < 3) && "sanity-check table bounds");
2680 
2681   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2682   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2683   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2684   unsigned Opc = ITP->Opc;
2685   assert(ARM::KILL != Opc && "Invalid table entry");
2686   unsigned hasS = ITP->hasS;
2687   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2688   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2689          "only MOVsi has shift operand addressing mode");
2690   unsigned Imm = ITP->Imm;
2691 
2692   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2693   bool setsCPSR = &ARM::tGPRRegClass == RC;
2694   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2695   unsigned ResultReg;
2696   // MOVsi encodes shift and immediate in shift operand addressing mode.
2697   // The following condition has the same value when emitting two
2698   // instruction sequences: both are shifts.
2699   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2700 
2701   // Either one or two instructions are emitted.
2702   // They're always of the form:
2703   //   dst = in OP imm
2704   // CPSR is set only by 16-bit Thumb instructions.
2705   // Predicate, if any, is AL.
2706   // S bit, if available, is always 0.
2707   // When two are emitted the first's result will feed as the second's input,
2708   // that value is then dead.
2709   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2710   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2711     ResultReg = createResultReg(RC);
2712     bool isLsl = (0 == Instr) && !isSingleInstr;
2713     unsigned Opcode = isLsl ? LSLOpc : Opc;
2714     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2715     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2716     bool isKill = 1 == Instr;
2717     MachineInstrBuilder MIB = BuildMI(
2718         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2719     if (setsCPSR)
2720       MIB.addReg(ARM::CPSR, RegState::Define);
2721     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2722     AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
2723     if (hasS)
2724       AddDefaultCC(MIB);
2725     // Second instruction consumes the first's result.
2726     SrcReg = ResultReg;
2727   }
2728 
2729   return ResultReg;
2730 }
2731 
SelectIntExt(const Instruction * I)2732 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2733   // On ARM, in general, integer casts don't involve legal types; this code
2734   // handles promotable integers.
2735   Type *DestTy = I->getType();
2736   Value *Src = I->getOperand(0);
2737   Type *SrcTy = Src->getType();
2738 
2739   bool isZExt = isa<ZExtInst>(I);
2740   unsigned SrcReg = getRegForValue(Src);
2741   if (!SrcReg) return false;
2742 
2743   EVT SrcEVT, DestEVT;
2744   SrcEVT = TLI.getValueType(SrcTy, true);
2745   DestEVT = TLI.getValueType(DestTy, true);
2746   if (!SrcEVT.isSimple()) return false;
2747   if (!DestEVT.isSimple()) return false;
2748 
2749   MVT SrcVT = SrcEVT.getSimpleVT();
2750   MVT DestVT = DestEVT.getSimpleVT();
2751   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2752   if (ResultReg == 0) return false;
2753   updateValueMap(I, ResultReg);
2754   return true;
2755 }
2756 
SelectShift(const Instruction * I,ARM_AM::ShiftOpc ShiftTy)2757 bool ARMFastISel::SelectShift(const Instruction *I,
2758                               ARM_AM::ShiftOpc ShiftTy) {
2759   // We handle thumb2 mode by target independent selector
2760   // or SelectionDAG ISel.
2761   if (isThumb2)
2762     return false;
2763 
2764   // Only handle i32 now.
2765   EVT DestVT = TLI.getValueType(I->getType(), true);
2766   if (DestVT != MVT::i32)
2767     return false;
2768 
2769   unsigned Opc = ARM::MOVsr;
2770   unsigned ShiftImm;
2771   Value *Src2Value = I->getOperand(1);
2772   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2773     ShiftImm = CI->getZExtValue();
2774 
2775     // Fall back to selection DAG isel if the shift amount
2776     // is zero or greater than the width of the value type.
2777     if (ShiftImm == 0 || ShiftImm >=32)
2778       return false;
2779 
2780     Opc = ARM::MOVsi;
2781   }
2782 
2783   Value *Src1Value = I->getOperand(0);
2784   unsigned Reg1 = getRegForValue(Src1Value);
2785   if (Reg1 == 0) return false;
2786 
2787   unsigned Reg2 = 0;
2788   if (Opc == ARM::MOVsr) {
2789     Reg2 = getRegForValue(Src2Value);
2790     if (Reg2 == 0) return false;
2791   }
2792 
2793   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2794   if(ResultReg == 0) return false;
2795 
2796   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2797                                     TII.get(Opc), ResultReg)
2798                             .addReg(Reg1);
2799 
2800   if (Opc == ARM::MOVsi)
2801     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2802   else if (Opc == ARM::MOVsr) {
2803     MIB.addReg(Reg2);
2804     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2805   }
2806 
2807   AddOptionalDefs(MIB);
2808   updateValueMap(I, ResultReg);
2809   return true;
2810 }
2811 
2812 // TODO: SoftFP support.
fastSelectInstruction(const Instruction * I)2813 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2814 
2815   switch (I->getOpcode()) {
2816     case Instruction::Load:
2817       return SelectLoad(I);
2818     case Instruction::Store:
2819       return SelectStore(I);
2820     case Instruction::Br:
2821       return SelectBranch(I);
2822     case Instruction::IndirectBr:
2823       return SelectIndirectBr(I);
2824     case Instruction::ICmp:
2825     case Instruction::FCmp:
2826       return SelectCmp(I);
2827     case Instruction::FPExt:
2828       return SelectFPExt(I);
2829     case Instruction::FPTrunc:
2830       return SelectFPTrunc(I);
2831     case Instruction::SIToFP:
2832       return SelectIToFP(I, /*isSigned*/ true);
2833     case Instruction::UIToFP:
2834       return SelectIToFP(I, /*isSigned*/ false);
2835     case Instruction::FPToSI:
2836       return SelectFPToI(I, /*isSigned*/ true);
2837     case Instruction::FPToUI:
2838       return SelectFPToI(I, /*isSigned*/ false);
2839     case Instruction::Add:
2840       return SelectBinaryIntOp(I, ISD::ADD);
2841     case Instruction::Or:
2842       return SelectBinaryIntOp(I, ISD::OR);
2843     case Instruction::Sub:
2844       return SelectBinaryIntOp(I, ISD::SUB);
2845     case Instruction::FAdd:
2846       return SelectBinaryFPOp(I, ISD::FADD);
2847     case Instruction::FSub:
2848       return SelectBinaryFPOp(I, ISD::FSUB);
2849     case Instruction::FMul:
2850       return SelectBinaryFPOp(I, ISD::FMUL);
2851     case Instruction::SDiv:
2852       return SelectDiv(I, /*isSigned*/ true);
2853     case Instruction::UDiv:
2854       return SelectDiv(I, /*isSigned*/ false);
2855     case Instruction::SRem:
2856       return SelectRem(I, /*isSigned*/ true);
2857     case Instruction::URem:
2858       return SelectRem(I, /*isSigned*/ false);
2859     case Instruction::Call:
2860       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2861         return SelectIntrinsicCall(*II);
2862       return SelectCall(I);
2863     case Instruction::Select:
2864       return SelectSelect(I);
2865     case Instruction::Ret:
2866       return SelectRet(I);
2867     case Instruction::Trunc:
2868       return SelectTrunc(I);
2869     case Instruction::ZExt:
2870     case Instruction::SExt:
2871       return SelectIntExt(I);
2872     case Instruction::Shl:
2873       return SelectShift(I, ARM_AM::lsl);
2874     case Instruction::LShr:
2875       return SelectShift(I, ARM_AM::lsr);
2876     case Instruction::AShr:
2877       return SelectShift(I, ARM_AM::asr);
2878     default: break;
2879   }
2880   return false;
2881 }
2882 
2883 namespace {
2884 // This table describes sign- and zero-extend instructions which can be
2885 // folded into a preceding load. All of these extends have an immediate
2886 // (sometimes a mask and sometimes a shift) that's applied after
2887 // extension.
2888 const struct FoldableLoadExtendsStruct {
2889   uint16_t Opc[2];  // ARM, Thumb.
2890   uint8_t ExpectedImm;
2891   uint8_t isZExt     : 1;
2892   uint8_t ExpectedVT : 7;
2893 } FoldableLoadExtends[] = {
2894   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2895   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2896   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2897   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2898   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2899 };
2900 }
2901 
2902 /// \brief The specified machine instr operand is a vreg, and that
2903 /// vreg is being provided by the specified load instruction.  If possible,
2904 /// try to fold the load as an operand to the instruction, returning true if
2905 /// successful.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2906 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2907                                       const LoadInst *LI) {
2908   // Verify we have a legal type before going any further.
2909   MVT VT;
2910   if (!isLoadTypeLegal(LI->getType(), VT))
2911     return false;
2912 
2913   // Combine load followed by zero- or sign-extend.
2914   // ldrb r1, [r0]       ldrb r1, [r0]
2915   // uxtb r2, r1     =>
2916   // mov  r3, r2         mov  r3, r1
2917   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2918     return false;
2919   const uint64_t Imm = MI->getOperand(2).getImm();
2920 
2921   bool Found = false;
2922   bool isZExt;
2923   for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
2924        i != e; ++i) {
2925     if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
2926         (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
2927         MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
2928       Found = true;
2929       isZExt = FoldableLoadExtends[i].isZExt;
2930     }
2931   }
2932   if (!Found) return false;
2933 
2934   // See if we can handle this address.
2935   Address Addr;
2936   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2937 
2938   unsigned ResultReg = MI->getOperand(0).getReg();
2939   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2940     return false;
2941   MI->eraseFromParent();
2942   return true;
2943 }
2944 
ARMLowerPICELF(const GlobalValue * GV,unsigned Align,MVT VT)2945 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2946                                      unsigned Align, MVT VT) {
2947   bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2948   ARMConstantPoolConstant *CPV =
2949     ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2950   unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
2951 
2952   unsigned Opc;
2953   unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT));
2954   // Load value.
2955   if (isThumb2) {
2956     DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0);
2957     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2958                             TII.get(ARM::t2LDRpci), DestReg1)
2959                     .addConstantPoolIndex(Idx));
2960     Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs;
2961   } else {
2962     // The extra immediate is for addrmode2.
2963     DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0);
2964     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2965                             DbgLoc, TII.get(ARM::LDRcp), DestReg1)
2966                     .addConstantPoolIndex(Idx).addImm(0));
2967     Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs;
2968   }
2969 
2970   unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
2971   if (GlobalBaseReg == 0) {
2972     GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT));
2973     AFI->setGlobalBaseReg(GlobalBaseReg);
2974   }
2975 
2976   unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT));
2977   DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0);
2978   DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1);
2979   GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2);
2980   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2981                                     DbgLoc, TII.get(Opc), DestReg2)
2982                             .addReg(DestReg1)
2983                             .addReg(GlobalBaseReg);
2984   if (!UseGOTOFF)
2985     MIB.addImm(0);
2986   AddOptionalDefs(MIB);
2987 
2988   return DestReg2;
2989 }
2990 
fastLowerArguments()2991 bool ARMFastISel::fastLowerArguments() {
2992   if (!FuncInfo.CanLowerReturn)
2993     return false;
2994 
2995   const Function *F = FuncInfo.Fn;
2996   if (F->isVarArg())
2997     return false;
2998 
2999   CallingConv::ID CC = F->getCallingConv();
3000   switch (CC) {
3001   default:
3002     return false;
3003   case CallingConv::Fast:
3004   case CallingConv::C:
3005   case CallingConv::ARM_AAPCS_VFP:
3006   case CallingConv::ARM_AAPCS:
3007   case CallingConv::ARM_APCS:
3008     break;
3009   }
3010 
3011   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3012   // which are passed in r0 - r3.
3013   unsigned Idx = 1;
3014   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3015        I != E; ++I, ++Idx) {
3016     if (Idx > 4)
3017       return false;
3018 
3019     if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
3020         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
3021         F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
3022       return false;
3023 
3024     Type *ArgTy = I->getType();
3025     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3026       return false;
3027 
3028     EVT ArgVT = TLI.getValueType(ArgTy);
3029     if (!ArgVT.isSimple()) return false;
3030     switch (ArgVT.getSimpleVT().SimpleTy) {
3031     case MVT::i8:
3032     case MVT::i16:
3033     case MVT::i32:
3034       break;
3035     default:
3036       return false;
3037     }
3038   }
3039 
3040 
3041   static const uint16_t GPRArgRegs[] = {
3042     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3043   };
3044 
3045   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3046   Idx = 0;
3047   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3048        I != E; ++I, ++Idx) {
3049     unsigned SrcReg = GPRArgRegs[Idx];
3050     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3051     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3052     // Without this, EmitLiveInCopies may eliminate the livein if its only
3053     // use is a bitcast (which isn't turned into an instruction).
3054     unsigned ResultReg = createResultReg(RC);
3055     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3056             TII.get(TargetOpcode::COPY),
3057             ResultReg).addReg(DstReg, getKillRegState(true));
3058     updateValueMap(I, ResultReg);
3059   }
3060 
3061   return true;
3062 }
3063 
3064 namespace llvm {
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)3065   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3066                                 const TargetLibraryInfo *libInfo) {
3067     const TargetMachine &TM = funcInfo.MF->getTarget();
3068 
3069     const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
3070     // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
3071     bool UseFastISel = false;
3072     UseFastISel |= Subtarget->isTargetMachO() && !Subtarget->isThumb1Only();
3073     UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb();
3074     UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb();
3075 
3076     if (UseFastISel) {
3077       // iOS always has a FP for backtracking, force other targets
3078       // to keep their FP when doing FastISel. The emitted code is
3079       // currently superior, and in cases like test-suite's lencod
3080       // FastISel isn't quite correct when FP is eliminated.
3081       TM.Options.NoFramePointerElim = true;
3082       return new ARMFastISel(funcInfo, libInfo);
3083     }
3084     return nullptr;
3085   }
3086 }
3087