xref: /minix/sys/arch/x86/include/lock.h (revision 83ee113e)
1 /*	$NetBSD: lock.h,v 1.27 2013/01/22 22:09:44 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2006 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Machine-dependent spin lock operations.
34  */
35 
36 #ifndef _X86_LOCK_H_
37 #define	_X86_LOCK_H_
38 
39 #include <sys/param.h>
40 
41 static __inline int
42 __SIMPLELOCK_LOCKED_P(__cpu_simple_lock_t *__ptr)
43 {
44 	return *__ptr == __SIMPLELOCK_LOCKED;
45 }
46 
47 static __inline int
48 __SIMPLELOCK_UNLOCKED_P(__cpu_simple_lock_t *__ptr)
49 {
50 	return *__ptr == __SIMPLELOCK_UNLOCKED;
51 }
52 
53 static __inline void
54 __cpu_simple_lock_set(__cpu_simple_lock_t *__ptr)
55 {
56 
57 	*__ptr = __SIMPLELOCK_LOCKED;
58 }
59 
60 static __inline void
61 __cpu_simple_lock_clear(__cpu_simple_lock_t *__ptr)
62 {
63 
64 	*__ptr = __SIMPLELOCK_UNLOCKED;
65 }
66 
67 #ifdef _HARDKERNEL
68 # include <machine/cpufunc.h>
69 # define SPINLOCK_SPIN_HOOK	/* nothing */
70 # ifdef SPINLOCK_BACKOFF_HOOK
71 #  undef SPINLOCK_BACKOFF_HOOK
72 # endif
73 # define SPINLOCK_BACKOFF_HOOK	x86_pause()
74 # define SPINLOCK_INLINE
75 #else /* !_HARDKERNEL */
76 # define SPINLOCK_BODY
77 # define SPINLOCK_INLINE static __inline __unused
78 #endif /* _HARDKERNEL */
79 
80 SPINLOCK_INLINE void	__cpu_simple_lock_init(__cpu_simple_lock_t *);
81 SPINLOCK_INLINE void	__cpu_simple_lock(__cpu_simple_lock_t *);
82 SPINLOCK_INLINE int	__cpu_simple_lock_try(__cpu_simple_lock_t *);
83 SPINLOCK_INLINE void	__cpu_simple_unlock(__cpu_simple_lock_t *);
84 
85 #ifdef SPINLOCK_BODY
86 SPINLOCK_INLINE void
87 __cpu_simple_lock_init(__cpu_simple_lock_t *lockp)
88 {
89 
90 	*lockp = __SIMPLELOCK_UNLOCKED;
91 	__insn_barrier();
92 }
93 
94 SPINLOCK_INLINE int
95 __cpu_simple_lock_try(__cpu_simple_lock_t *lockp)
96 {
97 	uint8_t val;
98 
99 	val = __SIMPLELOCK_LOCKED;
100 	__asm volatile ("xchgb %0,(%2)" :
101 	    "=qQ" (val)
102 	    :"0" (val), "r" (lockp));
103 	__insn_barrier();
104 	return val == __SIMPLELOCK_UNLOCKED;
105 }
106 
107 SPINLOCK_INLINE void
108 __cpu_simple_lock(__cpu_simple_lock_t *lockp)
109 {
110 
111 	while (!__cpu_simple_lock_try(lockp))
112 		/* nothing */;
113 	__insn_barrier();
114 }
115 
116 /*
117  * Note on x86 memory ordering
118  *
119  * When releasing a lock we must ensure that no stores or loads from within
120  * the critical section are re-ordered by the CPU to occur outside of it:
121  * they must have completed and be visible to other processors once the lock
122  * has been released.
123  *
124  * NetBSD usually runs with the kernel mapped (via MTRR) in a WB (write
125  * back) memory region.  In that case, memory ordering on x86 platforms
126  * looks like this:
127  *
128  * i386		All loads/stores occur in instruction sequence.
129  *
130  * i486		All loads/stores occur in instruction sequence.  In
131  * Pentium	exceptional circumstances, loads can be re-ordered around
132  *		stores, but for the purposes of releasing a lock it does
133  *		not matter.  Stores may not be immediately visible to other
134  *		processors as they can be buffered.  However, since the
135  *		stores are buffered in order the lock release will always be
136  *		the last operation in the critical section that becomes
137  *		visible to other CPUs.
138  *
139  * Pentium Pro	The "Intel 64 and IA-32 Architectures Software Developer's
140  * onwards	Manual" volume 3A (order number 248966) says that (1) "Reads
141  *		can be carried out speculatively and in any order" and (2)
142  *		"Reads can pass buffered stores, but the processor is
143  *		self-consistent.".  This would be a problem for the below,
144  *		and would mandate a locked instruction cycle or load fence
145  *		before releasing the simple lock.
146  *
147  *		The "Intel Pentium 4 Processor Optimization" guide (order
148  *		number 253668-022US) says: "Loads can be moved before stores
149  *		that occurred earlier in the program if they are not
150  *		predicted to load from the same linear address.".  This is
151  *		not a problem since the only loads that can be re-ordered
152  *		take place once the lock has been released via a store.
153  *
154  *		The above two documents seem to contradict each other,
155  *		however with the exception of early steppings of the Pentium
156  *		Pro, the second document is closer to the truth: a store
157  *		will always act as a load fence for all loads that precede
158  *		the store in instruction order.
159  *
160  *		Again, note that stores can be buffered and will not always
161  *		become immediately visible to other CPUs: they are however
162  *		buffered in order.
163  *
164  * AMD64	Stores occur in order and are buffered.  Loads can be
165  *		reordered, however stores act as load fences, meaning that
166  *		loads can not be reordered around stores.
167  */
168 SPINLOCK_INLINE void
169 __cpu_simple_unlock(__cpu_simple_lock_t *lockp)
170 {
171 
172 	__insn_barrier();
173 	*lockp = __SIMPLELOCK_UNLOCKED;
174 }
175 
176 #endif	/* SPINLOCK_BODY */
177 
178 #endif /* _X86_LOCK_H_ */
179