xref: /minix/sys/ufs/lfs/lfs_segment.c (revision 0a6a1f1d)
1 /*	$NetBSD: lfs_segment.c,v 1.260 2015/10/03 08:28:16 dholland Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Konrad E. Schroder <perseant@hhhh.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*
32  * Copyright (c) 1991, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
60  */
61 
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.260 2015/10/03 08:28:16 dholland Exp $");
64 
65 #ifdef DEBUG
66 # define vndebug(vp, str) do {						\
67 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
68 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 		     VTOI(vp)->i_number, (str), op));			\
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76 
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94 
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97 
98 #include <ufs/lfs/ulfs_inode.h>
99 #include <ufs/lfs/ulfsmount.h>
100 #include <ufs/lfs/ulfs_extern.h>
101 
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_accessors.h>
104 #include <ufs/lfs/lfs_kernel.h>
105 #include <ufs/lfs/lfs_extern.h>
106 
107 #include <uvm/uvm.h>
108 #include <uvm/uvm_extern.h>
109 
110 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
111 
112 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
113 static void lfs_free_aiodone(struct buf *);
114 static void lfs_super_aiodone(struct buf *);
115 static void lfs_cluster_aiodone(struct buf *);
116 static void lfs_cluster_callback(struct buf *);
117 
118 /*
119  * Determine if it's OK to start a partial in this segment, or if we need
120  * to go on to a new segment.
121  */
122 #define	LFS_PARTIAL_FITS(fs) \
123 	(lfs_sb_getfsbpseg(fs) - \
124 	    (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \
125 	lfs_sb_getfrag(fs))
126 
127 /*
128  * Figure out whether we should do a checkpoint write or go ahead with
129  * an ordinary write.
130  */
131 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
132         ((flags & SEGM_CLEAN) == 0 &&					\
133 	  ((fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
134 	    (flags & SEGM_CKP) ||					\
135 	    lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE)))
136 
137 int	 lfs_match_fake(struct lfs *, struct buf *);
138 void	 lfs_newseg(struct lfs *);
139 void	 lfs_supercallback(struct buf *);
140 void	 lfs_updatemeta(struct segment *);
141 void	 lfs_writesuper(struct lfs *, daddr_t);
142 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
143 	    struct segment *sp, int dirops);
144 
145 static void lfs_shellsort(struct lfs *, struct buf **, union lfs_blocks *,
146 			  int, int);
147 
148 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
149 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
150 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
151 int	lfs_dirvcount = 0;		/* # active dirops */
152 
153 /* Statistics Counters */
154 int lfs_dostats = 1;
155 struct lfs_stats lfs_stats;
156 
157 /* op values to lfs_writevnodes */
158 #define	VN_REG		0
159 #define	VN_DIROP	1
160 #define	VN_EMPTY	2
161 #define VN_CLEAN	3
162 
163 /*
164  * XXX KS - Set modification time on the Ifile, so the cleaner can
165  * read the fs mod time off of it.  We don't set IN_UPDATE here,
166  * since we don't really need this to be flushed to disk (and in any
167  * case that wouldn't happen to the Ifile until we checkpoint).
168  */
169 void
lfs_imtime(struct lfs * fs)170 lfs_imtime(struct lfs *fs)
171 {
172 	struct timespec ts;
173 	struct inode *ip;
174 
175 	ASSERT_MAYBE_SEGLOCK(fs);
176 	vfs_timestamp(&ts);
177 	ip = VTOI(fs->lfs_ivnode);
178 	lfs_dino_setmtime(fs, ip->i_din, ts.tv_sec);
179 	lfs_dino_setmtimensec(fs, ip->i_din, ts.tv_nsec);
180 }
181 
182 /*
183  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
184  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
185  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
186  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
187  */
188 
189 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
190 
191 int
lfs_vflush(struct vnode * vp)192 lfs_vflush(struct vnode *vp)
193 {
194 	struct inode *ip;
195 	struct lfs *fs;
196 	struct segment *sp;
197 	struct buf *bp, *nbp, *tbp, *tnbp;
198 	int error;
199 	int flushed;
200 	int relock;
201 
202 	ip = VTOI(vp);
203 	fs = VFSTOULFS(vp->v_mount)->um_lfs;
204 	relock = 0;
205 
206     top:
207 	KASSERT(mutex_owned(vp->v_interlock) == false);
208 	KASSERT(mutex_owned(&lfs_lock) == false);
209 	KASSERT(mutex_owned(&bufcache_lock) == false);
210 	ASSERT_NO_SEGLOCK(fs);
211 	if (ip->i_flag & IN_CLEANING) {
212 		ivndebug(vp,"vflush/in_cleaning");
213 		mutex_enter(&lfs_lock);
214 		LFS_CLR_UINO(ip, IN_CLEANING);
215 		LFS_SET_UINO(ip, IN_MODIFIED);
216 		mutex_exit(&lfs_lock);
217 
218 		/*
219 		 * Toss any cleaning buffers that have real counterparts
220 		 * to avoid losing new data.
221 		 */
222 		mutex_enter(vp->v_interlock);
223 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
224 			nbp = LIST_NEXT(bp, b_vnbufs);
225 			if (!LFS_IS_MALLOC_BUF(bp))
226 				continue;
227 			/*
228 			 * Look for pages matching the range covered
229 			 * by cleaning blocks.  It's okay if more dirty
230 			 * pages appear, so long as none disappear out
231 			 * from under us.
232 			 */
233 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
234 			    vp != fs->lfs_ivnode) {
235 				struct vm_page *pg;
236 				voff_t off;
237 
238 				for (off = lfs_lblktosize(fs, bp->b_lblkno);
239 				     off < lfs_lblktosize(fs, bp->b_lblkno + 1);
240 				     off += PAGE_SIZE) {
241 					pg = uvm_pagelookup(&vp->v_uobj, off);
242 					if (pg == NULL)
243 						continue;
244 					if ((pg->flags & PG_CLEAN) == 0 ||
245 					    pmap_is_modified(pg)) {
246 						lfs_sb_addavail(fs,
247 							lfs_btofsb(fs,
248 								bp->b_bcount));
249 						wakeup(&fs->lfs_availsleep);
250 						mutex_exit(vp->v_interlock);
251 						lfs_freebuf(fs, bp);
252 						mutex_enter(vp->v_interlock);
253 						bp = NULL;
254 						break;
255 					}
256 				}
257 			}
258 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
259 			    tbp = tnbp)
260 			{
261 				tnbp = LIST_NEXT(tbp, b_vnbufs);
262 				if (tbp->b_vp == bp->b_vp
263 				   && tbp->b_lblkno == bp->b_lblkno
264 				   && tbp != bp)
265 				{
266 					lfs_sb_addavail(fs, lfs_btofsb(fs,
267 						bp->b_bcount));
268 					wakeup(&fs->lfs_availsleep);
269 					mutex_exit(vp->v_interlock);
270 					lfs_freebuf(fs, bp);
271 					mutex_enter(vp->v_interlock);
272 					bp = NULL;
273 					break;
274 				}
275 			}
276 		}
277 	} else {
278 		mutex_enter(vp->v_interlock);
279 	}
280 
281 	/* If the node is being written, wait until that is done */
282 	while (WRITEINPROG(vp)) {
283 		ivndebug(vp,"vflush/writeinprog");
284 		cv_wait(&vp->v_cv, vp->v_interlock);
285 	}
286 	error = vdead_check(vp, VDEAD_NOWAIT);
287 	mutex_exit(vp->v_interlock);
288 
289 	/* Protect against deadlock in vinvalbuf() */
290 	lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
291 	if (error != 0) {
292 		fs->lfs_reclino = ip->i_number;
293 	}
294 
295 	/* If we're supposed to flush a freed inode, just toss it */
296 	if (ip->i_lfs_iflags & LFSI_DELETED) {
297 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
298 		      ip->i_number));
299 		/* Drain v_numoutput */
300 		mutex_enter(vp->v_interlock);
301 		while (vp->v_numoutput > 0) {
302 			cv_wait(&vp->v_cv, vp->v_interlock);
303 		}
304 		KASSERT(vp->v_numoutput == 0);
305 		mutex_exit(vp->v_interlock);
306 
307 		mutex_enter(&bufcache_lock);
308 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
309 			nbp = LIST_NEXT(bp, b_vnbufs);
310 
311 			KASSERT((bp->b_flags & B_GATHERED) == 0);
312 			if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
313 				lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount));
314 				wakeup(&fs->lfs_availsleep);
315 			}
316 			/* Copied from lfs_writeseg */
317 			if (bp->b_iodone != NULL) {
318 				mutex_exit(&bufcache_lock);
319 				biodone(bp);
320 				mutex_enter(&bufcache_lock);
321 			} else {
322 				bremfree(bp);
323 				LFS_UNLOCK_BUF(bp);
324 				mutex_enter(vp->v_interlock);
325 				bp->b_flags &= ~(B_READ | B_GATHERED);
326 				bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
327 				bp->b_error = 0;
328 				reassignbuf(bp, vp);
329 				mutex_exit(vp->v_interlock);
330 				brelse(bp, 0);
331 			}
332 		}
333 		mutex_exit(&bufcache_lock);
334 		LFS_CLR_UINO(ip, IN_CLEANING);
335 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 		ip->i_flag &= ~IN_ALLMOD;
337 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 		      ip->i_number));
339 		lfs_segunlock(fs);
340 
341 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342 
343 		return 0;
344 	}
345 
346 	fs->lfs_flushvp = vp;
347 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 		fs->lfs_flushvp = NULL;
350 		KASSERT(fs->lfs_flushvp_fakevref == 0);
351 		lfs_segunlock(fs);
352 
353 		/* Make sure that any pending buffers get written */
354 		mutex_enter(vp->v_interlock);
355 		while (vp->v_numoutput > 0) {
356 			cv_wait(&vp->v_cv, vp->v_interlock);
357 		}
358 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
359 		KASSERT(vp->v_numoutput == 0);
360 		mutex_exit(vp->v_interlock);
361 
362 		return error;
363 	}
364 	sp = fs->lfs_sp;
365 
366 	flushed = 0;
367 	if (VPISEMPTY(vp)) {
368 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
369 		++flushed;
370 	} else if ((ip->i_flag & IN_CLEANING) &&
371 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
372 		ivndebug(vp,"vflush/clean");
373 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
374 		++flushed;
375 	} else if (lfs_dostats) {
376 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
377 			++lfs_stats.vflush_invoked;
378 		ivndebug(vp,"vflush");
379 	}
380 
381 #ifdef DIAGNOSTIC
382 	if (vp->v_uflag & VU_DIROP) {
383 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
384 		/* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
385 	}
386 #endif
387 
388 	do {
389 #ifdef DEBUG
390 		int loopcount = 0;
391 #endif
392 		do {
393 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
394 				relock = lfs_writefile(fs, sp, vp);
395 				if (relock && vp != fs->lfs_ivnode) {
396 					/*
397 					 * Might have to wait for the
398 					 * cleaner to run; but we're
399 					 * still not done with this vnode.
400 					 * XXX we can do better than this.
401 					 */
402 					KDASSERT(ip->i_number != LFS_IFILE_INUM);
403 					lfs_writeinode(fs, sp, ip);
404 					mutex_enter(&lfs_lock);
405 					LFS_SET_UINO(ip, IN_MODIFIED);
406 					mutex_exit(&lfs_lock);
407 					lfs_writeseg(fs, sp);
408 					lfs_segunlock(fs);
409 					lfs_segunlock_relock(fs);
410 					goto top;
411 				}
412 			}
413 			/*
414 			 * If we begin a new segment in the middle of writing
415 			 * the Ifile, it creates an inconsistent checkpoint,
416 			 * since the Ifile information for the new segment
417 			 * is not up-to-date.  Take care of this here by
418 			 * sending the Ifile through again in case there
419 			 * are newly dirtied blocks.  But wait, there's more!
420 			 * This second Ifile write could *also* cross a segment
421 			 * boundary, if the first one was large.  The second
422 			 * one is guaranteed to be no more than 8 blocks,
423 			 * though (two segment blocks and supporting indirects)
424 			 * so the third write *will not* cross the boundary.
425 			 */
426 			if (vp == fs->lfs_ivnode) {
427 				lfs_writefile(fs, sp, vp);
428 				lfs_writefile(fs, sp, vp);
429 			}
430 #ifdef DEBUG
431 			if (++loopcount > 2)
432 				log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
433 #endif
434 		} while (lfs_writeinode(fs, sp, ip));
435 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
436 
437 	if (lfs_dostats) {
438 		++lfs_stats.nwrites;
439 		if (sp->seg_flags & SEGM_SYNC)
440 			++lfs_stats.nsync_writes;
441 		if (sp->seg_flags & SEGM_CKP)
442 			++lfs_stats.ncheckpoints;
443 	}
444 	/*
445 	 * If we were called from somewhere that has already held the seglock
446 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
447 	 * the write to complete because we are still locked.
448 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
449 	 * we must explicitly wait, if that is the case.
450 	 *
451 	 * We compare the iocount against 1, not 0, because it is
452 	 * artificially incremented by lfs_seglock().
453 	 */
454 	mutex_enter(&lfs_lock);
455 	if (fs->lfs_seglock > 1) {
456 		while (fs->lfs_iocount > 1)
457 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
458 				     "lfs_vflush", 0, &lfs_lock);
459 	}
460 	mutex_exit(&lfs_lock);
461 
462 	lfs_segunlock(fs);
463 
464 	/* Wait for these buffers to be recovered by aiodoned */
465 	mutex_enter(vp->v_interlock);
466 	while (vp->v_numoutput > 0) {
467 		cv_wait(&vp->v_cv, vp->v_interlock);
468 	}
469 	KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
470 	KASSERT(vp->v_numoutput == 0);
471 	mutex_exit(vp->v_interlock);
472 
473 	fs->lfs_flushvp = NULL;
474 	KASSERT(fs->lfs_flushvp_fakevref == 0);
475 
476 	return (0);
477 }
478 
479 struct lfs_writevnodes_ctx {
480 	int op;
481 	struct lfs *fs;
482 };
483 static bool
lfs_writevnodes_selector(void * cl,struct vnode * vp)484 lfs_writevnodes_selector(void *cl, struct vnode *vp)
485 {
486 	struct lfs_writevnodes_ctx *c = cl;
487 	struct inode *ip = VTOI(vp);
488 	int op = c->op;
489 
490 	if (ip == NULL || vp->v_type == VNON)
491 		return false;
492 	if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
493 	    (op != VN_DIROP && op != VN_CLEAN && (vp->v_uflag & VU_DIROP))) {
494 		vndebug(vp, "dirop");
495 		return false;
496 	}
497 	if (op == VN_EMPTY && !VPISEMPTY(vp)) {
498 		vndebug(vp,"empty");
499 		return false;;
500 	}
501 	if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM &&
502 	    vp != c->fs->lfs_flushvp && !(ip->i_flag & IN_CLEANING)) {
503 		vndebug(vp,"cleaning");
504 		return false;
505 	}
506 	mutex_enter(&lfs_lock);
507 	if (vp == c->fs->lfs_unlockvp) {
508 		mutex_exit(&lfs_lock);
509 		return false;
510 	}
511 	mutex_exit(&lfs_lock);
512 
513 	return true;
514 }
515 
516 int
lfs_writevnodes(struct lfs * fs,struct mount * mp,struct segment * sp,int op)517 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
518 {
519 	struct inode *ip;
520 	struct vnode *vp;
521 	struct vnode_iterator *marker;
522 	struct lfs_writevnodes_ctx ctx;
523 	int inodes_written = 0;
524 	int error = 0;
525 
526 	/*
527 	 * XXX This was TAILQ_FOREACH_REVERSE on &mp->mnt_vnodelist.
528 	 * XXX The rationale is unclear, the initial commit had no information.
529 	 * XXX If the order really matters we have to sort the vnodes first.
530 	*/
531 
532 	ASSERT_SEGLOCK(fs);
533 	vfs_vnode_iterator_init(mp, &marker);
534 	ctx.op = op;
535 	ctx.fs = fs;
536 	while ((vp = vfs_vnode_iterator_next(marker,
537 	    lfs_writevnodes_selector, &ctx)) != NULL) {
538 		ip = VTOI(vp);
539 
540 		/*
541 		 * Write the inode/file if dirty and it's not the IFILE.
542 		 */
543 		if (((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) &&
544 		    ip->i_number != LFS_IFILE_INUM) {
545 			error = lfs_writefile(fs, sp, vp);
546 			if (error) {
547 				vrele(vp);
548 				if (error == EAGAIN) {
549 					/*
550 					 * This error from lfs_putpages
551 					 * indicates we need to drop
552 					 * the segment lock and start
553 					 * over after the cleaner has
554 					 * had a chance to run.
555 					 */
556 					lfs_writeinode(fs, sp, ip);
557 					lfs_writeseg(fs, sp);
558 					if (!VPISEMPTY(vp) &&
559 					    !WRITEINPROG(vp) &&
560 					    !(ip->i_flag & IN_ALLMOD)) {
561 						mutex_enter(&lfs_lock);
562 						LFS_SET_UINO(ip, IN_MODIFIED);
563 						mutex_exit(&lfs_lock);
564 					}
565 					break;
566 				}
567 				error = 0; /* XXX not quite right */
568 				continue;
569 			}
570 
571 			if (!VPISEMPTY(vp)) {
572 				if (WRITEINPROG(vp)) {
573 					ivndebug(vp,"writevnodes/write2");
574 				} else if (!(ip->i_flag & IN_ALLMOD)) {
575 					mutex_enter(&lfs_lock);
576 					LFS_SET_UINO(ip, IN_MODIFIED);
577 					mutex_exit(&lfs_lock);
578 				}
579 			}
580 			(void) lfs_writeinode(fs, sp, ip);
581 			inodes_written++;
582 		}
583 		vrele(vp);
584 	}
585 	vfs_vnode_iterator_destroy(marker);
586 	return error;
587 }
588 
589 /*
590  * Do a checkpoint.
591  */
592 int
lfs_segwrite(struct mount * mp,int flags)593 lfs_segwrite(struct mount *mp, int flags)
594 {
595 	struct buf *bp;
596 	struct inode *ip;
597 	struct lfs *fs;
598 	struct segment *sp;
599 	struct vnode *vp;
600 	SEGUSE *segusep;
601 	int do_ckp, did_ckp, error;
602 	unsigned n, segleft, maxseg, sn, i, curseg;
603 	int writer_set = 0;
604 	int dirty;
605 	int redo;
606 	SEGSUM *ssp;
607 	int um_error;
608 
609 	fs = VFSTOULFS(mp)->um_lfs;
610 	ASSERT_MAYBE_SEGLOCK(fs);
611 
612 	if (fs->lfs_ronly)
613 		return EROFS;
614 
615 	lfs_imtime(fs);
616 
617 	/*
618 	 * Allocate a segment structure and enough space to hold pointers to
619 	 * the maximum possible number of buffers which can be described in a
620 	 * single summary block.
621 	 */
622 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
623 
624 	/* We can't do a partial write and checkpoint at the same time. */
625 	if (do_ckp)
626 		flags &= ~SEGM_SINGLE;
627 
628 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
629 	sp = fs->lfs_sp;
630 	if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
631 		do_ckp = 1;
632 
633 	/*
634 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
635 	 * in which case we have to flush *all* buffers off of this vnode.
636 	 * We don't care about other nodes, but write any non-dirop nodes
637 	 * anyway in anticipation of another getnewvnode().
638 	 *
639 	 * If we're cleaning we only write cleaning and ifile blocks, and
640 	 * no dirops, since otherwise we'd risk corruption in a crash.
641 	 */
642 	if (sp->seg_flags & SEGM_CLEAN)
643 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
644 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
645 		do {
646 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
647 			if ((sp->seg_flags & SEGM_SINGLE) &&
648 			    lfs_sb_getcurseg(fs) != fs->lfs_startseg) {
649 				DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs)));
650 				break;
651 			}
652 
653 			if (do_ckp || fs->lfs_dirops == 0) {
654 				if (!writer_set) {
655 					lfs_writer_enter(fs, "lfs writer");
656 					writer_set = 1;
657 				}
658 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
659 				if (um_error == 0)
660 					um_error = error;
661 				/* In case writevnodes errored out */
662 				lfs_flush_dirops(fs);
663 				ssp = (SEGSUM *)(sp->segsum);
664 				lfs_ss_setflags(fs, ssp,
665 						lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
666 				lfs_finalize_fs_seguse(fs);
667 			}
668 			if (do_ckp && um_error) {
669 				lfs_segunlock_relock(fs);
670 				sp = fs->lfs_sp;
671 			}
672 		} while (do_ckp && um_error != 0);
673 	}
674 
675 	/*
676 	 * If we are doing a checkpoint, mark everything since the
677 	 * last checkpoint as no longer ACTIVE.
678 	 */
679 	if (do_ckp || fs->lfs_doifile) {
680 		segleft = lfs_sb_getnseg(fs);
681 		curseg = 0;
682 		for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) {
683 			dirty = 0;
684 			if (bread(fs->lfs_ivnode, lfs_sb_getcleansz(fs) + n,
685 			    lfs_sb_getbsize(fs), B_MODIFY, &bp))
686 				panic("lfs_segwrite: ifile read");
687 			segusep = (SEGUSE *)bp->b_data;
688 			maxseg = min(segleft, lfs_sb_getsepb(fs));
689 			for (i = 0; i < maxseg; i++) {
690 				sn = curseg + i;
691 				if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) &&
692 				    segusep->su_flags & SEGUSE_ACTIVE) {
693 					segusep->su_flags &= ~SEGUSE_ACTIVE;
694 					--fs->lfs_nactive;
695 					++dirty;
696 				}
697 				fs->lfs_suflags[fs->lfs_activesb][sn] =
698 					segusep->su_flags;
699 				if (lfs_sb_getversion(fs) > 1)
700 					++segusep;
701 				else
702 					segusep = (SEGUSE *)
703 						((SEGUSE_V1 *)segusep + 1);
704 			}
705 
706 			if (dirty)
707 				error = LFS_BWRITE_LOG(bp); /* Ifile */
708 			else
709 				brelse(bp, 0);
710 			segleft -= lfs_sb_getsepb(fs);
711 			curseg += lfs_sb_getsepb(fs);
712 		}
713 	}
714 
715 	KASSERT(LFS_SEGLOCK_HELD(fs));
716 
717 	did_ckp = 0;
718 	if (do_ckp || fs->lfs_doifile) {
719 		vp = fs->lfs_ivnode;
720 #ifdef DEBUG
721 		int loopcount = 0;
722 #endif
723 		do {
724 #ifdef DEBUG
725 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
726 #endif
727 			mutex_enter(&lfs_lock);
728 			fs->lfs_flags &= ~LFS_IFDIRTY;
729 			mutex_exit(&lfs_lock);
730 
731 			ip = VTOI(vp);
732 
733 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
734 				/*
735 				 * Ifile has no pages, so we don't need
736 				 * to check error return here.
737 				 */
738 				lfs_writefile(fs, sp, vp);
739 				/*
740 				 * Ensure the Ifile takes the current segment
741 				 * into account.  See comment in lfs_vflush.
742 				 */
743 				lfs_writefile(fs, sp, vp);
744 				lfs_writefile(fs, sp, vp);
745 			}
746 
747 			if (ip->i_flag & IN_ALLMOD)
748 				++did_ckp;
749 #if 0
750 			redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
751 #else
752 			redo = lfs_writeinode(fs, sp, ip);
753 #endif
754 			redo += lfs_writeseg(fs, sp);
755 			mutex_enter(&lfs_lock);
756 			redo += (fs->lfs_flags & LFS_IFDIRTY);
757 			mutex_exit(&lfs_lock);
758 #ifdef DEBUG
759 			if (++loopcount > 2)
760 				log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
761 					loopcount);
762 #endif
763 		} while (redo && do_ckp);
764 
765 		/*
766 		 * Unless we are unmounting, the Ifile may continue to have
767 		 * dirty blocks even after a checkpoint, due to changes to
768 		 * inodes' atime.  If we're checkpointing, it's "impossible"
769 		 * for other parts of the Ifile to be dirty after the loop
770 		 * above, since we hold the segment lock.
771 		 */
772 		mutex_enter(vp->v_interlock);
773 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
774 			LFS_CLR_UINO(ip, IN_ALLMOD);
775 		}
776 #ifdef DIAGNOSTIC
777 		else if (do_ckp) {
778 			int do_panic = 0;
779 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
780 				if (bp->b_lblkno < lfs_sb_getcleansz(fs) +
781 				    lfs_sb_getsegtabsz(fs) &&
782 				    !(bp->b_flags & B_GATHERED)) {
783 					printf("ifile lbn %ld still dirty (flags %lx)\n",
784 						(long)bp->b_lblkno,
785 						(long)bp->b_flags);
786 					++do_panic;
787 				}
788 			}
789 			if (do_panic)
790 				panic("dirty blocks");
791 		}
792 #endif
793 		mutex_exit(vp->v_interlock);
794 	} else {
795 		(void) lfs_writeseg(fs, sp);
796 	}
797 
798 	/* Note Ifile no longer needs to be written */
799 	fs->lfs_doifile = 0;
800 	if (writer_set)
801 		lfs_writer_leave(fs);
802 
803 	/*
804 	 * If we didn't write the Ifile, we didn't really do anything.
805 	 * That means that (1) there is a checkpoint on disk and (2)
806 	 * nothing has changed since it was written.
807 	 *
808 	 * Take the flags off of the segment so that lfs_segunlock
809 	 * doesn't have to write the superblock either.
810 	 */
811 	if (do_ckp && !did_ckp) {
812 		sp->seg_flags &= ~SEGM_CKP;
813 	}
814 
815 	if (lfs_dostats) {
816 		++lfs_stats.nwrites;
817 		if (sp->seg_flags & SEGM_SYNC)
818 			++lfs_stats.nsync_writes;
819 		if (sp->seg_flags & SEGM_CKP)
820 			++lfs_stats.ncheckpoints;
821 	}
822 	lfs_segunlock(fs);
823 	return (0);
824 }
825 
826 /*
827  * Write the dirty blocks associated with a vnode.
828  */
829 int
lfs_writefile(struct lfs * fs,struct segment * sp,struct vnode * vp)830 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
831 {
832 	struct inode *ip;
833 	int i, frag;
834 	SEGSUM *ssp;
835 	int error;
836 
837 	ASSERT_SEGLOCK(fs);
838 	error = 0;
839 	ip = VTOI(vp);
840 
841 	lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
842 
843 	if (vp->v_uflag & VU_DIROP) {
844 		ssp = (SEGSUM *)sp->segsum;
845 		lfs_ss_setflags(fs, ssp,
846 				lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
847 	}
848 
849 	if (sp->seg_flags & SEGM_CLEAN) {
850 		lfs_gather(fs, sp, vp, lfs_match_fake);
851 		/*
852 		 * For a file being flushed, we need to write *all* blocks.
853 		 * This means writing the cleaning blocks first, and then
854 		 * immediately following with any non-cleaning blocks.
855 		 * The same is true of the Ifile since checkpoints assume
856 		 * that all valid Ifile blocks are written.
857 		 */
858 		if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
859 			lfs_gather(fs, sp, vp, lfs_match_data);
860 			/*
861 			 * Don't call VOP_PUTPAGES: if we're flushing,
862 			 * we've already done it, and the Ifile doesn't
863 			 * use the page cache.
864 			 */
865 		}
866 	} else {
867 		lfs_gather(fs, sp, vp, lfs_match_data);
868 		/*
869 		 * If we're flushing, we've already called VOP_PUTPAGES
870 		 * so don't do it again.  Otherwise, we want to write
871 		 * everything we've got.
872 		 */
873 		if (!IS_FLUSHING(fs, vp)) {
874 			mutex_enter(vp->v_interlock);
875 			error = VOP_PUTPAGES(vp, 0, 0,
876 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
877 		}
878 	}
879 
880 	/*
881 	 * It may not be necessary to write the meta-data blocks at this point,
882 	 * as the roll-forward recovery code should be able to reconstruct the
883 	 * list.
884 	 *
885 	 * We have to write them anyway, though, under two conditions: (1) the
886 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
887 	 * checkpointing.
888 	 *
889 	 * BUT if we are cleaning, we might have indirect blocks that refer to
890 	 * new blocks not being written yet, in addition to fragments being
891 	 * moved out of a cleaned segment.  If that is the case, don't
892 	 * write the indirect blocks, or the finfo will have a small block
893 	 * in the middle of it!
894 	 * XXX in this case isn't the inode size wrong too?
895 	 */
896 	frag = 0;
897 	if (sp->seg_flags & SEGM_CLEAN) {
898 		for (i = 0; i < ULFS_NDADDR; i++)
899 			if (ip->i_lfs_fragsize[i] > 0 &&
900 			    ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs))
901 				++frag;
902 	}
903 #ifdef DIAGNOSTIC
904 	if (frag > 1)
905 		panic("lfs_writefile: more than one fragment!");
906 #endif
907 	if (IS_FLUSHING(fs, vp) ||
908 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
909 		lfs_gather(fs, sp, vp, lfs_match_indir);
910 		lfs_gather(fs, sp, vp, lfs_match_dindir);
911 		lfs_gather(fs, sp, vp, lfs_match_tindir);
912 	}
913 	lfs_release_finfo(fs);
914 
915 	return error;
916 }
917 
918 /*
919  * Update segment accounting to reflect this inode's change of address.
920  */
921 static int
lfs_update_iaddr(struct lfs * fs,struct segment * sp,struct inode * ip,daddr_t ndaddr)922 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
923 {
924 	struct buf *bp;
925 	daddr_t daddr;
926 	IFILE *ifp;
927 	SEGUSE *sup;
928 	ino_t ino;
929 	int redo_ifile;
930 	u_int32_t sn;
931 
932 	redo_ifile = 0;
933 
934 	/*
935 	 * If updating the ifile, update the super-block.  Update the disk
936 	 * address and access times for this inode in the ifile.
937 	 */
938 	ino = ip->i_number;
939 	if (ino == LFS_IFILE_INUM) {
940 		daddr = lfs_sb_getidaddr(fs);
941 		lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr));
942 	} else {
943 		LFS_IENTRY(ifp, fs, ino, bp);
944 		daddr = lfs_if_getdaddr(fs, ifp);
945 		lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, ndaddr));
946 		(void)LFS_BWRITE_LOG(bp); /* Ifile */
947 	}
948 
949 	/*
950 	 * If this is the Ifile and lfs_offset is set to the first block
951 	 * in the segment, dirty the new segment's accounting block
952 	 * (XXX should already be dirty?) and tell the caller to do it again.
953 	 */
954 	if (ip->i_number == LFS_IFILE_INUM) {
955 		sn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
956 		if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) ==
957 		    lfs_sb_getoffset(fs)) {
958 			LFS_SEGENTRY(sup, fs, sn, bp);
959 			KASSERT(bp->b_oflags & BO_DELWRI);
960 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
961 			/* fs->lfs_flags |= LFS_IFDIRTY; */
962 			redo_ifile |= 1;
963 		}
964 	}
965 
966 	/*
967 	 * The inode's last address should not be in the current partial
968 	 * segment, except under exceptional circumstances (lfs_writevnodes
969 	 * had to start over, and in the meantime more blocks were written
970 	 * to a vnode).	 Both inodes will be accounted to this segment
971 	 * in lfs_writeseg so we need to subtract the earlier version
972 	 * here anyway.	 The segment count can temporarily dip below
973 	 * zero here; keep track of how many duplicates we have in
974 	 * "dupino" so we don't panic below.
975 	 */
976 	if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) {
977 		++sp->ndupino;
978 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
979 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
980 		      (long long)daddr, sp->ndupino));
981 	}
982 	/*
983 	 * Account the inode: it no longer belongs to its former segment,
984 	 * though it will not belong to the new segment until that segment
985 	 * is actually written.
986 	 */
987 	if (daddr != LFS_UNUSED_DADDR) {
988 		u_int32_t oldsn = lfs_dtosn(fs, daddr);
989 #ifdef DIAGNOSTIC
990 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
991 #endif
992 		LFS_SEGENTRY(sup, fs, oldsn, bp);
993 #ifdef DIAGNOSTIC
994 		if (sup->su_nbytes + DINOSIZE(fs) * ndupino < DINOSIZE(fs)) {
995 			printf("lfs_writeinode: negative bytes "
996 			       "(segment %" PRIu32 " short by %d, "
997 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
998 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
999 			       "ndupino=%d)\n",
1000 			       lfs_dtosn(fs, daddr),
1001 			       (int)DINOSIZE(fs) *
1002 				   (1 - sp->ndupino) - sup->su_nbytes,
1003 			       oldsn, sp->seg_number, daddr,
1004 			       (unsigned int)sup->su_nbytes,
1005 			       sp->ndupino);
1006 			panic("lfs_writeinode: negative bytes");
1007 			sup->su_nbytes = DINOSIZE(fs);
1008 		}
1009 #endif
1010 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1011 		      lfs_dtosn(fs, daddr), DINOSIZE(fs), ino));
1012 		sup->su_nbytes -= DINOSIZE(fs);
1013 		redo_ifile |=
1014 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1015 		if (redo_ifile) {
1016 			mutex_enter(&lfs_lock);
1017 			fs->lfs_flags |= LFS_IFDIRTY;
1018 			mutex_exit(&lfs_lock);
1019 			/* Don't double-account */
1020 			lfs_sb_setidaddr(fs, 0x0);
1021 		}
1022 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1023 	}
1024 
1025 	return redo_ifile;
1026 }
1027 
1028 int
lfs_writeinode(struct lfs * fs,struct segment * sp,struct inode * ip)1029 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1030 {
1031 	struct buf *bp;
1032 	union lfs_dinode *cdp;
1033 	struct vnode *vp = ITOV(ip);
1034 	daddr_t daddr;
1035 	IINFO *iip;
1036 	int i;
1037 	int redo_ifile = 0;
1038 	int gotblk = 0;
1039 	int count;
1040 	SEGSUM *ssp;
1041 
1042 	ASSERT_SEGLOCK(fs);
1043 	if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1044 		return (0);
1045 
1046 	/* Can't write ifile when writer is not set */
1047 	KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1048 		(sp->seg_flags & SEGM_CLEAN));
1049 
1050 	/*
1051 	 * If this is the Ifile, see if writing it here will generate a
1052 	 * temporary misaccounting.  If it will, do the accounting and write
1053 	 * the blocks, postponing the inode write until the accounting is
1054 	 * solid.
1055 	 */
1056 	count = 0;
1057 	while (vp == fs->lfs_ivnode) {
1058 		int redo = 0;
1059 
1060 		if (sp->idp == NULL && sp->ibp == NULL &&
1061 		    (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1062 		     sp->sum_bytes_left < sizeof(int32_t))) {
1063 			(void) lfs_writeseg(fs, sp);
1064 			continue;
1065 		}
1066 
1067 		/* Look for dirty Ifile blocks */
1068 		LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1069 			if (!(bp->b_flags & B_GATHERED)) {
1070 				redo = 1;
1071 				break;
1072 			}
1073 		}
1074 
1075 		if (redo == 0)
1076 			redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1077 		if (redo == 0)
1078 			break;
1079 
1080 		if (sp->idp) {
1081 			lfs_dino_setinumber(fs, sp->idp, 0);
1082 			sp->idp = NULL;
1083 		}
1084 		++count;
1085 		if (count > 2)
1086 			log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1087 		lfs_writefile(fs, sp, fs->lfs_ivnode);
1088 	}
1089 
1090 	/* Allocate a new inode block if necessary. */
1091 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1092 	    sp->ibp == NULL) {
1093 		/* Allocate a new segment if necessary. */
1094 		if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1095 		    sp->sum_bytes_left < sizeof(int32_t))
1096 			(void) lfs_writeseg(fs, sp);
1097 
1098 		/* Get next inode block. */
1099 		daddr = lfs_sb_getoffset(fs);
1100 		lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1101 		sp->ibp = *sp->cbpp++ =
1102 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1103 			    LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0);
1104 		gotblk++;
1105 
1106 		/* Zero out inode numbers */
1107 		for (i = 0; i < LFS_INOPB(fs); ++i) {
1108 			union lfs_dinode *tmpdi;
1109 
1110 			tmpdi = (union lfs_dinode *)((char *)sp->ibp->b_data +
1111 						     DINOSIZE(fs) * i);
1112 			lfs_dino_setinumber(fs, tmpdi, 0);
1113 		}
1114 
1115 		++sp->start_bpp;
1116 		lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1117 		/* Set remaining space counters. */
1118 		sp->seg_bytes_left -= lfs_sb_getibsize(fs);
1119 		sp->sum_bytes_left -= sizeof(int32_t);
1120 
1121 		/* Store the address in the segment summary. */
1122 		iip = NTH_IINFO(fs, sp->segsum, sp->ninodes / LFS_INOPB(fs));
1123 		lfs_ii_setblock(fs, iip, daddr);
1124 	}
1125 
1126 	/* Check VU_DIROP in case there is a new file with no data blocks */
1127 	if (vp->v_uflag & VU_DIROP) {
1128 		ssp = (SEGSUM *)sp->segsum;
1129 		lfs_ss_setflags(fs, ssp,
1130 				lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
1131 	}
1132 
1133 	/* Update the inode times and copy the inode onto the inode page. */
1134 	/* XXX kludge --- don't redirty the ifile just to put times on it */
1135 	if (ip->i_number != LFS_IFILE_INUM)
1136 		LFS_ITIMES(ip, NULL, NULL, NULL);
1137 
1138 	/*
1139 	 * If this is the Ifile, and we've already written the Ifile in this
1140 	 * partial segment, just overwrite it (it's not on disk yet) and
1141 	 * continue.
1142 	 *
1143 	 * XXX we know that the bp that we get the second time around has
1144 	 * already been gathered.
1145 	 */
1146 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1147 		lfs_copy_dinode(fs, sp->idp, ip->i_din);
1148 		ip->i_lfs_osize = ip->i_size;
1149 		return 0;
1150 	}
1151 
1152 	bp = sp->ibp;
1153 	cdp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs));
1154 	lfs_copy_dinode(fs, cdp, ip->i_din);
1155 
1156 	/*
1157 	 * This inode is on its way to disk; clear its VU_DIROP status when
1158 	 * the write is complete.
1159 	 */
1160 	if (vp->v_uflag & VU_DIROP) {
1161 		if (!(sp->seg_flags & SEGM_CLEAN))
1162 			ip->i_flag |= IN_CDIROP;
1163 		else {
1164 			DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * If cleaning, link counts and directory file sizes cannot change,
1170 	 * since those would be directory operations---even if the file
1171 	 * we are writing is marked VU_DIROP we should write the old values.
1172 	 * If we're not cleaning, of course, update the values so we get
1173 	 * current values the next time we clean.
1174 	 */
1175 	if (sp->seg_flags & SEGM_CLEAN) {
1176 		if (vp->v_uflag & VU_DIROP) {
1177 			lfs_dino_setnlink(fs, cdp, ip->i_lfs_odnlink);
1178 			/* if (vp->v_type == VDIR) */
1179 			lfs_dino_setsize(fs, cdp, ip->i_lfs_osize);
1180 		}
1181 	} else {
1182 		ip->i_lfs_odnlink = lfs_dino_getnlink(fs, cdp);
1183 		ip->i_lfs_osize = ip->i_size;
1184 	}
1185 
1186 
1187 	/* We can finish the segment accounting for truncations now */
1188 	lfs_finalize_ino_seguse(fs, ip);
1189 
1190 	/*
1191 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1192 	 * addresses to disk; possibly change the on-disk record of
1193 	 * the inode size, either by reverting to the previous size
1194 	 * (in the case of cleaning) or by verifying the inode's block
1195 	 * holdings (in the case of files being allocated as they are being
1196 	 * written).
1197 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1198 	 * XXX count on disk wrong by the same amount.	We should be
1199 	 * XXX able to "borrow" from lfs_avail and return it after the
1200 	 * XXX Ifile is written.  See also in lfs_writeseg.
1201 	 */
1202 
1203 	/* Check file size based on highest allocated block */
1204 	if (((lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFREG ||
1205 	     (lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFDIR) &&
1206 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) {
1207 		lfs_dino_setsize(fs, cdp, (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs));
1208 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1209 		      PRId64 "\n", (int)ip->i_number, ip->i_size, lfs_dino_getsize(fs, cdp)));
1210 	}
1211 	if (ip->i_lfs_effnblks != lfs_dino_getblocks(fs, ip->i_din)) {
1212 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)"
1213 		      " at %jx\n", ip->i_number, (intmax_t)ip->i_lfs_effnblks,
1214 		      lfs_dino_getblocks(fs, ip->i_din), (uintmax_t)lfs_sb_getoffset(fs)));
1215 		for (i=0; i<ULFS_NDADDR; i++) {
1216 			if (lfs_dino_getdb(fs, cdp, i) == UNWRITTEN) {
1217 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1218 				lfs_dino_setdb(fs, cdp, i, 0);
1219 			}
1220 		}
1221 		for (i=0; i<ULFS_NIADDR; i++) {
1222 			if (lfs_dino_getib(fs, cdp, i) == UNWRITTEN) {
1223 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1224 				lfs_dino_setib(fs, cdp, i, 0);
1225 			}
1226 		}
1227 	}
1228 
1229 #ifdef DIAGNOSTIC
1230 	/*
1231 	 * Check dinode held blocks against dinode size.
1232 	 * This should be identical to the check in lfs_vget().
1233 	 */
1234 	for (i = (lfs_dino_getsize(fs, cdp) + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs);
1235 	     i < ULFS_NDADDR; i++) {
1236 		KASSERT(i >= 0);
1237 		if ((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFLNK)
1238 			continue;
1239 		if (((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFBLK ||
1240 		     (lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFCHR) && i == 0)
1241 			continue;
1242 		if (lfs_dino_getdb(fs, cdp, i) != 0) {
1243 # ifdef DEBUG
1244 			lfs_dump_dinode(fs, cdp);
1245 # endif
1246 			panic("writing inconsistent inode");
1247 		}
1248 	}
1249 #endif /* DIAGNOSTIC */
1250 
1251 	if (ip->i_flag & IN_CLEANING)
1252 		LFS_CLR_UINO(ip, IN_CLEANING);
1253 	else {
1254 		/* XXX IN_ALLMOD */
1255 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1256 			     IN_UPDATE | IN_MODIFY);
1257 		if (ip->i_lfs_effnblks == lfs_dino_getblocks(fs, ip->i_din))
1258 			LFS_CLR_UINO(ip, IN_MODIFIED);
1259 		else {
1260 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1261 			    "blks=%d, eff=%jd\n", ip->i_number,
1262 			    lfs_dino_getblocks(fs, ip->i_din), (intmax_t)ip->i_lfs_effnblks));
1263 		}
1264 	}
1265 
1266 	if (ip->i_number == LFS_IFILE_INUM) {
1267 		/* We know sp->idp == NULL */
1268 		sp->idp = DINO_IN_BLOCK(fs, bp, sp->ninodes % LFS_INOPB(fs));
1269 
1270 		/* Not dirty any more */
1271 		mutex_enter(&lfs_lock);
1272 		fs->lfs_flags &= ~LFS_IFDIRTY;
1273 		mutex_exit(&lfs_lock);
1274 	}
1275 
1276 	if (gotblk) {
1277 		mutex_enter(&bufcache_lock);
1278 		LFS_LOCK_BUF(bp);
1279 		brelsel(bp, 0);
1280 		mutex_exit(&bufcache_lock);
1281 	}
1282 
1283 	/* Increment inode count in segment summary block. */
1284 
1285 	ssp = (SEGSUM *)sp->segsum;
1286 	lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1);
1287 
1288 	/* If this page is full, set flag to allocate a new page. */
1289 	if (++sp->ninodes % LFS_INOPB(fs) == 0)
1290 		sp->ibp = NULL;
1291 
1292 	redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1293 
1294 	KASSERT(redo_ifile == 0);
1295 	return (redo_ifile);
1296 }
1297 
1298 int
lfs_gatherblock(struct segment * sp,struct buf * bp,kmutex_t * mptr)1299 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1300 {
1301 	struct lfs *fs;
1302 	int vers;
1303 	int j, blksinblk;
1304 
1305 	ASSERT_SEGLOCK(sp->fs);
1306 	/*
1307 	 * If full, finish this segment.  We may be doing I/O, so
1308 	 * release and reacquire the splbio().
1309 	 */
1310 #ifdef DIAGNOSTIC
1311 	if (sp->vp == NULL)
1312 		panic ("lfs_gatherblock: Null vp in segment");
1313 #endif
1314 	fs = sp->fs;
1315 	blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
1316 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1317 	    sp->seg_bytes_left < bp->b_bcount) {
1318 		if (mptr)
1319 			mutex_exit(mptr);
1320 		lfs_updatemeta(sp);
1321 
1322 		vers = lfs_fi_getversion(fs, sp->fip);
1323 		(void) lfs_writeseg(fs, sp);
1324 
1325 		/* Add the current file to the segment summary. */
1326 		lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1327 
1328 		if (mptr)
1329 			mutex_enter(mptr);
1330 		return (1);
1331 	}
1332 
1333 	if (bp->b_flags & B_GATHERED) {
1334 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %ju,"
1335 		      " lbn %" PRId64 "\n",
1336 		      (uintmax_t)lfs_fi_getino(fs, sp->fip), bp->b_lblkno));
1337 		return (0);
1338 	}
1339 
1340 	/* Insert into the buffer list, update the FINFO block. */
1341 	bp->b_flags |= B_GATHERED;
1342 
1343 	*sp->cbpp++ = bp;
1344 	for (j = 0; j < blksinblk; j++) {
1345 		unsigned bn;
1346 
1347 		bn = lfs_fi_getnblocks(fs, sp->fip);
1348 		lfs_fi_setnblocks(fs, sp->fip, bn+1);
1349 		lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j);
1350 		/* This block's accounting moves from lfs_favail to lfs_avail */
1351 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1352 	}
1353 
1354 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1355 	sp->seg_bytes_left -= bp->b_bcount;
1356 	return (0);
1357 }
1358 
1359 int
lfs_gather(struct lfs * fs,struct segment * sp,struct vnode * vp,int (* match)(struct lfs *,struct buf *))1360 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1361     int (*match)(struct lfs *, struct buf *))
1362 {
1363 	struct buf *bp, *nbp;
1364 	int count = 0;
1365 
1366 	ASSERT_SEGLOCK(fs);
1367 	if (vp->v_type == VBLK)
1368 		return 0;
1369 	KASSERT(sp->vp == NULL);
1370 	sp->vp = vp;
1371 	mutex_enter(&bufcache_lock);
1372 
1373 #ifndef LFS_NO_BACKBUF_HACK
1374 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1375 # define	BUF_OFFSET	\
1376 	(((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1377 # define	BACK_BUF(BP)	\
1378 	((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1379 # define	BEG_OF_LIST	\
1380 	((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1381 
1382 loop:
1383 	/* Find last buffer. */
1384 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1385 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1386 	     bp = LIST_NEXT(bp, b_vnbufs))
1387 		/* nothing */;
1388 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1389 		nbp = BACK_BUF(bp);
1390 #else /* LFS_NO_BACKBUF_HACK */
1391 loop:
1392 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1393 		nbp = LIST_NEXT(bp, b_vnbufs);
1394 #endif /* LFS_NO_BACKBUF_HACK */
1395 		if ((bp->b_cflags & BC_BUSY) != 0 ||
1396 		    (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1397 #ifdef DEBUG
1398 			if (vp == fs->lfs_ivnode &&
1399 			    (bp->b_cflags & BC_BUSY) != 0 &&
1400 			    (bp->b_flags & B_GATHERED) == 0)
1401 				log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1402 				      PRId64 " busy (%x) at 0x%jx",
1403 				      bp->b_lblkno, bp->b_flags,
1404 				      (uintmax_t)lfs_sb_getoffset(fs));
1405 #endif
1406 			continue;
1407 		}
1408 #ifdef DIAGNOSTIC
1409 # ifdef LFS_USE_B_INVAL
1410 		if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1411 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1412 			      " is BC_INVAL\n", bp->b_lblkno));
1413 			VOP_PRINT(bp->b_vp);
1414 		}
1415 # endif /* LFS_USE_B_INVAL */
1416 		if (!(bp->b_oflags & BO_DELWRI))
1417 			panic("lfs_gather: bp not BO_DELWRI");
1418 		if (!(bp->b_flags & B_LOCKED)) {
1419 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1420 			      " blk %" PRId64 " not B_LOCKED\n",
1421 			      bp->b_lblkno,
1422 			      LFS_DBTOFSB(fs, bp->b_blkno)));
1423 			VOP_PRINT(bp->b_vp);
1424 			panic("lfs_gather: bp not B_LOCKED");
1425 		}
1426 #endif
1427 		if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1428 			goto loop;
1429 		}
1430 		count++;
1431 	}
1432 	mutex_exit(&bufcache_lock);
1433 	lfs_updatemeta(sp);
1434 	KASSERT(sp->vp == vp);
1435 	sp->vp = NULL;
1436 	return count;
1437 }
1438 
1439 #if DEBUG
1440 # define DEBUG_OOFF(n) do {						\
1441 	if (ooff == 0) {						\
1442 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1443 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
1444 			", was 0x0 (or %" PRId64 ")\n",			\
1445 			(n), ip->i_number, lbn, ndaddr, daddr));	\
1446 	}								\
1447 } while (0)
1448 #else
1449 # define DEBUG_OOFF(n)
1450 #endif
1451 
1452 /*
1453  * Change the given block's address to ndaddr, finding its previous
1454  * location using ulfs_bmaparray().
1455  *
1456  * Account for this change in the segment table.
1457  *
1458  * called with sp == NULL by roll-forwarding code.
1459  */
1460 void
1461 lfs_update_single(struct lfs *fs, struct segment *sp,
1462     struct vnode *vp, daddr_t lbn, daddr_t ndaddr, int size)
1463 {
1464 	SEGUSE *sup;
1465 	struct buf *bp;
1466 	struct indir a[ULFS_NIADDR + 2], *ap;
1467 	struct inode *ip;
1468 	daddr_t daddr, ooff;
1469 	int num, error;
1470 	int bb, osize, obb;
1471 
1472 	ASSERT_SEGLOCK(fs);
1473 	KASSERT(sp == NULL || sp->vp == vp);
1474 	ip = VTOI(vp);
1475 
1476 	error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1477 	if (error)
1478 		panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1479 
1480 	KASSERT(daddr <= LFS_MAX_DADDR(fs));
1481 	if (daddr > 0)
1482 		daddr = LFS_DBTOFSB(fs, daddr);
1483 
1484 	bb = lfs_numfrags(fs, size);
1485 	switch (num) {
1486 	    case 0:
1487 		    ooff = lfs_dino_getdb(fs, ip->i_din, lbn);
1488 		    DEBUG_OOFF(0);
1489 		    if (ooff == UNWRITTEN)
1490 			    lfs_dino_setblocks(fs, ip->i_din,
1491 				lfs_dino_getblocks(fs, ip->i_din) + bb);
1492 		    else {
1493 			    /* possible fragment truncation or extension */
1494 			    obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1495 			    lfs_dino_setblocks(fs, ip->i_din,
1496 				lfs_dino_getblocks(fs, ip->i_din) + (bb-obb));
1497 		    }
1498 		    lfs_dino_setdb(fs, ip->i_din, lbn, ndaddr);
1499 		    break;
1500 	    case 1:
1501 		    ooff = lfs_dino_getib(fs, ip->i_din, a[0].in_off);
1502 		    DEBUG_OOFF(1);
1503 		    if (ooff == UNWRITTEN)
1504 			    lfs_dino_setblocks(fs, ip->i_din,
1505 				lfs_dino_getblocks(fs, ip->i_din) + bb);
1506 		    lfs_dino_setib(fs, ip->i_din, a[0].in_off, ndaddr);
1507 		    break;
1508 	    default:
1509 		    ap = &a[num - 1];
1510 		    if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs),
1511 			B_MODIFY, &bp))
1512 			    panic("lfs_updatemeta: bread bno %" PRId64,
1513 				  ap->in_lbn);
1514 
1515 		    ooff = lfs_iblock_get(fs, bp->b_data, ap->in_off);
1516 		    DEBUG_OOFF(num);
1517 		    if (ooff == UNWRITTEN)
1518 			    lfs_dino_setblocks(fs, ip->i_din,
1519 				lfs_dino_getblocks(fs, ip->i_din) + bb);
1520 		    lfs_iblock_set(fs, bp->b_data, ap->in_off, ndaddr);
1521 		    (void) VOP_BWRITE(bp->b_vp, bp);
1522 	}
1523 
1524 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1525 
1526 	/* Update hiblk when extending the file */
1527 	if (lbn > ip->i_lfs_hiblk)
1528 		ip->i_lfs_hiblk = lbn;
1529 
1530 	/*
1531 	 * Though we'd rather it couldn't, this *can* happen right now
1532 	 * if cleaning blocks and regular blocks coexist.
1533 	 */
1534 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1535 
1536 	/*
1537 	 * Update segment usage information, based on old size
1538 	 * and location.
1539 	 */
1540 	if (daddr > 0) {
1541 		u_int32_t oldsn = lfs_dtosn(fs, daddr);
1542 #ifdef DIAGNOSTIC
1543 		int ndupino;
1544 
1545 		if (sp && sp->seg_number == oldsn) {
1546 			ndupino = sp->ndupino;
1547 		} else {
1548 			ndupino = 0;
1549 		}
1550 #endif
1551 		KASSERT(oldsn < lfs_sb_getnseg(fs));
1552 		if (lbn >= 0 && lbn < ULFS_NDADDR)
1553 			osize = ip->i_lfs_fragsize[lbn];
1554 		else
1555 			osize = lfs_sb_getbsize(fs);
1556 		LFS_SEGENTRY(sup, fs, oldsn, bp);
1557 #ifdef DIAGNOSTIC
1558 		if (sup->su_nbytes + DINOSIZE(fs) * ndupino < osize) {
1559 			printf("lfs_updatemeta: negative bytes "
1560 			       "(segment %" PRIu32 " short by %" PRId64
1561 			       ")\n", lfs_dtosn(fs, daddr),
1562 			       (int64_t)osize -
1563 			       (DINOSIZE(fs) * ndupino + sup->su_nbytes));
1564 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1565 			       ", addr = 0x%" PRIx64 "\n",
1566 			       (unsigned long long)ip->i_number, lbn, daddr);
1567 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1568 			panic("lfs_updatemeta: negative bytes");
1569 			sup->su_nbytes = osize -
1570 			    DINOSIZE(fs) * ndupino;
1571 		}
1572 #endif
1573 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1574 		      " db 0x%" PRIx64 "\n",
1575 		      lfs_dtosn(fs, daddr), osize,
1576 		      ip->i_number, lbn, daddr));
1577 		sup->su_nbytes -= osize;
1578 		if (!(bp->b_flags & B_GATHERED)) {
1579 			mutex_enter(&lfs_lock);
1580 			fs->lfs_flags |= LFS_IFDIRTY;
1581 			mutex_exit(&lfs_lock);
1582 		}
1583 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1584 	}
1585 	/*
1586 	 * Now that this block has a new address, and its old
1587 	 * segment no longer owns it, we can forget about its
1588 	 * old size.
1589 	 */
1590 	if (lbn >= 0 && lbn < ULFS_NDADDR)
1591 		ip->i_lfs_fragsize[lbn] = size;
1592 }
1593 
1594 /*
1595  * Update the metadata that points to the blocks listed in the FINFO
1596  * array.
1597  */
1598 void
1599 lfs_updatemeta(struct segment *sp)
1600 {
1601 	struct buf *sbp;
1602 	struct lfs *fs;
1603 	struct vnode *vp;
1604 	daddr_t lbn;
1605 	int i, nblocks, num;
1606 	int __diagused nblocks_orig;
1607 	int bb;
1608 	int bytesleft, size;
1609 	unsigned lastlength;
1610 	union lfs_blocks tmpptr;
1611 
1612 	fs = sp->fs;
1613 	vp = sp->vp;
1614 	ASSERT_SEGLOCK(fs);
1615 
1616 	/*
1617 	 * This used to be:
1618 	 *
1619 	 *  nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1620 	 *
1621 	 * that is, it allowed for the possibility that start_lbp did
1622 	 * not point to the beginning of the finfo block pointer area.
1623 	 * This particular formulation is six kinds of painful in the
1624 	 * lfs64 world where we have two sizes of block pointer, so
1625 	 * unless/until everything can be cleaned up to not move
1626 	 * start_lbp around but instead use an offset, we do the
1627 	 * following:
1628 	 *    1. Get NEXT_FINFO(sp->fip). This is the same pointer as
1629 	 * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong
1630 	 * type. (Ugh.)
1631 	 *    2. Cast it to void *, then assign it to a temporary
1632 	 * union lfs_blocks.
1633 	 *    3. Subtract start_lbp from that.
1634 	 *    4. Save the value of nblocks in blocks_orig so we can
1635 	 * assert below that it hasn't changed without repeating this
1636 	 * rubbish.
1637 	 *
1638 	 * XXX.
1639 	 */
1640 	lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip));
1641 	nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp);
1642 	nblocks_orig = nblocks;
1643 
1644 	KASSERT(nblocks >= 0);
1645 	KASSERT(vp != NULL);
1646 	if (nblocks == 0)
1647 		return;
1648 
1649 	/*
1650 	 * This count may be high due to oversize blocks from lfs_gop_write.
1651 	 * Correct for this. (XXX we should be able to keep track of these.)
1652 	 */
1653 	for (i = 0; i < nblocks; i++) {
1654 		if (sp->start_bpp[i] == NULL) {
1655 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1656 			nblocks = i;
1657 			break;
1658 		}
1659 		num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
1660 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1661 		nblocks -= num - 1;
1662 	}
1663 
1664 #if 0
1665 	/* pre-lfs64 assertion */
1666 	KASSERT(vp->v_type == VREG ||
1667 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1668 #else
1669 	KASSERT(vp->v_type == VREG || nblocks == nblocks_orig);
1670 #endif
1671 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1672 
1673 	/*
1674 	 * Sort the blocks.
1675 	 *
1676 	 * We have to sort even if the blocks come from the
1677 	 * cleaner, because there might be other pending blocks on the
1678 	 * same inode...and if we don't sort, and there are fragments
1679 	 * present, blocks may be written in the wrong place.
1680 	 */
1681 	lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
1682 
1683 	/*
1684 	 * Record the length of the last block in case it's a fragment.
1685 	 * If there are indirect blocks present, they sort last.  An
1686 	 * indirect block will be lfs_bsize and its presence indicates
1687 	 * that you cannot have fragments.
1688 	 *
1689 	 * XXX This last is a lie.  A cleaned fragment can coexist with
1690 	 * XXX a later indirect block.	This will continue to be
1691 	 * XXX true until lfs_markv is fixed to do everything with
1692 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
1693 	 */
1694 	lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1695 		lfs_sb_getbmask(fs)) + 1;
1696 	lfs_fi_setlastlength(fs, sp->fip, lastlength);
1697 
1698 	/*
1699 	 * Assign disk addresses, and update references to the logical
1700 	 * block and the segment usage information.
1701 	 */
1702 	for (i = nblocks; i--; ++sp->start_bpp) {
1703 		sbp = *sp->start_bpp;
1704 		lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1705 		KASSERT(sbp->b_lblkno == lbn);
1706 
1707 		sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
1708 
1709 		/*
1710 		 * If we write a frag in the wrong place, the cleaner won't
1711 		 * be able to correctly identify its size later, and the
1712 		 * segment will be uncleanable.	 (Even worse, it will assume
1713 		 * that the indirect block that actually ends the list
1714 		 * is of a smaller size!)
1715 		 */
1716 		if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
1717 			panic("lfs_updatemeta: fragment is not last block");
1718 
1719 		/*
1720 		 * For each subblock in this possibly oversized block,
1721 		 * update its address on disk.
1722 		 */
1723 		KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs));
1724 		KASSERT(vp == sbp->b_vp);
1725 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
1726 		     bytesleft -= lfs_sb_getbsize(fs)) {
1727 			size = MIN(bytesleft, lfs_sb_getbsize(fs));
1728 			bb = lfs_numfrags(fs, size);
1729 			lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1730 			lfs_blocks_inc(fs, &sp->start_lbp);
1731 			lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs),
1732 			    size);
1733 			lfs_sb_addoffset(fs, bb);
1734 		}
1735 
1736 	}
1737 
1738 	/* This inode has been modified */
1739 	LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1740 }
1741 
1742 /*
1743  * Move lfs_offset to a segment earlier than newsn.
1744  */
1745 int
1746 lfs_rewind(struct lfs *fs, int newsn)
1747 {
1748 	int sn, osn, isdirty;
1749 	struct buf *bp;
1750 	SEGUSE *sup;
1751 
1752 	ASSERT_SEGLOCK(fs);
1753 
1754 	osn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
1755 	if (osn < newsn)
1756 		return 0;
1757 
1758 	/* lfs_avail eats the remaining space in this segment */
1759 	lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1760 
1761 	/* Find a low-numbered segment */
1762 	for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) {
1763 		LFS_SEGENTRY(sup, fs, sn, bp);
1764 		isdirty = sup->su_flags & SEGUSE_DIRTY;
1765 		brelse(bp, 0);
1766 
1767 		if (!isdirty)
1768 			break;
1769 	}
1770 	if (sn == lfs_sb_getnseg(fs))
1771 		panic("lfs_rewind: no clean segments");
1772 	if (newsn >= 0 && sn >= newsn)
1773 		return ENOENT;
1774 	lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1775 	lfs_newseg(fs);
1776 	lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1777 
1778 	return 0;
1779 }
1780 
1781 /*
1782  * Start a new partial segment.
1783  *
1784  * Return 1 when we entered to a new segment.
1785  * Otherwise, return 0.
1786  */
1787 int
1788 lfs_initseg(struct lfs *fs)
1789 {
1790 	struct segment *sp = fs->lfs_sp;
1791 	SEGSUM *ssp;
1792 	struct buf *sbp;	/* buffer for SEGSUM */
1793 	int repeat = 0;		/* return value */
1794 
1795 	ASSERT_SEGLOCK(fs);
1796 	/* Advance to the next segment. */
1797 	if (!LFS_PARTIAL_FITS(fs)) {
1798 		SEGUSE *sup;
1799 		struct buf *bp;
1800 
1801 		/* lfs_avail eats the remaining space */
1802 		lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
1803 						   lfs_sb_getcurseg(fs)));
1804 		/* Wake up any cleaning procs waiting on this file system. */
1805 		lfs_wakeup_cleaner(fs);
1806 		lfs_newseg(fs);
1807 		repeat = 1;
1808 		lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1809 
1810 		sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1811 		sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
1812 
1813 		/*
1814 		 * If the segment contains a superblock, update the offset
1815 		 * and summary address to skip over it.
1816 		 */
1817 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1818 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1819 			lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
1820 			sp->seg_bytes_left -= LFS_SBPAD;
1821 		}
1822 		brelse(bp, 0);
1823 		/* Segment zero could also contain the labelpad */
1824 		if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
1825 		    lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
1826 			lfs_sb_addoffset(fs,
1827 			    lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
1828 			sp->seg_bytes_left -=
1829 			    LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
1830 		}
1831 	} else {
1832 		sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1833 		sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
1834 				      (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1835 	}
1836 	lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
1837 
1838 	/* Record first address of this partial segment */
1839 	if (sp->seg_flags & SEGM_CLEAN) {
1840 		fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs);
1841 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1842 			/* "1" is the artificial inc in lfs_seglock */
1843 			mutex_enter(&lfs_lock);
1844 			while (fs->lfs_iocount > 1) {
1845 				mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1846 				    "lfs_initseg", 0, &lfs_lock);
1847 			}
1848 			mutex_exit(&lfs_lock);
1849 			fs->lfs_cleanind = 0;
1850 		}
1851 	}
1852 
1853 	sp->fs = fs;
1854 	sp->ibp = NULL;
1855 	sp->idp = NULL;
1856 	sp->ninodes = 0;
1857 	sp->ndupino = 0;
1858 
1859 	sp->cbpp = sp->bpp;
1860 
1861 	/* Get a new buffer for SEGSUM */
1862 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1863 	    LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY);
1864 
1865 	/* ... and enter it into the buffer list. */
1866 	*sp->cbpp = sbp;
1867 	sp->cbpp++;
1868 	lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
1869 
1870 	sp->start_bpp = sp->cbpp;
1871 
1872 	/* Set point to SEGSUM, initialize it. */
1873 	ssp = sp->segsum = sbp->b_data;
1874 	memset(ssp, 0, lfs_sb_getsumsize(fs));
1875 	lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs));
1876 	lfs_ss_setnfinfo(fs, ssp, 0);
1877 	lfs_ss_setninos(fs, ssp, 0);
1878 	lfs_ss_setmagic(fs, ssp, SS_MAGIC);
1879 
1880 	/* Set pointer to first FINFO, initialize it. */
1881 	sp->fip = SEGSUM_FINFOBASE(fs, sp->segsum);
1882 	lfs_fi_setnblocks(fs, sp->fip, 0);
1883 	lfs_fi_setlastlength(fs, sp->fip, 0);
1884 	lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
1885 
1886 	sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
1887 	sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
1888 
1889 	return (repeat);
1890 }
1891 
1892 /*
1893  * Remove SEGUSE_INVAL from all segments.
1894  */
1895 void
1896 lfs_unset_inval_all(struct lfs *fs)
1897 {
1898 	SEGUSE *sup;
1899 	struct buf *bp;
1900 	int i;
1901 
1902 	for (i = 0; i < lfs_sb_getnseg(fs); i++) {
1903 		LFS_SEGENTRY(sup, fs, i, bp);
1904 		if (sup->su_flags & SEGUSE_INVAL) {
1905 			sup->su_flags &= ~SEGUSE_INVAL;
1906 			LFS_WRITESEGENTRY(sup, fs, i, bp);
1907 		} else
1908 			brelse(bp, 0);
1909 	}
1910 }
1911 
1912 /*
1913  * Return the next segment to write.
1914  */
1915 void
1916 lfs_newseg(struct lfs *fs)
1917 {
1918 	CLEANERINFO *cip;
1919 	SEGUSE *sup;
1920 	struct buf *bp;
1921 	int curseg, isdirty, sn, skip_inval;
1922 
1923 	ASSERT_SEGLOCK(fs);
1924 
1925 	/* Honor LFCNWRAPSTOP */
1926 	mutex_enter(&lfs_lock);
1927 	while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) {
1928 		if (fs->lfs_wrappass) {
1929 			log(LOG_NOTICE, "%s: wrappass=%d\n",
1930 				lfs_sb_getfsmnt(fs), fs->lfs_wrappass);
1931 			fs->lfs_wrappass = 0;
1932 			break;
1933 		}
1934 		fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1935 		wakeup(&fs->lfs_nowrap);
1936 		log(LOG_NOTICE, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs));
1937 		mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1938 			&lfs_lock);
1939 	}
1940 	fs->lfs_wrapstatus = LFS_WRAP_GOING;
1941 	mutex_exit(&lfs_lock);
1942 
1943 	LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1944 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1945 	      lfs_dtosn(fs, lfs_sb_getnextseg(fs))));
1946 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1947 	sup->su_nbytes = 0;
1948 	sup->su_nsums = 0;
1949 	sup->su_ninos = 0;
1950 	LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1951 
1952 	LFS_CLEANERINFO(cip, fs, bp);
1953 	lfs_ci_shiftcleantodirty(fs, cip, 1);
1954 	lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
1955 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1956 
1957 	lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
1958 	lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
1959 	skip_inval = 1;
1960 	for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
1961 		sn = (sn + 1) % lfs_sb_getnseg(fs);
1962 
1963 		if (sn == curseg) {
1964 			if (skip_inval)
1965 				skip_inval = 0;
1966 			else
1967 				panic("lfs_nextseg: no clean segments");
1968 		}
1969 		LFS_SEGENTRY(sup, fs, sn, bp);
1970 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1971 		/* Check SEGUSE_EMPTY as we go along */
1972 		if (isdirty && sup->su_nbytes == 0 &&
1973 		    !(sup->su_flags & SEGUSE_EMPTY))
1974 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
1975 		else
1976 			brelse(bp, 0);
1977 
1978 		if (!isdirty)
1979 			break;
1980 	}
1981 	if (skip_inval == 0)
1982 		lfs_unset_inval_all(fs);
1983 
1984 	++fs->lfs_nactive;
1985 	lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1986 	if (lfs_dostats) {
1987 		++lfs_stats.segsused;
1988 	}
1989 }
1990 
1991 static struct buf *
1992 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1993     int n)
1994 {
1995 	struct lfs_cluster *cl;
1996 	struct buf **bpp, *bp;
1997 
1998 	ASSERT_SEGLOCK(fs);
1999 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
2000 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
2001 	memset(cl, 0, sizeof(*cl));
2002 	cl->fs = fs;
2003 	cl->bpp = bpp;
2004 	cl->bufcount = 0;
2005 	cl->bufsize = 0;
2006 
2007 	/* If this segment is being written synchronously, note that */
2008 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
2009 		cl->flags |= LFS_CL_SYNC;
2010 		cl->seg = fs->lfs_sp;
2011 		++cl->seg->seg_iocount;
2012 	}
2013 
2014 	/* Get an empty buffer header, or maybe one with something on it */
2015 	bp = getiobuf(vp, true);
2016 	bp->b_dev = NODEV;
2017 	bp->b_blkno = bp->b_lblkno = addr;
2018 	bp->b_iodone = lfs_cluster_callback;
2019 	bp->b_private = cl;
2020 
2021 	return bp;
2022 }
2023 
2024 int
2025 lfs_writeseg(struct lfs *fs, struct segment *sp)
2026 {
2027 	struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
2028 	SEGUSE *sup;
2029 	SEGSUM *ssp;
2030 	int i;
2031 	int do_again, nblocks, byteoffset;
2032 	size_t el_size;
2033 	struct lfs_cluster *cl;
2034 	u_short ninos;
2035 	struct vnode *devvp;
2036 	char *p = NULL;
2037 	struct vnode *vp;
2038 	int32_t *daddrp;	/* XXX ondisk32 */
2039 	int changed;
2040 	u_int32_t sum;
2041 	size_t sumstart;
2042 #ifdef DEBUG
2043 	FINFO *fip;
2044 	int findex;
2045 #endif
2046 
2047 	ASSERT_SEGLOCK(fs);
2048 
2049 	ssp = (SEGSUM *)sp->segsum;
2050 
2051 	/*
2052 	 * If there are no buffers other than the segment summary to write,
2053 	 * don't do anything.  If we are the end of a dirop sequence, however,
2054 	 * write the empty segment summary anyway, to help out the
2055 	 * roll-forward agent.
2056 	 */
2057 	if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2058 		if ((lfs_ss_getflags(fs, ssp) & (SS_DIROP | SS_CONT)) != SS_DIROP)
2059 			return 0;
2060 	}
2061 
2062 	/* Note if partial segment is being written by the cleaner */
2063 	if (sp->seg_flags & SEGM_CLEAN)
2064 		lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_CLEAN);
2065 
2066 	/* Note if we are writing to reclaim */
2067 	if (sp->seg_flags & SEGM_RECLAIM) {
2068 		lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RECLAIM);
2069 		lfs_ss_setreclino(fs, ssp, fs->lfs_reclino);
2070 	}
2071 
2072 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2073 
2074 	/* Update the segment usage information. */
2075 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2076 
2077 	/* Loop through all blocks, except the segment summary. */
2078 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2079 		if ((*bpp)->b_vp != devvp) {
2080 			sup->su_nbytes += (*bpp)->b_bcount;
2081 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2082 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2083 			      sp->seg_number, (*bpp)->b_bcount,
2084 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2085 			      (*bpp)->b_blkno));
2086 		}
2087 	}
2088 
2089 #ifdef DEBUG
2090 	/* Check for zero-length and zero-version FINFO entries. */
2091 	fip = SEGSUM_FINFOBASE(fs, ssp);
2092 	for (findex = 0; findex < lfs_ss_getnfinfo(fs, ssp); findex++) {
2093 		KDASSERT(lfs_fi_getnblocks(fs, fip) > 0);
2094 		KDASSERT(lfs_fi_getversion(fs, fip) > 0);
2095 		fip = NEXT_FINFO(fs, fip);
2096 	}
2097 #endif /* DEBUG */
2098 
2099 	ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2100 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2101 	      sp->seg_number,
2102 	      lfs_ss_getninos(fs, ssp) * DINOSIZE(fs),
2103 	      lfs_ss_getninos(fs, ssp)));
2104 	sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs);
2105 	/* sup->su_nbytes += lfs_sb_getsumsize(fs); */
2106 	if (lfs_sb_getversion(fs) == 1)
2107 		sup->su_olastmod = time_second;
2108 	else
2109 		sup->su_lastmod = time_second;
2110 	sup->su_ninos += ninos;
2111 	++sup->su_nsums;
2112 	lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
2113 
2114 	do_again = !(bp->b_flags & B_GATHERED);
2115 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2116 
2117 	/*
2118 	 * Mark blocks B_BUSY, to prevent then from being changed between
2119 	 * the checksum computation and the actual write.
2120 	 *
2121 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2122 	 * there are any, replace them with copies that have UNASSIGNED
2123 	 * instead.
2124 	 */
2125 	mutex_enter(&bufcache_lock);
2126 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2127 		++bpp;
2128 		bp = *bpp;
2129 		if (bp->b_iodone != NULL) {	 /* UBC or malloced buffer */
2130 			bp->b_cflags |= BC_BUSY;
2131 			continue;
2132 		}
2133 
2134 		while (bp->b_cflags & BC_BUSY) {
2135 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2136 			      " data summary corruption for ino %d, lbn %"
2137 			      PRId64 "\n",
2138 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2139 			bp->b_cflags |= BC_WANTED;
2140 			cv_wait(&bp->b_busy, &bufcache_lock);
2141 		}
2142 		bp->b_cflags |= BC_BUSY;
2143 		mutex_exit(&bufcache_lock);
2144 		unbusybp = NULL;
2145 
2146 		/*
2147 		 * Check and replace indirect block UNWRITTEN bogosity.
2148 		 * XXX See comment in lfs_writefile.
2149 		 */
2150 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2151 		   lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din) !=
2152 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
2153 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%jd != %d)\n",
2154 			      VTOI(bp->b_vp)->i_number,
2155 			      (intmax_t)VTOI(bp->b_vp)->i_lfs_effnblks,
2156 			      lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din)));
2157 			/* Make a copy we'll make changes to */
2158 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2159 					   bp->b_bcount, LFS_NB_IBLOCK);
2160 			newbp->b_blkno = bp->b_blkno;
2161 			memcpy(newbp->b_data, bp->b_data,
2162 			       newbp->b_bcount);
2163 
2164 			changed = 0;
2165 			/* XXX ondisk32 */
2166 			for (daddrp = (int32_t *)(newbp->b_data);
2167 			     daddrp < (int32_t *)((char *)newbp->b_data +
2168 						  newbp->b_bcount); daddrp++) {
2169 				if (*daddrp == UNWRITTEN) {
2170 					++changed;
2171 					*daddrp = 0;
2172 				}
2173 			}
2174 			/*
2175 			 * Get rid of the old buffer.  Don't mark it clean,
2176 			 * though, if it still has dirty data on it.
2177 			 */
2178 			if (changed) {
2179 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2180 				      " bp = %p newbp = %p\n", changed, bp,
2181 				      newbp));
2182 				*bpp = newbp;
2183 				bp->b_flags &= ~B_GATHERED;
2184 				bp->b_error = 0;
2185 				if (bp->b_iodone != NULL) {
2186 					DLOG((DLOG_SEG, "lfs_writeseg: "
2187 					      "indir bp should not be B_CALL\n"));
2188 					biodone(bp);
2189 					bp = NULL;
2190 				} else {
2191 					/* Still on free list, leave it there */
2192 					unbusybp = bp;
2193 					/*
2194 					 * We have to re-decrement lfs_avail
2195 					 * since this block is going to come
2196 					 * back around to us in the next
2197 					 * segment.
2198 					 */
2199 					lfs_sb_subavail(fs,
2200 					    lfs_btofsb(fs, bp->b_bcount));
2201 				}
2202 			} else {
2203 				lfs_freebuf(fs, newbp);
2204 			}
2205 		}
2206 		mutex_enter(&bufcache_lock);
2207 		if (unbusybp != NULL) {
2208 			unbusybp->b_cflags &= ~BC_BUSY;
2209 			if (unbusybp->b_cflags & BC_WANTED)
2210 				cv_broadcast(&bp->b_busy);
2211 		}
2212 	}
2213 	mutex_exit(&bufcache_lock);
2214 
2215 	/*
2216 	 * Compute checksum across data and then across summary; the first
2217 	 * block (the summary block) is skipped.  Set the create time here
2218 	 * so that it's guaranteed to be later than the inode mod times.
2219 	 */
2220 	sum = 0;
2221 	if (lfs_sb_getversion(fs) == 1)
2222 		el_size = sizeof(u_long);
2223 	else
2224 		el_size = sizeof(u_int32_t);
2225 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2226 		++bpp;
2227 		/* Loop through gop_write cluster blocks */
2228 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2229 		     byteoffset += lfs_sb_getbsize(fs)) {
2230 #ifdef LFS_USE_B_INVAL
2231 			if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2232 			    (*bpp)->b_iodone != NULL) {
2233 				if (copyin((void *)(*bpp)->b_saveaddr +
2234 					   byteoffset, dp, el_size)) {
2235 					panic("lfs_writeseg: copyin failed [1]:"
2236 						" ino %d blk %" PRId64,
2237 						VTOI((*bpp)->b_vp)->i_number,
2238 						(*bpp)->b_lblkno);
2239 				}
2240 			} else
2241 #endif /* LFS_USE_B_INVAL */
2242 			{
2243 				sum = lfs_cksum_part((char *)
2244 				    (*bpp)->b_data + byteoffset, el_size, sum);
2245 			}
2246 		}
2247 	}
2248 	if (lfs_sb_getversion(fs) == 1)
2249 		lfs_ss_setocreate(fs, ssp, time_second);
2250 	else {
2251 		lfs_ss_setcreate(fs, ssp, time_second);
2252 		lfs_sb_addserial(fs, 1);
2253 		lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs));
2254 		lfs_ss_setident(fs, ssp, lfs_sb_getident(fs));
2255 	}
2256 	lfs_ss_setdatasum(fs, ssp, lfs_cksum_fold(sum));
2257 	sumstart = lfs_ss_getsumstart(fs);
2258 	lfs_ss_setsumsum(fs, ssp, cksum((char *)ssp + sumstart,
2259 	    lfs_sb_getsumsize(fs) - sumstart));
2260 
2261 	mutex_enter(&lfs_lock);
2262 	lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2263 			  lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2264 	lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2265 			  lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2266 	mutex_exit(&lfs_lock);
2267 
2268 	/*
2269 	 * When we simply write the blocks we lose a rotation for every block
2270 	 * written.  To avoid this problem, we cluster the buffers into a
2271 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
2272 	 * devices can handle, use that for the size of the chunks.
2273 	 *
2274 	 * Blocks that are already clusters (from GOP_WRITE), however, we
2275 	 * don't bother to copy into other clusters.
2276 	 */
2277 
2278 #define CHUNKSIZE MAXPHYS
2279 
2280 	if (devvp == NULL)
2281 		panic("devvp is NULL");
2282 	for (bpp = sp->bpp, i = nblocks; i;) {
2283 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2284 		cl = cbp->b_private;
2285 
2286 		cbp->b_flags |= B_ASYNC;
2287 		cbp->b_cflags |= BC_BUSY;
2288 		cbp->b_bcount = 0;
2289 
2290 #if defined(DEBUG) && defined(DIAGNOSTIC)
2291 		if (bpp - sp->bpp > (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs))
2292 		    / sizeof(int32_t)) {
2293 			panic("lfs_writeseg: real bpp overwrite");
2294 		}
2295 		if (bpp - sp->bpp > lfs_segsize(fs) / lfs_sb_getfsize(fs)) {
2296 			panic("lfs_writeseg: theoretical bpp overwrite");
2297 		}
2298 #endif
2299 
2300 		/*
2301 		 * Construct the cluster.
2302 		 */
2303 		mutex_enter(&lfs_lock);
2304 		++fs->lfs_iocount;
2305 		mutex_exit(&lfs_lock);
2306 		while (i && cbp->b_bcount < CHUNKSIZE) {
2307 			bp = *bpp;
2308 
2309 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2310 				break;
2311 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2312 				break;
2313 
2314 			/* Clusters from GOP_WRITE are expedited */
2315 			if (bp->b_bcount > lfs_sb_getbsize(fs)) {
2316 				if (cbp->b_bcount > 0)
2317 					/* Put in its own buffer */
2318 					break;
2319 				else {
2320 					cbp->b_data = bp->b_data;
2321 				}
2322 			} else if (cbp->b_bcount == 0) {
2323 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2324 							     LFS_NB_CLUSTER);
2325 				cl->flags |= LFS_CL_MALLOC;
2326 			}
2327 #ifdef DIAGNOSTIC
2328 			if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2329 					      btodb(bp->b_bcount - 1))) !=
2330 			    sp->seg_number) {
2331 				printf("blk size %d daddr %" PRIx64
2332 				    " not in seg %d\n",
2333 				    bp->b_bcount, bp->b_blkno,
2334 				    sp->seg_number);
2335 				panic("segment overwrite");
2336 			}
2337 #endif
2338 
2339 #ifdef LFS_USE_B_INVAL
2340 			/*
2341 			 * Fake buffers from the cleaner are marked as B_INVAL.
2342 			 * We need to copy the data from user space rather than
2343 			 * from the buffer indicated.
2344 			 * XXX == what do I do on an error?
2345 			 */
2346 			if ((bp->b_cflags & BC_INVAL) != 0 &&
2347 			    bp->b_iodone != NULL) {
2348 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2349 					panic("lfs_writeseg: "
2350 					    "copyin failed [2]");
2351 			} else
2352 #endif /* LFS_USE_B_INVAL */
2353 			if (cl->flags & LFS_CL_MALLOC) {
2354 				/* copy data into our cluster. */
2355 				memcpy(p, bp->b_data, bp->b_bcount);
2356 				p += bp->b_bcount;
2357 			}
2358 
2359 			cbp->b_bcount += bp->b_bcount;
2360 			cl->bufsize += bp->b_bcount;
2361 
2362 			bp->b_flags &= ~B_READ;
2363 			bp->b_error = 0;
2364 			cl->bpp[cl->bufcount++] = bp;
2365 
2366 			vp = bp->b_vp;
2367 			mutex_enter(&bufcache_lock);
2368 			mutex_enter(vp->v_interlock);
2369 			bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2370 			reassignbuf(bp, vp);
2371 			vp->v_numoutput++;
2372 			mutex_exit(vp->v_interlock);
2373 			mutex_exit(&bufcache_lock);
2374 
2375 			bpp++;
2376 			i--;
2377 		}
2378 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2379 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2380 		else
2381 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2382 		mutex_enter(devvp->v_interlock);
2383 		devvp->v_numoutput++;
2384 		mutex_exit(devvp->v_interlock);
2385 		VOP_STRATEGY(devvp, cbp);
2386 		curlwp->l_ru.ru_oublock++;
2387 	}
2388 
2389 	if (lfs_dostats) {
2390 		++lfs_stats.psegwrites;
2391 		lfs_stats.blocktot += nblocks - 1;
2392 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2393 			++lfs_stats.psyncwrites;
2394 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2395 			++lfs_stats.pcleanwrites;
2396 			lfs_stats.cleanblocks += nblocks - 1;
2397 		}
2398 	}
2399 
2400 	return (lfs_initseg(fs) || do_again);
2401 }
2402 
2403 void
2404 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2405 {
2406 	struct buf *bp;
2407 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2408 	int s;
2409 
2410 	ASSERT_MAYBE_SEGLOCK(fs);
2411 #ifdef DIAGNOSTIC
2412 	if (fs->lfs_is64) {
2413 		KASSERT(fs->lfs_dlfs_u.u_64.dlfs_magic == LFS64_MAGIC);
2414 	} else {
2415 		KASSERT(fs->lfs_dlfs_u.u_32.dlfs_magic == LFS_MAGIC);
2416 	}
2417 #endif
2418 	/*
2419 	 * If we can write one superblock while another is in
2420 	 * progress, we risk not having a complete checkpoint if we crash.
2421 	 * So, block here if a superblock write is in progress.
2422 	 */
2423 	mutex_enter(&lfs_lock);
2424 	s = splbio();
2425 	while (fs->lfs_sbactive) {
2426 		mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2427 			&lfs_lock);
2428 	}
2429 	fs->lfs_sbactive = daddr;
2430 	splx(s);
2431 	mutex_exit(&lfs_lock);
2432 
2433 	/* Set timestamp of this version of the superblock */
2434 	if (lfs_sb_getversion(fs) == 1)
2435 		lfs_sb_setotstamp(fs, time_second);
2436 	lfs_sb_settstamp(fs, time_second);
2437 
2438 	/* The next chunk of code relies on this assumption */
2439 	CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
2440 
2441 	/* Checksum the superblock and copy it into a buffer. */
2442 	lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
2443 	bp = lfs_newbuf(fs, devvp,
2444 	    LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2445 	memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
2446 	memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2447 	    LFS_SBPAD - sizeof(struct dlfs));
2448 
2449 	bp->b_cflags |= BC_BUSY;
2450 	bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2451 	bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2452 	bp->b_error = 0;
2453 	bp->b_iodone = lfs_supercallback;
2454 
2455 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2456 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2457 	else
2458 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2459 	curlwp->l_ru.ru_oublock++;
2460 
2461 	mutex_enter(devvp->v_interlock);
2462 	devvp->v_numoutput++;
2463 	mutex_exit(devvp->v_interlock);
2464 
2465 	mutex_enter(&lfs_lock);
2466 	++fs->lfs_iocount;
2467 	mutex_exit(&lfs_lock);
2468 	VOP_STRATEGY(devvp, bp);
2469 }
2470 
2471 /*
2472  * Logical block number match routines used when traversing the dirty block
2473  * chain.
2474  */
2475 int
2476 lfs_match_fake(struct lfs *fs, struct buf *bp)
2477 {
2478 
2479 	ASSERT_SEGLOCK(fs);
2480 	return LFS_IS_MALLOC_BUF(bp);
2481 }
2482 
2483 #if 0
2484 int
2485 lfs_match_real(struct lfs *fs, struct buf *bp)
2486 {
2487 
2488 	ASSERT_SEGLOCK(fs);
2489 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2490 }
2491 #endif
2492 
2493 int
2494 lfs_match_data(struct lfs *fs, struct buf *bp)
2495 {
2496 
2497 	ASSERT_SEGLOCK(fs);
2498 	return (bp->b_lblkno >= 0);
2499 }
2500 
2501 int
2502 lfs_match_indir(struct lfs *fs, struct buf *bp)
2503 {
2504 	daddr_t lbn;
2505 
2506 	ASSERT_SEGLOCK(fs);
2507 	lbn = bp->b_lblkno;
2508 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2509 }
2510 
2511 int
2512 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2513 {
2514 	daddr_t lbn;
2515 
2516 	ASSERT_SEGLOCK(fs);
2517 	lbn = bp->b_lblkno;
2518 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2519 }
2520 
2521 int
2522 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2523 {
2524 	daddr_t lbn;
2525 
2526 	ASSERT_SEGLOCK(fs);
2527 	lbn = bp->b_lblkno;
2528 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2529 }
2530 
2531 static void
2532 lfs_free_aiodone(struct buf *bp)
2533 {
2534 	struct lfs *fs;
2535 
2536 	KERNEL_LOCK(1, curlwp);
2537 	fs = bp->b_private;
2538 	ASSERT_NO_SEGLOCK(fs);
2539 	lfs_freebuf(fs, bp);
2540 	KERNEL_UNLOCK_LAST(curlwp);
2541 }
2542 
2543 static void
2544 lfs_super_aiodone(struct buf *bp)
2545 {
2546 	struct lfs *fs;
2547 
2548 	KERNEL_LOCK(1, curlwp);
2549 	fs = bp->b_private;
2550 	ASSERT_NO_SEGLOCK(fs);
2551 	mutex_enter(&lfs_lock);
2552 	fs->lfs_sbactive = 0;
2553 	if (--fs->lfs_iocount <= 1)
2554 		wakeup(&fs->lfs_iocount);
2555 	wakeup(&fs->lfs_sbactive);
2556 	mutex_exit(&lfs_lock);
2557 	lfs_freebuf(fs, bp);
2558 	KERNEL_UNLOCK_LAST(curlwp);
2559 }
2560 
2561 static void
2562 lfs_cluster_aiodone(struct buf *bp)
2563 {
2564 	struct lfs_cluster *cl;
2565 	struct lfs *fs;
2566 	struct buf *tbp, *fbp;
2567 	struct vnode *vp, *devvp, *ovp;
2568 	struct inode *ip;
2569 	int error;
2570 
2571 	KERNEL_LOCK(1, curlwp);
2572 
2573 	error = bp->b_error;
2574 	cl = bp->b_private;
2575 	fs = cl->fs;
2576 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2577 	ASSERT_NO_SEGLOCK(fs);
2578 
2579 	/* Put the pages back, and release the buffer */
2580 	while (cl->bufcount--) {
2581 		tbp = cl->bpp[cl->bufcount];
2582 		KASSERT(tbp->b_cflags & BC_BUSY);
2583 		if (error) {
2584 			tbp->b_error = error;
2585 		}
2586 
2587 		/*
2588 		 * We're done with tbp.	 If it has not been re-dirtied since
2589 		 * the cluster was written, free it.  Otherwise, keep it on
2590 		 * the locked list to be written again.
2591 		 */
2592 		vp = tbp->b_vp;
2593 
2594 		tbp->b_flags &= ~B_GATHERED;
2595 
2596 		LFS_BCLEAN_LOG(fs, tbp);
2597 
2598 		mutex_enter(&bufcache_lock);
2599 		if (tbp->b_iodone == NULL) {
2600 			KASSERT(tbp->b_flags & B_LOCKED);
2601 			bremfree(tbp);
2602 			if (vp) {
2603 				mutex_enter(vp->v_interlock);
2604 				reassignbuf(tbp, vp);
2605 				mutex_exit(vp->v_interlock);
2606 			}
2607 			tbp->b_flags |= B_ASYNC; /* for biodone */
2608 		}
2609 
2610 		if (((tbp->b_flags | tbp->b_oflags) &
2611 		    (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2612 			LFS_UNLOCK_BUF(tbp);
2613 
2614 		if (tbp->b_oflags & BO_DONE) {
2615 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2616 				cl->bufcount, (long)tbp->b_flags));
2617 		}
2618 
2619 		if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2620 			/*
2621 			 * A buffer from the page daemon.
2622 			 * We use the same iodone as it does,
2623 			 * so we must manually disassociate its
2624 			 * buffers from the vp.
2625 			 */
2626 			if ((ovp = tbp->b_vp) != NULL) {
2627 				/* This is just silly */
2628 				mutex_enter(ovp->v_interlock);
2629 				brelvp(tbp);
2630 				mutex_exit(ovp->v_interlock);
2631 				tbp->b_vp = vp;
2632 				tbp->b_objlock = vp->v_interlock;
2633 			}
2634 			/* Put it back the way it was */
2635 			tbp->b_flags |= B_ASYNC;
2636 			/* Master buffers have BC_AGE */
2637 			if (tbp->b_private == tbp)
2638 				tbp->b_cflags |= BC_AGE;
2639 		}
2640 		mutex_exit(&bufcache_lock);
2641 
2642 		biodone(tbp);
2643 
2644 		/*
2645 		 * If this is the last block for this vnode, but
2646 		 * there are other blocks on its dirty list,
2647 		 * set IN_MODIFIED/IN_CLEANING depending on what
2648 		 * sort of block.  Only do this for our mount point,
2649 		 * not for, e.g., inode blocks that are attached to
2650 		 * the devvp.
2651 		 * XXX KS - Shouldn't we set *both* if both types
2652 		 * of blocks are present (traverse the dirty list?)
2653 		 */
2654 		mutex_enter(vp->v_interlock);
2655 		mutex_enter(&lfs_lock);
2656 		if (vp != devvp && vp->v_numoutput == 0 &&
2657 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2658 			ip = VTOI(vp);
2659 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2660 			       ip->i_number));
2661 			if (LFS_IS_MALLOC_BUF(fbp))
2662 				LFS_SET_UINO(ip, IN_CLEANING);
2663 			else
2664 				LFS_SET_UINO(ip, IN_MODIFIED);
2665 		}
2666 		cv_broadcast(&vp->v_cv);
2667 		mutex_exit(&lfs_lock);
2668 		mutex_exit(vp->v_interlock);
2669 	}
2670 
2671 	/* Fix up the cluster buffer, and release it */
2672 	if (cl->flags & LFS_CL_MALLOC)
2673 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2674 	putiobuf(bp);
2675 
2676 	/* Note i/o done */
2677 	if (cl->flags & LFS_CL_SYNC) {
2678 		if (--cl->seg->seg_iocount == 0)
2679 			wakeup(&cl->seg->seg_iocount);
2680 	}
2681 	mutex_enter(&lfs_lock);
2682 #ifdef DIAGNOSTIC
2683 	if (fs->lfs_iocount == 0)
2684 		panic("lfs_cluster_aiodone: zero iocount");
2685 #endif
2686 	if (--fs->lfs_iocount <= 1)
2687 		wakeup(&fs->lfs_iocount);
2688 	mutex_exit(&lfs_lock);
2689 
2690 	KERNEL_UNLOCK_LAST(curlwp);
2691 
2692 	pool_put(&fs->lfs_bpppool, cl->bpp);
2693 	cl->bpp = NULL;
2694 	pool_put(&fs->lfs_clpool, cl);
2695 }
2696 
2697 static void
2698 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2699 {
2700 	/* reset b_iodone for when this is a single-buf i/o. */
2701 	bp->b_iodone = aiodone;
2702 
2703 	workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2704 }
2705 
2706 static void
2707 lfs_cluster_callback(struct buf *bp)
2708 {
2709 
2710 	lfs_generic_callback(bp, lfs_cluster_aiodone);
2711 }
2712 
2713 void
2714 lfs_supercallback(struct buf *bp)
2715 {
2716 
2717 	lfs_generic_callback(bp, lfs_super_aiodone);
2718 }
2719 
2720 /*
2721  * The only buffers that are going to hit these functions are the
2722  * segment write blocks, or the segment summaries, or the superblocks.
2723  *
2724  * All of the above are created by lfs_newbuf, and so do not need to be
2725  * released via brelse.
2726  */
2727 void
2728 lfs_callback(struct buf *bp)
2729 {
2730 
2731 	lfs_generic_callback(bp, lfs_free_aiodone);
2732 }
2733 
2734 /*
2735  * Shellsort (diminishing increment sort) from Data Structures and
2736  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2737  * see also Knuth Vol. 3, page 84.  The increments are selected from
2738  * formula (8), page 95.  Roughly O(N^3/2).
2739  */
2740 /*
2741  * This is our own private copy of shellsort because we want to sort
2742  * two parallel arrays (the array of buffer pointers and the array of
2743  * logical block numbers) simultaneously.  Note that we cast the array
2744  * of logical block numbers to a unsigned in this routine so that the
2745  * negative block numbers (meta data blocks) sort AFTER the data blocks.
2746  */
2747 
2748 static void
2749 lfs_shellsort(struct lfs *fs,
2750 	      struct buf **bp_array, union lfs_blocks *lb_array,
2751 	      int nmemb, int size)
2752 {
2753 	static int __rsshell_increments[] = { 4, 1, 0 };
2754 	int incr, *incrp, t1, t2;
2755 	struct buf *bp_temp;
2756 
2757 #ifdef DEBUG
2758 	incr = 0;
2759 	for (t1 = 0; t1 < nmemb; t1++) {
2760 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2761 			if (lfs_blocks_get(fs, lb_array, incr++) != bp_array[t1]->b_lblkno + t2) {
2762 				/* dump before panic */
2763 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
2764 				    nmemb, size);
2765 				incr = 0;
2766 				for (t1 = 0; t1 < nmemb; t1++) {
2767 					const struct buf *bp = bp_array[t1];
2768 
2769 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2770 					    PRIu64 "\n", t1,
2771 					    (uint64_t)bp->b_bcount,
2772 					    (uint64_t)bp->b_lblkno);
2773 					printf("lbns:");
2774 					for (t2 = 0; t2 * size < bp->b_bcount;
2775 					    t2++) {
2776 						printf(" %jd",
2777 						    (intmax_t)lfs_blocks_get(fs, lb_array, incr++));
2778 					}
2779 					printf("\n");
2780 				}
2781 				panic("lfs_shellsort: inconsistent input");
2782 			}
2783 		}
2784 	}
2785 #endif
2786 
2787 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2788 		for (t1 = incr; t1 < nmemb; ++t1)
2789 			for (t2 = t1 - incr; t2 >= 0;)
2790 				if ((u_int64_t)bp_array[t2]->b_lblkno >
2791 				    (u_int64_t)bp_array[t2 + incr]->b_lblkno) {
2792 					bp_temp = bp_array[t2];
2793 					bp_array[t2] = bp_array[t2 + incr];
2794 					bp_array[t2 + incr] = bp_temp;
2795 					t2 -= incr;
2796 				} else
2797 					break;
2798 
2799 	/* Reform the list of logical blocks */
2800 	incr = 0;
2801 	for (t1 = 0; t1 < nmemb; t1++) {
2802 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2803 			lfs_blocks_set(fs, lb_array, incr++,
2804 				       bp_array[t1]->b_lblkno + t2);
2805 		}
2806 	}
2807 }
2808 
2809 /*
2810  * Set up an FINFO entry for a new file.  The fip pointer is assumed to
2811  * point at uninitialized space.
2812  */
2813 void
2814 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2815 {
2816 	struct segment *sp = fs->lfs_sp;
2817 	SEGSUM *ssp;
2818 
2819 	KASSERT(vers > 0);
2820 
2821 	if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
2822 	    sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs))
2823 		(void) lfs_writeseg(fs, fs->lfs_sp);
2824 
2825 	sp->sum_bytes_left -= FINFOSIZE(fs);
2826 	ssp = (SEGSUM *)sp->segsum;
2827 	lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
2828 	lfs_fi_setnblocks(fs, sp->fip, 0);
2829 	lfs_fi_setino(fs, sp->fip, ino);
2830 	lfs_fi_setversion(fs, sp->fip, vers);
2831 }
2832 
2833 /*
2834  * Release the FINFO entry, either clearing out an unused entry or
2835  * advancing us to the next available entry.
2836  */
2837 void
2838 lfs_release_finfo(struct lfs *fs)
2839 {
2840 	struct segment *sp = fs->lfs_sp;
2841 	SEGSUM *ssp;
2842 
2843 	if (lfs_fi_getnblocks(fs, sp->fip) != 0) {
2844 		sp->fip = NEXT_FINFO(fs, sp->fip);
2845 		lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
2846 	} else {
2847 		/* XXX shouldn't this update sp->fip? */
2848 		sp->sum_bytes_left += FINFOSIZE(fs);
2849 		ssp = (SEGSUM *)sp->segsum;
2850 		lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1);
2851 	}
2852 }
2853