xref: /netbsd/bin/pax/tables.c (revision 6550d01e)
1 /*	$NetBSD: tables.c,v 1.30 2008/01/10 04:24:51 tls Exp $	*/
2 
3 /*-
4  * Copyright (c) 1992 Keith Muller.
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Keith Muller of the University of California, San Diego.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #if HAVE_NBTOOL_CONFIG_H
37 #include "nbtool_config.h"
38 #endif
39 
40 #include <sys/cdefs.h>
41 #if !defined(lint)
42 #if 0
43 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
44 #else
45 __RCSID("$NetBSD: tables.c,v 1.30 2008/01/10 04:24:51 tls Exp $");
46 #endif
47 #endif /* not lint */
48 
49 #include <sys/types.h>
50 #include <sys/time.h>
51 #include <sys/stat.h>
52 #include <sys/param.h>
53 #include <stdio.h>
54 #include <ctype.h>
55 #include <fcntl.h>
56 #include <paths.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <errno.h>
60 #include <stdlib.h>
61 #include "pax.h"
62 #include "tables.h"
63 #include "extern.h"
64 
65 /*
66  * Routines for controlling the contents of all the different databases pax
67  * keeps. Tables are dynamically created only when they are needed. The
68  * goal was speed and the ability to work with HUGE archives. The databases
69  * were kept simple, but do have complex rules for when the contents change.
70  * As of this writing, the POSIX library functions were more complex than
71  * needed for this application (pax databases have very short lifetimes and
72  * do not survive after pax is finished). Pax is required to handle very
73  * large archives. These database routines carefully combine memory usage and
74  * temporary file storage in ways which will not significantly impact runtime
75  * performance while allowing the largest possible archives to be handled.
76  * Trying to force the fit to the POSIX database routines was not considered
77  * time well spent.
78  */
79 
80 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
81 static FTM **ftab = NULL;	/* file time table for updating arch */
82 static NAMT **ntab = NULL;	/* interactive rename storage table */
83 static DEVT **dtab = NULL;	/* device/inode mapping tables */
84 static ATDIR **atab = NULL;	/* file tree directory time reset table */
85 #ifdef DIRS_USE_FILE
86 static int dirfd = -1;		/* storage for setting created dir time/mode */
87 static u_long dircnt;		/* entries in dir time/mode storage */
88 #endif
89 static int ffd = -1;		/* tmp file for file time table name storage */
90 
91 static DEVT *chk_dev(dev_t, int);
92 
93 /*
94  * hard link table routines
95  *
96  * The hard link table tries to detect hard links to files using the device and
97  * inode values. We do this when writing an archive, so we can tell the format
98  * write routine that this file is a hard link to another file. The format
99  * write routine then can store this file in whatever way it wants (as a hard
100  * link if the format supports that like tar, or ignore this info like cpio).
101  * (Actually a field in the format driver table tells us if the format wants
102  * hard link info. if not, we do not waste time looking for them). We also use
103  * the same table when reading an archive. In that situation, this table is
104  * used by the format read routine to detect hard links from stored dev and
105  * inode numbers (like cpio). This will allow pax to create a link when one
106  * can be detected by the archive format.
107  */
108 
109 /*
110  * lnk_start
111  *	Creates the hard link table.
112  * Return:
113  *	0 if created, -1 if failure
114  */
115 
116 int
117 lnk_start(void)
118 {
119 	if (ltab != NULL)
120 		return 0;
121 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
122 		tty_warn(1, "Cannot allocate memory for hard link table");
123 		return -1;
124 	}
125 	return 0;
126 }
127 
128 /*
129  * chk_lnk()
130  *	Looks up entry in hard link hash table. If found, it copies the name
131  *	of the file it is linked to (we already saw that file) into ln_name.
132  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
133  *	database. (We have seen all the links to this file). If not found,
134  *	we add the file to the database if it has the potential for having
135  *	hard links to other files we may process (it has a link count > 1)
136  * Return:
137  *	if found returns 1; if not found returns 0; -1 on error
138  */
139 
140 int
141 chk_lnk(ARCHD *arcn)
142 {
143 	HRDLNK *pt;
144 	HRDLNK **ppt;
145 	u_int indx;
146 
147 	if (ltab == NULL)
148 		return -1;
149 	/*
150 	 * ignore those nodes that cannot have hard links
151 	 */
152 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
153 		return 0;
154 
155 	/*
156 	 * hash inode number and look for this file
157 	 */
158 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
159 	if ((pt = ltab[indx]) != NULL) {
160 		/*
161 		 * its hash chain is not empty, walk down looking for it
162 		 */
163 		ppt = &(ltab[indx]);
164 		while (pt != NULL) {
165 			if ((pt->ino == arcn->sb.st_ino) &&
166 			    (pt->dev == arcn->sb.st_dev))
167 				break;
168 			ppt = &(pt->fow);
169 			pt = pt->fow;
170 		}
171 
172 		if (pt != NULL) {
173 			/*
174 			 * found a link. set the node type and copy in the
175 			 * name of the file it is to link to. we need to
176 			 * handle hardlinks to regular files differently than
177 			 * other links.
178 			 */
179 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
180 				sizeof(arcn->ln_name));
181 			if (arcn->type == PAX_REG)
182 				arcn->type = PAX_HRG;
183 			else
184 				arcn->type = PAX_HLK;
185 
186 			/*
187 			 * if we have found all the links to this file, remove
188 			 * it from the database
189 			 */
190 			if (--pt->nlink <= 1) {
191 				*ppt = pt->fow;
192 				(void)free((char *)pt->name);
193 				(void)free((char *)pt);
194 			}
195 			return 1;
196 		}
197 	}
198 
199 	/*
200 	 * we never saw this file before. It has links so we add it to the
201 	 * front of this hash chain
202 	 */
203 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
204 		if ((pt->name = strdup(arcn->name)) != NULL) {
205 			pt->dev = arcn->sb.st_dev;
206 			pt->ino = arcn->sb.st_ino;
207 			pt->nlink = arcn->sb.st_nlink;
208 			pt->fow = ltab[indx];
209 			ltab[indx] = pt;
210 			return 0;
211 		}
212 		(void)free((char *)pt);
213 	}
214 
215 	tty_warn(1, "Hard link table out of memory");
216 	return -1;
217 }
218 
219 /*
220  * purg_lnk
221  *	remove reference for a file that we may have added to the data base as
222  *	a potential source for hard links. We ended up not using the file, so
223  *	we do not want to accidentally point another file at it later on.
224  */
225 
226 void
227 purg_lnk(ARCHD *arcn)
228 {
229 	HRDLNK *pt;
230 	HRDLNK **ppt;
231 	u_int indx;
232 
233 	if (ltab == NULL)
234 		return;
235 	/*
236 	 * do not bother to look if it could not be in the database
237 	 */
238 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
239 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
240 		return;
241 
242 	/*
243 	 * find the hash chain for this inode value, if empty return
244 	 */
245 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
246 	if ((pt = ltab[indx]) == NULL)
247 		return;
248 
249 	/*
250 	 * walk down the list looking for the inode/dev pair, unlink and
251 	 * free if found
252 	 */
253 	ppt = &(ltab[indx]);
254 	while (pt != NULL) {
255 		if ((pt->ino == arcn->sb.st_ino) &&
256 		    (pt->dev == arcn->sb.st_dev))
257 			break;
258 		ppt = &(pt->fow);
259 		pt = pt->fow;
260 	}
261 	if (pt == NULL)
262 		return;
263 
264 	/*
265 	 * remove and free it
266 	 */
267 	*ppt = pt->fow;
268 	(void)free((char *)pt->name);
269 	(void)free((char *)pt);
270 }
271 
272 /*
273  * lnk_end()
274  *	pull apart a existing link table so we can reuse it. We do this between
275  *	read and write phases of append with update. (The format may have
276  *	used the link table, and we need to start with a fresh table for the
277  *	write phase
278  */
279 
280 void
281 lnk_end(void)
282 {
283 	int i;
284 	HRDLNK *pt;
285 	HRDLNK *ppt;
286 
287 	if (ltab == NULL)
288 		return;
289 
290 	for (i = 0; i < L_TAB_SZ; ++i) {
291 		if (ltab[i] == NULL)
292 			continue;
293 		pt = ltab[i];
294 		ltab[i] = NULL;
295 
296 		/*
297 		 * free up each entry on this chain
298 		 */
299 		while (pt != NULL) {
300 			ppt = pt;
301 			pt = ppt->fow;
302 			(void)free((char *)ppt->name);
303 			(void)free((char *)ppt);
304 		}
305 	}
306 	return;
307 }
308 
309 /*
310  * modification time table routines
311  *
312  * The modification time table keeps track of last modification times for all
313  * files stored in an archive during a write phase when -u is set. We only
314  * add a file to the archive if it is newer than a file with the same name
315  * already stored on the archive (if there is no other file with the same
316  * name on the archive it is added). This applies to writes and appends.
317  * An append with an -u must read the archive and store the modification time
318  * for every file on that archive before starting the write phase. It is clear
319  * that this is one HUGE database. To save memory space, the actual file names
320  * are stored in a scratch file and indexed by an in-memory hash table. The
321  * hash table is indexed by hashing the file path. The nodes in the table store
322  * the length of the filename and the lseek offset within the scratch file
323  * where the actual name is stored. Since there are never any deletions from this
324  * table, fragmentation of the scratch file is never a issue. Lookups seem to
325  * not exhibit any locality at all (files in the database are rarely
326  * looked up more than once...), so caching is just a waste of memory. The
327  * only limitation is the amount of scratch file space available to store the
328  * path names.
329  */
330 
331 /*
332  * ftime_start()
333  *	create the file time hash table and open for read/write the scratch
334  *	file. (after created it is unlinked, so when we exit we leave
335  *	no witnesses).
336  * Return:
337  *	0 if the table and file was created ok, -1 otherwise
338  */
339 
340 int
341 ftime_start(void)
342 {
343 	if (ftab != NULL)
344 		return 0;
345 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
346 		tty_warn(1, "Cannot allocate memory for file time table");
347 		return -1;
348 	}
349 
350 	/*
351 	 * get random name and create temporary scratch file, unlink name
352 	 * so it will get removed on exit
353 	 */
354 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
355 	if ((ffd = mkstemp(tempfile)) == -1) {
356 		syswarn(1, errno, "Unable to create temporary file: %s",
357 		    tempfile);
358 		return -1;
359 	}
360 
361 	(void)unlink(tempfile);
362 	return 0;
363 }
364 
365 /*
366  * chk_ftime()
367  *	looks up entry in file time hash table. If not found, the file is
368  *	added to the hash table and the file named stored in the scratch file.
369  *	If a file with the same name is found, the file times are compared and
370  *	the most recent file time is retained. If the new file was younger (or
371  *	was not in the database) the new file is selected for storage.
372  * Return:
373  *	0 if file should be added to the archive, 1 if it should be skipped,
374  *	-1 on error
375  */
376 
377 int
378 chk_ftime(ARCHD *arcn)
379 {
380 	FTM *pt;
381 	int namelen;
382 	u_int indx;
383 	char ckname[PAXPATHLEN+1];
384 
385 	/*
386 	 * no info, go ahead and add to archive
387 	 */
388 	if (ftab == NULL)
389 		return 0;
390 
391 	/*
392 	 * hash the pathname and look up in table
393 	 */
394 	namelen = arcn->nlen;
395 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
396 	if ((pt = ftab[indx]) != NULL) {
397 		/*
398 		 * the hash chain is not empty, walk down looking for match
399 		 * only read up the path names if the lengths match, speeds
400 		 * up the search a lot
401 		 */
402 		while (pt != NULL) {
403 			if (pt->namelen == namelen) {
404 				/*
405 				 * potential match, have to read the name
406 				 * from the scratch file.
407 				 */
408 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
409 					syswarn(1, errno,
410 					    "Failed ftime table seek");
411 					return -1;
412 				}
413 				if (xread(ffd, ckname, namelen) != namelen) {
414 					syswarn(1, errno,
415 					    "Failed ftime table read");
416 					return -1;
417 				}
418 
419 				/*
420 				 * if the names match, we are done
421 				 */
422 				if (!strncmp(ckname, arcn->name, namelen))
423 					break;
424 			}
425 
426 			/*
427 			 * try the next entry on the chain
428 			 */
429 			pt = pt->fow;
430 		}
431 
432 		if (pt != NULL) {
433 			/*
434 			 * found the file, compare the times, save the newer
435 			 */
436 			if (arcn->sb.st_mtime > pt->mtime) {
437 				/*
438 				 * file is newer
439 				 */
440 				pt->mtime = arcn->sb.st_mtime;
441 				return 0;
442 			}
443 			/*
444 			 * file is older
445 			 */
446 			return 1;
447 		}
448 	}
449 
450 	/*
451 	 * not in table, add it
452 	 */
453 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
454 		/*
455 		 * add the name at the end of the scratch file, saving the
456 		 * offset. add the file to the head of the hash chain
457 		 */
458 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
459 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
460 				pt->mtime = arcn->sb.st_mtime;
461 				pt->namelen = namelen;
462 				pt->fow = ftab[indx];
463 				ftab[indx] = pt;
464 				return 0;
465 			}
466 			syswarn(1, errno, "Failed write to file time table");
467 		} else
468 			syswarn(1, errno, "Failed seek on file time table");
469 	} else
470 		tty_warn(1, "File time table ran out of memory");
471 
472 	if (pt != NULL)
473 		(void)free((char *)pt);
474 	return -1;
475 }
476 
477 /*
478  * Interactive rename table routines
479  *
480  * The interactive rename table keeps track of the new names that the user
481  * assigns to files from tty input. Since this map is unique for each file
482  * we must store it in case there is a reference to the file later in archive
483  * (a link). Otherwise we will be unable to find the file we know was
484  * extracted. The remapping of these files is stored in a memory based hash
485  * table (it is assumed since input must come from /dev/tty, it is unlikely to
486  * be a very large table).
487  */
488 
489 /*
490  * name_start()
491  *	create the interactive rename table
492  * Return:
493  *	0 if successful, -1 otherwise
494  */
495 
496 int
497 name_start(void)
498 {
499 	if (ntab != NULL)
500 		return 0;
501 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
502 		tty_warn(1,
503 		    "Cannot allocate memory for interactive rename table");
504 		return -1;
505 	}
506 	return 0;
507 }
508 
509 /*
510  * add_name()
511  *	add the new name to old name mapping just created by the user.
512  *	If an old name mapping is found (there may be duplicate names on an
513  *	archive) only the most recent is kept.
514  * Return:
515  *	0 if added, -1 otherwise
516  */
517 
518 int
519 add_name(char *oname, int onamelen, char *nname)
520 {
521 	NAMT *pt;
522 	u_int indx;
523 
524 	if (ntab == NULL) {
525 		/*
526 		 * should never happen
527 		 */
528 		tty_warn(0, "No interactive rename table, links may fail\n");
529 		return 0;
530 	}
531 
532 	/*
533 	 * look to see if we have already mapped this file, if so we
534 	 * will update it
535 	 */
536 	indx = st_hash(oname, onamelen, N_TAB_SZ);
537 	if ((pt = ntab[indx]) != NULL) {
538 		/*
539 		 * look down the has chain for the file
540 		 */
541 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
542 			pt = pt->fow;
543 
544 		if (pt != NULL) {
545 			/*
546 			 * found an old mapping, replace it with the new one
547 			 * the user just input (if it is different)
548 			 */
549 			if (strcmp(nname, pt->nname) == 0)
550 				return 0;
551 
552 			(void)free((char *)pt->nname);
553 			if ((pt->nname = strdup(nname)) == NULL) {
554 				tty_warn(1, "Cannot update rename table");
555 				return -1;
556 			}
557 			return 0;
558 		}
559 	}
560 
561 	/*
562 	 * this is a new mapping, add it to the table
563 	 */
564 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
565 		if ((pt->oname = strdup(oname)) != NULL) {
566 			if ((pt->nname = strdup(nname)) != NULL) {
567 				pt->fow = ntab[indx];
568 				ntab[indx] = pt;
569 				return 0;
570 			}
571 			(void)free((char *)pt->oname);
572 		}
573 		(void)free((char *)pt);
574 	}
575 	tty_warn(1, "Interactive rename table out of memory");
576 	return -1;
577 }
578 
579 /*
580  * sub_name()
581  *	look up a link name to see if it points at a file that has been
582  *	remapped by the user. If found, the link is adjusted to contain the
583  *	new name (oname is the link to name)
584  */
585 
586 void
587 sub_name(char *oname, int *onamelen, size_t onamesize)
588 {
589 	NAMT *pt;
590 	u_int indx;
591 
592 	if (ntab == NULL)
593 		return;
594 	/*
595 	 * look the name up in the hash table
596 	 */
597 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
598 	if ((pt = ntab[indx]) == NULL)
599 		return;
600 
601 	while (pt != NULL) {
602 		/*
603 		 * walk down the hash chain looking for a match
604 		 */
605 		if (strcmp(oname, pt->oname) == 0) {
606 			/*
607 			 * found it, replace it with the new name
608 			 * and return (we know that oname has enough space)
609 			 */
610 			*onamelen = strlcpy(oname, pt->nname, onamesize);
611 			return;
612 		}
613 		pt = pt->fow;
614 	}
615 
616 	/*
617 	 * no match, just return
618 	 */
619 	return;
620 }
621 
622 /*
623  * device/inode mapping table routines
624  * (used with formats that store device and inodes fields)
625  *
626  * device/inode mapping tables remap the device field in an archive header. The
627  * device/inode fields are used to determine when files are hard links to each
628  * other. However these values have very little meaning outside of that. This
629  * database is used to solve one of two different problems.
630  *
631  * 1) when files are appended to an archive, while the new files may have hard
632  * links to each other, you cannot determine if they have hard links to any
633  * file already stored on the archive from a prior run of pax. We must assume
634  * that these inode/device pairs are unique only within a SINGLE run of pax
635  * (which adds a set of files to an archive). So we have to make sure the
636  * inode/dev pairs we add each time are always unique. We do this by observing
637  * while the inode field is very dense, the use of the dev field is fairly
638  * sparse. Within each run of pax, we remap any device number of a new archive
639  * member that has a device number used in a prior run and already stored in a
640  * file on the archive. During the read phase of the append, we store the
641  * device numbers used and mark them to not be used by any file during the
642  * write phase. If during write we go to use one of those old device numbers,
643  * we remap it to a new value.
644  *
645  * 2) Often the fields in the archive header used to store these values are
646  * too small to store the entire value. The result is an inode or device value
647  * which can be truncated. This really can foul up an archive. With truncation
648  * we end up creating links between files that are really not links (after
649  * truncation the inodes are the same value). We address that by detecting
650  * truncation and forcing a remap of the device field to split truncated
651  * inodes away from each other. Each truncation creates a pattern of bits that
652  * are removed. We use this pattern of truncated bits to partition the inodes
653  * on a single device to many different devices (each one represented by the
654  * truncated bit pattern). All inodes on the same device that have the same
655  * truncation pattern are mapped to the same new device. Two inodes that
656  * truncate to the same value clearly will always have different truncation
657  * bit patterns, so they will be split from away each other. When we spot
658  * device truncation we remap the device number to a non truncated value.
659  * (for more info see table.h for the data structures involved).
660  */
661 
662 /*
663  * dev_start()
664  *	create the device mapping table
665  * Return:
666  *	0 if successful, -1 otherwise
667  */
668 
669 int
670 dev_start(void)
671 {
672 	if (dtab != NULL)
673 		return 0;
674 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
675 		tty_warn(1, "Cannot allocate memory for device mapping table");
676 		return -1;
677 	}
678 	return 0;
679 }
680 
681 /*
682  * add_dev()
683  *	add a device number to the table. this will force the device to be
684  *	remapped to a new value if it be used during a write phase. This
685  *	function is called during the read phase of an append to prohibit the
686  *	use of any device number already in the archive.
687  * Return:
688  *	0 if added ok, -1 otherwise
689  */
690 
691 int
692 add_dev(ARCHD *arcn)
693 {
694 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
695 		return -1;
696 	return 0;
697 }
698 
699 /*
700  * chk_dev()
701  *	check for a device value in the device table. If not found and the add
702  *	flag is set, it is added. This does NOT assign any mapping values, just
703  *	adds the device number as one that need to be remapped. If this device
704  *	is already mapped, just return with a pointer to that entry.
705  * Return:
706  *	pointer to the entry for this device in the device map table. Null
707  *	if the add flag is not set and the device is not in the table (it is
708  *	not been seen yet). If add is set and the device cannot be added, null
709  *	is returned (indicates an error).
710  */
711 
712 static DEVT *
713 chk_dev(dev_t dev, int add)
714 {
715 	DEVT *pt;
716 	u_int indx;
717 
718 	if (dtab == NULL)
719 		return NULL;
720 	/*
721 	 * look to see if this device is already in the table
722 	 */
723 	indx = ((unsigned)dev) % D_TAB_SZ;
724 	if ((pt = dtab[indx]) != NULL) {
725 		while ((pt != NULL) && (pt->dev != dev))
726 			pt = pt->fow;
727 
728 		/*
729 		 * found it, return a pointer to it
730 		 */
731 		if (pt != NULL)
732 			return pt;
733 	}
734 
735 	/*
736 	 * not in table, we add it only if told to as this may just be a check
737 	 * to see if a device number is being used.
738 	 */
739 	if (add == 0)
740 		return NULL;
741 
742 	/*
743 	 * allocate a node for this device and add it to the front of the hash
744 	 * chain. Note we do not assign remaps values here, so the pt->list
745 	 * list must be NULL.
746 	 */
747 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
748 		tty_warn(1, "Device map table out of memory");
749 		return NULL;
750 	}
751 	pt->dev = dev;
752 	pt->list = NULL;
753 	pt->fow = dtab[indx];
754 	dtab[indx] = pt;
755 	return pt;
756 }
757 /*
758  * map_dev()
759  *	given an inode and device storage mask (the mask has a 1 for each bit
760  *	the archive format is able to store in a header), we check for inode
761  *	and device truncation and remap the device as required. Device mapping
762  *	can also occur when during the read phase of append a device number was
763  *	seen (and was marked as do not use during the write phase). WE ASSUME
764  *	that unsigned longs are the same size or bigger than the fields used
765  *	for ino_t and dev_t. If not the types will have to be changed.
766  * Return:
767  *	0 if all ok, -1 otherwise.
768  */
769 
770 int
771 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
772 {
773 	DEVT *pt;
774 	DLIST *dpt;
775 	static dev_t lastdev = 0;	/* next device number to try */
776 	int trc_ino = 0;
777 	int trc_dev = 0;
778 	ino_t trunc_bits = 0;
779 	ino_t nino;
780 
781 	if (dtab == NULL)
782 		return 0;
783 	/*
784 	 * check for device and inode truncation, and extract the truncated
785 	 * bit pattern.
786 	 */
787 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
788 		++trc_dev;
789 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
790 		++trc_ino;
791 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
792 	}
793 
794 	/*
795 	 * see if this device is already being mapped, look up the device
796 	 * then find the truncation bit pattern which applies
797 	 */
798 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
799 		/*
800 		 * this device is already marked to be remapped
801 		 */
802 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
803 			if (dpt->trunc_bits == trunc_bits)
804 				break;
805 
806 		if (dpt != NULL) {
807 			/*
808 			 * we are being remapped for this device and pattern
809 			 * change the device number to be stored and return
810 			 */
811 			arcn->sb.st_dev = dpt->dev;
812 			arcn->sb.st_ino = nino;
813 			return 0;
814 		}
815 	} else {
816 		/*
817 		 * this device is not being remapped YET. if we do not have any
818 		 * form of truncation, we do not need a remap
819 		 */
820 		if (!trc_ino && !trc_dev)
821 			return 0;
822 
823 		/*
824 		 * we have truncation, have to add this as a device to remap
825 		 */
826 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
827 			goto bad;
828 
829 		/*
830 		 * if we just have a truncated inode, we have to make sure that
831 		 * all future inodes that do not truncate (they have the
832 		 * truncation pattern of all 0's) continue to map to the same
833 		 * device number. We probably have already written inodes with
834 		 * this device number to the archive with the truncation
835 		 * pattern of all 0's. So we add the mapping for all 0's to the
836 		 * same device number.
837 		 */
838 		if (!trc_dev && (trunc_bits != 0)) {
839 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
840 				goto bad;
841 			dpt->trunc_bits = 0;
842 			dpt->dev = arcn->sb.st_dev;
843 			dpt->fow = pt->list;
844 			pt->list = dpt;
845 		}
846 	}
847 
848 	/*
849 	 * look for a device number not being used. We must watch for wrap
850 	 * around on lastdev (so we do not get stuck looking forever!)
851 	 */
852 	while (++lastdev > 0) {
853 		if (chk_dev(lastdev, 0) != NULL)
854 			continue;
855 		/*
856 		 * found an unused value. If we have reached truncation point
857 		 * for this format we are hosed, so we give up. Otherwise we
858 		 * mark it as being used.
859 		 */
860 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
861 		    (chk_dev(lastdev, 1) == NULL))
862 			goto bad;
863 		break;
864 	}
865 
866 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
867 		goto bad;
868 
869 	/*
870 	 * got a new device number, store it under this truncation pattern.
871 	 * change the device number this file is being stored with.
872 	 */
873 	dpt->trunc_bits = trunc_bits;
874 	dpt->dev = lastdev;
875 	dpt->fow = pt->list;
876 	pt->list = dpt;
877 	arcn->sb.st_dev = lastdev;
878 	arcn->sb.st_ino = nino;
879 	return 0;
880 
881     bad:
882 	tty_warn(1,
883 	    "Unable to fix truncated inode/device field when storing %s",
884 	    arcn->name);
885 	tty_warn(0, "Archive may create improper hard links when extracted");
886 	return 0;
887 }
888 
889 /*
890  * directory access/mod time reset table routines (for directories READ by pax)
891  *
892  * The pax -t flag requires that access times of archive files to be the same
893  * as before being read by pax. For regular files, access time is restored after
894  * the file has been copied. This database provides the same functionality for
895  * directories read during file tree traversal. Restoring directory access time
896  * is more complex than files since directories may be read several times until
897  * all the descendants in their subtree are visited by fts. Directory access
898  * and modification times are stored during the fts pre-order visit (done
899  * before any descendants in the subtree is visited) and restored after the
900  * fts post-order visit (after all the descendants have been visited). In the
901  * case of premature exit from a subtree (like from the effects of -n), any
902  * directory entries left in this database are reset during final cleanup
903  * operations of pax. Entries are hashed by inode number for fast lookup.
904  */
905 
906 /*
907  * atdir_start()
908  *	create the directory access time database for directories READ by pax.
909  * Return:
910  *	0 is created ok, -1 otherwise.
911  */
912 
913 int
914 atdir_start(void)
915 {
916 	if (atab != NULL)
917 		return 0;
918 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
919 		tty_warn(1,
920 		    "Cannot allocate space for directory access time table");
921 		return -1;
922 	}
923 	return 0;
924 }
925 
926 
927 /*
928  * atdir_end()
929  *	walk through the directory access time table and reset the access time
930  *	of any directory who still has an entry left in the database. These
931  *	entries are for directories READ by pax
932  */
933 
934 void
935 atdir_end(void)
936 {
937 	ATDIR *pt;
938 	int i;
939 
940 	if (atab == NULL)
941 		return;
942 	/*
943 	 * for each non-empty hash table entry reset all the directories
944 	 * chained there.
945 	 */
946 	for (i = 0; i < A_TAB_SZ; ++i) {
947 		if ((pt = atab[i]) == NULL)
948 			continue;
949 		/*
950 		 * remember to force the times, set_ftime() looks at pmtime
951 		 * and patime, which only applies to things CREATED by pax,
952 		 * not read by pax. Read time reset is controlled by -t.
953 		 */
954 		for (; pt != NULL; pt = pt->fow)
955 			set_ftime(pt->name, pt->mtime, pt->atime, 1, 0);
956 	}
957 }
958 
959 /*
960  * add_atdir()
961  *	add a directory to the directory access time table. Table is hashed
962  *	and chained by inode number. This is for directories READ by pax
963  */
964 
965 void
966 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
967 {
968 	ATDIR *pt;
969 	u_int indx;
970 
971 	if (atab == NULL)
972 		return;
973 
974 	/*
975 	 * make sure this directory is not already in the table, if so just
976 	 * return (the older entry always has the correct time). The only
977 	 * way this will happen is when the same subtree can be traversed by
978 	 * different args to pax and the -n option is aborting fts out of a
979 	 * subtree before all the post-order visits have been made.
980 	 */
981 	indx = ((unsigned)ino) % A_TAB_SZ;
982 	if ((pt = atab[indx]) != NULL) {
983 		while (pt != NULL) {
984 			if ((pt->ino == ino) && (pt->dev == dev))
985 				break;
986 			pt = pt->fow;
987 		}
988 
989 		/*
990 		 * oops, already there. Leave it alone.
991 		 */
992 		if (pt != NULL)
993 			return;
994 	}
995 
996 	/*
997 	 * add it to the front of the hash chain
998 	 */
999 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1000 		if ((pt->name = strdup(fname)) != NULL) {
1001 			pt->dev = dev;
1002 			pt->ino = ino;
1003 			pt->mtime = mtime;
1004 			pt->atime = atime;
1005 			pt->fow = atab[indx];
1006 			atab[indx] = pt;
1007 			return;
1008 		}
1009 		(void)free((char *)pt);
1010 	}
1011 
1012 	tty_warn(1, "Directory access time reset table ran out of memory");
1013 	return;
1014 }
1015 
1016 /*
1017  * get_atdir()
1018  *	look up a directory by inode and device number to obtain the access
1019  *	and modification time you want to set to. If found, the modification
1020  *	and access time parameters are set and the entry is removed from the
1021  *	table (as it is no longer needed). These are for directories READ by
1022  *	pax
1023  * Return:
1024  *	0 if found, -1 if not found.
1025  */
1026 
1027 int
1028 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1029 {
1030 	ATDIR *pt;
1031 	ATDIR **ppt;
1032 	u_int indx;
1033 
1034 	if (atab == NULL)
1035 		return -1;
1036 	/*
1037 	 * hash by inode and search the chain for an inode and device match
1038 	 */
1039 	indx = ((unsigned)ino) % A_TAB_SZ;
1040 	if ((pt = atab[indx]) == NULL)
1041 		return -1;
1042 
1043 	ppt = &(atab[indx]);
1044 	while (pt != NULL) {
1045 		if ((pt->ino == ino) && (pt->dev == dev))
1046 			break;
1047 		/*
1048 		 * no match, go to next one
1049 		 */
1050 		ppt = &(pt->fow);
1051 		pt = pt->fow;
1052 	}
1053 
1054 	/*
1055 	 * return if we did not find it.
1056 	 */
1057 	if (pt == NULL)
1058 		return -1;
1059 
1060 	/*
1061 	 * found it. return the times and remove the entry from the table.
1062 	 */
1063 	*ppt = pt->fow;
1064 	*mtime = pt->mtime;
1065 	*atime = pt->atime;
1066 	(void)free((char *)pt->name);
1067 	(void)free((char *)pt);
1068 	return 0;
1069 }
1070 
1071 /*
1072  * directory access mode and time storage routines (for directories CREATED
1073  * by pax).
1074  *
1075  * Pax requires that extracted directories, by default, have their access/mod
1076  * times and permissions set to the values specified in the archive. During the
1077  * actions of extracting (and creating the destination subtree during -rw copy)
1078  * directories extracted may be modified after being created. Even worse is
1079  * that these directories may have been created with file permissions which
1080  * prohibits any descendants of these directories from being extracted. When
1081  * directories are created by pax, access rights may be added to permit the
1082  * creation of files in their subtree. Every time pax creates a directory, the
1083  * times and file permissions specified by the archive are stored. After all
1084  * files have been extracted (or copied), these directories have their times
1085  * and file modes reset to the stored values. The directory info is restored in
1086  * reverse order as entries were added to the data file from root to leaf. To
1087  * restore atime properly, we must go backwards. The data file consists of
1088  * records with two parts, the file name followed by a DIRDATA trailer. The
1089  * fixed sized trailer contains the size of the name plus the off_t location in
1090  * the file. To restore we work backwards through the file reading the trailer
1091  * then the file name.
1092  */
1093 
1094 #ifndef DIRS_USE_FILE
1095 static DIRDATA *dirdata_head;
1096 #endif
1097 
1098 /*
1099  * dir_start()
1100  *	set up the directory time and file mode storage for directories CREATED
1101  *	by pax.
1102  * Return:
1103  *	0 if ok, -1 otherwise
1104  */
1105 
1106 int
1107 dir_start(void)
1108 {
1109 #ifdef DIRS_USE_FILE
1110 	if (dirfd != -1)
1111 		return 0;
1112 
1113 	/*
1114 	 * unlink the file so it goes away at termination by itself
1115 	 */
1116 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
1117 	if ((dirfd = mkstemp(tempfile)) >= 0) {
1118 		(void)unlink(tempfile);
1119 		return 0;
1120 	}
1121 	tty_warn(1, "Unable to create temporary file for directory times: %s",
1122 	    tempfile);
1123 	return -1;
1124 #else
1125 	return (0);
1126 #endif /* DIRS_USE_FILE */
1127 }
1128 
1129 /*
1130  * add_dir()
1131  *	add the mode and times for a newly CREATED directory
1132  *	name is name of the directory, psb the stat buffer with the data in it,
1133  *	frc_mode is a flag that says whether to force the setting of the mode
1134  *	(ignoring the user set values for preserving file mode). Frc_mode is
1135  *	for the case where we created a file and found that the resulting
1136  *	directory was not writable and the user asked for file modes to NOT
1137  *	be preserved. (we have to preserve what was created by default, so we
1138  *	have to force the setting at the end. this is stated explicitly in the
1139  *	pax spec)
1140  */
1141 
1142 void
1143 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1144 {
1145 #ifdef DIRS_USE_FILE
1146 	DIRDATA dblk;
1147 #else
1148 	DIRDATA *dblk;
1149 #endif
1150 	char realname[MAXPATHLEN], *rp;
1151 
1152 	if (havechd && *name != '/') {
1153 		if ((rp = realpath(name, realname)) == NULL) {
1154 			tty_warn(1, "Cannot canonicalize %s", name);
1155 			return;
1156 		}
1157 		name = rp;
1158 		nlen = strlen(name);
1159 	}
1160 
1161 #ifdef DIRS_USE_FILE
1162 	if (dirfd < 0)
1163 		return;
1164 
1165 	/*
1166 	 * get current position (where file name will start) so we can store it
1167 	 * in the trailer
1168 	 */
1169 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1170 		tty_warn(1,
1171 		    "Unable to store mode and times for directory: %s",name);
1172 		return;
1173 	}
1174 
1175 	/*
1176 	 * write the file name followed by the trailer
1177 	 */
1178 	dblk.nlen = nlen + 1;
1179 	dblk.mode = psb->st_mode & 0xffff;
1180 	dblk.mtime = psb->st_mtime;
1181 	dblk.atime = psb->st_atime;
1182 #if HAVE_STRUCT_STAT_ST_FLAGS
1183 	dblk.fflags = psb->st_flags;
1184 #else
1185 	dblk.fflags = 0;
1186 #endif
1187 	dblk.frc_mode = frc_mode;
1188 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
1189 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1190 		++dircnt;
1191 		return;
1192 	}
1193 
1194 	tty_warn(1,
1195 	    "Unable to store mode and times for created directory: %s",name);
1196 	return;
1197 #else
1198 
1199 	if ((dblk = malloc(sizeof(*dblk))) == NULL ||
1200 	    (dblk->name = strdup(name)) == NULL) {
1201 		tty_warn(1,
1202 		    "Unable to store mode and times for directory: %s",name);
1203 		if (dblk != NULL)
1204 			free(dblk);
1205 		return;
1206 	}
1207 
1208 	dblk->mode = psb->st_mode & 0xffff;
1209 	dblk->mtime = psb->st_mtime;
1210 	dblk->atime = psb->st_atime;
1211 #if HAVE_STRUCT_STAT_ST_FLAGS
1212 	dblk->fflags = psb->st_flags;
1213 #else
1214 	dblk->fflags = 0;
1215 #endif
1216 	dblk->frc_mode = frc_mode;
1217 
1218 	dblk->next = dirdata_head;
1219 	dirdata_head = dblk;
1220 	return;
1221 #endif /* DIRS_USE_FILE */
1222 }
1223 
1224 /*
1225  * proc_dir()
1226  *	process all file modes and times stored for directories CREATED
1227  *	by pax
1228  */
1229 
1230 void
1231 proc_dir(void)
1232 {
1233 #ifdef DIRS_USE_FILE
1234 	char name[PAXPATHLEN+1];
1235 	DIRDATA dblk;
1236 	u_long cnt;
1237 
1238 	if (dirfd < 0)
1239 		return;
1240 	/*
1241 	 * read backwards through the file and process each directory
1242 	 */
1243 	for (cnt = 0; cnt < dircnt; ++cnt) {
1244 		/*
1245 		 * read the trailer, then the file name, if this fails
1246 		 * just give up.
1247 		 */
1248 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1249 			break;
1250 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1251 			break;
1252 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1253 			break;
1254 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
1255 			break;
1256 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1257 			break;
1258 
1259 		/*
1260 		 * frc_mode set, make sure we set the file modes even if
1261 		 * the user didn't ask for it (see file_subs.c for more info)
1262 		 */
1263 		if (pmode || dblk.frc_mode)
1264 			set_pmode(name, dblk.mode);
1265 		if (patime || pmtime)
1266 			set_ftime(name, dblk.mtime, dblk.atime, 0, 0);
1267 		if (pfflags)
1268 			set_chflags(name, dblk.fflags);
1269 	}
1270 
1271 	(void)close(dirfd);
1272 	dirfd = -1;
1273 	if (cnt != dircnt)
1274 		tty_warn(1,
1275 		    "Unable to set mode and times for created directories");
1276 	return;
1277 #else
1278 	DIRDATA *dblk;
1279 
1280 	for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
1281 		dirdata_head = dblk->next;
1282 
1283 		/*
1284 		 * frc_mode set, make sure we set the file modes even if
1285 		 * the user didn't ask for it (see file_subs.c for more info)
1286 		 */
1287 		if (pmode || dblk->frc_mode)
1288 			set_pmode(dblk->name, dblk->mode);
1289 		if (patime || pmtime)
1290 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0, 0);
1291 		if (pfflags)
1292 			set_chflags(dblk->name, dblk->fflags);
1293 
1294 		free(dblk->name);
1295 		free(dblk);
1296 	}
1297 #endif /* DIRS_USE_FILE */
1298 }
1299 
1300 /*
1301  * database independent routines
1302  */
1303 
1304 /*
1305  * st_hash()
1306  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1307  *	end of file, as this provides far better distribution than any other
1308  *	part of the name. For performance reasons we only care about the last
1309  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1310  *	name). Was tested on 500,000 name file tree traversal from the root
1311  *	and gave almost a perfectly uniform distribution of keys when used with
1312  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1313  *	chars at a time and pads with 0 for last addition.
1314  * Return:
1315  *	the hash value of the string MOD (%) the table size.
1316  */
1317 
1318 u_int
1319 st_hash(char *name, int len, int tabsz)
1320 {
1321 	char *pt;
1322 	char *dest;
1323 	char *end;
1324 	int i;
1325 	u_int key = 0;
1326 	int steps;
1327 	int res;
1328 	u_int val;
1329 
1330 	/*
1331 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1332 	 * time here (remember these are pathnames, the tail is what will
1333 	 * spread out the keys)
1334 	 */
1335 	if (len > MAXKEYLEN) {
1336 		pt = &(name[len - MAXKEYLEN]);
1337 		len = MAXKEYLEN;
1338 	} else
1339 		pt = name;
1340 
1341 	/*
1342 	 * calculate the number of u_int size steps in the string and if
1343 	 * there is a runt to deal with
1344 	 */
1345 	steps = len/sizeof(u_int);
1346 	res = len % sizeof(u_int);
1347 
1348 	/*
1349 	 * add up the value of the string in unsigned integer sized pieces
1350 	 * too bad we cannot have unsigned int aligned strings, then we
1351 	 * could avoid the expensive copy.
1352 	 */
1353 	for (i = 0; i < steps; ++i) {
1354 		end = pt + sizeof(u_int);
1355 		dest = (char *)&val;
1356 		while (pt < end)
1357 			*dest++ = *pt++;
1358 		key += val;
1359 	}
1360 
1361 	/*
1362 	 * add in the runt padded with zero to the right
1363 	 */
1364 	if (res) {
1365 		val = 0;
1366 		end = pt + res;
1367 		dest = (char *)&val;
1368 		while (pt < end)
1369 			*dest++ = *pt++;
1370 		key += val;
1371 	}
1372 
1373 	/*
1374 	 * return the result mod the table size
1375 	 */
1376 	return key % tabsz;
1377 }
1378