xref: /netbsd/bin/pax/tables.c (revision bf9ec67e)
1 /*	$NetBSD: tables.c,v 1.17 2002/01/31 19:27:54 tv Exp $	*/
2 
3 /*-
4  * Copyright (c) 1992 Keith Muller.
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Keith Muller of the University of California, San Diego.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 #if defined(__RCSID) && !defined(lint)
42 #if 0
43 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
44 #else
45 __RCSID("$NetBSD: tables.c,v 1.17 2002/01/31 19:27:54 tv Exp $");
46 #endif
47 #endif /* not lint */
48 
49 #include <sys/types.h>
50 #include <sys/time.h>
51 #include <sys/stat.h>
52 #include <sys/param.h>
53 #include <stdio.h>
54 #include <ctype.h>
55 #include <fcntl.h>
56 #include <paths.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <errno.h>
60 #include <stdlib.h>
61 #include "pax.h"
62 #include "tables.h"
63 #include "extern.h"
64 
65 /*
66  * Routines for controlling the contents of all the different databases pax
67  * keeps. Tables are dynamically created only when they are needed. The
68  * goal was speed and the ability to work with HUGE archives. The databases
69  * were kept simple, but do have complex rules for when the contents change.
70  * As of this writing, the posix library functions were more complex than
71  * needed for this application (pax databases have very short lifetimes and
72  * do not survive after pax is finished). Pax is required to handle very
73  * large archives. These database routines carefully combine memory usage and
74  * temporary file storage in ways which will not significantly impact runtime
75  * performance while allowing the largest possible archives to be handled.
76  * Trying to force the fit to the posix databases routines was not considered
77  * time well spent.
78  */
79 
80 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
81 static FTM **ftab = NULL;	/* file time table for updating arch */
82 static NAMT **ntab = NULL;	/* interactive rename storage table */
83 static DEVT **dtab = NULL;	/* device/inode mapping tables */
84 static ATDIR **atab = NULL;	/* file tree directory time reset table */
85 #ifdef DIRS_USE_FILE
86 static int dirfd = -1;		/* storage for setting created dir time/mode */
87 static u_long dircnt;		/* entries in dir time/mode storage */
88 #endif
89 static int ffd = -1;		/* tmp file for file time table name storage */
90 
91 static DEVT *chk_dev(dev_t, int);
92 
93 /*
94  * hard link table routines
95  *
96  * The hard link table tries to detect hard links to files using the device and
97  * inode values. We do this when writing an archive, so we can tell the format
98  * write routine that this file is a hard link to another file. The format
99  * write routine then can store this file in whatever way it wants (as a hard
100  * link if the format supports that like tar, or ignore this info like cpio).
101  * (Actually a field in the format driver table tells us if the format wants
102  * hard link info. if not, we do not waste time looking for them). We also use
103  * the same table when reading an archive. In that situation, this table is
104  * used by the format read routine to detect hard links from stored dev and
105  * inode numbers (like cpio). This will allow pax to create a link when one
106  * can be detected by the archive format.
107  */
108 
109 /*
110  * lnk_start
111  *	Creates the hard link table.
112  * Return:
113  *	0 if created, -1 if failure
114  */
115 
116 int
117 lnk_start(void)
118 {
119 	if (ltab != NULL)
120 		return(0);
121 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
122 		tty_warn(1, "Cannot allocate memory for hard link table");
123 		return(-1);
124 	}
125 	return(0);
126 }
127 
128 /*
129  * chk_lnk()
130  *	Looks up entry in hard link hash table. If found, it copies the name
131  *	of the file it is linked to (we already saw that file) into ln_name.
132  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
133  *	database. (We have seen all the links to this file). If not found,
134  *	we add the file to the database if it has the potential for having
135  *	hard links to other files we may process (it has a link count > 1)
136  * Return:
137  *	if found returns 1; if not found returns 0; -1 on error
138  */
139 
140 int
141 chk_lnk(ARCHD *arcn)
142 {
143 	HRDLNK *pt;
144 	HRDLNK **ppt;
145 	u_int indx;
146 
147 	if (ltab == NULL)
148 		return(-1);
149 	/*
150 	 * ignore those nodes that cannot have hard links
151 	 */
152 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
153 		return(0);
154 
155 	/*
156 	 * hash inode number and look for this file
157 	 */
158 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
159 	if ((pt = ltab[indx]) != NULL) {
160 		/*
161 		 * it's hash chain in not empty, walk down looking for it
162 		 */
163 		ppt = &(ltab[indx]);
164 		while (pt != NULL) {
165 			if ((pt->ino == arcn->sb.st_ino) &&
166 			    (pt->dev == arcn->sb.st_dev))
167 				break;
168 			ppt = &(pt->fow);
169 			pt = pt->fow;
170 		}
171 
172 		if (pt != NULL) {
173 			/*
174 			 * found a link. set the node type and copy in the
175 			 * name of the file it is to link to. we need to
176 			 * handle hardlinks to regular files differently than
177 			 * other links.
178 			 */
179 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
180 				PAXPATHLEN+1);
181 			if (arcn->type == PAX_REG)
182 				arcn->type = PAX_HRG;
183 			else
184 				arcn->type = PAX_HLK;
185 
186 			/*
187 			 * if we have found all the links to this file, remove
188 			 * it from the database
189 			 */
190 			if (--pt->nlink <= 1) {
191 				*ppt = pt->fow;
192 				(void)free((char *)pt->name);
193 				(void)free((char *)pt);
194 			}
195 			return(1);
196 		}
197 	}
198 
199 	/*
200 	 * we never saw this file before. It has links so we add it to the
201 	 * front of this hash chain
202 	 */
203 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
204 		if ((pt->name = strdup(arcn->name)) != NULL) {
205 			pt->dev = arcn->sb.st_dev;
206 			pt->ino = arcn->sb.st_ino;
207 			pt->nlink = arcn->sb.st_nlink;
208 			pt->fow = ltab[indx];
209 			ltab[indx] = pt;
210 			return(0);
211 		}
212 		(void)free((char *)pt);
213 	}
214 
215 	tty_warn(1, "Hard link table out of memory");
216 	return(-1);
217 }
218 
219 /*
220  * purg_lnk
221  *	remove reference for a file that we may have added to the data base as
222  *	a potential source for hard links. We ended up not using the file, so
223  *	we do not want to accidently point another file at it later on.
224  */
225 
226 void
227 purg_lnk(ARCHD *arcn)
228 {
229 	HRDLNK *pt;
230 	HRDLNK **ppt;
231 	u_int indx;
232 
233 	if (ltab == NULL)
234 		return;
235 	/*
236 	 * do not bother to look if it could not be in the database
237 	 */
238 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
239 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
240 		return;
241 
242 	/*
243 	 * find the hash chain for this inode value, if empty return
244 	 */
245 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
246 	if ((pt = ltab[indx]) == NULL)
247 		return;
248 
249 	/*
250 	 * walk down the list looking for the inode/dev pair, unlink and
251 	 * free if found
252 	 */
253 	ppt = &(ltab[indx]);
254 	while (pt != NULL) {
255 		if ((pt->ino == arcn->sb.st_ino) &&
256 		    (pt->dev == arcn->sb.st_dev))
257 			break;
258 		ppt = &(pt->fow);
259 		pt = pt->fow;
260 	}
261 	if (pt == NULL)
262 		return;
263 
264 	/*
265 	 * remove and free it
266 	 */
267 	*ppt = pt->fow;
268 	(void)free((char *)pt->name);
269 	(void)free((char *)pt);
270 }
271 
272 /*
273  * lnk_end()
274  *	pull apart a existing link table so we can reuse it. We do this between
275  *	read and write phases of append with update. (The format may have
276  *	used the link table, and we need to start with a fresh table for the
277  *	write phase
278  */
279 
280 void
281 lnk_end(void)
282 {
283 	int i;
284 	HRDLNK *pt;
285 	HRDLNK *ppt;
286 
287 	if (ltab == NULL)
288 		return;
289 
290 	for (i = 0; i < L_TAB_SZ; ++i) {
291 		if (ltab[i] == NULL)
292 			continue;
293 		pt = ltab[i];
294 		ltab[i] = NULL;
295 
296 		/*
297 		 * free up each entry on this chain
298 		 */
299 		while (pt != NULL) {
300 			ppt = pt;
301 			pt = ppt->fow;
302 			(void)free((char *)ppt->name);
303 			(void)free((char *)ppt);
304 		}
305 	}
306 	return;
307 }
308 
309 /*
310  * modification time table routines
311  *
312  * The modification time table keeps track of last modification times for all
313  * files stored in an archive during a write phase when -u is set. We only
314  * add a file to the archive if it is newer than a file with the same name
315  * already stored on the archive (if there is no other file with the same
316  * name on the archive it is added). This applies to writes and appends.
317  * An append with an -u must read the archive and store the modification time
318  * for every file on that archive before starting the write phase. It is clear
319  * that this is one HUGE database. To save memory space, the actual file names
320  * are stored in a scatch file and indexed by an in memory hash table. The
321  * hash table is indexed by hashing the file path. The nodes in the table store
322  * the length of the filename and the lseek offset within the scratch file
323  * where the actual name is stored. Since there are never any deletions to this
324  * table, fragmentation of the scratch file is never a issue. Lookups seem to
325  * not exhibit any locality at all (files in the database are rarely
326  * looked up more than once...). So caching is just a waste of memory. The
327  * only limitation is the amount of scatch file space available to store the
328  * path names.
329  */
330 
331 /*
332  * ftime_start()
333  *	create the file time hash table and open for read/write the scratch
334  *	file. (after created it is unlinked, so when we exit we leave
335  *	no witnesses).
336  * Return:
337  *	0 if the table and file was created ok, -1 otherwise
338  */
339 
340 int
341 ftime_start(void)
342 {
343 	const char *tmpdir;
344 	char template[MAXPATHLEN];
345 
346 	if (ftab != NULL)
347 		return(0);
348 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
349 		tty_warn(1, "Cannot allocate memory for file time table");
350 		return(-1);
351 	}
352 
353 	/*
354 	 * get random name and create temporary scratch file, unlink name
355 	 * so it will get removed on exit
356 	 */
357 	if ((tmpdir = getenv("TMPDIR")) == NULL)
358 		tmpdir = _PATH_TMP;
359 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
360 	if ((ffd = mkstemp(template)) == -1) {
361 		syswarn(1, errno, "Unable to create temporary file: %s",
362 		    template);
363 		return(-1);
364 	}
365 
366 	(void)unlink(template);
367 	return(0);
368 }
369 
370 /*
371  * chk_ftime()
372  *	looks up entry in file time hash table. If not found, the file is
373  *	added to the hash table and the file named stored in the scratch file.
374  *	If a file with the same name is found, the file times are compared and
375  *	the most recent file time is retained. If the new file was younger (or
376  *	was not in the database) the new file is selected for storage.
377  * Return:
378  *	0 if file should be added to the archive, 1 if it should be skipped,
379  *	-1 on error
380  */
381 
382 int
383 chk_ftime(ARCHD *arcn)
384 {
385 	FTM *pt;
386 	int namelen;
387 	u_int indx;
388 	char ckname[PAXPATHLEN+1];
389 
390 	/*
391 	 * no info, go ahead and add to archive
392 	 */
393 	if (ftab == NULL)
394 		return(0);
395 
396 	/*
397 	 * hash the pathname and look up in table
398 	 */
399 	namelen = arcn->nlen;
400 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
401 	if ((pt = ftab[indx]) != NULL) {
402 		/*
403 		 * the hash chain is not empty, walk down looking for match
404 		 * only read up the path names if the lengths match, speeds
405 		 * up the search a lot
406 		 */
407 		while (pt != NULL) {
408 			if (pt->namelen == namelen) {
409 				/*
410 				 * potential match, have to read the name
411 				 * from the scratch file.
412 				 */
413 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
414 					syswarn(1, errno,
415 					    "Failed ftime table seek");
416 					return(-1);
417 				}
418 				if (xread(ffd, ckname, namelen) != namelen) {
419 					syswarn(1, errno,
420 					    "Failed ftime table read");
421 					return(-1);
422 				}
423 
424 				/*
425 				 * if the names match, we are done
426 				 */
427 				if (!strncmp(ckname, arcn->name, namelen))
428 					break;
429 			}
430 
431 			/*
432 			 * try the next entry on the chain
433 			 */
434 			pt = pt->fow;
435 		}
436 
437 		if (pt != NULL) {
438 			/*
439 			 * found the file, compare the times, save the newer
440 			 */
441 			if (arcn->sb.st_mtime > pt->mtime) {
442 				/*
443 				 * file is newer
444 				 */
445 				pt->mtime = arcn->sb.st_mtime;
446 				return(0);
447 			}
448 			/*
449 			 * file is older
450 			 */
451 			return(1);
452 		}
453 	}
454 
455 	/*
456 	 * not in table, add it
457 	 */
458 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
459 		/*
460 		 * add the name at the end of the scratch file, saving the
461 		 * offset. add the file to the head of the hash chain
462 		 */
463 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
464 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
465 				pt->mtime = arcn->sb.st_mtime;
466 				pt->namelen = namelen;
467 				pt->fow = ftab[indx];
468 				ftab[indx] = pt;
469 				return(0);
470 			}
471 			syswarn(1, errno, "Failed write to file time table");
472 		} else
473 			syswarn(1, errno, "Failed seek on file time table");
474 	} else
475 		tty_warn(1, "File time table ran out of memory");
476 
477 	if (pt != NULL)
478 		(void)free((char *)pt);
479 	return(-1);
480 }
481 
482 /*
483  * Interactive rename table routines
484  *
485  * The interactive rename table keeps track of the new names that the user
486  * assigns to files from tty input. Since this map is unique for each file
487  * we must store it in case there is a reference to the file later in archive
488  * (a link). Otherwise we will be unable to find the file we know was
489  * extracted. The remapping of these files is stored in a memory based hash
490  * table (it is assumed since input must come from /dev/tty, it is unlikely to
491  * be a very large table).
492  */
493 
494 /*
495  * name_start()
496  *	create the interactive rename table
497  * Return:
498  *	0 if successful, -1 otherwise
499  */
500 
501 int
502 name_start(void)
503 {
504 	if (ntab != NULL)
505 		return(0);
506 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
507 		tty_warn(1,
508 		    "Cannot allocate memory for interactive rename table");
509 		return(-1);
510 	}
511 	return(0);
512 }
513 
514 /*
515  * add_name()
516  *	add the new name to old name mapping just created by the user.
517  *	If an old name mapping is found (there may be duplicate names on an
518  *	archive) only the most recent is kept.
519  * Return:
520  *	0 if added, -1 otherwise
521  */
522 
523 int
524 add_name(char *oname, int onamelen, char *nname)
525 {
526 	NAMT *pt;
527 	u_int indx;
528 
529 	if (ntab == NULL) {
530 		/*
531 		 * should never happen
532 		 */
533 		tty_warn(0, "No interactive rename table, links may fail\n");
534 		return(0);
535 	}
536 
537 	/*
538 	 * look to see if we have already mapped this file, if so we
539 	 * will update it
540 	 */
541 	indx = st_hash(oname, onamelen, N_TAB_SZ);
542 	if ((pt = ntab[indx]) != NULL) {
543 		/*
544 		 * look down the has chain for the file
545 		 */
546 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
547 			pt = pt->fow;
548 
549 		if (pt != NULL) {
550 			/*
551 			 * found an old mapping, replace it with the new one
552 			 * the user just input (if it is different)
553 			 */
554 			if (strcmp(nname, pt->nname) == 0)
555 				return(0);
556 
557 			(void)free((char *)pt->nname);
558 			if ((pt->nname = strdup(nname)) == NULL) {
559 				tty_warn(1, "Cannot update rename table");
560 				return(-1);
561 			}
562 			return(0);
563 		}
564 	}
565 
566 	/*
567 	 * this is a new mapping, add it to the table
568 	 */
569 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
570 		if ((pt->oname = strdup(oname)) != NULL) {
571 			if ((pt->nname = strdup(nname)) != NULL) {
572 				pt->fow = ntab[indx];
573 				ntab[indx] = pt;
574 				return(0);
575 			}
576 			(void)free((char *)pt->oname);
577 		}
578 		(void)free((char *)pt);
579 	}
580 	tty_warn(1, "Interactive rename table out of memory");
581 	return(-1);
582 }
583 
584 /*
585  * sub_name()
586  *	look up a link name to see if it points at a file that has been
587  *	remapped by the user. If found, the link is adjusted to contain the
588  *	new name (oname is the link to name)
589  */
590 
591 void
592 sub_name(char *oname, int *onamelen)
593 {
594 	NAMT *pt;
595 	u_int indx;
596 
597 	if (ntab == NULL)
598 		return;
599 	/*
600 	 * look the name up in the hash table
601 	 */
602 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
603 	if ((pt = ntab[indx]) == NULL)
604 		return;
605 
606 	while (pt != NULL) {
607 		/*
608 		 * walk down the hash chain looking for a match
609 		 */
610 		if (strcmp(oname, pt->oname) == 0) {
611 			/*
612 			 * found it, replace it with the new name
613 			 * and return (we know that oname has enough space)
614 			 */
615 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
616 			return;
617 		}
618 		pt = pt->fow;
619 	}
620 
621 	/*
622 	 * no match, just return
623 	 */
624 	return;
625 }
626 
627 /*
628  * device/inode mapping table routines
629  * (used with formats that store device and inodes fields)
630  *
631  * device/inode mapping tables remap the device field in a archive header. The
632  * device/inode fields are used to determine when files are hard links to each
633  * other. However these values have very little meaning outside of that. This
634  * database is used to solve one of two different problems.
635  *
636  * 1) when files are appended to an archive, while the new files may have hard
637  * links to each other, you cannot determine if they have hard links to any
638  * file already stored on the archive from a prior run of pax. We must assume
639  * that these inode/device pairs are unique only within a SINGLE run of pax
640  * (which adds a set of files to an archive). So we have to make sure the
641  * inode/dev pairs we add each time are always unique. We do this by observing
642  * while the inode field is very dense, the use of the dev field is fairly
643  * sparse. Within each run of pax, we remap any device number of a new archive
644  * member that has a device number used in a prior run and already stored in a
645  * file on the archive. During the read phase of the append, we store the
646  * device numbers used and mark them to not be used by any file during the
647  * write phase. If during write we go to use one of those old device numbers,
648  * we remap it to a new value.
649  *
650  * 2) Often the fields in the archive header used to store these values are
651  * too small to store the entire value. The result is an inode or device value
652  * which can be truncated. This really can foul up an archive. With truncation
653  * we end up creating links between files that are really not links (after
654  * truncation the inodes are the same value). We address that by detecting
655  * truncation and forcing a remap of the device field to split truncated
656  * inodes away from each other. Each truncation creates a pattern of bits that
657  * are removed. We use this pattern of truncated bits to partition the inodes
658  * on a single device to many different devices (each one represented by the
659  * truncated bit pattern). All inodes on the same device that have the same
660  * truncation pattern are mapped to the same new device. Two inodes that
661  * truncate to the same value clearly will always have different truncation
662  * bit patterns, so they will be split from away each other. When we spot
663  * device truncation we remap the device number to a non truncated value.
664  * (for more info see table.h for the data structures involved).
665  */
666 
667 /*
668  * dev_start()
669  *	create the device mapping table
670  * Return:
671  *	0 if successful, -1 otherwise
672  */
673 
674 int
675 dev_start(void)
676 {
677 	if (dtab != NULL)
678 		return(0);
679 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
680 		tty_warn(1, "Cannot allocate memory for device mapping table");
681 		return(-1);
682 	}
683 	return(0);
684 }
685 
686 /*
687  * add_dev()
688  *	add a device number to the table. this will force the device to be
689  *	remapped to a new value if it be used during a write phase. This
690  *	function is called during the read phase of an append to prohibit the
691  *	use of any device number already in the archive.
692  * Return:
693  *	0 if added ok, -1 otherwise
694  */
695 
696 int
697 add_dev(ARCHD *arcn)
698 {
699 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
700 		return(-1);
701 	return(0);
702 }
703 
704 /*
705  * chk_dev()
706  *	check for a device value in the device table. If not found and the add
707  *	flag is set, it is added. This does NOT assign any mapping values, just
708  *	adds the device number as one that need to be remapped. If this device
709  *	is already mapped, just return with a pointer to that entry.
710  * Return:
711  *	pointer to the entry for this device in the device map table. Null
712  *	if the add flag is not set and the device is not in the table (it is
713  *	not been seen yet). If add is set and the device cannot be added, null
714  *	is returned (indicates an error).
715  */
716 
717 static DEVT *
718 chk_dev(dev_t dev, int add)
719 {
720 	DEVT *pt;
721 	u_int indx;
722 
723 	if (dtab == NULL)
724 		return(NULL);
725 	/*
726 	 * look to see if this device is already in the table
727 	 */
728 	indx = ((unsigned)dev) % D_TAB_SZ;
729 	if ((pt = dtab[indx]) != NULL) {
730 		while ((pt != NULL) && (pt->dev != dev))
731 			pt = pt->fow;
732 
733 		/*
734 		 * found it, return a pointer to it
735 		 */
736 		if (pt != NULL)
737 			return(pt);
738 	}
739 
740 	/*
741 	 * not in table, we add it only if told to as this may just be a check
742 	 * to see if a device number is being used.
743 	 */
744 	if (add == 0)
745 		return(NULL);
746 
747 	/*
748 	 * allocate a node for this device and add it to the front of the hash
749 	 * chain. Note we do not assign remaps values here, so the pt->list
750 	 * list must be NULL.
751 	 */
752 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
753 		tty_warn(1, "Device map table out of memory");
754 		return(NULL);
755 	}
756 	pt->dev = dev;
757 	pt->list = NULL;
758 	pt->fow = dtab[indx];
759 	dtab[indx] = pt;
760 	return(pt);
761 }
762 /*
763  * map_dev()
764  *	given an inode and device storage mask (the mask has a 1 for each bit
765  *	the archive format is able to store in a header), we check for inode
766  *	and device truncation and remap the device as required. Device mapping
767  *	can also occur when during the read phase of append a device number was
768  *	seen (and was marked as do not use during the write phase). WE ASSUME
769  *	that unsigned longs are the same size or bigger than the fields used
770  *	for ino_t and dev_t. If not the types will have to be changed.
771  * Return:
772  *	0 if all ok, -1 otherwise.
773  */
774 
775 int
776 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
777 {
778 	DEVT *pt;
779 	DLIST *dpt;
780 	static dev_t lastdev = 0;	/* next device number to try */
781 	int trc_ino = 0;
782 	int trc_dev = 0;
783 	ino_t trunc_bits = 0;
784 	ino_t nino;
785 
786 	if (dtab == NULL)
787 		return(0);
788 	/*
789 	 * check for device and inode truncation, and extract the truncated
790 	 * bit pattern.
791 	 */
792 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
793 		++trc_dev;
794 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
795 		++trc_ino;
796 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
797 	}
798 
799 	/*
800 	 * see if this device is already being mapped, look up the device
801 	 * then find the truncation bit pattern which applies
802 	 */
803 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
804 		/*
805 		 * this device is already marked to be remapped
806 		 */
807 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
808 			if (dpt->trunc_bits == trunc_bits)
809 				break;
810 
811 		if (dpt != NULL) {
812 			/*
813 			 * we are being remapped for this device and pattern
814 			 * change the device number to be stored and return
815 			 */
816 			arcn->sb.st_dev = dpt->dev;
817 			arcn->sb.st_ino = nino;
818 			return(0);
819 		}
820 	} else {
821 		/*
822 		 * this device is not being remapped YET. if we do not have any
823 		 * form of truncation, we do not need a remap
824 		 */
825 		if (!trc_ino && !trc_dev)
826 			return(0);
827 
828 		/*
829 		 * we have truncation, have to add this as a device to remap
830 		 */
831 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
832 			goto bad;
833 
834 		/*
835 		 * if we just have a truncated inode, we have to make sure that
836 		 * all future inodes that do not truncate (they have the
837 		 * truncation pattern of all 0's) continue to map to the same
838 		 * device number. We probably have already written inodes with
839 		 * this device number to the archive with the truncation
840 		 * pattern of all 0's. So we add the mapping for all 0's to the
841 		 * same device number.
842 		 */
843 		if (!trc_dev && (trunc_bits != 0)) {
844 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
845 				goto bad;
846 			dpt->trunc_bits = 0;
847 			dpt->dev = arcn->sb.st_dev;
848 			dpt->fow = pt->list;
849 			pt->list = dpt;
850 		}
851 	}
852 
853 	/*
854 	 * look for a device number not being used. We must watch for wrap
855 	 * around on lastdev (so we do not get stuck looking forever!)
856 	 */
857 	while (++lastdev > 0) {
858 		if (chk_dev(lastdev, 0) != NULL)
859 			continue;
860 		/*
861 		 * found an unused value. If we have reached truncation point
862 		 * for this format we are hosed, so we give up. Otherwise we
863 		 * mark it as being used.
864 		 */
865 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
866 		    (chk_dev(lastdev, 1) == NULL))
867 			goto bad;
868 		break;
869 	}
870 
871 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
872 		goto bad;
873 
874 	/*
875 	 * got a new device number, store it under this truncation pattern.
876 	 * change the device number this file is being stored with.
877 	 */
878 	dpt->trunc_bits = trunc_bits;
879 	dpt->dev = lastdev;
880 	dpt->fow = pt->list;
881 	pt->list = dpt;
882 	arcn->sb.st_dev = lastdev;
883 	arcn->sb.st_ino = nino;
884 	return(0);
885 
886     bad:
887 	tty_warn(1,
888 	    "Unable to fix truncated inode/device field when storing %s",
889 	    arcn->name);
890 	tty_warn(0, "Archive may create improper hard links when extracted");
891 	return(0);
892 }
893 
894 /*
895  * directory access/mod time reset table routines (for directories READ by pax)
896  *
897  * The pax -t flag requires that access times of archive files to be the same
898  * before being read by pax. For regular files, access time is restored after
899  * the file has been copied. This database provides the same functionality for
900  * directories read during file tree traversal. Restoring directory access time
901  * is more complex than files since directories may be read several times until
902  * all the descendants in their subtree are visited by fts. Directory access
903  * and modification times are stored during the fts pre-order visit (done
904  * before any descendants in the subtree is visited) and restored after the
905  * fts post-order visit (after all the descendants have been visited). In the
906  * case of premature exit from a subtree (like from the effects of -n), any
907  * directory entries left in this database are reset during final cleanup
908  * operations of pax. Entries are hashed by inode number for fast lookup.
909  */
910 
911 /*
912  * atdir_start()
913  *	create the directory access time database for directories READ by pax.
914  * Return:
915  *	0 is created ok, -1 otherwise.
916  */
917 
918 int
919 atdir_start(void)
920 {
921 	if (atab != NULL)
922 		return(0);
923 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
924 		tty_warn(1,
925 		    "Cannot allocate space for directory access time table");
926 		return(-1);
927 	}
928 	return(0);
929 }
930 
931 
932 /*
933  * atdir_end()
934  *	walk through the directory access time table and reset the access time
935  *	of any directory who still has an entry left in the database. These
936  *	entries are for directories READ by pax
937  */
938 
939 void
940 atdir_end(void)
941 {
942 	ATDIR *pt;
943 	int i;
944 
945 	if (atab == NULL)
946 		return;
947 	/*
948 	 * for each non-empty hash table entry reset all the directories
949 	 * chained there.
950 	 */
951 	for (i = 0; i < A_TAB_SZ; ++i) {
952 		if ((pt = atab[i]) == NULL)
953 			continue;
954 		/*
955 		 * remember to force the times, set_ftime() looks at pmtime
956 		 * and patime, which only applies to things CREATED by pax,
957 		 * not read by pax. Read time reset is controlled by -t.
958 		 */
959 		for (; pt != NULL; pt = pt->fow)
960 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
961 	}
962 }
963 
964 /*
965  * add_atdir()
966  *	add a directory to the directory access time table. Table is hashed
967  *	and chained by inode number. This is for directories READ by pax
968  */
969 
970 void
971 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
972 {
973 	ATDIR *pt;
974 	u_int indx;
975 
976 	if (atab == NULL)
977 		return;
978 
979 	/*
980 	 * make sure this directory is not already in the table, if so just
981 	 * return (the older entry always has the correct time). The only
982 	 * way this will happen is when the same subtree can be traversed by
983 	 * different args to pax and the -n option is aborting fts out of a
984 	 * subtree before all the post-order visits have been made).
985 	 */
986 	indx = ((unsigned)ino) % A_TAB_SZ;
987 	if ((pt = atab[indx]) != NULL) {
988 		while (pt != NULL) {
989 			if ((pt->ino == ino) && (pt->dev == dev))
990 				break;
991 			pt = pt->fow;
992 		}
993 
994 		/*
995 		 * oops, already there. Leave it alone.
996 		 */
997 		if (pt != NULL)
998 			return;
999 	}
1000 
1001 	/*
1002 	 * add it to the front of the hash chain
1003 	 */
1004 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1005 		if ((pt->name = strdup(fname)) != NULL) {
1006 			pt->dev = dev;
1007 			pt->ino = ino;
1008 			pt->mtime = mtime;
1009 			pt->atime = atime;
1010 			pt->fow = atab[indx];
1011 			atab[indx] = pt;
1012 			return;
1013 		}
1014 		(void)free((char *)pt);
1015 	}
1016 
1017 	tty_warn(1, "Directory access time reset table ran out of memory");
1018 	return;
1019 }
1020 
1021 /*
1022  * get_atdir()
1023  *	look up a directory by inode and device number to obtain the access
1024  *	and modification time you want to set to. If found, the modification
1025  *	and access time parameters are set and the entry is removed from the
1026  *	table (as it is no longer needed). These are for directories READ by
1027  *	pax
1028  * Return:
1029  *	0 if found, -1 if not found.
1030  */
1031 
1032 int
1033 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1034 {
1035 	ATDIR *pt;
1036 	ATDIR **ppt;
1037 	u_int indx;
1038 
1039 	if (atab == NULL)
1040 		return(-1);
1041 	/*
1042 	 * hash by inode and search the chain for an inode and device match
1043 	 */
1044 	indx = ((unsigned)ino) % A_TAB_SZ;
1045 	if ((pt = atab[indx]) == NULL)
1046 		return(-1);
1047 
1048 	ppt = &(atab[indx]);
1049 	while (pt != NULL) {
1050 		if ((pt->ino == ino) && (pt->dev == dev))
1051 			break;
1052 		/*
1053 		 * no match, go to next one
1054 		 */
1055 		ppt = &(pt->fow);
1056 		pt = pt->fow;
1057 	}
1058 
1059 	/*
1060 	 * return if we did not find it.
1061 	 */
1062 	if (pt == NULL)
1063 		return(-1);
1064 
1065 	/*
1066 	 * found it. return the times and remove the entry from the table.
1067 	 */
1068 	*ppt = pt->fow;
1069 	*mtime = pt->mtime;
1070 	*atime = pt->atime;
1071 	(void)free((char *)pt->name);
1072 	(void)free((char *)pt);
1073 	return(0);
1074 }
1075 
1076 /*
1077  * directory access mode and time storage routines (for directories CREATED
1078  * by pax).
1079  *
1080  * Pax requires that extracted directories, by default, have their access/mod
1081  * times and permissions set to the values specified in the archive. During the
1082  * actions of extracting (and creating the destination subtree during -rw copy)
1083  * directories extracted may be modified after being created. Even worse is
1084  * that these directories may have been created with file permissions which
1085  * prohibits any descendants of these directories from being extracted. When
1086  * directories are created by pax, access rights may be added to permit the
1087  * creation of files in their subtree. Every time pax creates a directory, the
1088  * times and file permissions specified by the archive are stored. After all
1089  * files have been extracted (or copied), these directories have their times
1090  * and file modes reset to the stored values. The directory info is restored in
1091  * reverse order as entries were added to the data file from root to leaf. To
1092  * restore atime properly, we must go backwards. The data file consists of
1093  * records with two parts, the file name followed by a DIRDATA trailer. The
1094  * fixed sized trailer contains the size of the name plus the off_t location in
1095  * the file. To restore we work backwards through the file reading the trailer
1096  * then the file name.
1097  */
1098 
1099 #ifndef DIRS_USE_FILE
1100 static DIRDATA *dirdata_head;
1101 #endif
1102 
1103 /*
1104  * dir_start()
1105  *	set up the directory time and file mode storage for directories CREATED
1106  *	by pax.
1107  * Return:
1108  *	0 if ok, -1 otherwise
1109  */
1110 
1111 int
1112 dir_start(void)
1113 {
1114 #ifdef DIRS_USE_FILE
1115 	const char *tmpdir;
1116 	char template[MAXPATHLEN];
1117 
1118 	if (dirfd != -1)
1119 		return(0);
1120 
1121 	/*
1122 	 * unlink the file so it goes away at termination by itself
1123 	 */
1124 	if ((tmpdir = getenv("TMPDIR")) == NULL)
1125 		tmpdir = _PATH_TMP;
1126 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
1127 	if ((dirfd = mkstemp(template)) >= 0) {
1128 		(void)unlink(template);
1129 		return(0);
1130 	}
1131 	tty_warn(1, "Unable to create temporary file for directory times: %s",
1132 	    template);
1133 	return(-1);
1134 #else
1135 	return (0);
1136 #endif /* DIRS_USE_FILE */
1137 }
1138 
1139 /*
1140  * add_dir()
1141  *	add the mode and times for a newly CREATED directory
1142  *	name is name of the directory, psb the stat buffer with the data in it,
1143  *	frc_mode is a flag that says whether to force the setting of the mode
1144  *	(ignoring the user set values for preserving file mode). Frc_mode is
1145  *	for the case where we created a file and found that the resulting
1146  *	directory was not writeable and the user asked for file modes to NOT
1147  *	be preserved. (we have to preserve what was created by default, so we
1148  *	have to force the setting at the end. this is stated explicitly in the
1149  *	pax spec)
1150  */
1151 
1152 void
1153 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1154 {
1155 #ifdef DIRS_USE_FILE
1156 	DIRDATA dblk;
1157 
1158 	if (dirfd < 0)
1159 		return;
1160 
1161 	/*
1162 	 * get current position (where file name will start) so we can store it
1163 	 * in the trailer
1164 	 */
1165 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1166 		tty_warn(1,
1167 		    "Unable to store mode and times for directory: %s",name);
1168 		return;
1169 	}
1170 
1171 	/*
1172 	 * write the file name followed by the trailer
1173 	 */
1174 	dblk.nlen = nlen + 1;
1175 	dblk.mode = psb->st_mode & 0xffff;
1176 	dblk.mtime = psb->st_mtime;
1177 	dblk.atime = psb->st_atime;
1178 #if HAVE_STRUCT_STAT_ST_FLAGS
1179 	dblk.fflags = psb->st_flags;
1180 #else
1181 	dblk.fflags = 0;
1182 #endif
1183 	dblk.frc_mode = frc_mode;
1184 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
1185 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1186 		++dircnt;
1187 		return;
1188 	}
1189 
1190 	tty_warn(1,
1191 	    "Unable to store mode and times for created directory: %s",name);
1192 	return;
1193 #else
1194 	DIRDATA *dblk;
1195 
1196 	if ((dblk = malloc(sizeof(*dblk))) == NULL ||
1197 	    (dblk->name = strdup(name)) == NULL) {
1198 		tty_warn(1,
1199 		    "Unable to store mode and times for directory: %s",name);
1200 		if (dblk != NULL)
1201 			free(dblk);
1202 		return;
1203 	}
1204 
1205 	dblk->mode = psb->st_mode & 0xffff;
1206 	dblk->mtime = psb->st_mtime;
1207 	dblk->atime = psb->st_atime;
1208 #if HAVE_STRUCT_STAT_ST_FLAGS
1209 	dblk->fflags = psb->st_flags;
1210 #else
1211 	dblk->fflags = 0;
1212 #endif
1213 	dblk->frc_mode = frc_mode;
1214 
1215 	dblk->next = dirdata_head;
1216 	dirdata_head = dblk;
1217 	return;
1218 #endif /* DIRS_USE_FILE */
1219 }
1220 
1221 /*
1222  * proc_dir()
1223  *	process all file modes and times stored for directories CREATED
1224  *	by pax
1225  */
1226 
1227 void
1228 proc_dir(void)
1229 {
1230 #ifdef DIRS_USE_FILE
1231 	char name[PAXPATHLEN+1];
1232 	DIRDATA dblk;
1233 	u_long cnt;
1234 
1235 	if (dirfd < 0)
1236 		return;
1237 	/*
1238 	 * read backwards through the file and process each directory
1239 	 */
1240 	for (cnt = 0; cnt < dircnt; ++cnt) {
1241 		/*
1242 		 * read the trailer, then the file name, if this fails
1243 		 * just give up.
1244 		 */
1245 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1246 			break;
1247 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1248 			break;
1249 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1250 			break;
1251 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
1252 			break;
1253 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1254 			break;
1255 
1256 		/*
1257 		 * frc_mode set, make sure we set the file modes even if
1258 		 * the user didn't ask for it (see file_subs.c for more info)
1259 		 */
1260 		if (pmode || dblk.frc_mode)
1261 			set_pmode(name, dblk.mode);
1262 		if (patime || pmtime)
1263 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1264 		if (pfflags)
1265 			set_chflags(name, dblk.fflags);
1266 	}
1267 
1268 	(void)close(dirfd);
1269 	dirfd = -1;
1270 	if (cnt != dircnt)
1271 		tty_warn(1,
1272 		    "Unable to set mode and times for created directories");
1273 	return;
1274 #else
1275 	DIRDATA *dblk;
1276 
1277 	for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
1278 		dirdata_head = dblk->next;
1279 
1280 		/*
1281 		 * frc_mode set, make sure we set the file modes even if
1282 		 * the user didn't ask for it (see file_subs.c for more info)
1283 		 */
1284 		if (pmode || dblk->frc_mode)
1285 			set_pmode(dblk->name, dblk->mode);
1286 		if (patime || pmtime)
1287 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
1288 		if (pfflags)
1289 			set_chflags(dblk->name, dblk->fflags);
1290 
1291 		free(dblk->name);
1292 		free(dblk);
1293 	}
1294 #endif /* DIRS_USE_FILE */
1295 }
1296 
1297 /*
1298  * database independent routines
1299  */
1300 
1301 /*
1302  * st_hash()
1303  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1304  *	end of file, as this provides far better distribution than any other
1305  *	part of the name. For performance reasons we only care about the last
1306  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1307  *	name). Was tested on 500,000 name file tree traversal from the root
1308  *	and gave almost a perfectly uniform distribution of keys when used with
1309  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1310  *	chars at a time and pads with 0 for last addition.
1311  * Return:
1312  *	the hash value of the string MOD (%) the table size.
1313  */
1314 
1315 u_int
1316 st_hash(char *name, int len, int tabsz)
1317 {
1318 	char *pt;
1319 	char *dest;
1320 	char *end;
1321 	int i;
1322 	u_int key = 0;
1323 	int steps;
1324 	int res;
1325 	u_int val;
1326 
1327 	/*
1328 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1329 	 * time here (remember these are pathnames, the tail is what will
1330 	 * spread out the keys)
1331 	 */
1332 	if (len > MAXKEYLEN) {
1333 		pt = &(name[len - MAXKEYLEN]);
1334 		len = MAXKEYLEN;
1335 	} else
1336 		pt = name;
1337 
1338 	/*
1339 	 * calculate the number of u_int size steps in the string and if
1340 	 * there is a runt to deal with
1341 	 */
1342 	steps = len/sizeof(u_int);
1343 	res = len % sizeof(u_int);
1344 
1345 	/*
1346 	 * add up the value of the string in unsigned integer sized pieces
1347 	 * too bad we cannot have unsigned int aligned strings, then we
1348 	 * could avoid the expensive copy.
1349 	 */
1350 	for (i = 0; i < steps; ++i) {
1351 		end = pt + sizeof(u_int);
1352 		dest = (char *)&val;
1353 		while (pt < end)
1354 			*dest++ = *pt++;
1355 		key += val;
1356 	}
1357 
1358 	/*
1359 	 * add in the runt padded with zero to the right
1360 	 */
1361 	if (res) {
1362 		val = 0;
1363 		end = pt + res;
1364 		dest = (char *)&val;
1365 		while (pt < end)
1366 			*dest++ = *pt++;
1367 		key += val;
1368 	}
1369 
1370 	/*
1371 	 * return the result mod the table size
1372 	 */
1373 	return(key % tabsz);
1374 }
1375