xref: /netbsd/common/lib/libc/gen/rb.c (revision 6550d01e)
1 /*	$NetBSD: rb.c,v 1.9 2010/11/17 13:19:32 tron Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas <matt@3am-software.com>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #if !defined(_KERNEL) && !defined(_STANDALONE)
33 #include <sys/types.h>
34 #include <stddef.h>
35 #include <assert.h>
36 #include <stdbool.h>
37 #ifdef RBDEBUG
38 #define	KASSERT(s)	assert(s)
39 #else
40 #define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
41 #endif
42 #else
43 #include <lib/libkern/libkern.h>
44 #endif
45 
46 #ifdef _LIBC
47 __weak_alias(rb_tree_init, _rb_tree_init)
48 __weak_alias(rb_tree_find_node, _rb_tree_find_node)
49 __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
50 __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
51 __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
52 __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
53 __weak_alias(rb_tree_iterate, _rb_tree_iterate)
54 #ifdef RBDEBUG
55 __weak_alias(rb_tree_check, _rb_tree_check)
56 __weak_alias(rb_tree_depths, _rb_tree_depths)
57 #endif
58 
59 #include "namespace.h"
60 #endif
61 
62 #ifdef RBTEST
63 #include "rbtree.h"
64 #else
65 #include <sys/rbtree.h>
66 #endif
67 
68 static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
69 static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
70 	unsigned int);
71 #ifdef RBDEBUG
72 static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
73 	const struct rb_node *, const unsigned int);
74 static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
75 	const struct rb_node *, bool);
76 #else
77 #define	rb_tree_check_node(a, b, c, d)	true
78 #endif
79 
80 #define	RB_NODETOITEM(rbto, rbn)	\
81     ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
82 #define	RB_ITEMTONODE(rbto, rbn)	\
83     ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
84 
85 #define	RB_SENTINEL_NODE	NULL
86 
87 void
88 rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
89 {
90 
91 	rbt->rbt_ops = ops;
92 	*((const struct rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
93 	RB_TAILQ_INIT(&rbt->rbt_nodes);
94 #ifndef RBSMALL
95 	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
96 	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
97 #endif
98 #ifdef RBSTATS
99 	rbt->rbt_count = 0;
100 	rbt->rbt_insertions = 0;
101 	rbt->rbt_removals = 0;
102 	rbt->rbt_insertion_rebalance_calls = 0;
103 	rbt->rbt_insertion_rebalance_passes = 0;
104 	rbt->rbt_removal_rebalance_calls = 0;
105 	rbt->rbt_removal_rebalance_passes = 0;
106 #endif
107 }
108 
109 void *
110 rb_tree_find_node(struct rb_tree *rbt, const void *key)
111 {
112 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
113 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
114 	struct rb_node *parent = rbt->rbt_root;
115 
116 	while (!RB_SENTINEL_P(parent)) {
117 		void *pobj = RB_NODETOITEM(rbto, parent);
118 		const signed int diff = (*compare_key)(rbto->rbto_context,
119 		    pobj, key);
120 		if (diff == 0)
121 			return pobj;
122 		parent = parent->rb_nodes[diff < 0];
123 	}
124 
125 	return NULL;
126 }
127 
128 void *
129 rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
130 {
131 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
132 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
133 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
134 
135 	while (!RB_SENTINEL_P(parent)) {
136 		void *pobj = RB_NODETOITEM(rbto, parent);
137 		const signed int diff = (*compare_key)(rbto->rbto_context,
138 		    pobj, key);
139 		if (diff == 0)
140 			return pobj;
141 		if (diff > 0)
142 			last = parent;
143 		parent = parent->rb_nodes[diff < 0];
144 	}
145 
146 	return RB_NODETOITEM(rbto, last);
147 }
148 
149 void *
150 rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
151 {
152 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
153 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
154 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
155 
156 	while (!RB_SENTINEL_P(parent)) {
157 		void *pobj = RB_NODETOITEM(rbto, parent);
158 		const signed int diff = (*compare_key)(rbto->rbto_context,
159 		    pobj, key);
160 		if (diff == 0)
161 			return pobj;
162 		if (diff < 0)
163 			last = parent;
164 		parent = parent->rb_nodes[diff < 0];
165 	}
166 
167 	return RB_NODETOITEM(rbto, last);
168 }
169 
170 void *
171 rb_tree_insert_node(struct rb_tree *rbt, void *object)
172 {
173 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
174 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
175 	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
176 	unsigned int position;
177 	bool rebalance;
178 
179 	RBSTAT_INC(rbt->rbt_insertions);
180 
181 	tmp = rbt->rbt_root;
182 	/*
183 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
184 	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
185 	 * avoid a lot of tests for root and know that even at root,
186 	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
187 	 * update rbt->rbt_root.
188 	 */
189 	parent = (struct rb_node *)(void *)&rbt->rbt_root;
190 	position = RB_DIR_LEFT;
191 
192 	/*
193 	 * Find out where to place this new leaf.
194 	 */
195 	while (!RB_SENTINEL_P(tmp)) {
196 		void *tobj = RB_NODETOITEM(rbto, tmp);
197 		const signed int diff = (*compare_nodes)(rbto->rbto_context,
198 		    tobj, object);
199 		if (__predict_false(diff == 0)) {
200 			/*
201 			 * Node already exists; return it.
202 			 */
203 			return tobj;
204 		}
205 		parent = tmp;
206 		position = (diff < 0);
207 		tmp = parent->rb_nodes[position];
208 	}
209 
210 #ifdef RBDEBUG
211 	{
212 		struct rb_node *prev = NULL, *next = NULL;
213 
214 		if (position == RB_DIR_RIGHT)
215 			prev = parent;
216 		else if (tmp != rbt->rbt_root)
217 			next = parent;
218 
219 		/*
220 		 * Verify our sequential position
221 		 */
222 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
223 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
224 		if (prev != NULL && next == NULL)
225 			next = TAILQ_NEXT(prev, rb_link);
226 		if (prev == NULL && next != NULL)
227 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
228 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
229 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
230 		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
231 		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
232 		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
233 		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
234 	}
235 #endif
236 
237 	/*
238 	 * Initialize the node and insert as a leaf into the tree.
239 	 */
240 	RB_SET_FATHER(self, parent);
241 	RB_SET_POSITION(self, position);
242 	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
243 		RB_MARK_BLACK(self);		/* root is always black */
244 #ifndef RBSMALL
245 		rbt->rbt_minmax[RB_DIR_LEFT] = self;
246 		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
247 #endif
248 		rebalance = false;
249 	} else {
250 		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
251 #ifndef RBSMALL
252 		/*
253 		 * Keep track of the minimum and maximum nodes.  If our
254 		 * parent is a minmax node and we on their min/max side,
255 		 * we must be the new min/max node.
256 		 */
257 		if (parent == rbt->rbt_minmax[position])
258 			rbt->rbt_minmax[position] = self;
259 #endif /* !RBSMALL */
260 		/*
261 		 * All new nodes are colored red.  We only need to rebalance
262 		 * if our parent is also red.
263 		 */
264 		RB_MARK_RED(self);
265 		rebalance = RB_RED_P(parent);
266 	}
267 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
268 	self->rb_left = parent->rb_nodes[position];
269 	self->rb_right = parent->rb_nodes[position];
270 	parent->rb_nodes[position] = self;
271 	KASSERT(RB_CHILDLESS_P(self));
272 
273 	/*
274 	 * Insert the new node into a sorted list for easy sequential access
275 	 */
276 	RBSTAT_INC(rbt->rbt_count);
277 #ifdef RBDEBUG
278 	if (RB_ROOT_P(rbt, self)) {
279 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
280 	} else if (position == RB_DIR_LEFT) {
281 		KASSERT((*compare_nodes)(rbto->rbto_context,
282 		    RB_NODETOITEM(rbto, self),
283 		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
284 		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
285 	} else {
286 		KASSERT((*compare_nodes)(rbto->rbto_context,
287 		    RB_NODETOITEM(rbto, RB_FATHER(self)),
288 		    RB_NODETOITEM(rbto, self)) < 0);
289 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
290 		    self, rb_link);
291 	}
292 #endif
293 	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
294 
295 	/*
296 	 * Rebalance tree after insertion
297 	 */
298 	if (rebalance) {
299 		rb_tree_insert_rebalance(rbt, self);
300 		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
301 	}
302 
303 	/* Succesfully inserted, return our node pointer. */
304 	return object;
305 }
306 
307 /*
308  * Swap the location and colors of 'self' and its child @ which.  The child
309  * can not be a sentinel node.  This is our rotation function.  However,
310  * since it preserves coloring, it great simplifies both insertion and
311  * removal since rotation almost always involves the exchanging of colors
312  * as a separate step.
313  */
314 /*ARGSUSED*/
315 static void
316 rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
317 	const unsigned int which)
318 {
319 	const unsigned int other = which ^ RB_DIR_OTHER;
320 	struct rb_node * const grandpa = RB_FATHER(old_father);
321 	struct rb_node * const old_child = old_father->rb_nodes[which];
322 	struct rb_node * const new_father = old_child;
323 	struct rb_node * const new_child = old_father;
324 
325 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
326 
327 	KASSERT(!RB_SENTINEL_P(old_child));
328 	KASSERT(RB_FATHER(old_child) == old_father);
329 
330 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
331 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
332 	KASSERT(RB_ROOT_P(rbt, old_father) ||
333 	    rb_tree_check_node(rbt, grandpa, NULL, false));
334 
335 	/*
336 	 * Exchange descendant linkages.
337 	 */
338 	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
339 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
340 	new_father->rb_nodes[other] = new_child;
341 
342 	/*
343 	 * Update ancestor linkages
344 	 */
345 	RB_SET_FATHER(new_father, grandpa);
346 	RB_SET_FATHER(new_child, new_father);
347 
348 	/*
349 	 * Exchange properties between new_father and new_child.  The only
350 	 * change is that new_child's position is now on the other side.
351 	 */
352 #if 0
353 	{
354 		struct rb_node tmp;
355 		tmp.rb_info = 0;
356 		RB_COPY_PROPERTIES(&tmp, old_child);
357 		RB_COPY_PROPERTIES(new_father, old_father);
358 		RB_COPY_PROPERTIES(new_child, &tmp);
359 	}
360 #else
361 	RB_SWAP_PROPERTIES(new_father, new_child);
362 #endif
363 	RB_SET_POSITION(new_child, other);
364 
365 	/*
366 	 * Make sure to reparent the new child to ourself.
367 	 */
368 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
369 		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
370 		RB_SET_POSITION(new_child->rb_nodes[which], which);
371 	}
372 
373 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
374 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
375 	KASSERT(RB_ROOT_P(rbt, new_father) ||
376 	    rb_tree_check_node(rbt, grandpa, NULL, false));
377 }
378 
379 static void
380 rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
381 {
382 	struct rb_node * father = RB_FATHER(self);
383 	struct rb_node * grandpa = RB_FATHER(father);
384 	struct rb_node * uncle;
385 	unsigned int which;
386 	unsigned int other;
387 
388 	KASSERT(!RB_ROOT_P(rbt, self));
389 	KASSERT(RB_RED_P(self));
390 	KASSERT(RB_RED_P(father));
391 	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
392 
393 	for (;;) {
394 		KASSERT(!RB_SENTINEL_P(self));
395 
396 		KASSERT(RB_RED_P(self));
397 		KASSERT(RB_RED_P(father));
398 		/*
399 		 * We are red and our parent is red, therefore we must have a
400 		 * grandfather and he must be black.
401 		 */
402 		grandpa = RB_FATHER(father);
403 		KASSERT(RB_BLACK_P(grandpa));
404 		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
405 		which = (father == grandpa->rb_right);
406 		other = which ^ RB_DIR_OTHER;
407 		uncle = grandpa->rb_nodes[other];
408 
409 		if (RB_BLACK_P(uncle))
410 			break;
411 
412 		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
413 		/*
414 		 * Case 1: our uncle is red
415 		 *   Simply invert the colors of our parent and
416 		 *   uncle and make our grandparent red.  And
417 		 *   then solve the problem up at his level.
418 		 */
419 		RB_MARK_BLACK(uncle);
420 		RB_MARK_BLACK(father);
421 		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
422 			/*
423 			 * If our grandpa is root, don't bother
424 			 * setting him to red, just return.
425 			 */
426 			KASSERT(RB_BLACK_P(grandpa));
427 			return;
428 		}
429 		RB_MARK_RED(grandpa);
430 		self = grandpa;
431 		father = RB_FATHER(self);
432 		KASSERT(RB_RED_P(self));
433 		if (RB_BLACK_P(father)) {
434 			/*
435 			 * If our greatgrandpa is black, we're done.
436 			 */
437 			KASSERT(RB_BLACK_P(rbt->rbt_root));
438 			return;
439 		}
440 	}
441 
442 	KASSERT(!RB_ROOT_P(rbt, self));
443 	KASSERT(RB_RED_P(self));
444 	KASSERT(RB_RED_P(father));
445 	KASSERT(RB_BLACK_P(uncle));
446 	KASSERT(RB_BLACK_P(grandpa));
447 	/*
448 	 * Case 2&3: our uncle is black.
449 	 */
450 	if (self == father->rb_nodes[other]) {
451 		/*
452 		 * Case 2: we are on the same side as our uncle
453 		 *   Swap ourselves with our parent so this case
454 		 *   becomes case 3.  Basically our parent becomes our
455 		 *   child.
456 		 */
457 		rb_tree_reparent_nodes(rbt, father, other);
458 		KASSERT(RB_FATHER(father) == self);
459 		KASSERT(self->rb_nodes[which] == father);
460 		KASSERT(RB_FATHER(self) == grandpa);
461 		self = father;
462 		father = RB_FATHER(self);
463 	}
464 	KASSERT(RB_RED_P(self) && RB_RED_P(father));
465 	KASSERT(grandpa->rb_nodes[which] == father);
466 	/*
467 	 * Case 3: we are opposite a child of a black uncle.
468 	 *   Swap our parent and grandparent.  Since our grandfather
469 	 *   is black, our father will become black and our new sibling
470 	 *   (former grandparent) will become red.
471 	 */
472 	rb_tree_reparent_nodes(rbt, grandpa, which);
473 	KASSERT(RB_FATHER(self) == father);
474 	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
475 	KASSERT(RB_RED_P(self));
476 	KASSERT(RB_BLACK_P(father));
477 	KASSERT(RB_RED_P(grandpa));
478 
479 	/*
480 	 * Final step: Set the root to black.
481 	 */
482 	RB_MARK_BLACK(rbt->rbt_root);
483 }
484 
485 static void
486 rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
487 {
488 	const unsigned int which = RB_POSITION(self);
489 	struct rb_node *father = RB_FATHER(self);
490 #ifndef RBSMALL
491 	const bool was_root = RB_ROOT_P(rbt, self);
492 #endif
493 
494 	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
495 	KASSERT(!rebalance || RB_BLACK_P(self));
496 	KASSERT(RB_CHILDLESS_P(self));
497 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
498 
499 	/*
500 	 * Since we are childless, we know that self->rb_left is pointing
501 	 * to the sentinel node.
502 	 */
503 	father->rb_nodes[which] = self->rb_left;
504 
505 	/*
506 	 * Remove ourselves from the node list, decrement the count,
507 	 * and update min/max.
508 	 */
509 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
510 	RBSTAT_DEC(rbt->rbt_count);
511 #ifndef RBSMALL
512 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
513 		rbt->rbt_minmax[RB_POSITION(self)] = father;
514 		/*
515 		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
516 		 * updated automatically, but we also need to update
517 		 * rbt->rbt_minmax[RB_DIR_RIGHT];
518 		 */
519 		if (__predict_false(was_root)) {
520 			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
521 		}
522 	}
523 	RB_SET_FATHER(self, NULL);
524 #endif
525 
526 	/*
527 	 * Rebalance if requested.
528 	 */
529 	if (rebalance)
530 		rb_tree_removal_rebalance(rbt, father, which);
531 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
532 }
533 
534 /*
535  * When deleting an interior node
536  */
537 static void
538 rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
539 	struct rb_node *standin)
540 {
541 	const unsigned int standin_which = RB_POSITION(standin);
542 	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
543 	struct rb_node *standin_son;
544 	struct rb_node *standin_father = RB_FATHER(standin);
545 	bool rebalance = RB_BLACK_P(standin);
546 
547 	if (standin_father == self) {
548 		/*
549 		 * As a child of self, any childen would be opposite of
550 		 * our parent.
551 		 */
552 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
553 		standin_son = standin->rb_nodes[standin_which];
554 	} else {
555 		/*
556 		 * Since we aren't a child of self, any childen would be
557 		 * on the same side as our parent.
558 		 */
559 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
560 		standin_son = standin->rb_nodes[standin_other];
561 	}
562 
563 	/*
564 	 * the node we are removing must have two children.
565 	 */
566 	KASSERT(RB_TWOCHILDREN_P(self));
567 	/*
568 	 * If standin has a child, it must be red.
569 	 */
570 	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
571 
572 	/*
573 	 * Verify things are sane.
574 	 */
575 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
576 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
577 
578 	if (__predict_false(RB_RED_P(standin_son))) {
579 		/*
580 		 * We know we have a red child so if we flip it to black
581 		 * we don't have to rebalance.
582 		 */
583 		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
584 		RB_MARK_BLACK(standin_son);
585 		rebalance = false;
586 
587 		if (standin_father == self) {
588 			KASSERT(RB_POSITION(standin_son) == standin_which);
589 		} else {
590 			KASSERT(RB_POSITION(standin_son) == standin_other);
591 			/*
592 			 * Change the son's parentage to point to his grandpa.
593 			 */
594 			RB_SET_FATHER(standin_son, standin_father);
595 			RB_SET_POSITION(standin_son, standin_which);
596 		}
597 	}
598 
599 	if (standin_father == self) {
600 		/*
601 		 * If we are about to delete the standin's father, then when
602 		 * we call rebalance, we need to use ourselves as our father.
603 		 * Otherwise remember our original father.  Also, sincef we are
604 		 * our standin's father we only need to reparent the standin's
605 		 * brother.
606 		 *
607 		 * |    R      -->     S    |
608 		 * |  Q   S    -->   Q   T  |
609 		 * |        t  -->          |
610 		 */
611 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
612 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
613 		KASSERT(self->rb_nodes[standin_which] == standin);
614 		/*
615 		 * Have our son/standin adopt his brother as his new son.
616 		 */
617 		standin_father = standin;
618 	} else {
619 		/*
620 		 * |    R          -->    S       .  |
621 		 * |   / \  |   T  -->   / \  |  /   |
622 		 * |  ..... | S    -->  ..... | T    |
623 		 *
624 		 * Sever standin's connection to his father.
625 		 */
626 		standin_father->rb_nodes[standin_which] = standin_son;
627 		/*
628 		 * Adopt the far son.
629 		 */
630 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
631 		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
632 		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
633 		/*
634 		 * Use standin_other because we need to preserve standin_which
635 		 * for the removal_rebalance.
636 		 */
637 		standin_other = standin_which;
638 	}
639 
640 	/*
641 	 * Move the only remaining son to our standin.  If our standin is our
642 	 * son, this will be the only son needed to be moved.
643 	 */
644 	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
645 	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
646 	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
647 
648 	/*
649 	 * Now copy the result of self to standin and then replace
650 	 * self with standin in the tree.
651 	 */
652 	RB_COPY_PROPERTIES(standin, self);
653 	RB_SET_FATHER(standin, RB_FATHER(self));
654 	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
655 
656 	/*
657 	 * Remove ourselves from the node list, decrement the count,
658 	 * and update min/max.
659 	 */
660 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
661 	RBSTAT_DEC(rbt->rbt_count);
662 #ifndef RBSMALL
663 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
664 		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
665 	RB_SET_FATHER(self, NULL);
666 #endif
667 
668 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
669 	KASSERT(RB_FATHER_SENTINEL_P(standin)
670 		|| rb_tree_check_node(rbt, standin_father, NULL, false));
671 	KASSERT(RB_LEFT_SENTINEL_P(standin)
672 		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
673 	KASSERT(RB_RIGHT_SENTINEL_P(standin)
674 		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
675 
676 	if (!rebalance)
677 		return;
678 
679 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
680 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
681 }
682 
683 /*
684  * We could do this by doing
685  *	rb_tree_node_swap(rbt, self, which);
686  *	rb_tree_prune_node(rbt, self, false);
687  *
688  * But it's more efficient to just evalate and recolor the child.
689  */
690 static void
691 rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
692 	unsigned int which)
693 {
694 	struct rb_node *father = RB_FATHER(self);
695 	struct rb_node *son = self->rb_nodes[which];
696 #ifndef RBSMALL
697 	const bool was_root = RB_ROOT_P(rbt, self);
698 #endif
699 
700 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
701 	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
702 	KASSERT(!RB_TWOCHILDREN_P(son));
703 	KASSERT(RB_CHILDLESS_P(son));
704 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
705 	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
706 
707 	/*
708 	 * Remove ourselves from the tree and give our former child our
709 	 * properties (position, color, root).
710 	 */
711 	RB_COPY_PROPERTIES(son, self);
712 	father->rb_nodes[RB_POSITION(son)] = son;
713 	RB_SET_FATHER(son, father);
714 
715 	/*
716 	 * Remove ourselves from the node list, decrement the count,
717 	 * and update minmax.
718 	 */
719 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
720 	RBSTAT_DEC(rbt->rbt_count);
721 #ifndef RBSMALL
722 	if (__predict_false(was_root)) {
723 		KASSERT(rbt->rbt_minmax[which] == son);
724 		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
725 	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
726 		rbt->rbt_minmax[RB_POSITION(self)] = son;
727 	}
728 	RB_SET_FATHER(self, NULL);
729 #endif
730 
731 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
732 	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
733 }
734 
735 void
736 rb_tree_remove_node(struct rb_tree *rbt, void *object)
737 {
738 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
739 	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
740 	unsigned int which;
741 
742 	KASSERT(!RB_SENTINEL_P(self));
743 	RBSTAT_INC(rbt->rbt_removals);
744 
745 	/*
746 	 * In the following diagrams, we (the node to be removed) are S.  Red
747 	 * nodes are lowercase.  T could be either red or black.
748 	 *
749 	 * Remember the major axiom of the red-black tree: the number of
750 	 * black nodes from the root to each leaf is constant across all
751 	 * leaves, only the number of red nodes varies.
752 	 *
753 	 * Thus removing a red leaf doesn't require any other changes to a
754 	 * red-black tree.  So if we must remove a node, attempt to rearrange
755 	 * the tree so we can remove a red node.
756 	 *
757 	 * The simpliest case is a childless red node or a childless root node:
758 	 *
759 	 * |    T  -->    T  |    or    |  R  -->  *  |
760 	 * |  s    -->  *    |
761 	 */
762 	if (RB_CHILDLESS_P(self)) {
763 		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
764 		rb_tree_prune_node(rbt, self, rebalance);
765 		return;
766 	}
767 	KASSERT(!RB_CHILDLESS_P(self));
768 	if (!RB_TWOCHILDREN_P(self)) {
769 		/*
770 		 * The next simpliest case is the node we are deleting is
771 		 * black and has one red child.
772 		 *
773 		 * |      T  -->      T  -->      T  |
774 		 * |    S    -->  R      -->  R      |
775 		 * |  r      -->    s    -->    *    |
776 		 */
777 		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
778 		KASSERT(RB_BLACK_P(self));
779 		KASSERT(RB_RED_P(self->rb_nodes[which]));
780 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
781 		rb_tree_prune_blackred_branch(rbt, self, which);
782 		return;
783 	}
784 	KASSERT(RB_TWOCHILDREN_P(self));
785 
786 	/*
787 	 * We invert these because we prefer to remove from the inside of
788 	 * the tree.
789 	 */
790 	which = RB_POSITION(self) ^ RB_DIR_OTHER;
791 
792 	/*
793 	 * Let's find the node closes to us opposite of our parent
794 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
795 	 */
796 	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
797 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
798 }
799 
800 static void
801 rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
802 	unsigned int which)
803 {
804 	KASSERT(!RB_SENTINEL_P(parent));
805 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
806 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
807 	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
808 
809 	while (RB_BLACK_P(parent->rb_nodes[which])) {
810 		unsigned int other = which ^ RB_DIR_OTHER;
811 		struct rb_node *brother = parent->rb_nodes[other];
812 
813 		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
814 
815 		KASSERT(!RB_SENTINEL_P(brother));
816 		/*
817 		 * For cases 1, 2a, and 2b, our brother's children must
818 		 * be black and our father must be black
819 		 */
820 		if (RB_BLACK_P(parent)
821 		    && RB_BLACK_P(brother->rb_left)
822 		    && RB_BLACK_P(brother->rb_right)) {
823 			if (RB_RED_P(brother)) {
824 				/*
825 				 * Case 1: Our brother is red, swap its
826 				 * position (and colors) with our parent.
827 				 * This should now be case 2b (unless C or E
828 				 * has a red child which is case 3; thus no
829 				 * explicit branch to case 2b).
830 				 *
831 				 *    B         ->        D
832 				 *  A     d     ->    b     E
833 				 *      C   E   ->  A   C
834 				 */
835 				KASSERT(RB_BLACK_P(parent));
836 				rb_tree_reparent_nodes(rbt, parent, other);
837 				brother = parent->rb_nodes[other];
838 				KASSERT(!RB_SENTINEL_P(brother));
839 				KASSERT(RB_RED_P(parent));
840 				KASSERT(RB_BLACK_P(brother));
841 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
842 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
843 			} else {
844 				/*
845 				 * Both our parent and brother are black.
846 				 * Change our brother to red, advance up rank
847 				 * and go through the loop again.
848 				 *
849 				 *    B         ->   *B
850 				 * *A     D     ->  A     d
851 				 *      C   E   ->      C   E
852 				 */
853 				RB_MARK_RED(brother);
854 				KASSERT(RB_BLACK_P(brother->rb_left));
855 				KASSERT(RB_BLACK_P(brother->rb_right));
856 				if (RB_ROOT_P(rbt, parent))
857 					return;	/* root == parent == black */
858 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
859 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
860 				which = RB_POSITION(parent);
861 				parent = RB_FATHER(parent);
862 				continue;
863 			}
864 		}
865 		/*
866 		 * Avoid an else here so that case 2a above can hit either
867 		 * case 2b, 3, or 4.
868 		 */
869 		if (RB_RED_P(parent)
870 		    && RB_BLACK_P(brother)
871 		    && RB_BLACK_P(brother->rb_left)
872 		    && RB_BLACK_P(brother->rb_right)) {
873 			KASSERT(RB_RED_P(parent));
874 			KASSERT(RB_BLACK_P(brother));
875 			KASSERT(RB_BLACK_P(brother->rb_left));
876 			KASSERT(RB_BLACK_P(brother->rb_right));
877 			/*
878 			 * We are black, our father is red, our brother and
879 			 * both nephews are black.  Simply invert/exchange the
880 			 * colors of our father and brother (to black and red
881 			 * respectively).
882 			 *
883 			 *	|    f        -->    F        |
884 			 *	|  *     B    -->  *     b    |
885 			 *	|      N   N  -->      N   N  |
886 			 */
887 			RB_MARK_BLACK(parent);
888 			RB_MARK_RED(brother);
889 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
890 			break;		/* We're done! */
891 		} else {
892 			/*
893 			 * Our brother must be black and have at least one
894 			 * red child (it may have two).
895 			 */
896 			KASSERT(RB_BLACK_P(brother));
897 			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
898 				RB_RED_P(brother->rb_nodes[other]));
899 			if (RB_BLACK_P(brother->rb_nodes[other])) {
900 				/*
901 				 * Case 3: our brother is black, our near
902 				 * nephew is red, and our far nephew is black.
903 				 * Swap our brother with our near nephew.
904 				 * This result in a tree that matches case 4.
905 				 * (Our father could be red or black).
906 				 *
907 				 *	|    F      -->    F      |
908 				 *	|  x     B  -->  x   B    |
909 				 *	|      n    -->        n  |
910 				 */
911 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
912 				rb_tree_reparent_nodes(rbt, brother, which);
913 				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
914 				brother = parent->rb_nodes[other];
915 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
916 			}
917 			/*
918 			 * Case 4: our brother is black and our far nephew
919 			 * is red.  Swap our father and brother locations and
920 			 * change our far nephew to black.  (these can be
921 			 * done in either order so we change the color first).
922 			 * The result is a valid red-black tree and is a
923 			 * terminal case.  (again we don't care about the
924 			 * father's color)
925 			 *
926 			 * If the father is red, we will get a red-black-black
927 			 * tree:
928 			 *	|  f      ->  f      -->    b    |
929 			 *	|    B    ->    B    -->  F   N  |
930 			 *	|      n  ->      N  -->         |
931 			 *
932 			 * If the father is black, we will get an all black
933 			 * tree:
934 			 *	|  F      ->  F      -->    B    |
935 			 *	|    B    ->    B    -->  F   N  |
936 			 *	|      n  ->      N  -->         |
937 			 *
938 			 * If we had two red nephews, then after the swap,
939 			 * our former father would have a red grandson.
940 			 */
941 			KASSERT(RB_BLACK_P(brother));
942 			KASSERT(RB_RED_P(brother->rb_nodes[other]));
943 			RB_MARK_BLACK(brother->rb_nodes[other]);
944 			rb_tree_reparent_nodes(rbt, parent, other);
945 			break;		/* We're done! */
946 		}
947 	}
948 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
949 }
950 
951 void *
952 rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
953 {
954 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
955 	const unsigned int other = direction ^ RB_DIR_OTHER;
956 	struct rb_node *self;
957 
958 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
959 
960 	if (object == NULL) {
961 #ifndef RBSMALL
962 		if (RB_SENTINEL_P(rbt->rbt_root))
963 			return NULL;
964 		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
965 #else
966 		self = rbt->rbt_root;
967 		if (RB_SENTINEL_P(self))
968 			return NULL;
969 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
970 			self = self->rb_nodes[direction];
971 		return RB_NODETOITEM(rbto, self);
972 #endif /* !RBSMALL */
973 	}
974 	self = RB_ITEMTONODE(rbto, object);
975 	KASSERT(!RB_SENTINEL_P(self));
976 	/*
977 	 * We can't go any further in this direction.  We proceed up in the
978 	 * opposite direction until our parent is in direction we want to go.
979 	 */
980 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
981 		while (!RB_ROOT_P(rbt, self)) {
982 			if (other == RB_POSITION(self))
983 				return RB_NODETOITEM(rbto, RB_FATHER(self));
984 			self = RB_FATHER(self);
985 		}
986 		return NULL;
987 	}
988 
989 	/*
990 	 * Advance down one in current direction and go down as far as possible
991 	 * in the opposite direction.
992 	 */
993 	self = self->rb_nodes[direction];
994 	KASSERT(!RB_SENTINEL_P(self));
995 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
996 		self = self->rb_nodes[other];
997 	return RB_NODETOITEM(rbto, self);
998 }
999 
1000 #ifdef RBDEBUG
1001 static const struct rb_node *
1002 rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
1003 	const unsigned int direction)
1004 {
1005 	const unsigned int other = direction ^ RB_DIR_OTHER;
1006 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
1007 
1008 	if (self == NULL) {
1009 #ifndef RBSMALL
1010 		if (RB_SENTINEL_P(rbt->rbt_root))
1011 			return NULL;
1012 		return rbt->rbt_minmax[direction];
1013 #else
1014 		self = rbt->rbt_root;
1015 		if (RB_SENTINEL_P(self))
1016 			return NULL;
1017 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
1018 			self = self->rb_nodes[direction];
1019 		return self;
1020 #endif /* !RBSMALL */
1021 	}
1022 	KASSERT(!RB_SENTINEL_P(self));
1023 	/*
1024 	 * We can't go any further in this direction.  We proceed up in the
1025 	 * opposite direction until our parent is in direction we want to go.
1026 	 */
1027 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
1028 		while (!RB_ROOT_P(rbt, self)) {
1029 			if (other == RB_POSITION(self))
1030 				return RB_FATHER(self);
1031 			self = RB_FATHER(self);
1032 		}
1033 		return NULL;
1034 	}
1035 
1036 	/*
1037 	 * Advance down one in current direction and go down as far as possible
1038 	 * in the opposite direction.
1039 	 */
1040 	self = self->rb_nodes[direction];
1041 	KASSERT(!RB_SENTINEL_P(self));
1042 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
1043 		self = self->rb_nodes[other];
1044 	return self;
1045 }
1046 
1047 static unsigned int
1048 rb_tree_count_black(const struct rb_node *self)
1049 {
1050 	unsigned int left, right;
1051 
1052 	if (RB_SENTINEL_P(self))
1053 		return 0;
1054 
1055 	left = rb_tree_count_black(self->rb_left);
1056 	right = rb_tree_count_black(self->rb_right);
1057 
1058 	KASSERT(left == right);
1059 
1060 	return left + RB_BLACK_P(self);
1061 }
1062 
1063 static bool
1064 rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
1065 	const struct rb_node *prev, bool red_check)
1066 {
1067 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
1068 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
1069 
1070 	KASSERT(!RB_SENTINEL_P(self));
1071 	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
1072 	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
1073 
1074 	/*
1075 	 * Verify our relationship to our parent.
1076 	 */
1077 	if (RB_ROOT_P(rbt, self)) {
1078 		KASSERT(self == rbt->rbt_root);
1079 		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
1080 		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1081 		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
1082 	} else {
1083 		int diff = (*compare_nodes)(rbto->rbto_context,
1084 		    RB_NODETOITEM(rbto, self),
1085 		    RB_NODETOITEM(rbto, RB_FATHER(self)));
1086 
1087 		KASSERT(self != rbt->rbt_root);
1088 		KASSERT(!RB_FATHER_SENTINEL_P(self));
1089 		if (RB_POSITION(self) == RB_DIR_LEFT) {
1090 			KASSERT(diff < 0);
1091 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1092 		} else {
1093 			KASSERT(diff > 0);
1094 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * Verify our position in the linked list against the tree itself.
1100 	 */
1101 	{
1102 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1103 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1104 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
1105 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
1106 #ifndef RBSMALL
1107 		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
1108 		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
1109 #endif
1110 	}
1111 
1112 	/*
1113 	 * The root must be black.
1114 	 * There can never be two adjacent red nodes.
1115 	 */
1116 	if (red_check) {
1117 		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
1118 		(void) rb_tree_count_black(self);
1119 		if (RB_RED_P(self)) {
1120 			const struct rb_node *brother;
1121 			KASSERT(!RB_ROOT_P(rbt, self));
1122 			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
1123 			KASSERT(RB_BLACK_P(RB_FATHER(self)));
1124 			/*
1125 			 * I'm red and have no children, then I must either
1126 			 * have no brother or my brother also be red and
1127 			 * also have no children.  (black count == 0)
1128 			 */
1129 			KASSERT(!RB_CHILDLESS_P(self)
1130 				|| RB_SENTINEL_P(brother)
1131 				|| RB_RED_P(brother)
1132 				|| RB_CHILDLESS_P(brother));
1133 			/*
1134 			 * If I'm not childless, I must have two children
1135 			 * and they must be both be black.
1136 			 */
1137 			KASSERT(RB_CHILDLESS_P(self)
1138 				|| (RB_TWOCHILDREN_P(self)
1139 				    && RB_BLACK_P(self->rb_left)
1140 				    && RB_BLACK_P(self->rb_right)));
1141 			/*
1142 			 * If I'm not childless, thus I have black children,
1143 			 * then my brother must either be black or have two
1144 			 * black children.
1145 			 */
1146 			KASSERT(RB_CHILDLESS_P(self)
1147 				|| RB_BLACK_P(brother)
1148 				|| (RB_TWOCHILDREN_P(brother)
1149 				    && RB_BLACK_P(brother->rb_left)
1150 				    && RB_BLACK_P(brother->rb_right)));
1151 		} else {
1152 			/*
1153 			 * If I'm black and have one child, that child must
1154 			 * be red and childless.
1155 			 */
1156 			KASSERT(RB_CHILDLESS_P(self)
1157 				|| RB_TWOCHILDREN_P(self)
1158 				|| (!RB_LEFT_SENTINEL_P(self)
1159 				    && RB_RIGHT_SENTINEL_P(self)
1160 				    && RB_RED_P(self->rb_left)
1161 				    && RB_CHILDLESS_P(self->rb_left))
1162 				|| (!RB_RIGHT_SENTINEL_P(self)
1163 				    && RB_LEFT_SENTINEL_P(self)
1164 				    && RB_RED_P(self->rb_right)
1165 				    && RB_CHILDLESS_P(self->rb_right)));
1166 
1167 			/*
1168 			 * If I'm a childless black node and my parent is
1169 			 * black, my 2nd closet relative away from my parent
1170 			 * is either red or has a red parent or red children.
1171 			 */
1172 			if (!RB_ROOT_P(rbt, self)
1173 			    && RB_CHILDLESS_P(self)
1174 			    && RB_BLACK_P(RB_FATHER(self))) {
1175 				const unsigned int which = RB_POSITION(self);
1176 				const unsigned int other = which ^ RB_DIR_OTHER;
1177 				const struct rb_node *relative0, *relative;
1178 
1179 				relative0 = rb_tree_iterate_const(rbt,
1180 				    self, other);
1181 				KASSERT(relative0 != NULL);
1182 				relative = rb_tree_iterate_const(rbt,
1183 				    relative0, other);
1184 				KASSERT(relative != NULL);
1185 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
1186 #if 0
1187 				KASSERT(RB_RED_P(relative)
1188 					|| RB_RED_P(relative->rb_left)
1189 					|| RB_RED_P(relative->rb_right)
1190 					|| RB_RED_P(RB_FATHER(relative)));
1191 #endif
1192 			}
1193 		}
1194 		/*
1195 		 * A grandparent's children must be real nodes and not
1196 		 * sentinels.  First check out grandparent.
1197 		 */
1198 		KASSERT(RB_ROOT_P(rbt, self)
1199 			|| RB_ROOT_P(rbt, RB_FATHER(self))
1200 			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
1201 		/*
1202 		 * If we are have grandchildren on our left, then
1203 		 * we must have a child on our right.
1204 		 */
1205 		KASSERT(RB_LEFT_SENTINEL_P(self)
1206 			|| RB_CHILDLESS_P(self->rb_left)
1207 			|| !RB_RIGHT_SENTINEL_P(self));
1208 		/*
1209 		 * If we are have grandchildren on our right, then
1210 		 * we must have a child on our left.
1211 		 */
1212 		KASSERT(RB_RIGHT_SENTINEL_P(self)
1213 			|| RB_CHILDLESS_P(self->rb_right)
1214 			|| !RB_LEFT_SENTINEL_P(self));
1215 
1216 		/*
1217 		 * If we have a child on the left and it doesn't have two
1218 		 * children make sure we don't have great-great-grandchildren on
1219 		 * the right.
1220 		 */
1221 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
1222 			|| RB_CHILDLESS_P(self->rb_right)
1223 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
1224 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
1225 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
1226 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
1227 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
1228 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
1229 
1230 		/*
1231 		 * If we have a child on the right and it doesn't have two
1232 		 * children make sure we don't have great-great-grandchildren on
1233 		 * the left.
1234 		 */
1235 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
1236 			|| RB_CHILDLESS_P(self->rb_left)
1237 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
1238 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
1239 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
1240 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
1241 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
1242 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
1243 
1244 		/*
1245 		 * If we are fully interior node, then our predecessors and
1246 		 * successors must have no children in our direction.
1247 		 */
1248 		if (RB_TWOCHILDREN_P(self)) {
1249 			const struct rb_node *prev0;
1250 			const struct rb_node *next0;
1251 
1252 			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1253 			KASSERT(prev0 != NULL);
1254 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
1255 
1256 			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1257 			KASSERT(next0 != NULL);
1258 			KASSERT(RB_LEFT_SENTINEL_P(next0));
1259 		}
1260 	}
1261 
1262 	return true;
1263 }
1264 
1265 void
1266 rb_tree_check(const struct rb_tree *rbt, bool red_check)
1267 {
1268 	const struct rb_node *self;
1269 	const struct rb_node *prev;
1270 #ifdef RBSTATS
1271 	unsigned int count = 0;
1272 #endif
1273 
1274 	KASSERT(rbt->rbt_root != NULL);
1275 	KASSERT(RB_LEFT_P(rbt->rbt_root));
1276 
1277 #if defined(RBSTATS) && !defined(RBSMALL)
1278 	KASSERT(rbt->rbt_count > 1
1279 	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
1280 #endif
1281 
1282 	prev = NULL;
1283 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1284 		rb_tree_check_node(rbt, self, prev, false);
1285 #ifdef RBSTATS
1286 		count++;
1287 #endif
1288 	}
1289 #ifdef RBSTATS
1290 	KASSERT(rbt->rbt_count == count);
1291 #endif
1292 	if (red_check) {
1293 		KASSERT(RB_BLACK_P(rbt->rbt_root));
1294 		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
1295 			|| rb_tree_count_black(rbt->rbt_root));
1296 
1297 		/*
1298 		 * The root must be black.
1299 		 * There can never be two adjacent red nodes.
1300 		 */
1301 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1302 			rb_tree_check_node(rbt, self, NULL, true);
1303 		}
1304 	}
1305 }
1306 #endif /* RBDEBUG */
1307 
1308 #ifdef RBSTATS
1309 static void
1310 rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
1311 	size_t *depths, size_t depth)
1312 {
1313 	if (RB_SENTINEL_P(self))
1314 		return;
1315 
1316 	if (RB_TWOCHILDREN_P(self)) {
1317 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1318 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1319 		return;
1320 	}
1321 	depths[depth]++;
1322 	if (!RB_LEFT_SENTINEL_P(self)) {
1323 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1324 	}
1325 	if (!RB_RIGHT_SENTINEL_P(self)) {
1326 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1327 	}
1328 }
1329 
1330 void
1331 rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
1332 {
1333 	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
1334 }
1335 #endif /* RBSTATS */
1336