xref: /netbsd/external/bsd/libpcap/dist/gencode.c (revision 6550d01e)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  */
22 #ifndef lint
23 static const char rcsid[] _U_ =
24     "@(#) Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp (LBL)";
25 #endif
26 
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30 
31 #ifdef WIN32
32 #include <pcap-stdinc.h>
33 #else /* WIN32 */
34 #if HAVE_INTTYPES_H
35 #include <inttypes.h>
36 #elif HAVE_STDINT_H
37 #include <stdint.h>
38 #endif
39 #ifdef HAVE_SYS_BITYPES_H
40 #include <sys/bitypes.h>
41 #endif
42 #include <sys/types.h>
43 #include <sys/socket.h>
44 #endif /* WIN32 */
45 
46 /*
47  * XXX - why was this included even on UNIX?
48  */
49 #ifdef __MINGW32__
50 #include "IP6_misc.h"
51 #endif
52 
53 #ifndef WIN32
54 
55 #ifdef __NetBSD__
56 #include <sys/param.h>
57 #endif
58 
59 #include <netinet/in.h>
60 #include <arpa/inet.h>
61 
62 #endif /* WIN32 */
63 
64 #include <stdlib.h>
65 #include <string.h>
66 #include <memory.h>
67 #include <setjmp.h>
68 #include <stdarg.h>
69 
70 #ifdef MSDOS
71 #include "pcap-dos.h"
72 #endif
73 
74 #include "pcap-int.h"
75 
76 #include "ethertype.h"
77 #include "nlpid.h"
78 #include "llc.h"
79 #include "gencode.h"
80 #include "ieee80211.h"
81 #include "atmuni31.h"
82 #include "sunatmpos.h"
83 #include "ppp.h"
84 #include "pcap/sll.h"
85 #include "pcap/ipnet.h"
86 #include "arcnet.h"
87 #ifdef HAVE_NET_PFVAR_H
88 #include <sys/socket.h>
89 #include <net/if.h>
90 #include <net/pfvar.h>
91 #include <net/if_pflog.h>
92 #endif
93 #ifndef offsetof
94 #define offsetof(s, e) ((size_t)&((s *)0)->e)
95 #endif
96 #ifdef INET6
97 #ifndef WIN32
98 #include <netdb.h>	/* for "struct addrinfo" */
99 #endif /* WIN32 */
100 #endif /*INET6*/
101 #include <pcap/namedb.h>
102 
103 #define ETHERMTU	1500
104 
105 #ifndef IPPROTO_SCTP
106 #define IPPROTO_SCTP 132
107 #endif
108 
109 #ifdef HAVE_OS_PROTO_H
110 #include "os-proto.h"
111 #endif
112 
113 #define JMP(c) ((c)|BPF_JMP|BPF_K)
114 
115 /* Locals */
116 static jmp_buf top_ctx;
117 static pcap_t *bpf_pcap;
118 
119 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
120 #ifdef WIN32
121 static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
122 #else
123 static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
124 #endif
125 
126 /* XXX */
127 #ifdef PCAP_FDDIPAD
128 static int	pcap_fddipad;
129 #endif
130 
131 /* VARARGS */
132 void
133 bpf_error(const char *fmt, ...)
134 {
135 	va_list ap;
136 
137 	va_start(ap, fmt);
138 	if (bpf_pcap != NULL)
139 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
140 		    fmt, ap);
141 	va_end(ap);
142 	longjmp(top_ctx, 1);
143 	/* NOTREACHED */
144 }
145 
146 static void init_linktype(pcap_t *);
147 
148 static void init_regs(void);
149 static int alloc_reg(void);
150 static void free_reg(int);
151 
152 static struct block *root;
153 
154 /*
155  * Value passed to gen_load_a() to indicate what the offset argument
156  * is relative to.
157  */
158 enum e_offrel {
159 	OR_PACKET,	/* relative to the beginning of the packet */
160 	OR_LINK,	/* relative to the beginning of the link-layer header */
161 	OR_MACPL,	/* relative to the end of the MAC-layer header */
162 	OR_NET,		/* relative to the network-layer header */
163 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
164 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
165 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
166 };
167 
168 #ifdef INET6
169 /*
170  * As errors are handled by a longjmp, anything allocated must be freed
171  * in the longjmp handler, so it must be reachable from that handler.
172  * One thing that's allocated is the result of pcap_nametoaddrinfo();
173  * it must be freed with freeaddrinfo().  This variable points to any
174  * addrinfo structure that would need to be freed.
175  */
176 static struct addrinfo *ai;
177 #endif
178 
179 /*
180  * We divy out chunks of memory rather than call malloc each time so
181  * we don't have to worry about leaking memory.  It's probably
182  * not a big deal if all this memory was wasted but if this ever
183  * goes into a library that would probably not be a good idea.
184  *
185  * XXX - this *is* in a library....
186  */
187 #define NCHUNKS 16
188 #define CHUNK0SIZE 1024
189 struct chunk {
190 	u_int n_left;
191 	void *m;
192 };
193 
194 static struct chunk chunks[NCHUNKS];
195 static int cur_chunk;
196 
197 static void *newchunk(u_int);
198 static void freechunks(void);
199 static inline struct block *new_block(int);
200 static inline struct slist *new_stmt(int);
201 static struct block *gen_retblk(int);
202 static inline void syntax(void);
203 
204 static void backpatch(struct block *, struct block *);
205 static void merge(struct block *, struct block *);
206 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
207 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
208 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
209 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
210 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
211 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
212     bpf_u_int32);
213 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
214 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
215     bpf_u_int32, bpf_u_int32, int, bpf_int32);
216 static struct slist *gen_load_llrel(u_int, u_int);
217 static struct slist *gen_load_macplrel(u_int, u_int);
218 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
219 static struct slist *gen_loadx_iphdrlen(void);
220 static struct block *gen_uncond(int);
221 static inline struct block *gen_true(void);
222 static inline struct block *gen_false(void);
223 static struct block *gen_ether_linktype(int);
224 static struct block *gen_ipnet_linktype(int);
225 static struct block *gen_linux_sll_linktype(int);
226 static struct slist *gen_load_prism_llprefixlen(void);
227 static struct slist *gen_load_avs_llprefixlen(void);
228 static struct slist *gen_load_radiotap_llprefixlen(void);
229 static struct slist *gen_load_ppi_llprefixlen(void);
230 static void insert_compute_vloffsets(struct block *);
231 static struct slist *gen_llprefixlen(void);
232 static struct slist *gen_off_macpl(void);
233 static int ethertype_to_ppptype(int);
234 static struct block *gen_linktype(int);
235 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
236 static struct block *gen_llc_linktype(int);
237 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
238 #ifdef INET6
239 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
240 #endif
241 static struct block *gen_ahostop(const u_char *, int);
242 static struct block *gen_ehostop(const u_char *, int);
243 static struct block *gen_fhostop(const u_char *, int);
244 static struct block *gen_thostop(const u_char *, int);
245 static struct block *gen_wlanhostop(const u_char *, int);
246 static struct block *gen_ipfchostop(const u_char *, int);
247 static struct block *gen_dnhostop(bpf_u_int32, int);
248 static struct block *gen_mpls_linktype(int);
249 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
250 #ifdef INET6
251 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
252 #endif
253 #ifndef INET6
254 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
255 #endif
256 static struct block *gen_ipfrag(void);
257 static struct block *gen_portatom(int, bpf_int32);
258 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
259 #ifdef INET6
260 static struct block *gen_portatom6(int, bpf_int32);
261 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
262 #endif
263 struct block *gen_portop(int, int, int);
264 static struct block *gen_port(int, int, int);
265 struct block *gen_portrangeop(int, int, int, int);
266 static struct block *gen_portrange(int, int, int, int);
267 #ifdef INET6
268 struct block *gen_portop6(int, int, int);
269 static struct block *gen_port6(int, int, int);
270 struct block *gen_portrangeop6(int, int, int, int);
271 static struct block *gen_portrange6(int, int, int, int);
272 #endif
273 static int lookup_proto(const char *, int);
274 static struct block *gen_protochain(int, int, int);
275 static struct block *gen_proto(int, int, int);
276 static struct slist *xfer_to_x(struct arth *);
277 static struct slist *xfer_to_a(struct arth *);
278 static struct block *gen_mac_multicast(int);
279 static struct block *gen_len(int, int);
280 static struct block *gen_check_802_11_data_frame(void);
281 
282 static struct block *gen_ppi_dlt_check(void);
283 static struct block *gen_msg_abbrev(int type);
284 
285 static void *
286 newchunk(n)
287 	u_int n;
288 {
289 	struct chunk *cp;
290 	int k;
291 	size_t size;
292 
293 #ifndef __NetBSD__
294 	/* XXX Round up to nearest long. */
295 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
296 #else
297 	/* XXX Round up to structure boundary. */
298 	n = ALIGN(n);
299 #endif
300 
301 	cp = &chunks[cur_chunk];
302 	if (n > cp->n_left) {
303 		++cp, k = ++cur_chunk;
304 		if (k >= NCHUNKS)
305 			bpf_error("out of memory");
306 		size = CHUNK0SIZE << k;
307 		cp->m = (void *)malloc(size);
308 		if (cp->m == NULL)
309 			bpf_error("out of memory");
310 		memset((char *)cp->m, 0, size);
311 		cp->n_left = size;
312 		if (n > size)
313 			bpf_error("out of memory");
314 	}
315 	cp->n_left -= n;
316 	return (void *)((char *)cp->m + cp->n_left);
317 }
318 
319 static void
320 freechunks()
321 {
322 	int i;
323 
324 	cur_chunk = 0;
325 	for (i = 0; i < NCHUNKS; ++i)
326 		if (chunks[i].m != NULL) {
327 			free(chunks[i].m);
328 			chunks[i].m = NULL;
329 		}
330 }
331 
332 /*
333  * A strdup whose allocations are freed after code generation is over.
334  */
335 char *
336 sdup(s)
337 	register const char *s;
338 {
339 	int n = strlen(s) + 1;
340 	char *cp = newchunk(n);
341 
342 	strlcpy(cp, s, n);
343 	return (cp);
344 }
345 
346 static inline struct block *
347 new_block(code)
348 	int code;
349 {
350 	struct block *p;
351 
352 	p = (struct block *)newchunk(sizeof(*p));
353 	p->s.code = code;
354 	p->head = p;
355 
356 	return p;
357 }
358 
359 static inline struct slist *
360 new_stmt(code)
361 	int code;
362 {
363 	struct slist *p;
364 
365 	p = (struct slist *)newchunk(sizeof(*p));
366 	p->s.code = code;
367 
368 	return p;
369 }
370 
371 static struct block *
372 gen_retblk(v)
373 	int v;
374 {
375 	struct block *b = new_block(BPF_RET|BPF_K);
376 
377 	b->s.k = v;
378 	return b;
379 }
380 
381 static inline void
382 syntax()
383 {
384 	bpf_error("syntax error in filter expression");
385 }
386 
387 static bpf_u_int32 netmask;
388 static int snaplen;
389 int no_optimize;
390 #ifdef WIN32
391 static int
392 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
393 	     const char *buf, int optimize, bpf_u_int32 mask);
394 
395 int
396 pcap_compile(pcap_t *p, struct bpf_program *program,
397 	     const char *buf, int optimize, bpf_u_int32 mask)
398 {
399 	int result;
400 
401 	EnterCriticalSection(&g_PcapCompileCriticalSection);
402 
403 	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
404 
405 	LeaveCriticalSection(&g_PcapCompileCriticalSection);
406 
407 	return result;
408 }
409 
410 static int
411 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
412 	     const char *buf, int optimize, bpf_u_int32 mask)
413 #else /* WIN32 */
414 int
415 pcap_compile(pcap_t *p, struct bpf_program *program,
416 	     const char *buf, int optimize, bpf_u_int32 mask)
417 #endif /* WIN32 */
418 {
419 	extern int n_errors;
420 	const char * volatile xbuf = buf;
421 	int len;
422 
423 	no_optimize = 0;
424 	n_errors = 0;
425 	root = NULL;
426 	bpf_pcap = p;
427 	init_regs();
428 	if (setjmp(top_ctx)) {
429 #ifdef INET6
430 		if (ai != NULL) {
431 			freeaddrinfo(ai);
432 			ai = NULL;
433 		}
434 #endif
435 		lex_cleanup();
436 		freechunks();
437 		return (-1);
438 	}
439 
440 	netmask = mask;
441 
442 	snaplen = pcap_snapshot(p);
443 	if (snaplen == 0) {
444 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
445 			 "snaplen of 0 rejects all packets");
446 		return -1;
447 	}
448 
449 	lex_init(xbuf ? xbuf : "");
450 	init_linktype(p);
451 	(void)pcap_parse();
452 
453 	if (n_errors)
454 		syntax();
455 
456 	if (root == NULL)
457 		root = gen_retblk(snaplen);
458 
459 	if (optimize && !no_optimize) {
460 		bpf_optimize(&root);
461 		if (root == NULL ||
462 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
463 			bpf_error("expression rejects all packets");
464 	}
465 	program->bf_insns = icode_to_fcode(root, &len);
466 	program->bf_len = len;
467 
468 	lex_cleanup();
469 	freechunks();
470 	return (0);
471 }
472 
473 /*
474  * entry point for using the compiler with no pcap open
475  * pass in all the stuff that is needed explicitly instead.
476  */
477 int
478 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
479 		    struct bpf_program *program,
480 	     const char *buf, int optimize, bpf_u_int32 mask)
481 {
482 	pcap_t *p;
483 	int ret;
484 
485 	p = pcap_open_dead(linktype_arg, snaplen_arg);
486 	if (p == NULL)
487 		return (-1);
488 	ret = pcap_compile(p, program, buf, optimize, mask);
489 	pcap_close(p);
490 	return (ret);
491 }
492 
493 /*
494  * Clean up a "struct bpf_program" by freeing all the memory allocated
495  * in it.
496  */
497 void
498 pcap_freecode(struct bpf_program *program)
499 {
500 	program->bf_len = 0;
501 	if (program->bf_insns != NULL) {
502 		free((char *)program->bf_insns);
503 		program->bf_insns = NULL;
504 	}
505 }
506 
507 /*
508  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
509  * which of the jt and jf fields has been resolved and which is a pointer
510  * back to another unresolved block (or nil).  At least one of the fields
511  * in each block is already resolved.
512  */
513 static void
514 backpatch(list, target)
515 	struct block *list, *target;
516 {
517 	struct block *next;
518 
519 	while (list) {
520 		if (!list->sense) {
521 			next = JT(list);
522 			JT(list) = target;
523 		} else {
524 			next = JF(list);
525 			JF(list) = target;
526 		}
527 		list = next;
528 	}
529 }
530 
531 /*
532  * Merge the lists in b0 and b1, using the 'sense' field to indicate
533  * which of jt and jf is the link.
534  */
535 static void
536 merge(b0, b1)
537 	struct block *b0, *b1;
538 {
539 	register struct block **p = &b0;
540 
541 	/* Find end of list. */
542 	while (*p)
543 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
544 
545 	/* Concatenate the lists. */
546 	*p = b1;
547 }
548 
549 void
550 finish_parse(p)
551 	struct block *p;
552 {
553 	struct block *ppi_dlt_check;
554 
555 	/*
556 	 * Insert before the statements of the first (root) block any
557 	 * statements needed to load the lengths of any variable-length
558 	 * headers into registers.
559 	 *
560 	 * XXX - a fancier strategy would be to insert those before the
561 	 * statements of all blocks that use those lengths and that
562 	 * have no predecessors that use them, so that we only compute
563 	 * the lengths if we need them.  There might be even better
564 	 * approaches than that.
565 	 *
566 	 * However, those strategies would be more complicated, and
567 	 * as we don't generate code to compute a length if the
568 	 * program has no tests that use the length, and as most
569 	 * tests will probably use those lengths, we would just
570 	 * postpone computing the lengths so that it's not done
571 	 * for tests that fail early, and it's not clear that's
572 	 * worth the effort.
573 	 */
574 	insert_compute_vloffsets(p->head);
575 
576 	/*
577 	 * For DLT_PPI captures, generate a check of the per-packet
578 	 * DLT value to make sure it's DLT_IEEE802_11.
579 	 */
580 	ppi_dlt_check = gen_ppi_dlt_check();
581 	if (ppi_dlt_check != NULL)
582 		gen_and(ppi_dlt_check, p);
583 
584 	backpatch(p, gen_retblk(snaplen));
585 	p->sense = !p->sense;
586 	backpatch(p, gen_retblk(0));
587 	root = p->head;
588 }
589 
590 void
591 gen_and(b0, b1)
592 	struct block *b0, *b1;
593 {
594 	backpatch(b0, b1->head);
595 	b0->sense = !b0->sense;
596 	b1->sense = !b1->sense;
597 	merge(b1, b0);
598 	b1->sense = !b1->sense;
599 	b1->head = b0->head;
600 }
601 
602 void
603 gen_or(b0, b1)
604 	struct block *b0, *b1;
605 {
606 	b0->sense = !b0->sense;
607 	backpatch(b0, b1->head);
608 	b0->sense = !b0->sense;
609 	merge(b1, b0);
610 	b1->head = b0->head;
611 }
612 
613 void
614 gen_not(b)
615 	struct block *b;
616 {
617 	b->sense = !b->sense;
618 }
619 
620 static struct block *
621 gen_cmp(offrel, offset, size, v)
622 	enum e_offrel offrel;
623 	u_int offset, size;
624 	bpf_int32 v;
625 {
626 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
627 }
628 
629 static struct block *
630 gen_cmp_gt(offrel, offset, size, v)
631 	enum e_offrel offrel;
632 	u_int offset, size;
633 	bpf_int32 v;
634 {
635 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
636 }
637 
638 static struct block *
639 gen_cmp_ge(offrel, offset, size, v)
640 	enum e_offrel offrel;
641 	u_int offset, size;
642 	bpf_int32 v;
643 {
644 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
645 }
646 
647 static struct block *
648 gen_cmp_lt(offrel, offset, size, v)
649 	enum e_offrel offrel;
650 	u_int offset, size;
651 	bpf_int32 v;
652 {
653 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
654 }
655 
656 static struct block *
657 gen_cmp_le(offrel, offset, size, v)
658 	enum e_offrel offrel;
659 	u_int offset, size;
660 	bpf_int32 v;
661 {
662 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
663 }
664 
665 static struct block *
666 gen_mcmp(offrel, offset, size, v, mask)
667 	enum e_offrel offrel;
668 	u_int offset, size;
669 	bpf_int32 v;
670 	bpf_u_int32 mask;
671 {
672 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
673 }
674 
675 static struct block *
676 gen_bcmp(offrel, offset, size, v)
677 	enum e_offrel offrel;
678 	register u_int offset, size;
679 	register const u_char *v;
680 {
681 	register struct block *b, *tmp;
682 
683 	b = NULL;
684 	while (size >= 4) {
685 		register const u_char *p = &v[size - 4];
686 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
687 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
688 
689 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
690 		if (b != NULL)
691 			gen_and(b, tmp);
692 		b = tmp;
693 		size -= 4;
694 	}
695 	while (size >= 2) {
696 		register const u_char *p = &v[size - 2];
697 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
698 
699 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
700 		if (b != NULL)
701 			gen_and(b, tmp);
702 		b = tmp;
703 		size -= 2;
704 	}
705 	if (size > 0) {
706 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
707 		if (b != NULL)
708 			gen_and(b, tmp);
709 		b = tmp;
710 	}
711 	return b;
712 }
713 
714 /*
715  * AND the field of size "size" at offset "offset" relative to the header
716  * specified by "offrel" with "mask", and compare it with the value "v"
717  * with the test specified by "jtype"; if "reverse" is true, the test
718  * should test the opposite of "jtype".
719  */
720 static struct block *
721 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
722 	enum e_offrel offrel;
723 	bpf_int32 v;
724 	bpf_u_int32 offset, size, mask, jtype;
725 	int reverse;
726 {
727 	struct slist *s, *s2;
728 	struct block *b;
729 
730 	s = gen_load_a(offrel, offset, size);
731 
732 	if (mask != 0xffffffff) {
733 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
734 		s2->s.k = mask;
735 		sappend(s, s2);
736 	}
737 
738 	b = new_block(JMP(jtype));
739 	b->stmts = s;
740 	b->s.k = v;
741 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
742 		gen_not(b);
743 	return b;
744 }
745 
746 /*
747  * Various code constructs need to know the layout of the data link
748  * layer.  These variables give the necessary offsets from the beginning
749  * of the packet data.
750  */
751 
752 /*
753  * This is the offset of the beginning of the link-layer header from
754  * the beginning of the raw packet data.
755  *
756  * It's usually 0, except for 802.11 with a fixed-length radio header.
757  * (For 802.11 with a variable-length radio header, we have to generate
758  * code to compute that offset; off_ll is 0 in that case.)
759  */
760 static u_int off_ll;
761 
762 /*
763  * If there's a variable-length header preceding the link-layer header,
764  * "reg_off_ll" is the register number for a register containing the
765  * length of that header, and therefore the offset of the link-layer
766  * header from the beginning of the raw packet data.  Otherwise,
767  * "reg_off_ll" is -1.
768  */
769 static int reg_off_ll;
770 
771 /*
772  * This is the offset of the beginning of the MAC-layer header from
773  * the beginning of the link-layer header.
774  * It's usually 0, except for ATM LANE, where it's the offset, relative
775  * to the beginning of the raw packet data, of the Ethernet header.
776  */
777 static u_int off_mac;
778 
779 /*
780  * This is the offset of the beginning of the MAC-layer payload,
781  * from the beginning of the raw packet data.
782  *
783  * I.e., it's the sum of the length of the link-layer header (without,
784  * for example, any 802.2 LLC header, so it's the MAC-layer
785  * portion of that header), plus any prefix preceding the
786  * link-layer header.
787  */
788 static u_int off_macpl;
789 
790 /*
791  * This is 1 if the offset of the beginning of the MAC-layer payload
792  * from the beginning of the link-layer header is variable-length.
793  */
794 static int off_macpl_is_variable;
795 
796 /*
797  * If the link layer has variable_length headers, "reg_off_macpl"
798  * is the register number for a register containing the length of the
799  * link-layer header plus the length of any variable-length header
800  * preceding the link-layer header.  Otherwise, "reg_off_macpl"
801  * is -1.
802  */
803 static int reg_off_macpl;
804 
805 /*
806  * "off_linktype" is the offset to information in the link-layer header
807  * giving the packet type.  This offset is relative to the beginning
808  * of the link-layer header (i.e., it doesn't include off_ll).
809  *
810  * For Ethernet, it's the offset of the Ethernet type field.
811  *
812  * For link-layer types that always use 802.2 headers, it's the
813  * offset of the LLC header.
814  *
815  * For PPP, it's the offset of the PPP type field.
816  *
817  * For Cisco HDLC, it's the offset of the CHDLC type field.
818  *
819  * For BSD loopback, it's the offset of the AF_ value.
820  *
821  * For Linux cooked sockets, it's the offset of the type field.
822  *
823  * It's set to -1 for no encapsulation, in which case, IP is assumed.
824  */
825 static u_int off_linktype;
826 
827 /*
828  * TRUE if "pppoes" appeared in the filter; it causes link-layer type
829  * checks to check the PPP header, assumed to follow a LAN-style link-
830  * layer header and a PPPoE session header.
831  */
832 static int is_pppoes = 0;
833 
834 /*
835  * TRUE if the link layer includes an ATM pseudo-header.
836  */
837 static int is_atm = 0;
838 
839 /*
840  * TRUE if "lane" appeared in the filter; it causes us to generate
841  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
842  */
843 static int is_lane = 0;
844 
845 /*
846  * These are offsets for the ATM pseudo-header.
847  */
848 static u_int off_vpi;
849 static u_int off_vci;
850 static u_int off_proto;
851 
852 /*
853  * These are offsets for the MTP2 fields.
854  */
855 static u_int off_li;
856 
857 /*
858  * These are offsets for the MTP3 fields.
859  */
860 static u_int off_sio;
861 static u_int off_opc;
862 static u_int off_dpc;
863 static u_int off_sls;
864 
865 /*
866  * This is the offset of the first byte after the ATM pseudo_header,
867  * or -1 if there is no ATM pseudo-header.
868  */
869 static u_int off_payload;
870 
871 /*
872  * These are offsets to the beginning of the network-layer header.
873  * They are relative to the beginning of the MAC-layer payload (i.e.,
874  * they don't include off_ll or off_macpl).
875  *
876  * If the link layer never uses 802.2 LLC:
877  *
878  *	"off_nl" and "off_nl_nosnap" are the same.
879  *
880  * If the link layer always uses 802.2 LLC:
881  *
882  *	"off_nl" is the offset if there's a SNAP header following
883  *	the 802.2 header;
884  *
885  *	"off_nl_nosnap" is the offset if there's no SNAP header.
886  *
887  * If the link layer is Ethernet:
888  *
889  *	"off_nl" is the offset if the packet is an Ethernet II packet
890  *	(we assume no 802.3+802.2+SNAP);
891  *
892  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
893  *	with an 802.2 header following it.
894  */
895 static u_int off_nl;
896 static u_int off_nl_nosnap;
897 
898 static int linktype;
899 
900 static void
901 init_linktype(p)
902 	pcap_t *p;
903 {
904 	linktype = pcap_datalink(p);
905 #ifdef PCAP_FDDIPAD
906 	pcap_fddipad = p->fddipad;
907 #endif
908 
909 	/*
910 	 * Assume it's not raw ATM with a pseudo-header, for now.
911 	 */
912 	off_mac = 0;
913 	is_atm = 0;
914 	is_lane = 0;
915 	off_vpi = -1;
916 	off_vci = -1;
917 	off_proto = -1;
918 	off_payload = -1;
919 
920 	/*
921 	 * And that we're not doing PPPoE.
922 	 */
923 	is_pppoes = 0;
924 
925 	/*
926 	 * And assume we're not doing SS7.
927 	 */
928 	off_li = -1;
929 	off_sio = -1;
930 	off_opc = -1;
931 	off_dpc = -1;
932 	off_sls = -1;
933 
934 	/*
935 	 * Also assume it's not 802.11.
936 	 */
937 	off_ll = 0;
938 	off_macpl = 0;
939 	off_macpl_is_variable = 0;
940 
941 	orig_linktype = -1;
942 	orig_nl = -1;
943         label_stack_depth = 0;
944 
945 	reg_off_ll = -1;
946 	reg_off_macpl = -1;
947 
948 	switch (linktype) {
949 
950 	case DLT_ARCNET:
951 		off_linktype = 2;
952 		off_macpl = 6;
953 		off_nl = 0;		/* XXX in reality, variable! */
954 		off_nl_nosnap = 0;	/* no 802.2 LLC */
955 		return;
956 
957 	case DLT_ARCNET_LINUX:
958 		off_linktype = 4;
959 		off_macpl = 8;
960 		off_nl = 0;		/* XXX in reality, variable! */
961 		off_nl_nosnap = 0;	/* no 802.2 LLC */
962 		return;
963 
964 	case DLT_EN10MB:
965 		off_linktype = 12;
966 		off_macpl = 14;		/* Ethernet header length */
967 		off_nl = 0;		/* Ethernet II */
968 		off_nl_nosnap = 3;	/* 802.3+802.2 */
969 		return;
970 
971 	case DLT_SLIP:
972 		/*
973 		 * SLIP doesn't have a link level type.  The 16 byte
974 		 * header is hacked into our SLIP driver.
975 		 */
976 		off_linktype = -1;
977 		off_macpl = 16;
978 		off_nl = 0;
979 		off_nl_nosnap = 0;	/* no 802.2 LLC */
980 		return;
981 
982 	case DLT_SLIP_BSDOS:
983 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
984 		off_linktype = -1;
985 		/* XXX end */
986 		off_macpl = 24;
987 		off_nl = 0;
988 		off_nl_nosnap = 0;	/* no 802.2 LLC */
989 		return;
990 
991 	case DLT_NULL:
992 	case DLT_LOOP:
993 		off_linktype = 0;
994 		off_macpl = 4;
995 		off_nl = 0;
996 		off_nl_nosnap = 0;	/* no 802.2 LLC */
997 		return;
998 
999 	case DLT_ENC:
1000 		off_linktype = 0;
1001 		off_macpl = 12;
1002 		off_nl = 0;
1003 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1004 		return;
1005 
1006 	case DLT_PPP:
1007 	case DLT_PPP_PPPD:
1008 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1009 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1010 		off_linktype = 2;
1011 		off_macpl = 4;
1012 		off_nl = 0;
1013 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1014 		return;
1015 
1016 	case DLT_PPP_ETHER:
1017 		/*
1018 		 * This does no include the Ethernet header, and
1019 		 * only covers session state.
1020 		 */
1021 		off_linktype = 6;
1022 		off_macpl = 8;
1023 		off_nl = 0;
1024 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1025 		return;
1026 
1027 	case DLT_PPP_BSDOS:
1028 		off_linktype = 5;
1029 		off_macpl = 24;
1030 		off_nl = 0;
1031 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1032 		return;
1033 
1034 	case DLT_FDDI:
1035 		/*
1036 		 * FDDI doesn't really have a link-level type field.
1037 		 * We set "off_linktype" to the offset of the LLC header.
1038 		 *
1039 		 * To check for Ethernet types, we assume that SSAP = SNAP
1040 		 * is being used and pick out the encapsulated Ethernet type.
1041 		 * XXX - should we generate code to check for SNAP?
1042 		 */
1043 		off_linktype = 13;
1044 #ifdef PCAP_FDDIPAD
1045 		off_linktype += pcap_fddipad;
1046 #endif
1047 		off_macpl = 13;		/* FDDI MAC header length */
1048 #ifdef PCAP_FDDIPAD
1049 		off_macpl += pcap_fddipad;
1050 #endif
1051 		off_nl = 8;		/* 802.2+SNAP */
1052 		off_nl_nosnap = 3;	/* 802.2 */
1053 		return;
1054 
1055 	case DLT_IEEE802:
1056 		/*
1057 		 * Token Ring doesn't really have a link-level type field.
1058 		 * We set "off_linktype" to the offset of the LLC header.
1059 		 *
1060 		 * To check for Ethernet types, we assume that SSAP = SNAP
1061 		 * is being used and pick out the encapsulated Ethernet type.
1062 		 * XXX - should we generate code to check for SNAP?
1063 		 *
1064 		 * XXX - the header is actually variable-length.
1065 		 * Some various Linux patched versions gave 38
1066 		 * as "off_linktype" and 40 as "off_nl"; however,
1067 		 * if a token ring packet has *no* routing
1068 		 * information, i.e. is not source-routed, the correct
1069 		 * values are 20 and 22, as they are in the vanilla code.
1070 		 *
1071 		 * A packet is source-routed iff the uppermost bit
1072 		 * of the first byte of the source address, at an
1073 		 * offset of 8, has the uppermost bit set.  If the
1074 		 * packet is source-routed, the total number of bytes
1075 		 * of routing information is 2 plus bits 0x1F00 of
1076 		 * the 16-bit value at an offset of 14 (shifted right
1077 		 * 8 - figure out which byte that is).
1078 		 */
1079 		off_linktype = 14;
1080 		off_macpl = 14;		/* Token Ring MAC header length */
1081 		off_nl = 8;		/* 802.2+SNAP */
1082 		off_nl_nosnap = 3;	/* 802.2 */
1083 		return;
1084 
1085 	case DLT_IEEE802_11:
1086 	case DLT_PRISM_HEADER:
1087 	case DLT_IEEE802_11_RADIO_AVS:
1088 	case DLT_IEEE802_11_RADIO:
1089 		/*
1090 		 * 802.11 doesn't really have a link-level type field.
1091 		 * We set "off_linktype" to the offset of the LLC header.
1092 		 *
1093 		 * To check for Ethernet types, we assume that SSAP = SNAP
1094 		 * is being used and pick out the encapsulated Ethernet type.
1095 		 * XXX - should we generate code to check for SNAP?
1096 		 *
1097 		 * We also handle variable-length radio headers here.
1098 		 * The Prism header is in theory variable-length, but in
1099 		 * practice it's always 144 bytes long.  However, some
1100 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1101 		 * sometimes or always supply an AVS header, so we
1102 		 * have to check whether the radio header is a Prism
1103 		 * header or an AVS header, so, in practice, it's
1104 		 * variable-length.
1105 		 */
1106 		off_linktype = 24;
1107 		off_macpl = 0;		/* link-layer header is variable-length */
1108 		off_macpl_is_variable = 1;
1109 		off_nl = 8;		/* 802.2+SNAP */
1110 		off_nl_nosnap = 3;	/* 802.2 */
1111 		return;
1112 
1113 	case DLT_PPI:
1114 		/*
1115 		 * At the moment we treat PPI the same way that we treat
1116 		 * normal Radiotap encoded packets. The difference is in
1117 		 * the function that generates the code at the beginning
1118 		 * to compute the header length.  Since this code generator
1119 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1120 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1121 		 * generate code to check for this too.
1122 		 */
1123 		off_linktype = 24;
1124 		off_macpl = 0;		/* link-layer header is variable-length */
1125 		off_macpl_is_variable = 1;
1126 		off_nl = 8;		/* 802.2+SNAP */
1127 		off_nl_nosnap = 3;	/* 802.2 */
1128 		return;
1129 
1130 	case DLT_ATM_RFC1483:
1131 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1132 		/*
1133 		 * assume routed, non-ISO PDUs
1134 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1135 		 *
1136 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1137 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1138 		 * latter would presumably be treated the way PPPoE
1139 		 * should be, so you can do "pppoe and udp port 2049"
1140 		 * or "pppoa and tcp port 80" and have it check for
1141 		 * PPPo{A,E} and a PPP protocol of IP and....
1142 		 */
1143 		off_linktype = 0;
1144 		off_macpl = 0;		/* packet begins with LLC header */
1145 		off_nl = 8;		/* 802.2+SNAP */
1146 		off_nl_nosnap = 3;	/* 802.2 */
1147 		return;
1148 
1149 	case DLT_SUNATM:
1150 		/*
1151 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1152 		 * pseudo-header.
1153 		 */
1154 		is_atm = 1;
1155 		off_vpi = SUNATM_VPI_POS;
1156 		off_vci = SUNATM_VCI_POS;
1157 		off_proto = PROTO_POS;
1158 		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1159 		off_payload = SUNATM_PKT_BEGIN_POS;
1160 		off_linktype = off_payload;
1161 		off_macpl = off_payload;	/* if LLC-encapsulated */
1162 		off_nl = 8;		/* 802.2+SNAP */
1163 		off_nl_nosnap = 3;	/* 802.2 */
1164 		return;
1165 
1166 	case DLT_RAW:
1167 	case DLT_IPV4:
1168 	case DLT_IPV6:
1169 		off_linktype = -1;
1170 		off_macpl = 0;
1171 		off_nl = 0;
1172 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1173 		return;
1174 
1175 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1176 		off_linktype = 14;
1177 		off_macpl = 16;
1178 		off_nl = 0;
1179 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1180 		return;
1181 
1182 	case DLT_LTALK:
1183 		/*
1184 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1185 		 * but really it just indicates whether there is a "short" or
1186 		 * "long" DDP packet following.
1187 		 */
1188 		off_linktype = -1;
1189 		off_macpl = 0;
1190 		off_nl = 0;
1191 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1192 		return;
1193 
1194 	case DLT_IP_OVER_FC:
1195 		/*
1196 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1197 		 * link-level type field.  We set "off_linktype" to the
1198 		 * offset of the LLC header.
1199 		 *
1200 		 * To check for Ethernet types, we assume that SSAP = SNAP
1201 		 * is being used and pick out the encapsulated Ethernet type.
1202 		 * XXX - should we generate code to check for SNAP? RFC
1203 		 * 2625 says SNAP should be used.
1204 		 */
1205 		off_linktype = 16;
1206 		off_macpl = 16;
1207 		off_nl = 8;		/* 802.2+SNAP */
1208 		off_nl_nosnap = 3;	/* 802.2 */
1209 		return;
1210 
1211 	case DLT_FRELAY:
1212 		/*
1213 		 * XXX - we should set this to handle SNAP-encapsulated
1214 		 * frames (NLPID of 0x80).
1215 		 */
1216 		off_linktype = -1;
1217 		off_macpl = 0;
1218 		off_nl = 0;
1219 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1220 		return;
1221 
1222                 /*
1223                  * the only BPF-interesting FRF.16 frames are non-control frames;
1224                  * Frame Relay has a variable length link-layer
1225                  * so lets start with offset 4 for now and increments later on (FIXME);
1226                  */
1227 	case DLT_MFR:
1228 		off_linktype = -1;
1229 		off_macpl = 0;
1230 		off_nl = 4;
1231 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1232 		return;
1233 
1234 	case DLT_APPLE_IP_OVER_IEEE1394:
1235 		off_linktype = 16;
1236 		off_macpl = 18;
1237 		off_nl = 0;
1238 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1239 		return;
1240 
1241 	case DLT_LINUX_IRDA:
1242 		/*
1243 		 * Currently, only raw "link[N:M]" filtering is supported.
1244 		 */
1245 		off_linktype = -1;
1246 		off_macpl = -1;
1247 		off_nl = -1;
1248 		off_nl_nosnap = -1;
1249 		return;
1250 
1251 	case DLT_DOCSIS:
1252 		/*
1253 		 * Currently, only raw "link[N:M]" filtering is supported.
1254 		 */
1255 		off_linktype = -1;
1256 		off_macpl = -1;
1257 		off_nl = -1;
1258 		off_nl_nosnap = -1;
1259 		return;
1260 
1261 	case DLT_SYMANTEC_FIREWALL:
1262 		off_linktype = 6;
1263 		off_macpl = 44;
1264 		off_nl = 0;		/* Ethernet II */
1265 		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1266 		return;
1267 
1268 #ifdef HAVE_NET_PFVAR_H
1269 	case DLT_PFLOG:
1270 		off_linktype = 0;
1271 		off_macpl = PFLOG_HDRLEN;
1272 		off_nl = 0;
1273 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1274 		return;
1275 #endif
1276 
1277         case DLT_JUNIPER_MFR:
1278         case DLT_JUNIPER_MLFR:
1279         case DLT_JUNIPER_MLPPP:
1280         case DLT_JUNIPER_PPP:
1281         case DLT_JUNIPER_CHDLC:
1282         case DLT_JUNIPER_FRELAY:
1283                 off_linktype = 4;
1284 		off_macpl = 4;
1285 		off_nl = 0;
1286 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1287                 return;
1288 
1289 	case DLT_JUNIPER_ATM1:
1290 		off_linktype = 4;	/* in reality variable between 4-8 */
1291 		off_macpl = 4;	/* in reality variable between 4-8 */
1292 		off_nl = 0;
1293 		off_nl_nosnap = 10;
1294 		return;
1295 
1296 	case DLT_JUNIPER_ATM2:
1297 		off_linktype = 8;	/* in reality variable between 8-12 */
1298 		off_macpl = 8;	/* in reality variable between 8-12 */
1299 		off_nl = 0;
1300 		off_nl_nosnap = 10;
1301 		return;
1302 
1303 		/* frames captured on a Juniper PPPoE service PIC
1304 		 * contain raw ethernet frames */
1305 	case DLT_JUNIPER_PPPOE:
1306         case DLT_JUNIPER_ETHER:
1307         	off_macpl = 14;
1308 		off_linktype = 16;
1309 		off_nl = 18;		/* Ethernet II */
1310 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1311 		return;
1312 
1313 	case DLT_JUNIPER_PPPOE_ATM:
1314 		off_linktype = 4;
1315 		off_macpl = 6;
1316 		off_nl = 0;
1317 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1318 		return;
1319 
1320 	case DLT_JUNIPER_GGSN:
1321 		off_linktype = 6;
1322 		off_macpl = 12;
1323 		off_nl = 0;
1324 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1325 		return;
1326 
1327 	case DLT_JUNIPER_ES:
1328 		off_linktype = 6;
1329 		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1330 		off_nl = -1;		/* not really a network layer but raw IP addresses */
1331 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1332 		return;
1333 
1334 	case DLT_JUNIPER_MONITOR:
1335 		off_linktype = 12;
1336 		off_macpl = 12;
1337 		off_nl = 0;		/* raw IP/IP6 header */
1338 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1339 		return;
1340 
1341 	case DLT_JUNIPER_SERVICES:
1342 		off_linktype = 12;
1343 		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1344 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1345 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1346 		return;
1347 
1348 	case DLT_JUNIPER_VP:
1349 		off_linktype = 18;
1350 		off_macpl = -1;
1351 		off_nl = -1;
1352 		off_nl_nosnap = -1;
1353 		return;
1354 
1355 	case DLT_JUNIPER_ST:
1356 		off_linktype = 18;
1357 		off_macpl = -1;
1358 		off_nl = -1;
1359 		off_nl_nosnap = -1;
1360 		return;
1361 
1362 	case DLT_JUNIPER_ISM:
1363 		off_linktype = 8;
1364 		off_macpl = -1;
1365 		off_nl = -1;
1366 		off_nl_nosnap = -1;
1367 		return;
1368 
1369 	case DLT_MTP2:
1370 		off_li = 2;
1371 		off_sio = 3;
1372 		off_opc = 4;
1373 		off_dpc = 4;
1374 		off_sls = 7;
1375 		off_linktype = -1;
1376 		off_macpl = -1;
1377 		off_nl = -1;
1378 		off_nl_nosnap = -1;
1379 		return;
1380 
1381 	case DLT_MTP2_WITH_PHDR:
1382 		off_li = 6;
1383 		off_sio = 7;
1384 		off_opc = 8;
1385 		off_dpc = 8;
1386 		off_sls = 11;
1387 		off_linktype = -1;
1388 		off_macpl = -1;
1389 		off_nl = -1;
1390 		off_nl_nosnap = -1;
1391 		return;
1392 
1393 	case DLT_ERF:
1394 		off_li = 22;
1395 		off_sio = 23;
1396 		off_opc = 24;
1397 		off_dpc = 24;
1398 		off_sls = 27;
1399 		off_linktype = -1;
1400 		off_macpl = -1;
1401 		off_nl = -1;
1402 		off_nl_nosnap = -1;
1403 		return;
1404 
1405 #ifdef DLT_PFSYNC
1406 	case DLT_PFSYNC:
1407 		off_linktype = -1;
1408 		off_macpl = 4;
1409 		off_nl = 0;
1410 		off_nl_nosnap = 0;
1411 		return;
1412 #endif
1413 
1414 	case DLT_LINUX_LAPD:
1415 		/*
1416 		 * Currently, only raw "link[N:M]" filtering is supported.
1417 		 */
1418 		off_linktype = -1;
1419 		off_macpl = -1;
1420 		off_nl = -1;
1421 		off_nl_nosnap = -1;
1422 		return;
1423 
1424 	case DLT_USB:
1425 		/*
1426 		 * Currently, only raw "link[N:M]" filtering is supported.
1427 		 */
1428 		off_linktype = -1;
1429 		off_macpl = -1;
1430 		off_nl = -1;
1431 		off_nl_nosnap = -1;
1432 		return;
1433 
1434 	case DLT_BLUETOOTH_HCI_H4:
1435 		/*
1436 		 * Currently, only raw "link[N:M]" filtering is supported.
1437 		 */
1438 		off_linktype = -1;
1439 		off_macpl = -1;
1440 		off_nl = -1;
1441 		off_nl_nosnap = -1;
1442 		return;
1443 
1444 	case DLT_USB_LINUX:
1445 		/*
1446 		 * Currently, only raw "link[N:M]" filtering is supported.
1447 		 */
1448 		off_linktype = -1;
1449 		off_macpl = -1;
1450 		off_nl = -1;
1451 		off_nl_nosnap = -1;
1452 		return;
1453 
1454 	case DLT_CAN20B:
1455 		/*
1456 		 * Currently, only raw "link[N:M]" filtering is supported.
1457 		 */
1458 		off_linktype = -1;
1459 		off_macpl = -1;
1460 		off_nl = -1;
1461 		off_nl_nosnap = -1;
1462 		return;
1463 
1464 	case DLT_IEEE802_15_4_LINUX:
1465 		/*
1466 		 * Currently, only raw "link[N:M]" filtering is supported.
1467 		 */
1468 		off_linktype = -1;
1469 		off_macpl = -1;
1470 		off_nl = -1;
1471 		off_nl_nosnap = -1;
1472 		return;
1473 
1474 	case DLT_IEEE802_16_MAC_CPS_RADIO:
1475 		/*
1476 		 * Currently, only raw "link[N:M]" filtering is supported.
1477 		 */
1478 		off_linktype = -1;
1479 		off_macpl = -1;
1480 		off_nl = -1;
1481 		off_nl_nosnap = -1;
1482 		return;
1483 
1484 	case DLT_IEEE802_15_4:
1485 		/*
1486 		 * Currently, only raw "link[N:M]" filtering is supported.
1487 		 */
1488 		off_linktype = -1;
1489 		off_macpl = -1;
1490 		off_nl = -1;
1491 		off_nl_nosnap = -1;
1492 		return;
1493 
1494 	case DLT_SITA:
1495 		/*
1496 		 * Currently, only raw "link[N:M]" filtering is supported.
1497 		 */
1498 		off_linktype = -1;
1499 		off_macpl = -1;
1500 		off_nl = -1;
1501 		off_nl_nosnap = -1;
1502 		return;
1503 
1504 	case DLT_RAIF1:
1505 		/*
1506 		 * Currently, only raw "link[N:M]" filtering is supported.
1507 		 */
1508 		off_linktype = -1;
1509 		off_macpl = -1;
1510 		off_nl = -1;
1511 		off_nl_nosnap = -1;
1512 		return;
1513 
1514 	case DLT_IPMB:
1515 		/*
1516 		 * Currently, only raw "link[N:M]" filtering is supported.
1517 		 */
1518 		off_linktype = -1;
1519 		off_macpl = -1;
1520 		off_nl = -1;
1521 		off_nl_nosnap = -1;
1522 		return;
1523 
1524 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
1525 		/*
1526 		 * Currently, only raw "link[N:M]" filtering is supported.
1527 		 */
1528 		off_linktype = -1;
1529 		off_macpl = -1;
1530 		off_nl = -1;
1531 		off_nl_nosnap = -1;
1532 		return;
1533 
1534 	case DLT_AX25_KISS:
1535 		/*
1536 		 * Currently, only raw "link[N:M]" filtering is supported.
1537 		 */
1538 		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1539 		off_macpl = -1;
1540 		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1541 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1542 		off_mac = 1;		/* step over the kiss length byte */
1543 		return;
1544 
1545 	case DLT_IEEE802_15_4_NONASK_PHY:
1546 		/*
1547 		 * Currently, only raw "link[N:M]" filtering is supported.
1548 		 */
1549 		off_linktype = -1;
1550 		off_macpl = -1;
1551 		off_nl = -1;
1552 		off_nl_nosnap = -1;
1553 		return;
1554 
1555 	case DLT_MPLS:
1556 		/*
1557 		 * Currently, only raw "link[N:M]" filtering is supported.
1558 		 */
1559 		off_linktype = -1;
1560 		off_macpl = -1;
1561 		off_nl = -1;
1562 		off_nl_nosnap = -1;
1563 		return;
1564 
1565 	case DLT_USB_LINUX_MMAPPED:
1566 		/*
1567 		 * Currently, only raw "link[N:M]" filtering is supported.
1568 		 */
1569 		off_linktype = -1;
1570 		off_macpl = -1;
1571 		off_nl = -1;
1572 		off_nl_nosnap = -1;
1573 		return;
1574 
1575 	case DLT_CAN_SOCKETCAN:
1576 		/*
1577 		 * Currently, only raw "link[N:M]" filtering is supported.
1578 		 */
1579 		off_linktype = -1;
1580 		off_macpl = -1;
1581 		off_nl = -1;
1582 		off_nl_nosnap = -1;
1583 		return;
1584 
1585 	case DLT_IPNET:
1586 		off_linktype = 1;
1587 		off_macpl = 24;		/* ipnet header length */
1588 		off_nl = 0;
1589 		off_nl_nosnap = -1;
1590 		return;
1591 	}
1592 	bpf_error("unknown data link type %d", linktype);
1593 	/* NOTREACHED */
1594 }
1595 
1596 /*
1597  * Load a value relative to the beginning of the link-layer header.
1598  * The link-layer header doesn't necessarily begin at the beginning
1599  * of the packet data; there might be a variable-length prefix containing
1600  * radio information.
1601  */
1602 static struct slist *
1603 gen_load_llrel(offset, size)
1604 	u_int offset, size;
1605 {
1606 	struct slist *s, *s2;
1607 
1608 	s = gen_llprefixlen();
1609 
1610 	/*
1611 	 * If "s" is non-null, it has code to arrange that the X register
1612 	 * contains the length of the prefix preceding the link-layer
1613 	 * header.
1614 	 *
1615 	 * Otherwise, the length of the prefix preceding the link-layer
1616 	 * header is "off_ll".
1617 	 */
1618 	if (s != NULL) {
1619 		/*
1620 		 * There's a variable-length prefix preceding the
1621 		 * link-layer header.  "s" points to a list of statements
1622 		 * that put the length of that prefix into the X register.
1623 		 * do an indirect load, to use the X register as an offset.
1624 		 */
1625 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1626 		s2->s.k = offset;
1627 		sappend(s, s2);
1628 	} else {
1629 		/*
1630 		 * There is no variable-length header preceding the
1631 		 * link-layer header; add in off_ll, which, if there's
1632 		 * a fixed-length header preceding the link-layer header,
1633 		 * is the length of that header.
1634 		 */
1635 		s = new_stmt(BPF_LD|BPF_ABS|size);
1636 		s->s.k = offset + off_ll;
1637 	}
1638 	return s;
1639 }
1640 
1641 /*
1642  * Load a value relative to the beginning of the MAC-layer payload.
1643  */
1644 static struct slist *
1645 gen_load_macplrel(offset, size)
1646 	u_int offset, size;
1647 {
1648 	struct slist *s, *s2;
1649 
1650 	s = gen_off_macpl();
1651 
1652 	/*
1653 	 * If s is non-null, the offset of the MAC-layer payload is
1654 	 * variable, and s points to a list of instructions that
1655 	 * arrange that the X register contains that offset.
1656 	 *
1657 	 * Otherwise, the offset of the MAC-layer payload is constant,
1658 	 * and is in off_macpl.
1659 	 */
1660 	if (s != NULL) {
1661 		/*
1662 		 * The offset of the MAC-layer payload is in the X
1663 		 * register.  Do an indirect load, to use the X register
1664 		 * as an offset.
1665 		 */
1666 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1667 		s2->s.k = offset;
1668 		sappend(s, s2);
1669 	} else {
1670 		/*
1671 		 * The offset of the MAC-layer payload is constant,
1672 		 * and is in off_macpl; load the value at that offset
1673 		 * plus the specified offset.
1674 		 */
1675 		s = new_stmt(BPF_LD|BPF_ABS|size);
1676 		s->s.k = off_macpl + offset;
1677 	}
1678 	return s;
1679 }
1680 
1681 /*
1682  * Load a value relative to the beginning of the specified header.
1683  */
1684 static struct slist *
1685 gen_load_a(offrel, offset, size)
1686 	enum e_offrel offrel;
1687 	u_int offset, size;
1688 {
1689 	struct slist *s, *s2;
1690 
1691 	switch (offrel) {
1692 
1693 	case OR_PACKET:
1694                 s = new_stmt(BPF_LD|BPF_ABS|size);
1695                 s->s.k = offset;
1696 		break;
1697 
1698 	case OR_LINK:
1699 		s = gen_load_llrel(offset, size);
1700 		break;
1701 
1702 	case OR_MACPL:
1703 		s = gen_load_macplrel(offset, size);
1704 		break;
1705 
1706 	case OR_NET:
1707 		s = gen_load_macplrel(off_nl + offset, size);
1708 		break;
1709 
1710 	case OR_NET_NOSNAP:
1711 		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1712 		break;
1713 
1714 	case OR_TRAN_IPV4:
1715 		/*
1716 		 * Load the X register with the length of the IPv4 header
1717 		 * (plus the offset of the link-layer header, if it's
1718 		 * preceded by a variable-length header such as a radio
1719 		 * header), in bytes.
1720 		 */
1721 		s = gen_loadx_iphdrlen();
1722 
1723 		/*
1724 		 * Load the item at {offset of the MAC-layer payload} +
1725 		 * {offset, relative to the start of the MAC-layer
1726 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1727 		 * {specified offset}.
1728 		 *
1729 		 * (If the offset of the MAC-layer payload is variable,
1730 		 * it's included in the value in the X register, and
1731 		 * off_macpl is 0.)
1732 		 */
1733 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1734 		s2->s.k = off_macpl + off_nl + offset;
1735 		sappend(s, s2);
1736 		break;
1737 
1738 	case OR_TRAN_IPV6:
1739 		s = gen_load_macplrel(off_nl + 40 + offset, size);
1740 		break;
1741 
1742 	default:
1743 		abort();
1744 		return NULL;
1745 	}
1746 	return s;
1747 }
1748 
1749 /*
1750  * Generate code to load into the X register the sum of the length of
1751  * the IPv4 header and any variable-length header preceding the link-layer
1752  * header.
1753  */
1754 static struct slist *
1755 gen_loadx_iphdrlen()
1756 {
1757 	struct slist *s, *s2;
1758 
1759 	s = gen_off_macpl();
1760 	if (s != NULL) {
1761 		/*
1762 		 * There's a variable-length prefix preceding the
1763 		 * link-layer header, or the link-layer header is itself
1764 		 * variable-length.  "s" points to a list of statements
1765 		 * that put the offset of the MAC-layer payload into
1766 		 * the X register.
1767 		 *
1768 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1769 		 * don't have a constant offset, so we have to load the
1770 		 * value in question into the A register and add to it
1771 		 * the value from the X register.
1772 		 */
1773 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1774 		s2->s.k = off_nl;
1775 		sappend(s, s2);
1776 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1777 		s2->s.k = 0xf;
1778 		sappend(s, s2);
1779 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1780 		s2->s.k = 2;
1781 		sappend(s, s2);
1782 
1783 		/*
1784 		 * The A register now contains the length of the
1785 		 * IP header.  We need to add to it the offset of
1786 		 * the MAC-layer payload, which is still in the X
1787 		 * register, and move the result into the X register.
1788 		 */
1789 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1790 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1791 	} else {
1792 		/*
1793 		 * There is no variable-length header preceding the
1794 		 * link-layer header, and the link-layer header is
1795 		 * fixed-length; load the length of the IPv4 header,
1796 		 * which is at an offset of off_nl from the beginning
1797 		 * of the MAC-layer payload, and thus at an offset
1798 		 * of off_mac_pl + off_nl from the beginning of the
1799 		 * raw packet data.
1800 		 */
1801 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1802 		s->s.k = off_macpl + off_nl;
1803 	}
1804 	return s;
1805 }
1806 
1807 static struct block *
1808 gen_uncond(rsense)
1809 	int rsense;
1810 {
1811 	struct block *b;
1812 	struct slist *s;
1813 
1814 	s = new_stmt(BPF_LD|BPF_IMM);
1815 	s->s.k = !rsense;
1816 	b = new_block(JMP(BPF_JEQ));
1817 	b->stmts = s;
1818 
1819 	return b;
1820 }
1821 
1822 static inline struct block *
1823 gen_true()
1824 {
1825 	return gen_uncond(1);
1826 }
1827 
1828 static inline struct block *
1829 gen_false()
1830 {
1831 	return gen_uncond(0);
1832 }
1833 
1834 /*
1835  * Byte-swap a 32-bit number.
1836  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1837  * big-endian platforms.)
1838  */
1839 #define	SWAPLONG(y) \
1840 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1841 
1842 /*
1843  * Generate code to match a particular packet type.
1844  *
1845  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1846  * value, if <= ETHERMTU.  We use that to determine whether to
1847  * match the type/length field or to check the type/length field for
1848  * a value <= ETHERMTU to see whether it's a type field and then do
1849  * the appropriate test.
1850  */
1851 static struct block *
1852 gen_ether_linktype(proto)
1853 	register int proto;
1854 {
1855 	struct block *b0, *b1;
1856 
1857 	switch (proto) {
1858 
1859 	case LLCSAP_ISONS:
1860 	case LLCSAP_IP:
1861 	case LLCSAP_NETBEUI:
1862 		/*
1863 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1864 		 * so we check the DSAP and SSAP.
1865 		 *
1866 		 * LLCSAP_IP checks for IP-over-802.2, rather
1867 		 * than IP-over-Ethernet or IP-over-SNAP.
1868 		 *
1869 		 * XXX - should we check both the DSAP and the
1870 		 * SSAP, like this, or should we check just the
1871 		 * DSAP, as we do for other types <= ETHERMTU
1872 		 * (i.e., other SAP values)?
1873 		 */
1874 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1875 		gen_not(b0);
1876 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1877 			     ((proto << 8) | proto));
1878 		gen_and(b0, b1);
1879 		return b1;
1880 
1881 	case LLCSAP_IPX:
1882 		/*
1883 		 * Check for;
1884 		 *
1885 		 *	Ethernet_II frames, which are Ethernet
1886 		 *	frames with a frame type of ETHERTYPE_IPX;
1887 		 *
1888 		 *	Ethernet_802.3 frames, which are 802.3
1889 		 *	frames (i.e., the type/length field is
1890 		 *	a length field, <= ETHERMTU, rather than
1891 		 *	a type field) with the first two bytes
1892 		 *	after the Ethernet/802.3 header being
1893 		 *	0xFFFF;
1894 		 *
1895 		 *	Ethernet_802.2 frames, which are 802.3
1896 		 *	frames with an 802.2 LLC header and
1897 		 *	with the IPX LSAP as the DSAP in the LLC
1898 		 *	header;
1899 		 *
1900 		 *	Ethernet_SNAP frames, which are 802.3
1901 		 *	frames with an LLC header and a SNAP
1902 		 *	header and with an OUI of 0x000000
1903 		 *	(encapsulated Ethernet) and a protocol
1904 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1905 		 *
1906 		 * XXX - should we generate the same code both
1907 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1908 		 */
1909 
1910 		/*
1911 		 * This generates code to check both for the
1912 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1913 		 */
1914 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1915 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1916 		gen_or(b0, b1);
1917 
1918 		/*
1919 		 * Now we add code to check for SNAP frames with
1920 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1921 		 */
1922 		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1923 		gen_or(b0, b1);
1924 
1925 		/*
1926 		 * Now we generate code to check for 802.3
1927 		 * frames in general.
1928 		 */
1929 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1930 		gen_not(b0);
1931 
1932 		/*
1933 		 * Now add the check for 802.3 frames before the
1934 		 * check for Ethernet_802.2 and Ethernet_802.3,
1935 		 * as those checks should only be done on 802.3
1936 		 * frames, not on Ethernet frames.
1937 		 */
1938 		gen_and(b0, b1);
1939 
1940 		/*
1941 		 * Now add the check for Ethernet_II frames, and
1942 		 * do that before checking for the other frame
1943 		 * types.
1944 		 */
1945 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1946 		    (bpf_int32)ETHERTYPE_IPX);
1947 		gen_or(b0, b1);
1948 		return b1;
1949 
1950 	case ETHERTYPE_ATALK:
1951 	case ETHERTYPE_AARP:
1952 		/*
1953 		 * EtherTalk (AppleTalk protocols on Ethernet link
1954 		 * layer) may use 802.2 encapsulation.
1955 		 */
1956 
1957 		/*
1958 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1959 		 * we check for an Ethernet type field less than
1960 		 * 1500, which means it's an 802.3 length field.
1961 		 */
1962 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1963 		gen_not(b0);
1964 
1965 		/*
1966 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1967 		 * SNAP packets with an organization code of
1968 		 * 0x080007 (Apple, for Appletalk) and a protocol
1969 		 * type of ETHERTYPE_ATALK (Appletalk).
1970 		 *
1971 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1972 		 * SNAP packets with an organization code of
1973 		 * 0x000000 (encapsulated Ethernet) and a protocol
1974 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1975 		 */
1976 		if (proto == ETHERTYPE_ATALK)
1977 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1978 		else	/* proto == ETHERTYPE_AARP */
1979 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1980 		gen_and(b0, b1);
1981 
1982 		/*
1983 		 * Check for Ethernet encapsulation (Ethertalk
1984 		 * phase 1?); we just check for the Ethernet
1985 		 * protocol type.
1986 		 */
1987 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1988 
1989 		gen_or(b0, b1);
1990 		return b1;
1991 
1992 	default:
1993 		if (proto <= ETHERMTU) {
1994 			/*
1995 			 * This is an LLC SAP value, so the frames
1996 			 * that match would be 802.2 frames.
1997 			 * Check that the frame is an 802.2 frame
1998 			 * (i.e., that the length/type field is
1999 			 * a length field, <= ETHERMTU) and
2000 			 * then check the DSAP.
2001 			 */
2002 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
2003 			gen_not(b0);
2004 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
2005 			    (bpf_int32)proto);
2006 			gen_and(b0, b1);
2007 			return b1;
2008 		} else {
2009 			/*
2010 			 * This is an Ethernet type, so compare
2011 			 * the length/type field with it (if
2012 			 * the frame is an 802.2 frame, the length
2013 			 * field will be <= ETHERMTU, and, as
2014 			 * "proto" is > ETHERMTU, this test
2015 			 * will fail and the frame won't match,
2016 			 * which is what we want).
2017 			 */
2018 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2019 			    (bpf_int32)proto);
2020 		}
2021 	}
2022 }
2023 
2024 /*
2025  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2026  * or IPv6 then we have an error.
2027  */
2028 static struct block *
2029 gen_ipnet_linktype(proto)
2030 	register int proto;
2031 {
2032 	switch (proto) {
2033 
2034 	case ETHERTYPE_IP:
2035 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
2036 		    (bpf_int32)IPH_AF_INET);
2037 		/* NOTREACHED */
2038 
2039 	case ETHERTYPE_IPV6:
2040 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
2041 		    (bpf_int32)IPH_AF_INET6);
2042 		/* NOTREACHED */
2043 
2044 	default:
2045 		break;
2046 	}
2047 
2048 	return gen_false();
2049 }
2050 
2051 /*
2052  * Generate code to match a particular packet type.
2053  *
2054  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2055  * value, if <= ETHERMTU.  We use that to determine whether to
2056  * match the type field or to check the type field for the special
2057  * LINUX_SLL_P_802_2 value and then do the appropriate test.
2058  */
2059 static struct block *
2060 gen_linux_sll_linktype(proto)
2061 	register int proto;
2062 {
2063 	struct block *b0, *b1;
2064 
2065 	switch (proto) {
2066 
2067 	case LLCSAP_ISONS:
2068 	case LLCSAP_IP:
2069 	case LLCSAP_NETBEUI:
2070 		/*
2071 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2072 		 * so we check the DSAP and SSAP.
2073 		 *
2074 		 * LLCSAP_IP checks for IP-over-802.2, rather
2075 		 * than IP-over-Ethernet or IP-over-SNAP.
2076 		 *
2077 		 * XXX - should we check both the DSAP and the
2078 		 * SSAP, like this, or should we check just the
2079 		 * DSAP, as we do for other types <= ETHERMTU
2080 		 * (i.e., other SAP values)?
2081 		 */
2082 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2083 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
2084 			     ((proto << 8) | proto));
2085 		gen_and(b0, b1);
2086 		return b1;
2087 
2088 	case LLCSAP_IPX:
2089 		/*
2090 		 *	Ethernet_II frames, which are Ethernet
2091 		 *	frames with a frame type of ETHERTYPE_IPX;
2092 		 *
2093 		 *	Ethernet_802.3 frames, which have a frame
2094 		 *	type of LINUX_SLL_P_802_3;
2095 		 *
2096 		 *	Ethernet_802.2 frames, which are 802.3
2097 		 *	frames with an 802.2 LLC header (i.e, have
2098 		 *	a frame type of LINUX_SLL_P_802_2) and
2099 		 *	with the IPX LSAP as the DSAP in the LLC
2100 		 *	header;
2101 		 *
2102 		 *	Ethernet_SNAP frames, which are 802.3
2103 		 *	frames with an LLC header and a SNAP
2104 		 *	header and with an OUI of 0x000000
2105 		 *	(encapsulated Ethernet) and a protocol
2106 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2107 		 *
2108 		 * First, do the checks on LINUX_SLL_P_802_2
2109 		 * frames; generate the check for either
2110 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
2111 		 * then put a check for LINUX_SLL_P_802_2 frames
2112 		 * before it.
2113 		 */
2114 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2115 		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
2116 		gen_or(b0, b1);
2117 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2118 		gen_and(b0, b1);
2119 
2120 		/*
2121 		 * Now check for 802.3 frames and OR that with
2122 		 * the previous test.
2123 		 */
2124 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2125 		gen_or(b0, b1);
2126 
2127 		/*
2128 		 * Now add the check for Ethernet_II frames, and
2129 		 * do that before checking for the other frame
2130 		 * types.
2131 		 */
2132 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2133 		    (bpf_int32)ETHERTYPE_IPX);
2134 		gen_or(b0, b1);
2135 		return b1;
2136 
2137 	case ETHERTYPE_ATALK:
2138 	case ETHERTYPE_AARP:
2139 		/*
2140 		 * EtherTalk (AppleTalk protocols on Ethernet link
2141 		 * layer) may use 802.2 encapsulation.
2142 		 */
2143 
2144 		/*
2145 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2146 		 * we check for the 802.2 protocol type in the
2147 		 * "Ethernet type" field.
2148 		 */
2149 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2150 
2151 		/*
2152 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2153 		 * SNAP packets with an organization code of
2154 		 * 0x080007 (Apple, for Appletalk) and a protocol
2155 		 * type of ETHERTYPE_ATALK (Appletalk).
2156 		 *
2157 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2158 		 * SNAP packets with an organization code of
2159 		 * 0x000000 (encapsulated Ethernet) and a protocol
2160 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2161 		 */
2162 		if (proto == ETHERTYPE_ATALK)
2163 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2164 		else	/* proto == ETHERTYPE_AARP */
2165 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2166 		gen_and(b0, b1);
2167 
2168 		/*
2169 		 * Check for Ethernet encapsulation (Ethertalk
2170 		 * phase 1?); we just check for the Ethernet
2171 		 * protocol type.
2172 		 */
2173 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2174 
2175 		gen_or(b0, b1);
2176 		return b1;
2177 
2178 	default:
2179 		if (proto <= ETHERMTU) {
2180 			/*
2181 			 * This is an LLC SAP value, so the frames
2182 			 * that match would be 802.2 frames.
2183 			 * Check for the 802.2 protocol type
2184 			 * in the "Ethernet type" field, and
2185 			 * then check the DSAP.
2186 			 */
2187 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2188 			    LINUX_SLL_P_802_2);
2189 			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2190 			     (bpf_int32)proto);
2191 			gen_and(b0, b1);
2192 			return b1;
2193 		} else {
2194 			/*
2195 			 * This is an Ethernet type, so compare
2196 			 * the length/type field with it (if
2197 			 * the frame is an 802.2 frame, the length
2198 			 * field will be <= ETHERMTU, and, as
2199 			 * "proto" is > ETHERMTU, this test
2200 			 * will fail and the frame won't match,
2201 			 * which is what we want).
2202 			 */
2203 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2204 			    (bpf_int32)proto);
2205 		}
2206 	}
2207 }
2208 
2209 static struct slist *
2210 gen_load_prism_llprefixlen()
2211 {
2212 	struct slist *s1, *s2;
2213 	struct slist *sjeq_avs_cookie;
2214 	struct slist *sjcommon;
2215 
2216 	/*
2217 	 * This code is not compatible with the optimizer, as
2218 	 * we are generating jmp instructions within a normal
2219 	 * slist of instructions
2220 	 */
2221 	no_optimize = 1;
2222 
2223 	/*
2224 	 * Generate code to load the length of the radio header into
2225 	 * the register assigned to hold that length, if one has been
2226 	 * assigned.  (If one hasn't been assigned, no code we've
2227 	 * generated uses that prefix, so we don't need to generate any
2228 	 * code to load it.)
2229 	 *
2230 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2231 	 * or always use the AVS header rather than the Prism header.
2232 	 * We load a 4-byte big-endian value at the beginning of the
2233 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2234 	 * it's equal to 0x80211000.  If so, that indicates that it's
2235 	 * an AVS header (the masked-out bits are the version number).
2236 	 * Otherwise, it's a Prism header.
2237 	 *
2238 	 * XXX - the Prism header is also, in theory, variable-length,
2239 	 * but no known software generates headers that aren't 144
2240 	 * bytes long.
2241 	 */
2242 	if (reg_off_ll != -1) {
2243 		/*
2244 		 * Load the cookie.
2245 		 */
2246 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2247 		s1->s.k = 0;
2248 
2249 		/*
2250 		 * AND it with 0xFFFFF000.
2251 		 */
2252 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2253 		s2->s.k = 0xFFFFF000;
2254 		sappend(s1, s2);
2255 
2256 		/*
2257 		 * Compare with 0x80211000.
2258 		 */
2259 		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2260 		sjeq_avs_cookie->s.k = 0x80211000;
2261 		sappend(s1, sjeq_avs_cookie);
2262 
2263 		/*
2264 		 * If it's AVS:
2265 		 *
2266 		 * The 4 bytes at an offset of 4 from the beginning of
2267 		 * the AVS header are the length of the AVS header.
2268 		 * That field is big-endian.
2269 		 */
2270 		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2271 		s2->s.k = 4;
2272 		sappend(s1, s2);
2273 		sjeq_avs_cookie->s.jt = s2;
2274 
2275 		/*
2276 		 * Now jump to the code to allocate a register
2277 		 * into which to save the header length and
2278 		 * store the length there.  (The "jump always"
2279 		 * instruction needs to have the k field set;
2280 		 * it's added to the PC, so, as we're jumping
2281 		 * over a single instruction, it should be 1.)
2282 		 */
2283 		sjcommon = new_stmt(JMP(BPF_JA));
2284 		sjcommon->s.k = 1;
2285 		sappend(s1, sjcommon);
2286 
2287 		/*
2288 		 * Now for the code that handles the Prism header.
2289 		 * Just load the length of the Prism header (144)
2290 		 * into the A register.  Have the test for an AVS
2291 		 * header branch here if we don't have an AVS header.
2292 		 */
2293 		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2294 		s2->s.k = 144;
2295 		sappend(s1, s2);
2296 		sjeq_avs_cookie->s.jf = s2;
2297 
2298 		/*
2299 		 * Now allocate a register to hold that value and store
2300 		 * it.  The code for the AVS header will jump here after
2301 		 * loading the length of the AVS header.
2302 		 */
2303 		s2 = new_stmt(BPF_ST);
2304 		s2->s.k = reg_off_ll;
2305 		sappend(s1, s2);
2306 		sjcommon->s.jf = s2;
2307 
2308 		/*
2309 		 * Now move it into the X register.
2310 		 */
2311 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2312 		sappend(s1, s2);
2313 
2314 		return (s1);
2315 	} else
2316 		return (NULL);
2317 }
2318 
2319 static struct slist *
2320 gen_load_avs_llprefixlen()
2321 {
2322 	struct slist *s1, *s2;
2323 
2324 	/*
2325 	 * Generate code to load the length of the AVS header into
2326 	 * the register assigned to hold that length, if one has been
2327 	 * assigned.  (If one hasn't been assigned, no code we've
2328 	 * generated uses that prefix, so we don't need to generate any
2329 	 * code to load it.)
2330 	 */
2331 	if (reg_off_ll != -1) {
2332 		/*
2333 		 * The 4 bytes at an offset of 4 from the beginning of
2334 		 * the AVS header are the length of the AVS header.
2335 		 * That field is big-endian.
2336 		 */
2337 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2338 		s1->s.k = 4;
2339 
2340 		/*
2341 		 * Now allocate a register to hold that value and store
2342 		 * it.
2343 		 */
2344 		s2 = new_stmt(BPF_ST);
2345 		s2->s.k = reg_off_ll;
2346 		sappend(s1, s2);
2347 
2348 		/*
2349 		 * Now move it into the X register.
2350 		 */
2351 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2352 		sappend(s1, s2);
2353 
2354 		return (s1);
2355 	} else
2356 		return (NULL);
2357 }
2358 
2359 static struct slist *
2360 gen_load_radiotap_llprefixlen()
2361 {
2362 	struct slist *s1, *s2;
2363 
2364 	/*
2365 	 * Generate code to load the length of the radiotap header into
2366 	 * the register assigned to hold that length, if one has been
2367 	 * assigned.  (If one hasn't been assigned, no code we've
2368 	 * generated uses that prefix, so we don't need to generate any
2369 	 * code to load it.)
2370 	 */
2371 	if (reg_off_ll != -1) {
2372 		/*
2373 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2374 		 * of the radiotap header are the length of the radiotap
2375 		 * header; unfortunately, it's little-endian, so we have
2376 		 * to load it a byte at a time and construct the value.
2377 		 */
2378 
2379 		/*
2380 		 * Load the high-order byte, at an offset of 3, shift it
2381 		 * left a byte, and put the result in the X register.
2382 		 */
2383 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2384 		s1->s.k = 3;
2385 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2386 		sappend(s1, s2);
2387 		s2->s.k = 8;
2388 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2389 		sappend(s1, s2);
2390 
2391 		/*
2392 		 * Load the next byte, at an offset of 2, and OR the
2393 		 * value from the X register into it.
2394 		 */
2395 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2396 		sappend(s1, s2);
2397 		s2->s.k = 2;
2398 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2399 		sappend(s1, s2);
2400 
2401 		/*
2402 		 * Now allocate a register to hold that value and store
2403 		 * it.
2404 		 */
2405 		s2 = new_stmt(BPF_ST);
2406 		s2->s.k = reg_off_ll;
2407 		sappend(s1, s2);
2408 
2409 		/*
2410 		 * Now move it into the X register.
2411 		 */
2412 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2413 		sappend(s1, s2);
2414 
2415 		return (s1);
2416 	} else
2417 		return (NULL);
2418 }
2419 
2420 /*
2421  * At the moment we treat PPI as normal Radiotap encoded
2422  * packets. The difference is in the function that generates
2423  * the code at the beginning to compute the header length.
2424  * Since this code generator of PPI supports bare 802.11
2425  * encapsulation only (i.e. the encapsulated DLT should be
2426  * DLT_IEEE802_11) we generate code to check for this too;
2427  * that's done in finish_parse().
2428  */
2429 static struct slist *
2430 gen_load_ppi_llprefixlen()
2431 {
2432 	struct slist *s1, *s2;
2433 
2434 	/*
2435 	 * Generate code to load the length of the radiotap header
2436 	 * into the register assigned to hold that length, if one has
2437 	 * been assigned.
2438 	 */
2439 	if (reg_off_ll != -1) {
2440 		/*
2441 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2442 		 * of the radiotap header are the length of the radiotap
2443 		 * header; unfortunately, it's little-endian, so we have
2444 		 * to load it a byte at a time and construct the value.
2445 		 */
2446 
2447 		/*
2448 		 * Load the high-order byte, at an offset of 3, shift it
2449 		 * left a byte, and put the result in the X register.
2450 		 */
2451 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2452 		s1->s.k = 3;
2453 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2454 		sappend(s1, s2);
2455 		s2->s.k = 8;
2456 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2457 		sappend(s1, s2);
2458 
2459 		/*
2460 		 * Load the next byte, at an offset of 2, and OR the
2461 		 * value from the X register into it.
2462 		 */
2463 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2464 		sappend(s1, s2);
2465 		s2->s.k = 2;
2466 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2467 		sappend(s1, s2);
2468 
2469 		/*
2470 		 * Now allocate a register to hold that value and store
2471 		 * it.
2472 		 */
2473 		s2 = new_stmt(BPF_ST);
2474 		s2->s.k = reg_off_ll;
2475 		sappend(s1, s2);
2476 
2477 		/*
2478 		 * Now move it into the X register.
2479 		 */
2480 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2481 		sappend(s1, s2);
2482 
2483 		return (s1);
2484 	} else
2485 		return (NULL);
2486 }
2487 
2488 /*
2489  * Load a value relative to the beginning of the link-layer header after the 802.11
2490  * header, i.e. LLC_SNAP.
2491  * The link-layer header doesn't necessarily begin at the beginning
2492  * of the packet data; there might be a variable-length prefix containing
2493  * radio information.
2494  */
2495 static struct slist *
2496 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2497 {
2498 	struct slist *s2;
2499 	struct slist *sjset_data_frame_1;
2500 	struct slist *sjset_data_frame_2;
2501 	struct slist *sjset_qos;
2502 	struct slist *sjset_radiotap_flags;
2503 	struct slist *sjset_radiotap_tsft;
2504 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2505 	struct slist *s_roundup;
2506 
2507 	if (reg_off_macpl == -1) {
2508 		/*
2509 		 * No register has been assigned to the offset of
2510 		 * the MAC-layer payload, which means nobody needs
2511 		 * it; don't bother computing it - just return
2512 		 * what we already have.
2513 		 */
2514 		return (s);
2515 	}
2516 
2517 	/*
2518 	 * This code is not compatible with the optimizer, as
2519 	 * we are generating jmp instructions within a normal
2520 	 * slist of instructions
2521 	 */
2522 	no_optimize = 1;
2523 
2524 	/*
2525 	 * If "s" is non-null, it has code to arrange that the X register
2526 	 * contains the length of the prefix preceding the link-layer
2527 	 * header.
2528 	 *
2529 	 * Otherwise, the length of the prefix preceding the link-layer
2530 	 * header is "off_ll".
2531 	 */
2532 	if (s == NULL) {
2533 		/*
2534 		 * There is no variable-length header preceding the
2535 		 * link-layer header.
2536 		 *
2537 		 * Load the length of the fixed-length prefix preceding
2538 		 * the link-layer header (if any) into the X register,
2539 		 * and store it in the reg_off_macpl register.
2540 		 * That length is off_ll.
2541 		 */
2542 		s = new_stmt(BPF_LDX|BPF_IMM);
2543 		s->s.k = off_ll;
2544 	}
2545 
2546 	/*
2547 	 * The X register contains the offset of the beginning of the
2548 	 * link-layer header; add 24, which is the minimum length
2549 	 * of the MAC header for a data frame, to that, and store it
2550 	 * in reg_off_macpl, and then load the Frame Control field,
2551 	 * which is at the offset in the X register, with an indexed load.
2552 	 */
2553 	s2 = new_stmt(BPF_MISC|BPF_TXA);
2554 	sappend(s, s2);
2555 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2556 	s2->s.k = 24;
2557 	sappend(s, s2);
2558 	s2 = new_stmt(BPF_ST);
2559 	s2->s.k = reg_off_macpl;
2560 	sappend(s, s2);
2561 
2562 	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2563 	s2->s.k = 0;
2564 	sappend(s, s2);
2565 
2566 	/*
2567 	 * Check the Frame Control field to see if this is a data frame;
2568 	 * a data frame has the 0x08 bit (b3) in that field set and the
2569 	 * 0x04 bit (b2) clear.
2570 	 */
2571 	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2572 	sjset_data_frame_1->s.k = 0x08;
2573 	sappend(s, sjset_data_frame_1);
2574 
2575 	/*
2576 	 * If b3 is set, test b2, otherwise go to the first statement of
2577 	 * the rest of the program.
2578 	 */
2579 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2580 	sjset_data_frame_2->s.k = 0x04;
2581 	sappend(s, sjset_data_frame_2);
2582 	sjset_data_frame_1->s.jf = snext;
2583 
2584 	/*
2585 	 * If b2 is not set, this is a data frame; test the QoS bit.
2586 	 * Otherwise, go to the first statement of the rest of the
2587 	 * program.
2588 	 */
2589 	sjset_data_frame_2->s.jt = snext;
2590 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2591 	sjset_qos->s.k = 0x80;	/* QoS bit */
2592 	sappend(s, sjset_qos);
2593 
2594 	/*
2595 	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2596 	 * field.
2597 	 * Otherwise, go to the first statement of the rest of the
2598 	 * program.
2599 	 */
2600 	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2601 	s2->s.k = reg_off_macpl;
2602 	sappend(s, s2);
2603 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2604 	s2->s.k = 2;
2605 	sappend(s, s2);
2606 	s2 = new_stmt(BPF_ST);
2607 	s2->s.k = reg_off_macpl;
2608 	sappend(s, s2);
2609 
2610 	/*
2611 	 * If we have a radiotap header, look at it to see whether
2612 	 * there's Atheros padding between the MAC-layer header
2613 	 * and the payload.
2614 	 *
2615 	 * Note: all of the fields in the radiotap header are
2616 	 * little-endian, so we byte-swap all of the values
2617 	 * we test against, as they will be loaded as big-endian
2618 	 * values.
2619 	 */
2620 	if (linktype == DLT_IEEE802_11_RADIO) {
2621 		/*
2622 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2623 		 * in the presence flag?
2624 		 */
2625 		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2626 		s2->s.k = 4;
2627 		sappend(s, s2);
2628 
2629 		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2630 		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2631 		sappend(s, sjset_radiotap_flags);
2632 
2633 		/*
2634 		 * If not, skip all of this.
2635 		 */
2636 		sjset_radiotap_flags->s.jf = snext;
2637 
2638 		/*
2639 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2640 		 */
2641 		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2642 		    new_stmt(JMP(BPF_JSET));
2643 		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2644 		sappend(s, sjset_radiotap_tsft);
2645 
2646 		/*
2647 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2648 		 * at an offset of 16 from the beginning of the raw packet
2649 		 * data (8 bytes for the radiotap header and 8 bytes for
2650 		 * the TSFT field).
2651 		 *
2652 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2653 		 * is set.
2654 		 */
2655 		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2656 		s2->s.k = 16;
2657 		sappend(s, s2);
2658 
2659 		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2660 		sjset_tsft_datapad->s.k = 0x20;
2661 		sappend(s, sjset_tsft_datapad);
2662 
2663 		/*
2664 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2665 		 * at an offset of 8 from the beginning of the raw packet
2666 		 * data (8 bytes for the radiotap header).
2667 		 *
2668 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2669 		 * is set.
2670 		 */
2671 		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2672 		s2->s.k = 8;
2673 		sappend(s, s2);
2674 
2675 		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2676 		sjset_notsft_datapad->s.k = 0x20;
2677 		sappend(s, sjset_notsft_datapad);
2678 
2679 		/*
2680 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2681 		 * set, round the length of the 802.11 header to
2682 		 * a multiple of 4.  Do that by adding 3 and then
2683 		 * dividing by and multiplying by 4, which we do by
2684 		 * ANDing with ~3.
2685 		 */
2686 		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2687 		s_roundup->s.k = reg_off_macpl;
2688 		sappend(s, s_roundup);
2689 		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2690 		s2->s.k = 3;
2691 		sappend(s, s2);
2692 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2693 		s2->s.k = ~3;
2694 		sappend(s, s2);
2695 		s2 = new_stmt(BPF_ST);
2696 		s2->s.k = reg_off_macpl;
2697 		sappend(s, s2);
2698 
2699 		sjset_tsft_datapad->s.jt = s_roundup;
2700 		sjset_tsft_datapad->s.jf = snext;
2701 		sjset_notsft_datapad->s.jt = s_roundup;
2702 		sjset_notsft_datapad->s.jf = snext;
2703 	} else
2704 		sjset_qos->s.jf = snext;
2705 
2706 	return s;
2707 }
2708 
2709 static void
2710 insert_compute_vloffsets(b)
2711 	struct block *b;
2712 {
2713 	struct slist *s;
2714 
2715 	/*
2716 	 * For link-layer types that have a variable-length header
2717 	 * preceding the link-layer header, generate code to load
2718 	 * the offset of the link-layer header into the register
2719 	 * assigned to that offset, if any.
2720 	 */
2721 	switch (linktype) {
2722 
2723 	case DLT_PRISM_HEADER:
2724 		s = gen_load_prism_llprefixlen();
2725 		break;
2726 
2727 	case DLT_IEEE802_11_RADIO_AVS:
2728 		s = gen_load_avs_llprefixlen();
2729 		break;
2730 
2731 	case DLT_IEEE802_11_RADIO:
2732 		s = gen_load_radiotap_llprefixlen();
2733 		break;
2734 
2735 	case DLT_PPI:
2736 		s = gen_load_ppi_llprefixlen();
2737 		break;
2738 
2739 	default:
2740 		s = NULL;
2741 		break;
2742 	}
2743 
2744 	/*
2745 	 * For link-layer types that have a variable-length link-layer
2746 	 * header, generate code to load the offset of the MAC-layer
2747 	 * payload into the register assigned to that offset, if any.
2748 	 */
2749 	switch (linktype) {
2750 
2751 	case DLT_IEEE802_11:
2752 	case DLT_PRISM_HEADER:
2753 	case DLT_IEEE802_11_RADIO_AVS:
2754 	case DLT_IEEE802_11_RADIO:
2755 	case DLT_PPI:
2756 		s = gen_load_802_11_header_len(s, b->stmts);
2757 		break;
2758 	}
2759 
2760 	/*
2761 	 * If we have any offset-loading code, append all the
2762 	 * existing statements in the block to those statements,
2763 	 * and make the resulting list the list of statements
2764 	 * for the block.
2765 	 */
2766 	if (s != NULL) {
2767 		sappend(s, b->stmts);
2768 		b->stmts = s;
2769 	}
2770 }
2771 
2772 static struct block *
2773 gen_ppi_dlt_check(void)
2774 {
2775 	struct slist *s_load_dlt;
2776 	struct block *b;
2777 
2778 	if (linktype == DLT_PPI)
2779 	{
2780 		/* Create the statements that check for the DLT
2781 		 */
2782 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2783 		s_load_dlt->s.k = 4;
2784 
2785 		b = new_block(JMP(BPF_JEQ));
2786 
2787 		b->stmts = s_load_dlt;
2788 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2789 	}
2790 	else
2791 	{
2792 		b = NULL;
2793 	}
2794 
2795 	return b;
2796 }
2797 
2798 static struct slist *
2799 gen_prism_llprefixlen(void)
2800 {
2801 	struct slist *s;
2802 
2803 	if (reg_off_ll == -1) {
2804 		/*
2805 		 * We haven't yet assigned a register for the length
2806 		 * of the radio header; allocate one.
2807 		 */
2808 		reg_off_ll = alloc_reg();
2809 	}
2810 
2811 	/*
2812 	 * Load the register containing the radio length
2813 	 * into the X register.
2814 	 */
2815 	s = new_stmt(BPF_LDX|BPF_MEM);
2816 	s->s.k = reg_off_ll;
2817 	return s;
2818 }
2819 
2820 static struct slist *
2821 gen_avs_llprefixlen(void)
2822 {
2823 	struct slist *s;
2824 
2825 	if (reg_off_ll == -1) {
2826 		/*
2827 		 * We haven't yet assigned a register for the length
2828 		 * of the AVS header; allocate one.
2829 		 */
2830 		reg_off_ll = alloc_reg();
2831 	}
2832 
2833 	/*
2834 	 * Load the register containing the AVS length
2835 	 * into the X register.
2836 	 */
2837 	s = new_stmt(BPF_LDX|BPF_MEM);
2838 	s->s.k = reg_off_ll;
2839 	return s;
2840 }
2841 
2842 static struct slist *
2843 gen_radiotap_llprefixlen(void)
2844 {
2845 	struct slist *s;
2846 
2847 	if (reg_off_ll == -1) {
2848 		/*
2849 		 * We haven't yet assigned a register for the length
2850 		 * of the radiotap header; allocate one.
2851 		 */
2852 		reg_off_ll = alloc_reg();
2853 	}
2854 
2855 	/*
2856 	 * Load the register containing the radiotap length
2857 	 * into the X register.
2858 	 */
2859 	s = new_stmt(BPF_LDX|BPF_MEM);
2860 	s->s.k = reg_off_ll;
2861 	return s;
2862 }
2863 
2864 /*
2865  * At the moment we treat PPI as normal Radiotap encoded
2866  * packets. The difference is in the function that generates
2867  * the code at the beginning to compute the header length.
2868  * Since this code generator of PPI supports bare 802.11
2869  * encapsulation only (i.e. the encapsulated DLT should be
2870  * DLT_IEEE802_11) we generate code to check for this too.
2871  */
2872 static struct slist *
2873 gen_ppi_llprefixlen(void)
2874 {
2875 	struct slist *s;
2876 
2877 	if (reg_off_ll == -1) {
2878 		/*
2879 		 * We haven't yet assigned a register for the length
2880 		 * of the radiotap header; allocate one.
2881 		 */
2882 		reg_off_ll = alloc_reg();
2883 	}
2884 
2885 	/*
2886 	 * Load the register containing the PPI length
2887 	 * into the X register.
2888 	 */
2889 	s = new_stmt(BPF_LDX|BPF_MEM);
2890 	s->s.k = reg_off_ll;
2891 	return s;
2892 }
2893 
2894 /*
2895  * Generate code to compute the link-layer header length, if necessary,
2896  * putting it into the X register, and to return either a pointer to a
2897  * "struct slist" for the list of statements in that code, or NULL if
2898  * no code is necessary.
2899  */
2900 static struct slist *
2901 gen_llprefixlen(void)
2902 {
2903 	switch (linktype) {
2904 
2905 	case DLT_PRISM_HEADER:
2906 		return gen_prism_llprefixlen();
2907 
2908 	case DLT_IEEE802_11_RADIO_AVS:
2909 		return gen_avs_llprefixlen();
2910 
2911 	case DLT_IEEE802_11_RADIO:
2912 		return gen_radiotap_llprefixlen();
2913 
2914 	case DLT_PPI:
2915 		return gen_ppi_llprefixlen();
2916 
2917 	default:
2918 		return NULL;
2919 	}
2920 }
2921 
2922 /*
2923  * Generate code to load the register containing the offset of the
2924  * MAC-layer payload into the X register; if no register for that offset
2925  * has been allocated, allocate it first.
2926  */
2927 static struct slist *
2928 gen_off_macpl(void)
2929 {
2930 	struct slist *s;
2931 
2932 	if (off_macpl_is_variable) {
2933 		if (reg_off_macpl == -1) {
2934 			/*
2935 			 * We haven't yet assigned a register for the offset
2936 			 * of the MAC-layer payload; allocate one.
2937 			 */
2938 			reg_off_macpl = alloc_reg();
2939 		}
2940 
2941 		/*
2942 		 * Load the register containing the offset of the MAC-layer
2943 		 * payload into the X register.
2944 		 */
2945 		s = new_stmt(BPF_LDX|BPF_MEM);
2946 		s->s.k = reg_off_macpl;
2947 		return s;
2948 	} else {
2949 		/*
2950 		 * That offset isn't variable, so we don't need to
2951 		 * generate any code.
2952 		 */
2953 		return NULL;
2954 	}
2955 }
2956 
2957 /*
2958  * Map an Ethernet type to the equivalent PPP type.
2959  */
2960 static int
2961 ethertype_to_ppptype(proto)
2962 	int proto;
2963 {
2964 	switch (proto) {
2965 
2966 	case ETHERTYPE_IP:
2967 		proto = PPP_IP;
2968 		break;
2969 
2970 #ifdef INET6
2971 	case ETHERTYPE_IPV6:
2972 		proto = PPP_IPV6;
2973 		break;
2974 #endif
2975 
2976 	case ETHERTYPE_DN:
2977 		proto = PPP_DECNET;
2978 		break;
2979 
2980 	case ETHERTYPE_ATALK:
2981 		proto = PPP_APPLE;
2982 		break;
2983 
2984 	case ETHERTYPE_NS:
2985 		proto = PPP_NS;
2986 		break;
2987 
2988 	case LLCSAP_ISONS:
2989 		proto = PPP_OSI;
2990 		break;
2991 
2992 	case LLCSAP_8021D:
2993 		/*
2994 		 * I'm assuming the "Bridging PDU"s that go
2995 		 * over PPP are Spanning Tree Protocol
2996 		 * Bridging PDUs.
2997 		 */
2998 		proto = PPP_BRPDU;
2999 		break;
3000 
3001 	case LLCSAP_IPX:
3002 		proto = PPP_IPX;
3003 		break;
3004 	}
3005 	return (proto);
3006 }
3007 
3008 /*
3009  * Generate code to match a particular packet type by matching the
3010  * link-layer type field or fields in the 802.2 LLC header.
3011  *
3012  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3013  * value, if <= ETHERMTU.
3014  */
3015 static struct block *
3016 gen_linktype(proto)
3017 	register int proto;
3018 {
3019 	struct block *b0, *b1, *b2;
3020 
3021 	/* are we checking MPLS-encapsulated packets? */
3022 	if (label_stack_depth > 0) {
3023 		switch (proto) {
3024 		case ETHERTYPE_IP:
3025 		case PPP_IP:
3026 			/* FIXME add other L3 proto IDs */
3027 			return gen_mpls_linktype(Q_IP);
3028 
3029 		case ETHERTYPE_IPV6:
3030 		case PPP_IPV6:
3031 			/* FIXME add other L3 proto IDs */
3032 			return gen_mpls_linktype(Q_IPV6);
3033 
3034 		default:
3035 			bpf_error("unsupported protocol over mpls");
3036 			/* NOTREACHED */
3037 		}
3038 	}
3039 
3040 	/*
3041 	 * Are we testing PPPoE packets?
3042 	 */
3043 	if (is_pppoes) {
3044 		/*
3045 		 * The PPPoE session header is part of the
3046 		 * MAC-layer payload, so all references
3047 		 * should be relative to the beginning of
3048 		 * that payload.
3049 		 */
3050 
3051 		/*
3052 		 * We use Ethernet protocol types inside libpcap;
3053 		 * map them to the corresponding PPP protocol types.
3054 		 */
3055 		proto = ethertype_to_ppptype(proto);
3056 		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
3057 	}
3058 
3059 	switch (linktype) {
3060 
3061 	case DLT_EN10MB:
3062 		return gen_ether_linktype(proto);
3063 		/*NOTREACHED*/
3064 		break;
3065 
3066 	case DLT_C_HDLC:
3067 		switch (proto) {
3068 
3069 		case LLCSAP_ISONS:
3070 			proto = (proto << 8 | LLCSAP_ISONS);
3071 			/* fall through */
3072 
3073 		default:
3074 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3075 			    (bpf_int32)proto);
3076 			/*NOTREACHED*/
3077 			break;
3078 		}
3079 		break;
3080 
3081 	case DLT_IEEE802_11:
3082 	case DLT_PRISM_HEADER:
3083 	case DLT_IEEE802_11_RADIO_AVS:
3084 	case DLT_IEEE802_11_RADIO:
3085 	case DLT_PPI:
3086 		/*
3087 		 * Check that we have a data frame.
3088 		 */
3089 		b0 = gen_check_802_11_data_frame();
3090 
3091 		/*
3092 		 * Now check for the specified link-layer type.
3093 		 */
3094 		b1 = gen_llc_linktype(proto);
3095 		gen_and(b0, b1);
3096 		return b1;
3097 		/*NOTREACHED*/
3098 		break;
3099 
3100 	case DLT_FDDI:
3101 		/*
3102 		 * XXX - check for asynchronous frames, as per RFC 1103.
3103 		 */
3104 		return gen_llc_linktype(proto);
3105 		/*NOTREACHED*/
3106 		break;
3107 
3108 	case DLT_IEEE802:
3109 		/*
3110 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
3111 		 */
3112 		return gen_llc_linktype(proto);
3113 		/*NOTREACHED*/
3114 		break;
3115 
3116 	case DLT_ATM_RFC1483:
3117 	case DLT_ATM_CLIP:
3118 	case DLT_IP_OVER_FC:
3119 		return gen_llc_linktype(proto);
3120 		/*NOTREACHED*/
3121 		break;
3122 
3123 	case DLT_SUNATM:
3124 		/*
3125 		 * If "is_lane" is set, check for a LANE-encapsulated
3126 		 * version of this protocol, otherwise check for an
3127 		 * LLC-encapsulated version of this protocol.
3128 		 *
3129 		 * We assume LANE means Ethernet, not Token Ring.
3130 		 */
3131 		if (is_lane) {
3132 			/*
3133 			 * Check that the packet doesn't begin with an
3134 			 * LE Control marker.  (We've already generated
3135 			 * a test for LANE.)
3136 			 */
3137 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3138 			    0xFF00);
3139 			gen_not(b0);
3140 
3141 			/*
3142 			 * Now generate an Ethernet test.
3143 			 */
3144 			b1 = gen_ether_linktype(proto);
3145 			gen_and(b0, b1);
3146 			return b1;
3147 		} else {
3148 			/*
3149 			 * Check for LLC encapsulation and then check the
3150 			 * protocol.
3151 			 */
3152 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3153 			b1 = gen_llc_linktype(proto);
3154 			gen_and(b0, b1);
3155 			return b1;
3156 		}
3157 		/*NOTREACHED*/
3158 		break;
3159 
3160 	case DLT_LINUX_SLL:
3161 		return gen_linux_sll_linktype(proto);
3162 		/*NOTREACHED*/
3163 		break;
3164 
3165 	case DLT_SLIP:
3166 	case DLT_SLIP_BSDOS:
3167 	case DLT_RAW:
3168 		/*
3169 		 * These types don't provide any type field; packets
3170 		 * are always IPv4 or IPv6.
3171 		 *
3172 		 * XXX - for IPv4, check for a version number of 4, and,
3173 		 * for IPv6, check for a version number of 6?
3174 		 */
3175 		switch (proto) {
3176 
3177 		case ETHERTYPE_IP:
3178 			/* Check for a version number of 4. */
3179 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3180 #ifdef INET6
3181 		case ETHERTYPE_IPV6:
3182 			/* Check for a version number of 6. */
3183 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3184 #endif
3185 
3186 		default:
3187 			return gen_false();		/* always false */
3188 		}
3189 		/*NOTREACHED*/
3190 		break;
3191 
3192 	case DLT_IPV4:
3193 		/*
3194 		 * Raw IPv4, so no type field.
3195 		 */
3196 		if (proto == ETHERTYPE_IP)
3197 			return gen_true();		/* always true */
3198 
3199 		/* Checking for something other than IPv4; always false */
3200 		return gen_false();
3201 		/*NOTREACHED*/
3202 		break;
3203 
3204 	case DLT_IPV6:
3205 		/*
3206 		 * Raw IPv6, so no type field.
3207 		 */
3208 #ifdef INET6
3209 		if (proto == ETHERTYPE_IPV6)
3210 			return gen_true();		/* always true */
3211 #endif
3212 
3213 		/* Checking for something other than IPv6; always false */
3214 		return gen_false();
3215 		/*NOTREACHED*/
3216 		break;
3217 
3218 	case DLT_PPP:
3219 	case DLT_PPP_PPPD:
3220 	case DLT_PPP_SERIAL:
3221 	case DLT_PPP_ETHER:
3222 		/*
3223 		 * We use Ethernet protocol types inside libpcap;
3224 		 * map them to the corresponding PPP protocol types.
3225 		 */
3226 		proto = ethertype_to_ppptype(proto);
3227 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3228 		/*NOTREACHED*/
3229 		break;
3230 
3231 	case DLT_PPP_BSDOS:
3232 		/*
3233 		 * We use Ethernet protocol types inside libpcap;
3234 		 * map them to the corresponding PPP protocol types.
3235 		 */
3236 		switch (proto) {
3237 
3238 		case ETHERTYPE_IP:
3239 			/*
3240 			 * Also check for Van Jacobson-compressed IP.
3241 			 * XXX - do this for other forms of PPP?
3242 			 */
3243 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3244 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3245 			gen_or(b0, b1);
3246 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3247 			gen_or(b1, b0);
3248 			return b0;
3249 
3250 		default:
3251 			proto = ethertype_to_ppptype(proto);
3252 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3253 				(bpf_int32)proto);
3254 		}
3255 		/*NOTREACHED*/
3256 		break;
3257 
3258 	case DLT_NULL:
3259 	case DLT_LOOP:
3260 	case DLT_ENC:
3261 		/*
3262 		 * For DLT_NULL, the link-layer header is a 32-bit
3263 		 * word containing an AF_ value in *host* byte order,
3264 		 * and for DLT_ENC, the link-layer header begins
3265 		 * with a 32-bit work containing an AF_ value in
3266 		 * host byte order.
3267 		 *
3268 		 * In addition, if we're reading a saved capture file,
3269 		 * the host byte order in the capture may not be the
3270 		 * same as the host byte order on this machine.
3271 		 *
3272 		 * For DLT_LOOP, the link-layer header is a 32-bit
3273 		 * word containing an AF_ value in *network* byte order.
3274 		 *
3275 		 * XXX - AF_ values may, unfortunately, be platform-
3276 		 * dependent; for example, FreeBSD's AF_INET6 is 24
3277 		 * whilst NetBSD's and OpenBSD's is 26.
3278 		 *
3279 		 * This means that, when reading a capture file, just
3280 		 * checking for our AF_INET6 value won't work if the
3281 		 * capture file came from another OS.
3282 		 */
3283 		switch (proto) {
3284 
3285 		case ETHERTYPE_IP:
3286 			proto = AF_INET;
3287 			break;
3288 
3289 #ifdef INET6
3290 		case ETHERTYPE_IPV6:
3291 			proto = AF_INET6;
3292 			break;
3293 #endif
3294 
3295 		default:
3296 			/*
3297 			 * Not a type on which we support filtering.
3298 			 * XXX - support those that have AF_ values
3299 			 * #defined on this platform, at least?
3300 			 */
3301 			return gen_false();
3302 		}
3303 
3304 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3305 			/*
3306 			 * The AF_ value is in host byte order, but
3307 			 * the BPF interpreter will convert it to
3308 			 * network byte order.
3309 			 *
3310 			 * If this is a save file, and it's from a
3311 			 * machine with the opposite byte order to
3312 			 * ours, we byte-swap the AF_ value.
3313 			 *
3314 			 * Then we run it through "htonl()", and
3315 			 * generate code to compare against the result.
3316 			 */
3317 			if (bpf_pcap->sf.rfile != NULL &&
3318 			    bpf_pcap->sf.swapped)
3319 				proto = SWAPLONG(proto);
3320 			proto = htonl(proto);
3321 		}
3322 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3323 
3324 #ifdef HAVE_NET_PFVAR_H
3325 	case DLT_PFLOG:
3326 		/*
3327 		 * af field is host byte order in contrast to the rest of
3328 		 * the packet.
3329 		 */
3330 		if (proto == ETHERTYPE_IP)
3331 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3332 			    BPF_B, (bpf_int32)AF_INET));
3333 #ifdef INET6
3334 		else if (proto == ETHERTYPE_IPV6)
3335 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3336 			    BPF_B, (bpf_int32)AF_INET6));
3337 #endif /* INET6 */
3338 		else
3339 			return gen_false();
3340 		/*NOTREACHED*/
3341 		break;
3342 #endif /* HAVE_NET_PFVAR_H */
3343 
3344 	case DLT_ARCNET:
3345 	case DLT_ARCNET_LINUX:
3346 		/*
3347 		 * XXX should we check for first fragment if the protocol
3348 		 * uses PHDS?
3349 		 */
3350 		switch (proto) {
3351 
3352 		default:
3353 			return gen_false();
3354 
3355 #ifdef INET6
3356 		case ETHERTYPE_IPV6:
3357 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3358 				(bpf_int32)ARCTYPE_INET6));
3359 #endif /* INET6 */
3360 
3361 		case ETHERTYPE_IP:
3362 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3363 				     (bpf_int32)ARCTYPE_IP);
3364 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3365 				     (bpf_int32)ARCTYPE_IP_OLD);
3366 			gen_or(b0, b1);
3367 			return (b1);
3368 
3369 		case ETHERTYPE_ARP:
3370 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3371 				     (bpf_int32)ARCTYPE_ARP);
3372 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3373 				     (bpf_int32)ARCTYPE_ARP_OLD);
3374 			gen_or(b0, b1);
3375 			return (b1);
3376 
3377 		case ETHERTYPE_REVARP:
3378 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3379 					(bpf_int32)ARCTYPE_REVARP));
3380 
3381 		case ETHERTYPE_ATALK:
3382 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3383 					(bpf_int32)ARCTYPE_ATALK));
3384 		}
3385 		/*NOTREACHED*/
3386 		break;
3387 
3388 	case DLT_LTALK:
3389 		switch (proto) {
3390 		case ETHERTYPE_ATALK:
3391 			return gen_true();
3392 		default:
3393 			return gen_false();
3394 		}
3395 		/*NOTREACHED*/
3396 		break;
3397 
3398 	case DLT_FRELAY:
3399 		/*
3400 		 * XXX - assumes a 2-byte Frame Relay header with
3401 		 * DLCI and flags.  What if the address is longer?
3402 		 */
3403 		switch (proto) {
3404 
3405 		case ETHERTYPE_IP:
3406 			/*
3407 			 * Check for the special NLPID for IP.
3408 			 */
3409 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3410 
3411 #ifdef INET6
3412 		case ETHERTYPE_IPV6:
3413 			/*
3414 			 * Check for the special NLPID for IPv6.
3415 			 */
3416 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3417 #endif
3418 
3419 		case LLCSAP_ISONS:
3420 			/*
3421 			 * Check for several OSI protocols.
3422 			 *
3423 			 * Frame Relay packets typically have an OSI
3424 			 * NLPID at the beginning; we check for each
3425 			 * of them.
3426 			 *
3427 			 * What we check for is the NLPID and a frame
3428 			 * control field of UI, i.e. 0x03 followed
3429 			 * by the NLPID.
3430 			 */
3431 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3432 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3433 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3434 			gen_or(b1, b2);
3435 			gen_or(b0, b2);
3436 			return b2;
3437 
3438 		default:
3439 			return gen_false();
3440 		}
3441 		/*NOTREACHED*/
3442 		break;
3443 
3444 	case DLT_MFR:
3445 		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3446 
3447         case DLT_JUNIPER_MFR:
3448         case DLT_JUNIPER_MLFR:
3449         case DLT_JUNIPER_MLPPP:
3450 	case DLT_JUNIPER_ATM1:
3451 	case DLT_JUNIPER_ATM2:
3452 	case DLT_JUNIPER_PPPOE:
3453 	case DLT_JUNIPER_PPPOE_ATM:
3454         case DLT_JUNIPER_GGSN:
3455         case DLT_JUNIPER_ES:
3456         case DLT_JUNIPER_MONITOR:
3457         case DLT_JUNIPER_SERVICES:
3458         case DLT_JUNIPER_ETHER:
3459         case DLT_JUNIPER_PPP:
3460         case DLT_JUNIPER_FRELAY:
3461         case DLT_JUNIPER_CHDLC:
3462         case DLT_JUNIPER_VP:
3463         case DLT_JUNIPER_ST:
3464         case DLT_JUNIPER_ISM:
3465 		/* just lets verify the magic number for now -
3466 		 * on ATM we may have up to 6 different encapsulations on the wire
3467 		 * and need a lot of heuristics to figure out that the payload
3468 		 * might be;
3469 		 *
3470 		 * FIXME encapsulation specific BPF_ filters
3471 		 */
3472 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3473 
3474 	case DLT_IPNET:
3475 		return gen_ipnet_linktype(proto);
3476 
3477 	case DLT_LINUX_IRDA:
3478 		bpf_error("IrDA link-layer type filtering not implemented");
3479 
3480 	case DLT_DOCSIS:
3481 		bpf_error("DOCSIS link-layer type filtering not implemented");
3482 
3483 	case DLT_MTP2:
3484 	case DLT_MTP2_WITH_PHDR:
3485 		bpf_error("MTP2 link-layer type filtering not implemented");
3486 
3487 	case DLT_ERF:
3488 		bpf_error("ERF link-layer type filtering not implemented");
3489 
3490 #ifdef DLT_PFSYNC
3491 	case DLT_PFSYNC:
3492 		bpf_error("PFSYNC link-layer type filtering not implemented");
3493 #endif
3494 
3495 	case DLT_LINUX_LAPD:
3496 		bpf_error("LAPD link-layer type filtering not implemented");
3497 
3498 	case DLT_USB:
3499 	case DLT_USB_LINUX:
3500 	case DLT_USB_LINUX_MMAPPED:
3501 		bpf_error("USB link-layer type filtering not implemented");
3502 
3503 	case DLT_BLUETOOTH_HCI_H4:
3504 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3505 		bpf_error("Bluetooth link-layer type filtering not implemented");
3506 
3507 	case DLT_CAN20B:
3508 	case DLT_CAN_SOCKETCAN:
3509 		bpf_error("CAN link-layer type filtering not implemented");
3510 
3511 	case DLT_IEEE802_15_4:
3512 	case DLT_IEEE802_15_4_LINUX:
3513 	case DLT_IEEE802_15_4_NONASK_PHY:
3514 		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3515 
3516 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3517 		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3518 
3519 	case DLT_SITA:
3520 		bpf_error("SITA link-layer type filtering not implemented");
3521 
3522 	case DLT_RAIF1:
3523 		bpf_error("RAIF1 link-layer type filtering not implemented");
3524 
3525 	case DLT_IPMB:
3526 		bpf_error("IPMB link-layer type filtering not implemented");
3527 
3528 	case DLT_AX25_KISS:
3529 		bpf_error("AX.25 link-layer type filtering not implemented");
3530 	}
3531 
3532 	/*
3533 	 * All the types that have no encapsulation should either be
3534 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3535 	 * all packets are IP packets, or should be handled in some
3536 	 * special case, if none of them are (if some are and some
3537 	 * aren't, the lack of encapsulation is a problem, as we'd
3538 	 * have to find some other way of determining the packet type).
3539 	 *
3540 	 * Therefore, if "off_linktype" is -1, there's an error.
3541 	 */
3542 	if (off_linktype == (u_int)-1)
3543 		abort();
3544 
3545 	/*
3546 	 * Any type not handled above should always have an Ethernet
3547 	 * type at an offset of "off_linktype".
3548 	 */
3549 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3550 }
3551 
3552 /*
3553  * Check for an LLC SNAP packet with a given organization code and
3554  * protocol type; we check the entire contents of the 802.2 LLC and
3555  * snap headers, checking for DSAP and SSAP of SNAP and a control
3556  * field of 0x03 in the LLC header, and for the specified organization
3557  * code and protocol type in the SNAP header.
3558  */
3559 static struct block *
3560 gen_snap(orgcode, ptype)
3561 	bpf_u_int32 orgcode;
3562 	bpf_u_int32 ptype;
3563 {
3564 	u_char snapblock[8];
3565 
3566 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3567 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3568 	snapblock[2] = 0x03;		/* control = UI */
3569 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3570 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3571 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3572 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3573 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3574 	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3575 }
3576 
3577 /*
3578  * Generate code to match a particular packet type, for link-layer types
3579  * using 802.2 LLC headers.
3580  *
3581  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3582  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3583  *
3584  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3585  * value, if <= ETHERMTU.  We use that to determine whether to
3586  * match the DSAP or both DSAP and LSAP or to check the OUI and
3587  * protocol ID in a SNAP header.
3588  */
3589 static struct block *
3590 gen_llc_linktype(proto)
3591 	int proto;
3592 {
3593 	/*
3594 	 * XXX - handle token-ring variable-length header.
3595 	 */
3596 	switch (proto) {
3597 
3598 	case LLCSAP_IP:
3599 	case LLCSAP_ISONS:
3600 	case LLCSAP_NETBEUI:
3601 		/*
3602 		 * XXX - should we check both the DSAP and the
3603 		 * SSAP, like this, or should we check just the
3604 		 * DSAP, as we do for other types <= ETHERMTU
3605 		 * (i.e., other SAP values)?
3606 		 */
3607 		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3608 			     ((proto << 8) | proto));
3609 
3610 	case LLCSAP_IPX:
3611 		/*
3612 		 * XXX - are there ever SNAP frames for IPX on
3613 		 * non-Ethernet 802.x networks?
3614 		 */
3615 		return gen_cmp(OR_MACPL, 0, BPF_B,
3616 		    (bpf_int32)LLCSAP_IPX);
3617 
3618 	case ETHERTYPE_ATALK:
3619 		/*
3620 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3621 		 * SNAP packets with an organization code of
3622 		 * 0x080007 (Apple, for Appletalk) and a protocol
3623 		 * type of ETHERTYPE_ATALK (Appletalk).
3624 		 *
3625 		 * XXX - check for an organization code of
3626 		 * encapsulated Ethernet as well?
3627 		 */
3628 		return gen_snap(0x080007, ETHERTYPE_ATALK);
3629 
3630 	default:
3631 		/*
3632 		 * XXX - we don't have to check for IPX 802.3
3633 		 * here, but should we check for the IPX Ethertype?
3634 		 */
3635 		if (proto <= ETHERMTU) {
3636 			/*
3637 			 * This is an LLC SAP value, so check
3638 			 * the DSAP.
3639 			 */
3640 			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3641 		} else {
3642 			/*
3643 			 * This is an Ethernet type; we assume that it's
3644 			 * unlikely that it'll appear in the right place
3645 			 * at random, and therefore check only the
3646 			 * location that would hold the Ethernet type
3647 			 * in a SNAP frame with an organization code of
3648 			 * 0x000000 (encapsulated Ethernet).
3649 			 *
3650 			 * XXX - if we were to check for the SNAP DSAP and
3651 			 * LSAP, as per XXX, and were also to check for an
3652 			 * organization code of 0x000000 (encapsulated
3653 			 * Ethernet), we'd do
3654 			 *
3655 			 *	return gen_snap(0x000000, proto);
3656 			 *
3657 			 * here; for now, we don't, as per the above.
3658 			 * I don't know whether it's worth the extra CPU
3659 			 * time to do the right check or not.
3660 			 */
3661 			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3662 		}
3663 	}
3664 }
3665 
3666 static struct block *
3667 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3668 	bpf_u_int32 addr;
3669 	bpf_u_int32 mask;
3670 	int dir, proto;
3671 	u_int src_off, dst_off;
3672 {
3673 	struct block *b0, *b1;
3674 	u_int offset;
3675 
3676 	switch (dir) {
3677 
3678 	case Q_SRC:
3679 		offset = src_off;
3680 		break;
3681 
3682 	case Q_DST:
3683 		offset = dst_off;
3684 		break;
3685 
3686 	case Q_AND:
3687 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3688 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3689 		gen_and(b0, b1);
3690 		return b1;
3691 
3692 	case Q_OR:
3693 	case Q_DEFAULT:
3694 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3695 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3696 		gen_or(b0, b1);
3697 		return b1;
3698 
3699 	default:
3700 		abort();
3701 	}
3702 	b0 = gen_linktype(proto);
3703 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3704 	gen_and(b0, b1);
3705 	return b1;
3706 }
3707 
3708 #ifdef INET6
3709 static struct block *
3710 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3711 	struct in6_addr *addr;
3712 	struct in6_addr *mask;
3713 	int dir, proto;
3714 	u_int src_off, dst_off;
3715 {
3716 	struct block *b0, *b1;
3717 	u_int offset;
3718 	u_int32_t *a, *m;
3719 
3720 	switch (dir) {
3721 
3722 	case Q_SRC:
3723 		offset = src_off;
3724 		break;
3725 
3726 	case Q_DST:
3727 		offset = dst_off;
3728 		break;
3729 
3730 	case Q_AND:
3731 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3732 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3733 		gen_and(b0, b1);
3734 		return b1;
3735 
3736 	case Q_OR:
3737 	case Q_DEFAULT:
3738 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3739 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3740 		gen_or(b0, b1);
3741 		return b1;
3742 
3743 	default:
3744 		abort();
3745 	}
3746 	/* this order is important */
3747 	a = (u_int32_t *)addr;
3748 	m = (u_int32_t *)mask;
3749 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3750 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3751 	gen_and(b0, b1);
3752 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3753 	gen_and(b0, b1);
3754 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3755 	gen_and(b0, b1);
3756 	b0 = gen_linktype(proto);
3757 	gen_and(b0, b1);
3758 	return b1;
3759 }
3760 #endif /*INET6*/
3761 
3762 static struct block *
3763 gen_ehostop(eaddr, dir)
3764 	register const u_char *eaddr;
3765 	register int dir;
3766 {
3767 	register struct block *b0, *b1;
3768 
3769 	switch (dir) {
3770 	case Q_SRC:
3771 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3772 
3773 	case Q_DST:
3774 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3775 
3776 	case Q_AND:
3777 		b0 = gen_ehostop(eaddr, Q_SRC);
3778 		b1 = gen_ehostop(eaddr, Q_DST);
3779 		gen_and(b0, b1);
3780 		return b1;
3781 
3782 	case Q_DEFAULT:
3783 	case Q_OR:
3784 		b0 = gen_ehostop(eaddr, Q_SRC);
3785 		b1 = gen_ehostop(eaddr, Q_DST);
3786 		gen_or(b0, b1);
3787 		return b1;
3788 	}
3789 	abort();
3790 	/* NOTREACHED */
3791 }
3792 
3793 /*
3794  * Like gen_ehostop, but for DLT_FDDI
3795  */
3796 static struct block *
3797 gen_fhostop(eaddr, dir)
3798 	register const u_char *eaddr;
3799 	register int dir;
3800 {
3801 	struct block *b0, *b1;
3802 
3803 	switch (dir) {
3804 	case Q_SRC:
3805 #ifdef PCAP_FDDIPAD
3806 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3807 #else
3808 		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3809 #endif
3810 
3811 	case Q_DST:
3812 #ifdef PCAP_FDDIPAD
3813 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3814 #else
3815 		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3816 #endif
3817 
3818 	case Q_AND:
3819 		b0 = gen_fhostop(eaddr, Q_SRC);
3820 		b1 = gen_fhostop(eaddr, Q_DST);
3821 		gen_and(b0, b1);
3822 		return b1;
3823 
3824 	case Q_DEFAULT:
3825 	case Q_OR:
3826 		b0 = gen_fhostop(eaddr, Q_SRC);
3827 		b1 = gen_fhostop(eaddr, Q_DST);
3828 		gen_or(b0, b1);
3829 		return b1;
3830 	}
3831 	abort();
3832 	/* NOTREACHED */
3833 }
3834 
3835 /*
3836  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3837  */
3838 static struct block *
3839 gen_thostop(eaddr, dir)
3840 	register const u_char *eaddr;
3841 	register int dir;
3842 {
3843 	register struct block *b0, *b1;
3844 
3845 	switch (dir) {
3846 	case Q_SRC:
3847 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3848 
3849 	case Q_DST:
3850 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3851 
3852 	case Q_AND:
3853 		b0 = gen_thostop(eaddr, Q_SRC);
3854 		b1 = gen_thostop(eaddr, Q_DST);
3855 		gen_and(b0, b1);
3856 		return b1;
3857 
3858 	case Q_DEFAULT:
3859 	case Q_OR:
3860 		b0 = gen_thostop(eaddr, Q_SRC);
3861 		b1 = gen_thostop(eaddr, Q_DST);
3862 		gen_or(b0, b1);
3863 		return b1;
3864 	}
3865 	abort();
3866 	/* NOTREACHED */
3867 }
3868 
3869 /*
3870  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3871  * various 802.11 + radio headers.
3872  */
3873 static struct block *
3874 gen_wlanhostop(eaddr, dir)
3875 	register const u_char *eaddr;
3876 	register int dir;
3877 {
3878 	register struct block *b0, *b1, *b2;
3879 	register struct slist *s;
3880 
3881 #ifdef ENABLE_WLAN_FILTERING_PATCH
3882 	/*
3883 	 * TODO GV 20070613
3884 	 * We need to disable the optimizer because the optimizer is buggy
3885 	 * and wipes out some LD instructions generated by the below
3886 	 * code to validate the Frame Control bits
3887 	 */
3888 	no_optimize = 1;
3889 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3890 
3891 	switch (dir) {
3892 	case Q_SRC:
3893 		/*
3894 		 * Oh, yuk.
3895 		 *
3896 		 *	For control frames, there is no SA.
3897 		 *
3898 		 *	For management frames, SA is at an
3899 		 *	offset of 10 from the beginning of
3900 		 *	the packet.
3901 		 *
3902 		 *	For data frames, SA is at an offset
3903 		 *	of 10 from the beginning of the packet
3904 		 *	if From DS is clear, at an offset of
3905 		 *	16 from the beginning of the packet
3906 		 *	if From DS is set and To DS is clear,
3907 		 *	and an offset of 24 from the beginning
3908 		 *	of the packet if From DS is set and To DS
3909 		 *	is set.
3910 		 */
3911 
3912 		/*
3913 		 * Generate the tests to be done for data frames
3914 		 * with From DS set.
3915 		 *
3916 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3917 		 */
3918 		s = gen_load_a(OR_LINK, 1, BPF_B);
3919 		b1 = new_block(JMP(BPF_JSET));
3920 		b1->s.k = 0x01;	/* To DS */
3921 		b1->stmts = s;
3922 
3923 		/*
3924 		 * If To DS is set, the SA is at 24.
3925 		 */
3926 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3927 		gen_and(b1, b0);
3928 
3929 		/*
3930 		 * Now, check for To DS not set, i.e. check
3931 		 * "!(link[1] & 0x01)".
3932 		 */
3933 		s = gen_load_a(OR_LINK, 1, BPF_B);
3934 		b2 = new_block(JMP(BPF_JSET));
3935 		b2->s.k = 0x01;	/* To DS */
3936 		b2->stmts = s;
3937 		gen_not(b2);
3938 
3939 		/*
3940 		 * If To DS is not set, the SA is at 16.
3941 		 */
3942 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3943 		gen_and(b2, b1);
3944 
3945 		/*
3946 		 * Now OR together the last two checks.  That gives
3947 		 * the complete set of checks for data frames with
3948 		 * From DS set.
3949 		 */
3950 		gen_or(b1, b0);
3951 
3952 		/*
3953 		 * Now check for From DS being set, and AND that with
3954 		 * the ORed-together checks.
3955 		 */
3956 		s = gen_load_a(OR_LINK, 1, BPF_B);
3957 		b1 = new_block(JMP(BPF_JSET));
3958 		b1->s.k = 0x02;	/* From DS */
3959 		b1->stmts = s;
3960 		gen_and(b1, b0);
3961 
3962 		/*
3963 		 * Now check for data frames with From DS not set.
3964 		 */
3965 		s = gen_load_a(OR_LINK, 1, BPF_B);
3966 		b2 = new_block(JMP(BPF_JSET));
3967 		b2->s.k = 0x02;	/* From DS */
3968 		b2->stmts = s;
3969 		gen_not(b2);
3970 
3971 		/*
3972 		 * If From DS isn't set, the SA is at 10.
3973 		 */
3974 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3975 		gen_and(b2, b1);
3976 
3977 		/*
3978 		 * Now OR together the checks for data frames with
3979 		 * From DS not set and for data frames with From DS
3980 		 * set; that gives the checks done for data frames.
3981 		 */
3982 		gen_or(b1, b0);
3983 
3984 		/*
3985 		 * Now check for a data frame.
3986 		 * I.e, check "link[0] & 0x08".
3987 		 */
3988 		s = gen_load_a(OR_LINK, 0, BPF_B);
3989 		b1 = new_block(JMP(BPF_JSET));
3990 		b1->s.k = 0x08;
3991 		b1->stmts = s;
3992 
3993 		/*
3994 		 * AND that with the checks done for data frames.
3995 		 */
3996 		gen_and(b1, b0);
3997 
3998 		/*
3999 		 * If the high-order bit of the type value is 0, this
4000 		 * is a management frame.
4001 		 * I.e, check "!(link[0] & 0x08)".
4002 		 */
4003 		s = gen_load_a(OR_LINK, 0, BPF_B);
4004 		b2 = new_block(JMP(BPF_JSET));
4005 		b2->s.k = 0x08;
4006 		b2->stmts = s;
4007 		gen_not(b2);
4008 
4009 		/*
4010 		 * For management frames, the SA is at 10.
4011 		 */
4012 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4013 		gen_and(b2, b1);
4014 
4015 		/*
4016 		 * OR that with the checks done for data frames.
4017 		 * That gives the checks done for management and
4018 		 * data frames.
4019 		 */
4020 		gen_or(b1, b0);
4021 
4022 		/*
4023 		 * If the low-order bit of the type value is 1,
4024 		 * this is either a control frame or a frame
4025 		 * with a reserved type, and thus not a
4026 		 * frame with an SA.
4027 		 *
4028 		 * I.e., check "!(link[0] & 0x04)".
4029 		 */
4030 		s = gen_load_a(OR_LINK, 0, BPF_B);
4031 		b1 = new_block(JMP(BPF_JSET));
4032 		b1->s.k = 0x04;
4033 		b1->stmts = s;
4034 		gen_not(b1);
4035 
4036 		/*
4037 		 * AND that with the checks for data and management
4038 		 * frames.
4039 		 */
4040 		gen_and(b1, b0);
4041 		return b0;
4042 
4043 	case Q_DST:
4044 		/*
4045 		 * Oh, yuk.
4046 		 *
4047 		 *	For control frames, there is no DA.
4048 		 *
4049 		 *	For management frames, DA is at an
4050 		 *	offset of 4 from the beginning of
4051 		 *	the packet.
4052 		 *
4053 		 *	For data frames, DA is at an offset
4054 		 *	of 4 from the beginning of the packet
4055 		 *	if To DS is clear and at an offset of
4056 		 *	16 from the beginning of the packet
4057 		 *	if To DS is set.
4058 		 */
4059 
4060 		/*
4061 		 * Generate the tests to be done for data frames.
4062 		 *
4063 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4064 		 */
4065 		s = gen_load_a(OR_LINK, 1, BPF_B);
4066 		b1 = new_block(JMP(BPF_JSET));
4067 		b1->s.k = 0x01;	/* To DS */
4068 		b1->stmts = s;
4069 
4070 		/*
4071 		 * If To DS is set, the DA is at 16.
4072 		 */
4073 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4074 		gen_and(b1, b0);
4075 
4076 		/*
4077 		 * Now, check for To DS not set, i.e. check
4078 		 * "!(link[1] & 0x01)".
4079 		 */
4080 		s = gen_load_a(OR_LINK, 1, BPF_B);
4081 		b2 = new_block(JMP(BPF_JSET));
4082 		b2->s.k = 0x01;	/* To DS */
4083 		b2->stmts = s;
4084 		gen_not(b2);
4085 
4086 		/*
4087 		 * If To DS is not set, the DA is at 4.
4088 		 */
4089 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4090 		gen_and(b2, b1);
4091 
4092 		/*
4093 		 * Now OR together the last two checks.  That gives
4094 		 * the complete set of checks for data frames.
4095 		 */
4096 		gen_or(b1, b0);
4097 
4098 		/*
4099 		 * Now check for a data frame.
4100 		 * I.e, check "link[0] & 0x08".
4101 		 */
4102 		s = gen_load_a(OR_LINK, 0, BPF_B);
4103 		b1 = new_block(JMP(BPF_JSET));
4104 		b1->s.k = 0x08;
4105 		b1->stmts = s;
4106 
4107 		/*
4108 		 * AND that with the checks done for data frames.
4109 		 */
4110 		gen_and(b1, b0);
4111 
4112 		/*
4113 		 * If the high-order bit of the type value is 0, this
4114 		 * is a management frame.
4115 		 * I.e, check "!(link[0] & 0x08)".
4116 		 */
4117 		s = gen_load_a(OR_LINK, 0, BPF_B);
4118 		b2 = new_block(JMP(BPF_JSET));
4119 		b2->s.k = 0x08;
4120 		b2->stmts = s;
4121 		gen_not(b2);
4122 
4123 		/*
4124 		 * For management frames, the DA is at 4.
4125 		 */
4126 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4127 		gen_and(b2, b1);
4128 
4129 		/*
4130 		 * OR that with the checks done for data frames.
4131 		 * That gives the checks done for management and
4132 		 * data frames.
4133 		 */
4134 		gen_or(b1, b0);
4135 
4136 		/*
4137 		 * If the low-order bit of the type value is 1,
4138 		 * this is either a control frame or a frame
4139 		 * with a reserved type, and thus not a
4140 		 * frame with an SA.
4141 		 *
4142 		 * I.e., check "!(link[0] & 0x04)".
4143 		 */
4144 		s = gen_load_a(OR_LINK, 0, BPF_B);
4145 		b1 = new_block(JMP(BPF_JSET));
4146 		b1->s.k = 0x04;
4147 		b1->stmts = s;
4148 		gen_not(b1);
4149 
4150 		/*
4151 		 * AND that with the checks for data and management
4152 		 * frames.
4153 		 */
4154 		gen_and(b1, b0);
4155 		return b0;
4156 
4157 	/*
4158 	 * XXX - add RA, TA, and BSSID keywords?
4159 	 */
4160 	case Q_ADDR1:
4161 		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4162 
4163 	case Q_ADDR2:
4164 		/*
4165 		 * Not present in CTS or ACK control frames.
4166 		 */
4167 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4168 			IEEE80211_FC0_TYPE_MASK);
4169 		gen_not(b0);
4170 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4171 			IEEE80211_FC0_SUBTYPE_MASK);
4172 		gen_not(b1);
4173 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4174 			IEEE80211_FC0_SUBTYPE_MASK);
4175 		gen_not(b2);
4176 		gen_and(b1, b2);
4177 		gen_or(b0, b2);
4178 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4179 		gen_and(b2, b1);
4180 		return b1;
4181 
4182 	case Q_ADDR3:
4183 		/*
4184 		 * Not present in control frames.
4185 		 */
4186 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4187 			IEEE80211_FC0_TYPE_MASK);
4188 		gen_not(b0);
4189 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4190 		gen_and(b0, b1);
4191 		return b1;
4192 
4193 	case Q_ADDR4:
4194 		/*
4195 		 * Present only if the direction mask has both "From DS"
4196 		 * and "To DS" set.  Neither control frames nor management
4197 		 * frames should have both of those set, so we don't
4198 		 * check the frame type.
4199 		 */
4200 		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4201 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4202 		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4203 		gen_and(b0, b1);
4204 		return b1;
4205 
4206 	case Q_AND:
4207 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4208 		b1 = gen_wlanhostop(eaddr, Q_DST);
4209 		gen_and(b0, b1);
4210 		return b1;
4211 
4212 	case Q_DEFAULT:
4213 	case Q_OR:
4214 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4215 		b1 = gen_wlanhostop(eaddr, Q_DST);
4216 		gen_or(b0, b1);
4217 		return b1;
4218 	}
4219 	abort();
4220 	/* NOTREACHED */
4221 }
4222 
4223 /*
4224  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4225  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4226  * as the RFC states.)
4227  */
4228 static struct block *
4229 gen_ipfchostop(eaddr, dir)
4230 	register const u_char *eaddr;
4231 	register int dir;
4232 {
4233 	register struct block *b0, *b1;
4234 
4235 	switch (dir) {
4236 	case Q_SRC:
4237 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4238 
4239 	case Q_DST:
4240 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4241 
4242 	case Q_AND:
4243 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4244 		b1 = gen_ipfchostop(eaddr, Q_DST);
4245 		gen_and(b0, b1);
4246 		return b1;
4247 
4248 	case Q_DEFAULT:
4249 	case Q_OR:
4250 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4251 		b1 = gen_ipfchostop(eaddr, Q_DST);
4252 		gen_or(b0, b1);
4253 		return b1;
4254 	}
4255 	abort();
4256 	/* NOTREACHED */
4257 }
4258 
4259 /*
4260  * This is quite tricky because there may be pad bytes in front of the
4261  * DECNET header, and then there are two possible data packet formats that
4262  * carry both src and dst addresses, plus 5 packet types in a format that
4263  * carries only the src node, plus 2 types that use a different format and
4264  * also carry just the src node.
4265  *
4266  * Yuck.
4267  *
4268  * Instead of doing those all right, we just look for data packets with
4269  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4270  * will require a lot more hacking.
4271  *
4272  * To add support for filtering on DECNET "areas" (network numbers)
4273  * one would want to add a "mask" argument to this routine.  That would
4274  * make the filter even more inefficient, although one could be clever
4275  * and not generate masking instructions if the mask is 0xFFFF.
4276  */
4277 static struct block *
4278 gen_dnhostop(addr, dir)
4279 	bpf_u_int32 addr;
4280 	int dir;
4281 {
4282 	struct block *b0, *b1, *b2, *tmp;
4283 	u_int offset_lh;	/* offset if long header is received */
4284 	u_int offset_sh;	/* offset if short header is received */
4285 
4286 	switch (dir) {
4287 
4288 	case Q_DST:
4289 		offset_sh = 1;	/* follows flags */
4290 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4291 		break;
4292 
4293 	case Q_SRC:
4294 		offset_sh = 3;	/* follows flags, dstnode */
4295 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4296 		break;
4297 
4298 	case Q_AND:
4299 		/* Inefficient because we do our Calvinball dance twice */
4300 		b0 = gen_dnhostop(addr, Q_SRC);
4301 		b1 = gen_dnhostop(addr, Q_DST);
4302 		gen_and(b0, b1);
4303 		return b1;
4304 
4305 	case Q_OR:
4306 	case Q_DEFAULT:
4307 		/* Inefficient because we do our Calvinball dance twice */
4308 		b0 = gen_dnhostop(addr, Q_SRC);
4309 		b1 = gen_dnhostop(addr, Q_DST);
4310 		gen_or(b0, b1);
4311 		return b1;
4312 
4313 	case Q_ISO:
4314 		bpf_error("ISO host filtering not implemented");
4315 
4316 	default:
4317 		abort();
4318 	}
4319 	b0 = gen_linktype(ETHERTYPE_DN);
4320 	/* Check for pad = 1, long header case */
4321 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4322 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4323 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4324 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4325 	gen_and(tmp, b1);
4326 	/* Check for pad = 0, long header case */
4327 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4328 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4329 	gen_and(tmp, b2);
4330 	gen_or(b2, b1);
4331 	/* Check for pad = 1, short header case */
4332 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4333 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4334 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4335 	gen_and(tmp, b2);
4336 	gen_or(b2, b1);
4337 	/* Check for pad = 0, short header case */
4338 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4339 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4340 	gen_and(tmp, b2);
4341 	gen_or(b2, b1);
4342 
4343 	/* Combine with test for linktype */
4344 	gen_and(b0, b1);
4345 	return b1;
4346 }
4347 
4348 /*
4349  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4350  * test the bottom-of-stack bit, and then check the version number
4351  * field in the IP header.
4352  */
4353 static struct block *
4354 gen_mpls_linktype(proto)
4355 	int proto;
4356 {
4357 	struct block *b0, *b1;
4358 
4359         switch (proto) {
4360 
4361         case Q_IP:
4362                 /* match the bottom-of-stack bit */
4363                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4364                 /* match the IPv4 version number */
4365                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4366                 gen_and(b0, b1);
4367                 return b1;
4368 
4369        case Q_IPV6:
4370                 /* match the bottom-of-stack bit */
4371                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4372                 /* match the IPv4 version number */
4373                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4374                 gen_and(b0, b1);
4375                 return b1;
4376 
4377        default:
4378                 abort();
4379         }
4380 }
4381 
4382 static struct block *
4383 gen_host(addr, mask, proto, dir, type)
4384 	bpf_u_int32 addr;
4385 	bpf_u_int32 mask;
4386 	int proto;
4387 	int dir;
4388 	int type;
4389 {
4390 	struct block *b0, *b1;
4391 	const char *typestr;
4392 
4393 	if (type == Q_NET)
4394 		typestr = "net";
4395 	else
4396 		typestr = "host";
4397 
4398 	switch (proto) {
4399 
4400 	case Q_DEFAULT:
4401 		b0 = gen_host(addr, mask, Q_IP, dir, type);
4402 		/*
4403 		 * Only check for non-IPv4 addresses if we're not
4404 		 * checking MPLS-encapsulated packets.
4405 		 */
4406 		if (label_stack_depth == 0) {
4407 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4408 			gen_or(b0, b1);
4409 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4410 			gen_or(b1, b0);
4411 		}
4412 		return b0;
4413 
4414 	case Q_IP:
4415 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4416 
4417 	case Q_RARP:
4418 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4419 
4420 	case Q_ARP:
4421 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4422 
4423 	case Q_TCP:
4424 		bpf_error("'tcp' modifier applied to %s", typestr);
4425 
4426 	case Q_SCTP:
4427 		bpf_error("'sctp' modifier applied to %s", typestr);
4428 
4429 	case Q_UDP:
4430 		bpf_error("'udp' modifier applied to %s", typestr);
4431 
4432 	case Q_ICMP:
4433 		bpf_error("'icmp' modifier applied to %s", typestr);
4434 
4435 	case Q_IGMP:
4436 		bpf_error("'igmp' modifier applied to %s", typestr);
4437 
4438 	case Q_IGRP:
4439 		bpf_error("'igrp' modifier applied to %s", typestr);
4440 
4441 	case Q_PIM:
4442 		bpf_error("'pim' modifier applied to %s", typestr);
4443 
4444 	case Q_VRRP:
4445 		bpf_error("'vrrp' modifier applied to %s", typestr);
4446 
4447 	case Q_ATALK:
4448 		bpf_error("ATALK host filtering not implemented");
4449 
4450 	case Q_AARP:
4451 		bpf_error("AARP host filtering not implemented");
4452 
4453 	case Q_DECNET:
4454 		return gen_dnhostop(addr, dir);
4455 
4456 	case Q_SCA:
4457 		bpf_error("SCA host filtering not implemented");
4458 
4459 	case Q_LAT:
4460 		bpf_error("LAT host filtering not implemented");
4461 
4462 	case Q_MOPDL:
4463 		bpf_error("MOPDL host filtering not implemented");
4464 
4465 	case Q_MOPRC:
4466 		bpf_error("MOPRC host filtering not implemented");
4467 
4468 #ifdef INET6
4469 	case Q_IPV6:
4470 		bpf_error("'ip6' modifier applied to ip host");
4471 
4472 	case Q_ICMPV6:
4473 		bpf_error("'icmp6' modifier applied to %s", typestr);
4474 #endif /* INET6 */
4475 
4476 	case Q_AH:
4477 		bpf_error("'ah' modifier applied to %s", typestr);
4478 
4479 	case Q_ESP:
4480 		bpf_error("'esp' modifier applied to %s", typestr);
4481 
4482 	case Q_ISO:
4483 		bpf_error("ISO host filtering not implemented");
4484 
4485 	case Q_ESIS:
4486 		bpf_error("'esis' modifier applied to %s", typestr);
4487 
4488 	case Q_ISIS:
4489 		bpf_error("'isis' modifier applied to %s", typestr);
4490 
4491 	case Q_CLNP:
4492 		bpf_error("'clnp' modifier applied to %s", typestr);
4493 
4494 	case Q_STP:
4495 		bpf_error("'stp' modifier applied to %s", typestr);
4496 
4497 	case Q_IPX:
4498 		bpf_error("IPX host filtering not implemented");
4499 
4500 	case Q_NETBEUI:
4501 		bpf_error("'netbeui' modifier applied to %s", typestr);
4502 
4503 	case Q_RADIO:
4504 		bpf_error("'radio' modifier applied to %s", typestr);
4505 
4506 	default:
4507 		abort();
4508 	}
4509 	/* NOTREACHED */
4510 }
4511 
4512 #ifdef INET6
4513 static struct block *
4514 gen_host6(addr, mask, proto, dir, type)
4515 	struct in6_addr *addr;
4516 	struct in6_addr *mask;
4517 	int proto;
4518 	int dir;
4519 	int type;
4520 {
4521 	const char *typestr;
4522 
4523 	if (type == Q_NET)
4524 		typestr = "net";
4525 	else
4526 		typestr = "host";
4527 
4528 	switch (proto) {
4529 
4530 	case Q_DEFAULT:
4531 		return gen_host6(addr, mask, Q_IPV6, dir, type);
4532 
4533 	case Q_IP:
4534 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4535 
4536 	case Q_RARP:
4537 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4538 
4539 	case Q_ARP:
4540 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4541 
4542 	case Q_SCTP:
4543 		bpf_error("'sctp' modifier applied to %s", typestr);
4544 
4545 	case Q_TCP:
4546 		bpf_error("'tcp' modifier applied to %s", typestr);
4547 
4548 	case Q_UDP:
4549 		bpf_error("'udp' modifier applied to %s", typestr);
4550 
4551 	case Q_ICMP:
4552 		bpf_error("'icmp' modifier applied to %s", typestr);
4553 
4554 	case Q_IGMP:
4555 		bpf_error("'igmp' modifier applied to %s", typestr);
4556 
4557 	case Q_IGRP:
4558 		bpf_error("'igrp' modifier applied to %s", typestr);
4559 
4560 	case Q_PIM:
4561 		bpf_error("'pim' modifier applied to %s", typestr);
4562 
4563 	case Q_VRRP:
4564 		bpf_error("'vrrp' modifier applied to %s", typestr);
4565 
4566 	case Q_ATALK:
4567 		bpf_error("ATALK host filtering not implemented");
4568 
4569 	case Q_AARP:
4570 		bpf_error("AARP host filtering not implemented");
4571 
4572 	case Q_DECNET:
4573 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4574 
4575 	case Q_SCA:
4576 		bpf_error("SCA host filtering not implemented");
4577 
4578 	case Q_LAT:
4579 		bpf_error("LAT host filtering not implemented");
4580 
4581 	case Q_MOPDL:
4582 		bpf_error("MOPDL host filtering not implemented");
4583 
4584 	case Q_MOPRC:
4585 		bpf_error("MOPRC host filtering not implemented");
4586 
4587 	case Q_IPV6:
4588 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4589 
4590 	case Q_ICMPV6:
4591 		bpf_error("'icmp6' modifier applied to %s", typestr);
4592 
4593 	case Q_AH:
4594 		bpf_error("'ah' modifier applied to %s", typestr);
4595 
4596 	case Q_ESP:
4597 		bpf_error("'esp' modifier applied to %s", typestr);
4598 
4599 	case Q_ISO:
4600 		bpf_error("ISO host filtering not implemented");
4601 
4602 	case Q_ESIS:
4603 		bpf_error("'esis' modifier applied to %s", typestr);
4604 
4605 	case Q_ISIS:
4606 		bpf_error("'isis' modifier applied to %s", typestr);
4607 
4608 	case Q_CLNP:
4609 		bpf_error("'clnp' modifier applied to %s", typestr);
4610 
4611 	case Q_STP:
4612 		bpf_error("'stp' modifier applied to %s", typestr);
4613 
4614 	case Q_IPX:
4615 		bpf_error("IPX host filtering not implemented");
4616 
4617 	case Q_NETBEUI:
4618 		bpf_error("'netbeui' modifier applied to %s", typestr);
4619 
4620 	case Q_RADIO:
4621 		bpf_error("'radio' modifier applied to %s", typestr);
4622 
4623 	default:
4624 		abort();
4625 	}
4626 	/* NOTREACHED */
4627 }
4628 #endif /*INET6*/
4629 
4630 #ifndef INET6
4631 static struct block *
4632 gen_gateway(eaddr, alist, proto, dir)
4633 	const u_char *eaddr;
4634 	bpf_u_int32 **alist;
4635 	int proto;
4636 	int dir;
4637 {
4638 	struct block *b0, *b1, *tmp;
4639 
4640 	if (dir != 0)
4641 		bpf_error("direction applied to 'gateway'");
4642 
4643 	switch (proto) {
4644 	case Q_DEFAULT:
4645 	case Q_IP:
4646 	case Q_ARP:
4647 	case Q_RARP:
4648 		switch (linktype) {
4649 		case DLT_EN10MB:
4650 			b0 = gen_ehostop(eaddr, Q_OR);
4651 			break;
4652 		case DLT_FDDI:
4653 			b0 = gen_fhostop(eaddr, Q_OR);
4654 			break;
4655 		case DLT_IEEE802:
4656 			b0 = gen_thostop(eaddr, Q_OR);
4657 			break;
4658 		case DLT_IEEE802_11:
4659 		case DLT_PRISM_HEADER:
4660 		case DLT_IEEE802_11_RADIO_AVS:
4661 		case DLT_IEEE802_11_RADIO:
4662 		case DLT_PPI:
4663 			b0 = gen_wlanhostop(eaddr, Q_OR);
4664 			break;
4665 		case DLT_SUNATM:
4666 			if (!is_lane)
4667 				bpf_error(
4668 				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4669 			/*
4670 			 * Check that the packet doesn't begin with an
4671 			 * LE Control marker.  (We've already generated
4672 			 * a test for LANE.)
4673 			 */
4674 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4675 			    BPF_H, 0xFF00);
4676 			gen_not(b1);
4677 
4678 			/*
4679 			 * Now check the MAC address.
4680 			 */
4681 			b0 = gen_ehostop(eaddr, Q_OR);
4682 			gen_and(b1, b0);
4683 			break;
4684 		case DLT_IP_OVER_FC:
4685 			b0 = gen_ipfchostop(eaddr, Q_OR);
4686 			break;
4687 		default:
4688 			bpf_error(
4689 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4690 		}
4691 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4692 		while (*alist) {
4693 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4694 			    Q_HOST);
4695 			gen_or(b1, tmp);
4696 			b1 = tmp;
4697 		}
4698 		gen_not(b1);
4699 		gen_and(b0, b1);
4700 		return b1;
4701 	}
4702 	bpf_error("illegal modifier of 'gateway'");
4703 	/* NOTREACHED */
4704 }
4705 #endif
4706 
4707 struct block *
4708 gen_proto_abbrev(proto)
4709 	int proto;
4710 {
4711 	struct block *b0;
4712 	struct block *b1;
4713 
4714 	switch (proto) {
4715 
4716 	case Q_SCTP:
4717 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4718 #ifdef INET6
4719 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4720 		gen_or(b0, b1);
4721 #endif
4722 		break;
4723 
4724 	case Q_TCP:
4725 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4726 #ifdef INET6
4727 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4728 		gen_or(b0, b1);
4729 #endif
4730 		break;
4731 
4732 	case Q_UDP:
4733 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4734 #ifdef INET6
4735 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4736 		gen_or(b0, b1);
4737 #endif
4738 		break;
4739 
4740 	case Q_ICMP:
4741 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4742 		break;
4743 
4744 #ifndef	IPPROTO_IGMP
4745 #define	IPPROTO_IGMP	2
4746 #endif
4747 
4748 	case Q_IGMP:
4749 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4750 		break;
4751 
4752 #ifndef	IPPROTO_IGRP
4753 #define	IPPROTO_IGRP	9
4754 #endif
4755 	case Q_IGRP:
4756 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4757 		break;
4758 
4759 #ifndef IPPROTO_PIM
4760 #define IPPROTO_PIM	103
4761 #endif
4762 
4763 	case Q_PIM:
4764 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4765 #ifdef INET6
4766 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4767 		gen_or(b0, b1);
4768 #endif
4769 		break;
4770 
4771 #ifndef IPPROTO_VRRP
4772 #define IPPROTO_VRRP	112
4773 #endif
4774 
4775 	case Q_VRRP:
4776 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4777 		break;
4778 
4779 	case Q_IP:
4780 		b1 =  gen_linktype(ETHERTYPE_IP);
4781 		break;
4782 
4783 	case Q_ARP:
4784 		b1 =  gen_linktype(ETHERTYPE_ARP);
4785 		break;
4786 
4787 	case Q_RARP:
4788 		b1 =  gen_linktype(ETHERTYPE_REVARP);
4789 		break;
4790 
4791 	case Q_LINK:
4792 		bpf_error("link layer applied in wrong context");
4793 
4794 	case Q_ATALK:
4795 		b1 =  gen_linktype(ETHERTYPE_ATALK);
4796 		break;
4797 
4798 	case Q_AARP:
4799 		b1 =  gen_linktype(ETHERTYPE_AARP);
4800 		break;
4801 
4802 	case Q_DECNET:
4803 		b1 =  gen_linktype(ETHERTYPE_DN);
4804 		break;
4805 
4806 	case Q_SCA:
4807 		b1 =  gen_linktype(ETHERTYPE_SCA);
4808 		break;
4809 
4810 	case Q_LAT:
4811 		b1 =  gen_linktype(ETHERTYPE_LAT);
4812 		break;
4813 
4814 	case Q_MOPDL:
4815 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4816 		break;
4817 
4818 	case Q_MOPRC:
4819 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4820 		break;
4821 
4822 #ifdef INET6
4823 	case Q_IPV6:
4824 		b1 = gen_linktype(ETHERTYPE_IPV6);
4825 		break;
4826 
4827 #ifndef IPPROTO_ICMPV6
4828 #define IPPROTO_ICMPV6	58
4829 #endif
4830 	case Q_ICMPV6:
4831 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4832 		break;
4833 #endif /* INET6 */
4834 
4835 #ifndef IPPROTO_AH
4836 #define IPPROTO_AH	51
4837 #endif
4838 	case Q_AH:
4839 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4840 #ifdef INET6
4841 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4842 		gen_or(b0, b1);
4843 #endif
4844 		break;
4845 
4846 #ifndef IPPROTO_ESP
4847 #define IPPROTO_ESP	50
4848 #endif
4849 	case Q_ESP:
4850 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4851 #ifdef INET6
4852 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4853 		gen_or(b0, b1);
4854 #endif
4855 		break;
4856 
4857 	case Q_ISO:
4858 		b1 = gen_linktype(LLCSAP_ISONS);
4859 		break;
4860 
4861 	case Q_ESIS:
4862 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4863 		break;
4864 
4865 	case Q_ISIS:
4866 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4867 		break;
4868 
4869 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4870 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4871 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4872 		gen_or(b0, b1);
4873 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4874 		gen_or(b0, b1);
4875 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4876 		gen_or(b0, b1);
4877 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4878 		gen_or(b0, b1);
4879 		break;
4880 
4881 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4882 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4883 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4884 		gen_or(b0, b1);
4885 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4886 		gen_or(b0, b1);
4887 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4888 		gen_or(b0, b1);
4889 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4890 		gen_or(b0, b1);
4891 		break;
4892 
4893 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4894 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4895 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4896 		gen_or(b0, b1);
4897 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4898 		gen_or(b0, b1);
4899 		break;
4900 
4901 	case Q_ISIS_LSP:
4902 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4903 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4904 		gen_or(b0, b1);
4905 		break;
4906 
4907 	case Q_ISIS_SNP:
4908 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4909 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4910 		gen_or(b0, b1);
4911 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4912 		gen_or(b0, b1);
4913 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4914 		gen_or(b0, b1);
4915 		break;
4916 
4917 	case Q_ISIS_CSNP:
4918 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4919 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4920 		gen_or(b0, b1);
4921 		break;
4922 
4923 	case Q_ISIS_PSNP:
4924 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4925 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4926 		gen_or(b0, b1);
4927 		break;
4928 
4929 	case Q_CLNP:
4930 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4931 		break;
4932 
4933 	case Q_STP:
4934 		b1 = gen_linktype(LLCSAP_8021D);
4935 		break;
4936 
4937 	case Q_IPX:
4938 		b1 = gen_linktype(LLCSAP_IPX);
4939 		break;
4940 
4941 	case Q_NETBEUI:
4942 		b1 = gen_linktype(LLCSAP_NETBEUI);
4943 		break;
4944 
4945 	case Q_RADIO:
4946 		bpf_error("'radio' is not a valid protocol type");
4947 
4948 	default:
4949 		abort();
4950 	}
4951 	return b1;
4952 }
4953 
4954 static struct block *
4955 gen_ipfrag()
4956 {
4957 	struct slist *s;
4958 	struct block *b;
4959 
4960 	/* not ip frag */
4961 	s = gen_load_a(OR_NET, 6, BPF_H);
4962 	b = new_block(JMP(BPF_JSET));
4963 	b->s.k = 0x1fff;
4964 	b->stmts = s;
4965 	gen_not(b);
4966 
4967 	return b;
4968 }
4969 
4970 /*
4971  * Generate a comparison to a port value in the transport-layer header
4972  * at the specified offset from the beginning of that header.
4973  *
4974  * XXX - this handles a variable-length prefix preceding the link-layer
4975  * header, such as the radiotap or AVS radio prefix, but doesn't handle
4976  * variable-length link-layer headers (such as Token Ring or 802.11
4977  * headers).
4978  */
4979 static struct block *
4980 gen_portatom(off, v)
4981 	int off;
4982 	bpf_int32 v;
4983 {
4984 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
4985 }
4986 
4987 #ifdef INET6
4988 static struct block *
4989 gen_portatom6(off, v)
4990 	int off;
4991 	bpf_int32 v;
4992 {
4993 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
4994 }
4995 #endif/*INET6*/
4996 
4997 struct block *
4998 gen_portop(port, proto, dir)
4999 	int port, proto, dir;
5000 {
5001 	struct block *b0, *b1, *tmp;
5002 
5003 	/* ip proto 'proto' */
5004 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5005 	b0 = gen_ipfrag();
5006 	gen_and(tmp, b0);
5007 
5008 	switch (dir) {
5009 	case Q_SRC:
5010 		b1 = gen_portatom(0, (bpf_int32)port);
5011 		break;
5012 
5013 	case Q_DST:
5014 		b1 = gen_portatom(2, (bpf_int32)port);
5015 		break;
5016 
5017 	case Q_OR:
5018 	case Q_DEFAULT:
5019 		tmp = gen_portatom(0, (bpf_int32)port);
5020 		b1 = gen_portatom(2, (bpf_int32)port);
5021 		gen_or(tmp, b1);
5022 		break;
5023 
5024 	case Q_AND:
5025 		tmp = gen_portatom(0, (bpf_int32)port);
5026 		b1 = gen_portatom(2, (bpf_int32)port);
5027 		gen_and(tmp, b1);
5028 		break;
5029 
5030 	default:
5031 		abort();
5032 	}
5033 	gen_and(b0, b1);
5034 
5035 	return b1;
5036 }
5037 
5038 static struct block *
5039 gen_port(port, ip_proto, dir)
5040 	int port;
5041 	int ip_proto;
5042 	int dir;
5043 {
5044 	struct block *b0, *b1, *tmp;
5045 
5046 	/*
5047 	 * ether proto ip
5048 	 *
5049 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5050 	 * not LLC encapsulation with LLCSAP_IP.
5051 	 *
5052 	 * For IEEE 802 networks - which includes 802.5 token ring
5053 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5054 	 * says that SNAP encapsulation is used, not LLC encapsulation
5055 	 * with LLCSAP_IP.
5056 	 *
5057 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5058 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5059 	 * encapsulation with LLCSAP_IP.
5060 	 *
5061 	 * So we always check for ETHERTYPE_IP.
5062 	 */
5063 	b0 =  gen_linktype(ETHERTYPE_IP);
5064 
5065 	switch (ip_proto) {
5066 	case IPPROTO_UDP:
5067 	case IPPROTO_TCP:
5068 	case IPPROTO_SCTP:
5069 		b1 = gen_portop(port, ip_proto, dir);
5070 		break;
5071 
5072 	case PROTO_UNDEF:
5073 		tmp = gen_portop(port, IPPROTO_TCP, dir);
5074 		b1 = gen_portop(port, IPPROTO_UDP, dir);
5075 		gen_or(tmp, b1);
5076 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5077 		gen_or(tmp, b1);
5078 		break;
5079 
5080 	default:
5081 		abort();
5082 	}
5083 	gen_and(b0, b1);
5084 	return b1;
5085 }
5086 
5087 #ifdef INET6
5088 struct block *
5089 gen_portop6(port, proto, dir)
5090 	int port, proto, dir;
5091 {
5092 	struct block *b0, *b1, *tmp;
5093 
5094 	/* ip6 proto 'proto' */
5095 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5096 
5097 	switch (dir) {
5098 	case Q_SRC:
5099 		b1 = gen_portatom6(0, (bpf_int32)port);
5100 		break;
5101 
5102 	case Q_DST:
5103 		b1 = gen_portatom6(2, (bpf_int32)port);
5104 		break;
5105 
5106 	case Q_OR:
5107 	case Q_DEFAULT:
5108 		tmp = gen_portatom6(0, (bpf_int32)port);
5109 		b1 = gen_portatom6(2, (bpf_int32)port);
5110 		gen_or(tmp, b1);
5111 		break;
5112 
5113 	case Q_AND:
5114 		tmp = gen_portatom6(0, (bpf_int32)port);
5115 		b1 = gen_portatom6(2, (bpf_int32)port);
5116 		gen_and(tmp, b1);
5117 		break;
5118 
5119 	default:
5120 		abort();
5121 	}
5122 	gen_and(b0, b1);
5123 
5124 	return b1;
5125 }
5126 
5127 static struct block *
5128 gen_port6(port, ip_proto, dir)
5129 	int port;
5130 	int ip_proto;
5131 	int dir;
5132 {
5133 	struct block *b0, *b1, *tmp;
5134 
5135 	/* link proto ip6 */
5136 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5137 
5138 	switch (ip_proto) {
5139 	case IPPROTO_UDP:
5140 	case IPPROTO_TCP:
5141 	case IPPROTO_SCTP:
5142 		b1 = gen_portop6(port, ip_proto, dir);
5143 		break;
5144 
5145 	case PROTO_UNDEF:
5146 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5147 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5148 		gen_or(tmp, b1);
5149 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5150 		gen_or(tmp, b1);
5151 		break;
5152 
5153 	default:
5154 		abort();
5155 	}
5156 	gen_and(b0, b1);
5157 	return b1;
5158 }
5159 #endif /* INET6 */
5160 
5161 /* gen_portrange code */
5162 static struct block *
5163 gen_portrangeatom(off, v1, v2)
5164 	int off;
5165 	bpf_int32 v1, v2;
5166 {
5167 	struct block *b1, *b2;
5168 
5169 	if (v1 > v2) {
5170 		/*
5171 		 * Reverse the order of the ports, so v1 is the lower one.
5172 		 */
5173 		bpf_int32 vtemp;
5174 
5175 		vtemp = v1;
5176 		v1 = v2;
5177 		v2 = vtemp;
5178 	}
5179 
5180 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5181 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5182 
5183 	gen_and(b1, b2);
5184 
5185 	return b2;
5186 }
5187 
5188 struct block *
5189 gen_portrangeop(port1, port2, proto, dir)
5190 	int port1, port2;
5191 	int proto;
5192 	int dir;
5193 {
5194 	struct block *b0, *b1, *tmp;
5195 
5196 	/* ip proto 'proto' */
5197 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5198 	b0 = gen_ipfrag();
5199 	gen_and(tmp, b0);
5200 
5201 	switch (dir) {
5202 	case Q_SRC:
5203 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5204 		break;
5205 
5206 	case Q_DST:
5207 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5208 		break;
5209 
5210 	case Q_OR:
5211 	case Q_DEFAULT:
5212 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5213 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5214 		gen_or(tmp, b1);
5215 		break;
5216 
5217 	case Q_AND:
5218 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5219 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5220 		gen_and(tmp, b1);
5221 		break;
5222 
5223 	default:
5224 		abort();
5225 	}
5226 	gen_and(b0, b1);
5227 
5228 	return b1;
5229 }
5230 
5231 static struct block *
5232 gen_portrange(port1, port2, ip_proto, dir)
5233 	int port1, port2;
5234 	int ip_proto;
5235 	int dir;
5236 {
5237 	struct block *b0, *b1, *tmp;
5238 
5239 	/* link proto ip */
5240 	b0 =  gen_linktype(ETHERTYPE_IP);
5241 
5242 	switch (ip_proto) {
5243 	case IPPROTO_UDP:
5244 	case IPPROTO_TCP:
5245 	case IPPROTO_SCTP:
5246 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5247 		break;
5248 
5249 	case PROTO_UNDEF:
5250 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5251 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5252 		gen_or(tmp, b1);
5253 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5254 		gen_or(tmp, b1);
5255 		break;
5256 
5257 	default:
5258 		abort();
5259 	}
5260 	gen_and(b0, b1);
5261 	return b1;
5262 }
5263 
5264 #ifdef INET6
5265 static struct block *
5266 gen_portrangeatom6(off, v1, v2)
5267 	int off;
5268 	bpf_int32 v1, v2;
5269 {
5270 	struct block *b1, *b2;
5271 
5272 	if (v1 > v2) {
5273 		/*
5274 		 * Reverse the order of the ports, so v1 is the lower one.
5275 		 */
5276 		bpf_int32 vtemp;
5277 
5278 		vtemp = v1;
5279 		v1 = v2;
5280 		v2 = vtemp;
5281 	}
5282 
5283 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5284 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5285 
5286 	gen_and(b1, b2);
5287 
5288 	return b2;
5289 }
5290 
5291 struct block *
5292 gen_portrangeop6(port1, port2, proto, dir)
5293 	int port1, port2;
5294 	int proto;
5295 	int dir;
5296 {
5297 	struct block *b0, *b1, *tmp;
5298 
5299 	/* ip6 proto 'proto' */
5300 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5301 
5302 	switch (dir) {
5303 	case Q_SRC:
5304 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5305 		break;
5306 
5307 	case Q_DST:
5308 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5309 		break;
5310 
5311 	case Q_OR:
5312 	case Q_DEFAULT:
5313 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5314 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5315 		gen_or(tmp, b1);
5316 		break;
5317 
5318 	case Q_AND:
5319 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5320 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5321 		gen_and(tmp, b1);
5322 		break;
5323 
5324 	default:
5325 		abort();
5326 	}
5327 	gen_and(b0, b1);
5328 
5329 	return b1;
5330 }
5331 
5332 static struct block *
5333 gen_portrange6(port1, port2, ip_proto, dir)
5334 	int port1, port2;
5335 	int ip_proto;
5336 	int dir;
5337 {
5338 	struct block *b0, *b1, *tmp;
5339 
5340 	/* link proto ip6 */
5341 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5342 
5343 	switch (ip_proto) {
5344 	case IPPROTO_UDP:
5345 	case IPPROTO_TCP:
5346 	case IPPROTO_SCTP:
5347 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5348 		break;
5349 
5350 	case PROTO_UNDEF:
5351 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5352 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5353 		gen_or(tmp, b1);
5354 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5355 		gen_or(tmp, b1);
5356 		break;
5357 
5358 	default:
5359 		abort();
5360 	}
5361 	gen_and(b0, b1);
5362 	return b1;
5363 }
5364 #endif /* INET6 */
5365 
5366 static int
5367 lookup_proto(name, proto)
5368 	register const char *name;
5369 	register int proto;
5370 {
5371 	register int v;
5372 
5373 	switch (proto) {
5374 
5375 	case Q_DEFAULT:
5376 	case Q_IP:
5377 	case Q_IPV6:
5378 		v = pcap_nametoproto(name);
5379 		if (v == PROTO_UNDEF)
5380 			bpf_error("unknown ip proto '%s'", name);
5381 		break;
5382 
5383 	case Q_LINK:
5384 		/* XXX should look up h/w protocol type based on linktype */
5385 		v = pcap_nametoeproto(name);
5386 		if (v == PROTO_UNDEF) {
5387 			v = pcap_nametollc(name);
5388 			if (v == PROTO_UNDEF)
5389 				bpf_error("unknown ether proto '%s'", name);
5390 		}
5391 		break;
5392 
5393 	case Q_ISO:
5394 		if (strcmp(name, "esis") == 0)
5395 			v = ISO9542_ESIS;
5396 		else if (strcmp(name, "isis") == 0)
5397 			v = ISO10589_ISIS;
5398 		else if (strcmp(name, "clnp") == 0)
5399 			v = ISO8473_CLNP;
5400 		else
5401 			bpf_error("unknown osi proto '%s'", name);
5402 		break;
5403 
5404 	default:
5405 		v = PROTO_UNDEF;
5406 		break;
5407 	}
5408 	return v;
5409 }
5410 
5411 #if 0
5412 struct stmt *
5413 gen_joinsp(s, n)
5414 	struct stmt **s;
5415 	int n;
5416 {
5417 	return NULL;
5418 }
5419 #endif
5420 
5421 static struct block *
5422 gen_protochain(v, proto, dir)
5423 	int v;
5424 	int proto;
5425 	int dir;
5426 {
5427 #ifdef NO_PROTOCHAIN
5428 	return gen_proto(v, proto, dir);
5429 #else
5430 	struct block *b0, *b;
5431 	struct slist *s[100];
5432 	int fix2, fix3, fix4, fix5;
5433 	int ahcheck, again, end;
5434 	int i, max;
5435 	int reg2 = alloc_reg();
5436 
5437 	memset(s, 0, sizeof(s));
5438 	fix2 = fix3 = fix4 = fix5 = 0;
5439 
5440 	switch (proto) {
5441 	case Q_IP:
5442 	case Q_IPV6:
5443 		break;
5444 	case Q_DEFAULT:
5445 		b0 = gen_protochain(v, Q_IP, dir);
5446 		b = gen_protochain(v, Q_IPV6, dir);
5447 		gen_or(b0, b);
5448 		return b;
5449 	default:
5450 		bpf_error("bad protocol applied for 'protochain'");
5451 		/*NOTREACHED*/
5452 	}
5453 
5454 	/*
5455 	 * We don't handle variable-length prefixes before the link-layer
5456 	 * header, or variable-length link-layer headers, here yet.
5457 	 * We might want to add BPF instructions to do the protochain
5458 	 * work, to simplify that and, on platforms that have a BPF
5459 	 * interpreter with the new instructions, let the filtering
5460 	 * be done in the kernel.  (We already require a modified BPF
5461 	 * engine to do the protochain stuff, to support backward
5462 	 * branches, and backward branch support is unlikely to appear
5463 	 * in kernel BPF engines.)
5464 	 */
5465 	switch (linktype) {
5466 
5467 	case DLT_IEEE802_11:
5468 	case DLT_PRISM_HEADER:
5469 	case DLT_IEEE802_11_RADIO_AVS:
5470 	case DLT_IEEE802_11_RADIO:
5471 	case DLT_PPI:
5472 		bpf_error("'protochain' not supported with 802.11");
5473 	}
5474 
5475 	no_optimize = 1; /*this code is not compatible with optimzer yet */
5476 
5477 	/*
5478 	 * s[0] is a dummy entry to protect other BPF insn from damage
5479 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5480 	 * hard to find interdependency made by jump table fixup.
5481 	 */
5482 	i = 0;
5483 	s[i] = new_stmt(0);	/*dummy*/
5484 	i++;
5485 
5486 	switch (proto) {
5487 	case Q_IP:
5488 		b0 = gen_linktype(ETHERTYPE_IP);
5489 
5490 		/* A = ip->ip_p */
5491 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5492 		s[i]->s.k = off_macpl + off_nl + 9;
5493 		i++;
5494 		/* X = ip->ip_hl << 2 */
5495 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5496 		s[i]->s.k = off_macpl + off_nl;
5497 		i++;
5498 		break;
5499 #ifdef INET6
5500 	case Q_IPV6:
5501 		b0 = gen_linktype(ETHERTYPE_IPV6);
5502 
5503 		/* A = ip6->ip_nxt */
5504 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5505 		s[i]->s.k = off_macpl + off_nl + 6;
5506 		i++;
5507 		/* X = sizeof(struct ip6_hdr) */
5508 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5509 		s[i]->s.k = 40;
5510 		i++;
5511 		break;
5512 #endif
5513 	default:
5514 		bpf_error("unsupported proto to gen_protochain");
5515 		/*NOTREACHED*/
5516 	}
5517 
5518 	/* again: if (A == v) goto end; else fall through; */
5519 	again = i;
5520 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5521 	s[i]->s.k = v;
5522 	s[i]->s.jt = NULL;		/*later*/
5523 	s[i]->s.jf = NULL;		/*update in next stmt*/
5524 	fix5 = i;
5525 	i++;
5526 
5527 #ifndef IPPROTO_NONE
5528 #define IPPROTO_NONE	59
5529 #endif
5530 	/* if (A == IPPROTO_NONE) goto end */
5531 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5532 	s[i]->s.jt = NULL;	/*later*/
5533 	s[i]->s.jf = NULL;	/*update in next stmt*/
5534 	s[i]->s.k = IPPROTO_NONE;
5535 	s[fix5]->s.jf = s[i];
5536 	fix2 = i;
5537 	i++;
5538 
5539 #ifdef INET6
5540 	if (proto == Q_IPV6) {
5541 		int v6start, v6end, v6advance, j;
5542 
5543 		v6start = i;
5544 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5545 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5546 		s[i]->s.jt = NULL;	/*later*/
5547 		s[i]->s.jf = NULL;	/*update in next stmt*/
5548 		s[i]->s.k = IPPROTO_HOPOPTS;
5549 		s[fix2]->s.jf = s[i];
5550 		i++;
5551 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5552 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5553 		s[i]->s.jt = NULL;	/*later*/
5554 		s[i]->s.jf = NULL;	/*update in next stmt*/
5555 		s[i]->s.k = IPPROTO_DSTOPTS;
5556 		i++;
5557 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5558 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5559 		s[i]->s.jt = NULL;	/*later*/
5560 		s[i]->s.jf = NULL;	/*update in next stmt*/
5561 		s[i]->s.k = IPPROTO_ROUTING;
5562 		i++;
5563 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5564 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5565 		s[i]->s.jt = NULL;	/*later*/
5566 		s[i]->s.jf = NULL;	/*later*/
5567 		s[i]->s.k = IPPROTO_FRAGMENT;
5568 		fix3 = i;
5569 		v6end = i;
5570 		i++;
5571 
5572 		/* v6advance: */
5573 		v6advance = i;
5574 
5575 		/*
5576 		 * in short,
5577 		 * A = P[X];
5578 		 * X = X + (P[X + 1] + 1) * 8;
5579 		 */
5580 		/* A = X */
5581 		s[i] = new_stmt(BPF_MISC|BPF_TXA);
5582 		i++;
5583 		/* A = P[X + packet head] */
5584 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5585 		s[i]->s.k = off_macpl + off_nl;
5586 		i++;
5587 		/* MEM[reg2] = A */
5588 		s[i] = new_stmt(BPF_ST);
5589 		s[i]->s.k = reg2;
5590 		i++;
5591 		/* A = X */
5592 		s[i] = new_stmt(BPF_MISC|BPF_TXA);
5593 		i++;
5594 		/* A += 1 */
5595 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5596 		s[i]->s.k = 1;
5597 		i++;
5598 		/* X = A */
5599 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5600 		i++;
5601 		/* A = P[X + packet head]; */
5602 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5603 		s[i]->s.k = off_macpl + off_nl;
5604 		i++;
5605 		/* A += 1 */
5606 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5607 		s[i]->s.k = 1;
5608 		i++;
5609 		/* A *= 8 */
5610 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5611 		s[i]->s.k = 8;
5612 		i++;
5613 		/* X = A; */
5614 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5615 		i++;
5616 		/* A = MEM[reg2] */
5617 		s[i] = new_stmt(BPF_LD|BPF_MEM);
5618 		s[i]->s.k = reg2;
5619 		i++;
5620 
5621 		/* goto again; (must use BPF_JA for backward jump) */
5622 		s[i] = new_stmt(BPF_JMP|BPF_JA);
5623 		s[i]->s.k = again - i - 1;
5624 		s[i - 1]->s.jf = s[i];
5625 		i++;
5626 
5627 		/* fixup */
5628 		for (j = v6start; j <= v6end; j++)
5629 			s[j]->s.jt = s[v6advance];
5630 	} else
5631 #endif
5632 	{
5633 		/* nop */
5634 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5635 		s[i]->s.k = 0;
5636 		s[fix2]->s.jf = s[i];
5637 		i++;
5638 	}
5639 
5640 	/* ahcheck: */
5641 	ahcheck = i;
5642 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5643 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5644 	s[i]->s.jt = NULL;	/*later*/
5645 	s[i]->s.jf = NULL;	/*later*/
5646 	s[i]->s.k = IPPROTO_AH;
5647 	if (fix3)
5648 		s[fix3]->s.jf = s[ahcheck];
5649 	fix4 = i;
5650 	i++;
5651 
5652 	/*
5653 	 * in short,
5654 	 * A = P[X];
5655 	 * X = X + (P[X + 1] + 2) * 4;
5656 	 */
5657 	/* A = X */
5658 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5659 	i++;
5660 	/* A = P[X + packet head]; */
5661 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5662 	s[i]->s.k = off_macpl + off_nl;
5663 	i++;
5664 	/* MEM[reg2] = A */
5665 	s[i] = new_stmt(BPF_ST);
5666 	s[i]->s.k = reg2;
5667 	i++;
5668 	/* A = X */
5669 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5670 	i++;
5671 	/* A += 1 */
5672 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5673 	s[i]->s.k = 1;
5674 	i++;
5675 	/* X = A */
5676 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5677 	i++;
5678 	/* A = P[X + packet head] */
5679 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5680 	s[i]->s.k = off_macpl + off_nl;
5681 	i++;
5682 	/* A += 2 */
5683 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5684 	s[i]->s.k = 2;
5685 	i++;
5686 	/* A *= 4 */
5687 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5688 	s[i]->s.k = 4;
5689 	i++;
5690 	/* X = A; */
5691 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5692 	i++;
5693 	/* A = MEM[reg2] */
5694 	s[i] = new_stmt(BPF_LD|BPF_MEM);
5695 	s[i]->s.k = reg2;
5696 	i++;
5697 
5698 	/* goto again; (must use BPF_JA for backward jump) */
5699 	s[i] = new_stmt(BPF_JMP|BPF_JA);
5700 	s[i]->s.k = again - i - 1;
5701 	i++;
5702 
5703 	/* end: nop */
5704 	end = i;
5705 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5706 	s[i]->s.k = 0;
5707 	s[fix2]->s.jt = s[end];
5708 	s[fix4]->s.jf = s[end];
5709 	s[fix5]->s.jt = s[end];
5710 	i++;
5711 
5712 	/*
5713 	 * make slist chain
5714 	 */
5715 	max = i;
5716 	for (i = 0; i < max - 1; i++)
5717 		s[i]->next = s[i + 1];
5718 	s[max - 1]->next = NULL;
5719 
5720 	/*
5721 	 * emit final check
5722 	 */
5723 	b = new_block(JMP(BPF_JEQ));
5724 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5725 	b->s.k = v;
5726 
5727 	free_reg(reg2);
5728 
5729 	gen_and(b0, b);
5730 	return b;
5731 #endif
5732 }
5733 
5734 static struct block *
5735 gen_check_802_11_data_frame()
5736 {
5737 	struct slist *s;
5738 	struct block *b0, *b1;
5739 
5740 	/*
5741 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5742 	 * and the 0x04 bit (b2) clear.
5743 	 */
5744 	s = gen_load_a(OR_LINK, 0, BPF_B);
5745 	b0 = new_block(JMP(BPF_JSET));
5746 	b0->s.k = 0x08;
5747 	b0->stmts = s;
5748 
5749 	s = gen_load_a(OR_LINK, 0, BPF_B);
5750 	b1 = new_block(JMP(BPF_JSET));
5751 	b1->s.k = 0x04;
5752 	b1->stmts = s;
5753 	gen_not(b1);
5754 
5755 	gen_and(b1, b0);
5756 
5757 	return b0;
5758 }
5759 
5760 /*
5761  * Generate code that checks whether the packet is a packet for protocol
5762  * <proto> and whether the type field in that protocol's header has
5763  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5764  * IP packet and checks the protocol number in the IP header against <v>.
5765  *
5766  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5767  * against Q_IP and Q_IPV6.
5768  */
5769 static struct block *
5770 gen_proto(v, proto, dir)
5771 	int v;
5772 	int proto;
5773 	int dir;
5774 {
5775 	struct block *b0, *b1;
5776 
5777 	if (dir != Q_DEFAULT)
5778 		bpf_error("direction applied to 'proto'");
5779 
5780 	switch (proto) {
5781 	case Q_DEFAULT:
5782 #ifdef INET6
5783 		b0 = gen_proto(v, Q_IP, dir);
5784 		b1 = gen_proto(v, Q_IPV6, dir);
5785 		gen_or(b0, b1);
5786 		return b1;
5787 #else
5788 		/*FALLTHROUGH*/
5789 #endif
5790 	case Q_IP:
5791 		/*
5792 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5793 		 * not LLC encapsulation with LLCSAP_IP.
5794 		 *
5795 		 * For IEEE 802 networks - which includes 802.5 token ring
5796 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5797 		 * says that SNAP encapsulation is used, not LLC encapsulation
5798 		 * with LLCSAP_IP.
5799 		 *
5800 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5801 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5802 		 * encapsulation with LLCSAP_IP.
5803 		 *
5804 		 * So we always check for ETHERTYPE_IP.
5805 		 */
5806 		b0 = gen_linktype(ETHERTYPE_IP);
5807 #ifndef CHASE_CHAIN
5808 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5809 #else
5810 		b1 = gen_protochain(v, Q_IP);
5811 #endif
5812 		gen_and(b0, b1);
5813 		return b1;
5814 
5815 	case Q_ISO:
5816 		switch (linktype) {
5817 
5818 		case DLT_FRELAY:
5819 			/*
5820 			 * Frame Relay packets typically have an OSI
5821 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5822 			 * generates code to check for all the OSI
5823 			 * NLPIDs, so calling it and then adding a check
5824 			 * for the particular NLPID for which we're
5825 			 * looking is bogus, as we can just check for
5826 			 * the NLPID.
5827 			 *
5828 			 * What we check for is the NLPID and a frame
5829 			 * control field value of UI, i.e. 0x03 followed
5830 			 * by the NLPID.
5831 			 *
5832 			 * XXX - assumes a 2-byte Frame Relay header with
5833 			 * DLCI and flags.  What if the address is longer?
5834 			 *
5835 			 * XXX - what about SNAP-encapsulated frames?
5836 			 */
5837 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5838 			/*NOTREACHED*/
5839 			break;
5840 
5841 		case DLT_C_HDLC:
5842 			/*
5843 			 * Cisco uses an Ethertype lookalike - for OSI,
5844 			 * it's 0xfefe.
5845 			 */
5846 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5847 			/* OSI in C-HDLC is stuffed with a fudge byte */
5848 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5849 			gen_and(b0, b1);
5850 			return b1;
5851 
5852 		default:
5853 			b0 = gen_linktype(LLCSAP_ISONS);
5854 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5855 			gen_and(b0, b1);
5856 			return b1;
5857 		}
5858 
5859 	case Q_ISIS:
5860 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5861 		/*
5862 		 * 4 is the offset of the PDU type relative to the IS-IS
5863 		 * header.
5864 		 */
5865 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5866 		gen_and(b0, b1);
5867 		return b1;
5868 
5869 	case Q_ARP:
5870 		bpf_error("arp does not encapsulate another protocol");
5871 		/* NOTREACHED */
5872 
5873 	case Q_RARP:
5874 		bpf_error("rarp does not encapsulate another protocol");
5875 		/* NOTREACHED */
5876 
5877 	case Q_ATALK:
5878 		bpf_error("atalk encapsulation is not specifiable");
5879 		/* NOTREACHED */
5880 
5881 	case Q_DECNET:
5882 		bpf_error("decnet encapsulation is not specifiable");
5883 		/* NOTREACHED */
5884 
5885 	case Q_SCA:
5886 		bpf_error("sca does not encapsulate another protocol");
5887 		/* NOTREACHED */
5888 
5889 	case Q_LAT:
5890 		bpf_error("lat does not encapsulate another protocol");
5891 		/* NOTREACHED */
5892 
5893 	case Q_MOPRC:
5894 		bpf_error("moprc does not encapsulate another protocol");
5895 		/* NOTREACHED */
5896 
5897 	case Q_MOPDL:
5898 		bpf_error("mopdl does not encapsulate another protocol");
5899 		/* NOTREACHED */
5900 
5901 	case Q_LINK:
5902 		return gen_linktype(v);
5903 
5904 	case Q_UDP:
5905 		bpf_error("'udp proto' is bogus");
5906 		/* NOTREACHED */
5907 
5908 	case Q_TCP:
5909 		bpf_error("'tcp proto' is bogus");
5910 		/* NOTREACHED */
5911 
5912 	case Q_SCTP:
5913 		bpf_error("'sctp proto' is bogus");
5914 		/* NOTREACHED */
5915 
5916 	case Q_ICMP:
5917 		bpf_error("'icmp proto' is bogus");
5918 		/* NOTREACHED */
5919 
5920 	case Q_IGMP:
5921 		bpf_error("'igmp proto' is bogus");
5922 		/* NOTREACHED */
5923 
5924 	case Q_IGRP:
5925 		bpf_error("'igrp proto' is bogus");
5926 		/* NOTREACHED */
5927 
5928 	case Q_PIM:
5929 		bpf_error("'pim proto' is bogus");
5930 		/* NOTREACHED */
5931 
5932 	case Q_VRRP:
5933 		bpf_error("'vrrp proto' is bogus");
5934 		/* NOTREACHED */
5935 
5936 #ifdef INET6
5937 	case Q_IPV6:
5938 		b0 = gen_linktype(ETHERTYPE_IPV6);
5939 #ifndef CHASE_CHAIN
5940 		b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5941 #else
5942 		b1 = gen_protochain(v, Q_IPV6);
5943 #endif
5944 		gen_and(b0, b1);
5945 		return b1;
5946 
5947 	case Q_ICMPV6:
5948 		bpf_error("'icmp6 proto' is bogus");
5949 #endif /* INET6 */
5950 
5951 	case Q_AH:
5952 		bpf_error("'ah proto' is bogus");
5953 
5954 	case Q_ESP:
5955 		bpf_error("'ah proto' is bogus");
5956 
5957 	case Q_STP:
5958 		bpf_error("'stp proto' is bogus");
5959 
5960 	case Q_IPX:
5961 		bpf_error("'ipx proto' is bogus");
5962 
5963 	case Q_NETBEUI:
5964 		bpf_error("'netbeui proto' is bogus");
5965 
5966 	case Q_RADIO:
5967 		bpf_error("'radio proto' is bogus");
5968 
5969 	default:
5970 		abort();
5971 		/* NOTREACHED */
5972 	}
5973 	/* NOTREACHED */
5974 }
5975 
5976 struct block *
5977 gen_scode(name, q)
5978 	register const char *name;
5979 	struct qual q;
5980 {
5981 	int proto = q.proto;
5982 	int dir = q.dir;
5983 	int tproto;
5984 	u_char *eaddr;
5985 	bpf_u_int32 mask, addr;
5986 #ifndef INET6
5987 	bpf_u_int32 **alist;
5988 #else
5989 	int tproto6;
5990 	struct sockaddr_in *sin4;
5991 	struct sockaddr_in6 *sin6;
5992 	struct addrinfo *res, *res0;
5993 	struct in6_addr mask128;
5994 #endif /*INET6*/
5995 	struct block *b, *tmp;
5996 	int port, real_proto;
5997 	int port1, port2;
5998 
5999 	switch (q.addr) {
6000 
6001 	case Q_NET:
6002 		addr = pcap_nametonetaddr(name);
6003 		if (addr == 0)
6004 			bpf_error("unknown network '%s'", name);
6005 		/* Left justify network addr and calculate its network mask */
6006 		mask = 0xffffffff;
6007 		while (addr && (addr & 0xff000000) == 0) {
6008 			addr <<= 8;
6009 			mask <<= 8;
6010 		}
6011 		return gen_host(addr, mask, proto, dir, q.addr);
6012 
6013 	case Q_DEFAULT:
6014 	case Q_HOST:
6015 		if (proto == Q_LINK) {
6016 			switch (linktype) {
6017 
6018 			case DLT_EN10MB:
6019 				eaddr = pcap_ether_hostton(name);
6020 				if (eaddr == NULL)
6021 					bpf_error(
6022 					    "unknown ether host '%s'", name);
6023 				b = gen_ehostop(eaddr, dir);
6024 				free(eaddr);
6025 				return b;
6026 
6027 			case DLT_FDDI:
6028 				eaddr = pcap_ether_hostton(name);
6029 				if (eaddr == NULL)
6030 					bpf_error(
6031 					    "unknown FDDI host '%s'", name);
6032 				b = gen_fhostop(eaddr, dir);
6033 				free(eaddr);
6034 				return b;
6035 
6036 			case DLT_IEEE802:
6037 				eaddr = pcap_ether_hostton(name);
6038 				if (eaddr == NULL)
6039 					bpf_error(
6040 					    "unknown token ring host '%s'", name);
6041 				b = gen_thostop(eaddr, dir);
6042 				free(eaddr);
6043 				return b;
6044 
6045 			case DLT_IEEE802_11:
6046 			case DLT_PRISM_HEADER:
6047 			case DLT_IEEE802_11_RADIO_AVS:
6048 			case DLT_IEEE802_11_RADIO:
6049 			case DLT_PPI:
6050 				eaddr = pcap_ether_hostton(name);
6051 				if (eaddr == NULL)
6052 					bpf_error(
6053 					    "unknown 802.11 host '%s'", name);
6054 				b = gen_wlanhostop(eaddr, dir);
6055 				free(eaddr);
6056 				return b;
6057 
6058 			case DLT_IP_OVER_FC:
6059 				eaddr = pcap_ether_hostton(name);
6060 				if (eaddr == NULL)
6061 					bpf_error(
6062 					    "unknown Fibre Channel host '%s'", name);
6063 				b = gen_ipfchostop(eaddr, dir);
6064 				free(eaddr);
6065 				return b;
6066 
6067 			case DLT_SUNATM:
6068 				if (!is_lane)
6069 					break;
6070 
6071 				/*
6072 				 * Check that the packet doesn't begin
6073 				 * with an LE Control marker.  (We've
6074 				 * already generated a test for LANE.)
6075 				 */
6076 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6077 				    BPF_H, 0xFF00);
6078 				gen_not(tmp);
6079 
6080 				eaddr = pcap_ether_hostton(name);
6081 				if (eaddr == NULL)
6082 					bpf_error(
6083 					    "unknown ether host '%s'", name);
6084 				b = gen_ehostop(eaddr, dir);
6085 				gen_and(tmp, b);
6086 				free(eaddr);
6087 				return b;
6088 			}
6089 
6090 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6091 		} else if (proto == Q_DECNET) {
6092 			unsigned short dn_addr = __pcap_nametodnaddr(name);
6093 			/*
6094 			 * I don't think DECNET hosts can be multihomed, so
6095 			 * there is no need to build up a list of addresses
6096 			 */
6097 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6098 		} else {
6099 #ifndef INET6
6100 			alist = pcap_nametoaddr(name);
6101 			if (alist == NULL || *alist == NULL)
6102 				bpf_error("unknown host '%s'", name);
6103 			tproto = proto;
6104 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6105 				tproto = Q_IP;
6106 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6107 			while (*alist) {
6108 				tmp = gen_host(**alist++, 0xffffffff,
6109 					       tproto, dir, q.addr);
6110 				gen_or(b, tmp);
6111 				b = tmp;
6112 			}
6113 			return b;
6114 #else
6115 			memset(&mask128, 0xff, sizeof(mask128));
6116 			res0 = res = pcap_nametoaddrinfo(name);
6117 			if (res == NULL)
6118 				bpf_error("unknown host '%s'", name);
6119 			ai = res;
6120 			b = tmp = NULL;
6121 			tproto = tproto6 = proto;
6122 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT) {
6123 				tproto = Q_IP;
6124 				tproto6 = Q_IPV6;
6125 			}
6126 			for (res = res0; res; res = res->ai_next) {
6127 				switch (res->ai_family) {
6128 				case AF_INET:
6129 					if (tproto == Q_IPV6)
6130 						continue;
6131 
6132 					sin4 = (struct sockaddr_in *)
6133 						res->ai_addr;
6134 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6135 						0xffffffff, tproto, dir, q.addr);
6136 					break;
6137 				case AF_INET6:
6138 					if (tproto6 == Q_IP)
6139 						continue;
6140 
6141 					sin6 = (struct sockaddr_in6 *)
6142 						res->ai_addr;
6143 					tmp = gen_host6(&sin6->sin6_addr,
6144 						&mask128, tproto6, dir, q.addr);
6145 					break;
6146 				default:
6147 					continue;
6148 				}
6149 				if (b)
6150 					gen_or(b, tmp);
6151 				b = tmp;
6152 			}
6153 			ai = NULL;
6154 			freeaddrinfo(res0);
6155 			if (b == NULL) {
6156 				bpf_error("unknown host '%s'%s", name,
6157 				    (proto == Q_DEFAULT)
6158 					? ""
6159 					: " for specified address family");
6160 			}
6161 			return b;
6162 #endif /*INET6*/
6163 		}
6164 
6165 	case Q_PORT:
6166 		if (proto != Q_DEFAULT &&
6167 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6168 			bpf_error("illegal qualifier of 'port'");
6169 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6170 			bpf_error("unknown port '%s'", name);
6171 		if (proto == Q_UDP) {
6172 			if (real_proto == IPPROTO_TCP)
6173 				bpf_error("port '%s' is tcp", name);
6174 			else if (real_proto == IPPROTO_SCTP)
6175 				bpf_error("port '%s' is sctp", name);
6176 			else
6177 				/* override PROTO_UNDEF */
6178 				real_proto = IPPROTO_UDP;
6179 		}
6180 		if (proto == Q_TCP) {
6181 			if (real_proto == IPPROTO_UDP)
6182 				bpf_error("port '%s' is udp", name);
6183 
6184 			else if (real_proto == IPPROTO_SCTP)
6185 				bpf_error("port '%s' is sctp", name);
6186 			else
6187 				/* override PROTO_UNDEF */
6188 				real_proto = IPPROTO_TCP;
6189 		}
6190 		if (proto == Q_SCTP) {
6191 			if (real_proto == IPPROTO_UDP)
6192 				bpf_error("port '%s' is udp", name);
6193 
6194 			else if (real_proto == IPPROTO_TCP)
6195 				bpf_error("port '%s' is tcp", name);
6196 			else
6197 				/* override PROTO_UNDEF */
6198 				real_proto = IPPROTO_SCTP;
6199 		}
6200 #ifndef INET6
6201 		return gen_port(port, real_proto, dir);
6202 #else
6203 		b = gen_port(port, real_proto, dir);
6204 		gen_or(gen_port6(port, real_proto, dir), b);
6205 		return b;
6206 #endif /* INET6 */
6207 
6208 	case Q_PORTRANGE:
6209 		if (proto != Q_DEFAULT &&
6210 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6211 			bpf_error("illegal qualifier of 'portrange'");
6212 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6213 			bpf_error("unknown port in range '%s'", name);
6214 		if (proto == Q_UDP) {
6215 			if (real_proto == IPPROTO_TCP)
6216 				bpf_error("port in range '%s' is tcp", name);
6217 			else if (real_proto == IPPROTO_SCTP)
6218 				bpf_error("port in range '%s' is sctp", name);
6219 			else
6220 				/* override PROTO_UNDEF */
6221 				real_proto = IPPROTO_UDP;
6222 		}
6223 		if (proto == Q_TCP) {
6224 			if (real_proto == IPPROTO_UDP)
6225 				bpf_error("port in range '%s' is udp", name);
6226 			else if (real_proto == IPPROTO_SCTP)
6227 				bpf_error("port in range '%s' is sctp", name);
6228 			else
6229 				/* override PROTO_UNDEF */
6230 				real_proto = IPPROTO_TCP;
6231 		}
6232 		if (proto == Q_SCTP) {
6233 			if (real_proto == IPPROTO_UDP)
6234 				bpf_error("port in range '%s' is udp", name);
6235 			else if (real_proto == IPPROTO_TCP)
6236 				bpf_error("port in range '%s' is tcp", name);
6237 			else
6238 				/* override PROTO_UNDEF */
6239 				real_proto = IPPROTO_SCTP;
6240 		}
6241 #ifndef INET6
6242 		return gen_portrange(port1, port2, real_proto, dir);
6243 #else
6244 		b = gen_portrange(port1, port2, real_proto, dir);
6245 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6246 		return b;
6247 #endif /* INET6 */
6248 
6249 	case Q_GATEWAY:
6250 #ifndef INET6
6251 		eaddr = pcap_ether_hostton(name);
6252 		if (eaddr == NULL)
6253 			bpf_error("unknown ether host: %s", name);
6254 
6255 		alist = pcap_nametoaddr(name);
6256 		if (alist == NULL || *alist == NULL)
6257 			bpf_error("unknown host '%s'", name);
6258 		b = gen_gateway(eaddr, alist, proto, dir);
6259 		free(eaddr);
6260 		return b;
6261 #else
6262 		bpf_error("'gateway' not supported in this configuration");
6263 #endif /*INET6*/
6264 
6265 	case Q_PROTO:
6266 		real_proto = lookup_proto(name, proto);
6267 		if (real_proto >= 0)
6268 			return gen_proto(real_proto, proto, dir);
6269 		else
6270 			bpf_error("unknown protocol: %s", name);
6271 
6272 	case Q_PROTOCHAIN:
6273 		real_proto = lookup_proto(name, proto);
6274 		if (real_proto >= 0)
6275 			return gen_protochain(real_proto, proto, dir);
6276 		else
6277 			bpf_error("unknown protocol: %s", name);
6278 
6279 	case Q_UNDEF:
6280 		syntax();
6281 		/* NOTREACHED */
6282 	}
6283 	abort();
6284 	/* NOTREACHED */
6285 }
6286 
6287 struct block *
6288 gen_mcode(s1, s2, masklen, q)
6289 	register const char *s1, *s2;
6290 	register int masklen;
6291 	struct qual q;
6292 {
6293 	register int nlen, mlen;
6294 	bpf_u_int32 n, m;
6295 
6296 	nlen = __pcap_atoin(s1, &n);
6297 	/* Promote short ipaddr */
6298 	n <<= 32 - nlen;
6299 
6300 	if (s2 != NULL) {
6301 		mlen = __pcap_atoin(s2, &m);
6302 		/* Promote short ipaddr */
6303 		m <<= 32 - mlen;
6304 		if ((n & ~m) != 0)
6305 			bpf_error("non-network bits set in \"%s mask %s\"",
6306 			    s1, s2);
6307 	} else {
6308 		/* Convert mask len to mask */
6309 		if (masklen > 32)
6310 			bpf_error("mask length must be <= 32");
6311 		if (masklen == 0) {
6312 			/*
6313 			 * X << 32 is not guaranteed by C to be 0; it's
6314 			 * undefined.
6315 			 */
6316 			m = 0;
6317 		} else
6318 			m = 0xffffffff << (32 - masklen);
6319 		if ((n & ~m) != 0)
6320 			bpf_error("non-network bits set in \"%s/%d\"",
6321 			    s1, masklen);
6322 	}
6323 
6324 	switch (q.addr) {
6325 
6326 	case Q_NET:
6327 		return gen_host(n, m, q.proto, q.dir, q.addr);
6328 
6329 	default:
6330 		bpf_error("Mask syntax for networks only");
6331 		/* NOTREACHED */
6332 	}
6333 	/* NOTREACHED */
6334 	return NULL;
6335 }
6336 
6337 struct block *
6338 gen_ncode(s, v, q)
6339 	register const char *s;
6340 	bpf_u_int32 v;
6341 	struct qual q;
6342 {
6343 	bpf_u_int32 mask;
6344 	int proto = q.proto;
6345 	int dir = q.dir;
6346 	register int vlen;
6347 
6348 	if (s == NULL)
6349 		vlen = 32;
6350 	else if (q.proto == Q_DECNET)
6351 		vlen = __pcap_atodn(s, &v);
6352 	else
6353 		vlen = __pcap_atoin(s, &v);
6354 
6355 	switch (q.addr) {
6356 
6357 	case Q_DEFAULT:
6358 	case Q_HOST:
6359 	case Q_NET:
6360 		if (proto == Q_DECNET)
6361 			return gen_host(v, 0, proto, dir, q.addr);
6362 		else if (proto == Q_LINK) {
6363 			bpf_error("illegal link layer address");
6364 		} else {
6365 			mask = 0xffffffff;
6366 			if (s == NULL && q.addr == Q_NET) {
6367 				/* Promote short net number */
6368 				while (v && (v & 0xff000000) == 0) {
6369 					v <<= 8;
6370 					mask <<= 8;
6371 				}
6372 			} else {
6373 				/* Promote short ipaddr */
6374 				v <<= 32 - vlen;
6375 				mask <<= 32 - vlen;
6376 			}
6377 			return gen_host(v, mask, proto, dir, q.addr);
6378 		}
6379 
6380 	case Q_PORT:
6381 		if (proto == Q_UDP)
6382 			proto = IPPROTO_UDP;
6383 		else if (proto == Q_TCP)
6384 			proto = IPPROTO_TCP;
6385 		else if (proto == Q_SCTP)
6386 			proto = IPPROTO_SCTP;
6387 		else if (proto == Q_DEFAULT)
6388 			proto = PROTO_UNDEF;
6389 		else
6390 			bpf_error("illegal qualifier of 'port'");
6391 
6392 #ifndef INET6
6393 		return gen_port((int)v, proto, dir);
6394 #else
6395 	    {
6396 		struct block *b;
6397 		b = gen_port((int)v, proto, dir);
6398 		gen_or(gen_port6((int)v, proto, dir), b);
6399 		return b;
6400 	    }
6401 #endif /* INET6 */
6402 
6403 	case Q_PORTRANGE:
6404 		if (proto == Q_UDP)
6405 			proto = IPPROTO_UDP;
6406 		else if (proto == Q_TCP)
6407 			proto = IPPROTO_TCP;
6408 		else if (proto == Q_SCTP)
6409 			proto = IPPROTO_SCTP;
6410 		else if (proto == Q_DEFAULT)
6411 			proto = PROTO_UNDEF;
6412 		else
6413 			bpf_error("illegal qualifier of 'portrange'");
6414 
6415 #ifndef INET6
6416 		return gen_portrange((int)v, (int)v, proto, dir);
6417 #else
6418 	    {
6419 		struct block *b;
6420 		b = gen_portrange((int)v, (int)v, proto, dir);
6421 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6422 		return b;
6423 	    }
6424 #endif /* INET6 */
6425 
6426 	case Q_GATEWAY:
6427 		bpf_error("'gateway' requires a name");
6428 		/* NOTREACHED */
6429 
6430 	case Q_PROTO:
6431 		return gen_proto((int)v, proto, dir);
6432 
6433 	case Q_PROTOCHAIN:
6434 		return gen_protochain((int)v, proto, dir);
6435 
6436 	case Q_UNDEF:
6437 		syntax();
6438 		/* NOTREACHED */
6439 
6440 	default:
6441 		abort();
6442 		/* NOTREACHED */
6443 	}
6444 	/* NOTREACHED */
6445 }
6446 
6447 #ifdef INET6
6448 struct block *
6449 gen_mcode6(s1, s2, masklen, q)
6450 	register const char *s1, *s2;
6451 	register int masklen;
6452 	struct qual q;
6453 {
6454 	struct addrinfo *res;
6455 	struct in6_addr *addr;
6456 	struct in6_addr mask;
6457 	struct block *b;
6458 	u_int32_t *a, *m;
6459 
6460 	if (s2)
6461 		bpf_error("no mask %s supported", s2);
6462 
6463 	res = pcap_nametoaddrinfo(s1);
6464 	if (!res)
6465 		bpf_error("invalid ip6 address %s", s1);
6466 	ai = res;
6467 	if (res->ai_next)
6468 		bpf_error("%s resolved to multiple address", s1);
6469 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6470 
6471 	if ((int)sizeof(mask) * 8 < masklen)
6472 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6473 	memset(&mask, 0, sizeof(mask));
6474 	memset(&mask, 0xff, masklen / 8);
6475 	if (masklen % 8) {
6476 		mask.s6_addr[masklen / 8] =
6477 			(0xff << (8 - masklen % 8)) & 0xff;
6478 	}
6479 
6480 	a = (u_int32_t *)addr;
6481 	m = (u_int32_t *)&mask;
6482 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6483 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6484 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6485 	}
6486 
6487 	switch (q.addr) {
6488 
6489 	case Q_DEFAULT:
6490 	case Q_HOST:
6491 		if (masklen != 128)
6492 			bpf_error("Mask syntax for networks only");
6493 		/* FALLTHROUGH */
6494 
6495 	case Q_NET:
6496 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6497 		ai = NULL;
6498 		freeaddrinfo(res);
6499 		return b;
6500 
6501 	default:
6502 		bpf_error("invalid qualifier against IPv6 address");
6503 		/* NOTREACHED */
6504 	}
6505 	return NULL;
6506 }
6507 #endif /*INET6*/
6508 
6509 struct block *
6510 gen_ecode(eaddr, q)
6511 	register const u_char *eaddr;
6512 	struct qual q;
6513 {
6514 	struct block *b, *tmp;
6515 
6516 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6517 		switch (linktype) {
6518 		case DLT_EN10MB:
6519 			return gen_ehostop(eaddr, (int)q.dir);
6520 		case DLT_FDDI:
6521 			return gen_fhostop(eaddr, (int)q.dir);
6522 		case DLT_IEEE802:
6523 			return gen_thostop(eaddr, (int)q.dir);
6524 		case DLT_IEEE802_11:
6525 		case DLT_PRISM_HEADER:
6526 		case DLT_IEEE802_11_RADIO_AVS:
6527 		case DLT_IEEE802_11_RADIO:
6528 		case DLT_PPI:
6529 			return gen_wlanhostop(eaddr, (int)q.dir);
6530 		case DLT_SUNATM:
6531 			if (is_lane) {
6532 				/*
6533 				 * Check that the packet doesn't begin with an
6534 				 * LE Control marker.  (We've already generated
6535 				 * a test for LANE.)
6536 				 */
6537 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6538 					0xFF00);
6539 				gen_not(tmp);
6540 
6541 				/*
6542 				 * Now check the MAC address.
6543 				 */
6544 				b = gen_ehostop(eaddr, (int)q.dir);
6545 				gen_and(tmp, b);
6546 				return b;
6547 			}
6548 			break;
6549 		case DLT_IP_OVER_FC:
6550 			return gen_ipfchostop(eaddr, (int)q.dir);
6551 		default:
6552 			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6553 			break;
6554 		}
6555 	}
6556 	bpf_error("ethernet address used in non-ether expression");
6557 	/* NOTREACHED */
6558 	return NULL;
6559 }
6560 
6561 void
6562 sappend(s0, s1)
6563 	struct slist *s0, *s1;
6564 {
6565 	/*
6566 	 * This is definitely not the best way to do this, but the
6567 	 * lists will rarely get long.
6568 	 */
6569 	while (s0->next)
6570 		s0 = s0->next;
6571 	s0->next = s1;
6572 }
6573 
6574 static struct slist *
6575 xfer_to_x(a)
6576 	struct arth *a;
6577 {
6578 	struct slist *s;
6579 
6580 	s = new_stmt(BPF_LDX|BPF_MEM);
6581 	s->s.k = a->regno;
6582 	return s;
6583 }
6584 
6585 static struct slist *
6586 xfer_to_a(a)
6587 	struct arth *a;
6588 {
6589 	struct slist *s;
6590 
6591 	s = new_stmt(BPF_LD|BPF_MEM);
6592 	s->s.k = a->regno;
6593 	return s;
6594 }
6595 
6596 /*
6597  * Modify "index" to use the value stored into its register as an
6598  * offset relative to the beginning of the header for the protocol
6599  * "proto", and allocate a register and put an item "size" bytes long
6600  * (1, 2, or 4) at that offset into that register, making it the register
6601  * for "index".
6602  */
6603 struct arth *
6604 gen_load(proto, inst, size)
6605 	int proto;
6606 	struct arth *inst;
6607 	int size;
6608 {
6609 	struct slist *s, *tmp;
6610 	struct block *b;
6611 	int regno = alloc_reg();
6612 
6613 	free_reg(inst->regno);
6614 	switch (size) {
6615 
6616 	default:
6617 		bpf_error("data size must be 1, 2, or 4");
6618 
6619 	case 1:
6620 		size = BPF_B;
6621 		break;
6622 
6623 	case 2:
6624 		size = BPF_H;
6625 		break;
6626 
6627 	case 4:
6628 		size = BPF_W;
6629 		break;
6630 	}
6631 	switch (proto) {
6632 	default:
6633 		bpf_error("unsupported index operation");
6634 
6635 	case Q_RADIO:
6636 		/*
6637 		 * The offset is relative to the beginning of the packet
6638 		 * data, if we have a radio header.  (If we don't, this
6639 		 * is an error.)
6640 		 */
6641 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6642 		    linktype != DLT_IEEE802_11_RADIO &&
6643 		    linktype != DLT_PRISM_HEADER)
6644 			bpf_error("radio information not present in capture");
6645 
6646 		/*
6647 		 * Load into the X register the offset computed into the
6648 		 * register specifed by "index".
6649 		 */
6650 		s = xfer_to_x(inst);
6651 
6652 		/*
6653 		 * Load the item at that offset.
6654 		 */
6655 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6656 		sappend(s, tmp);
6657 		sappend(inst->s, s);
6658 		break;
6659 
6660 	case Q_LINK:
6661 		/*
6662 		 * The offset is relative to the beginning of
6663 		 * the link-layer header.
6664 		 *
6665 		 * XXX - what about ATM LANE?  Should the index be
6666 		 * relative to the beginning of the AAL5 frame, so
6667 		 * that 0 refers to the beginning of the LE Control
6668 		 * field, or relative to the beginning of the LAN
6669 		 * frame, so that 0 refers, for Ethernet LANE, to
6670 		 * the beginning of the destination address?
6671 		 */
6672 		s = gen_llprefixlen();
6673 
6674 		/*
6675 		 * If "s" is non-null, it has code to arrange that the
6676 		 * X register contains the length of the prefix preceding
6677 		 * the link-layer header.  Add to it the offset computed
6678 		 * into the register specified by "index", and move that
6679 		 * into the X register.  Otherwise, just load into the X
6680 		 * register the offset computed into the register specifed
6681 		 * by "index".
6682 		 */
6683 		if (s != NULL) {
6684 			sappend(s, xfer_to_a(inst));
6685 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6686 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6687 		} else
6688 			s = xfer_to_x(inst);
6689 
6690 		/*
6691 		 * Load the item at the sum of the offset we've put in the
6692 		 * X register and the offset of the start of the link
6693 		 * layer header (which is 0 if the radio header is
6694 		 * variable-length; that header length is what we put
6695 		 * into the X register and then added to the index).
6696 		 */
6697 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6698 		tmp->s.k = off_ll;
6699 		sappend(s, tmp);
6700 		sappend(inst->s, s);
6701 		break;
6702 
6703 	case Q_IP:
6704 	case Q_ARP:
6705 	case Q_RARP:
6706 	case Q_ATALK:
6707 	case Q_DECNET:
6708 	case Q_SCA:
6709 	case Q_LAT:
6710 	case Q_MOPRC:
6711 	case Q_MOPDL:
6712 #ifdef INET6
6713 	case Q_IPV6:
6714 #endif
6715 		/*
6716 		 * The offset is relative to the beginning of
6717 		 * the network-layer header.
6718 		 * XXX - are there any cases where we want
6719 		 * off_nl_nosnap?
6720 		 */
6721 		s = gen_off_macpl();
6722 
6723 		/*
6724 		 * If "s" is non-null, it has code to arrange that the
6725 		 * X register contains the offset of the MAC-layer
6726 		 * payload.  Add to it the offset computed into the
6727 		 * register specified by "index", and move that into
6728 		 * the X register.  Otherwise, just load into the X
6729 		 * register the offset computed into the register specifed
6730 		 * by "index".
6731 		 */
6732 		if (s != NULL) {
6733 			sappend(s, xfer_to_a(inst));
6734 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6735 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6736 		} else
6737 			s = xfer_to_x(inst);
6738 
6739 		/*
6740 		 * Load the item at the sum of the offset we've put in the
6741 		 * X register, the offset of the start of the network
6742 		 * layer header from the beginning of the MAC-layer
6743 		 * payload, and the purported offset of the start of the
6744 		 * MAC-layer payload (which might be 0 if there's a
6745 		 * variable-length prefix before the link-layer header
6746 		 * or the link-layer header itself is variable-length;
6747 		 * the variable-length offset of the start of the
6748 		 * MAC-layer payload is what we put into the X register
6749 		 * and then added to the index).
6750 		 */
6751 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6752 		tmp->s.k = off_macpl + off_nl;
6753 		sappend(s, tmp);
6754 		sappend(inst->s, s);
6755 
6756 		/*
6757 		 * Do the computation only if the packet contains
6758 		 * the protocol in question.
6759 		 */
6760 		b = gen_proto_abbrev(proto);
6761 		if (inst->b)
6762 			gen_and(inst->b, b);
6763 		inst->b = b;
6764 		break;
6765 
6766 	case Q_SCTP:
6767 	case Q_TCP:
6768 	case Q_UDP:
6769 	case Q_ICMP:
6770 	case Q_IGMP:
6771 	case Q_IGRP:
6772 	case Q_PIM:
6773 	case Q_VRRP:
6774 		/*
6775 		 * The offset is relative to the beginning of
6776 		 * the transport-layer header.
6777 		 *
6778 		 * Load the X register with the length of the IPv4 header
6779 		 * (plus the offset of the link-layer header, if it's
6780 		 * a variable-length header), in bytes.
6781 		 *
6782 		 * XXX - are there any cases where we want
6783 		 * off_nl_nosnap?
6784 		 * XXX - we should, if we're built with
6785 		 * IPv6 support, generate code to load either
6786 		 * IPv4, IPv6, or both, as appropriate.
6787 		 */
6788 		s = gen_loadx_iphdrlen();
6789 
6790 		/*
6791 		 * The X register now contains the sum of the length
6792 		 * of any variable-length header preceding the link-layer
6793 		 * header, any variable-length link-layer header, and the
6794 		 * length of the network-layer header.
6795 		 *
6796 		 * Load into the A register the offset relative to
6797 		 * the beginning of the transport layer header,
6798 		 * add the X register to that, move that to the
6799 		 * X register, and load with an offset from the
6800 		 * X register equal to the offset of the network
6801 		 * layer header relative to the beginning of
6802 		 * the MAC-layer payload plus the fixed-length
6803 		 * portion of the offset of the MAC-layer payload
6804 		 * from the beginning of the raw packet data.
6805 		 */
6806 		sappend(s, xfer_to_a(inst));
6807 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6808 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6809 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6810 		tmp->s.k = off_macpl + off_nl;
6811 		sappend(inst->s, s);
6812 
6813 		/*
6814 		 * Do the computation only if the packet contains
6815 		 * the protocol in question - which is true only
6816 		 * if this is an IP datagram and is the first or
6817 		 * only fragment of that datagram.
6818 		 */
6819 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6820 		if (inst->b)
6821 			gen_and(inst->b, b);
6822 #ifdef INET6
6823 		gen_and(gen_proto_abbrev(Q_IP), b);
6824 #endif
6825 		inst->b = b;
6826 		break;
6827 #ifdef INET6
6828 	case Q_ICMPV6:
6829 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6830 		/*NOTREACHED*/
6831 #endif
6832 	}
6833 	inst->regno = regno;
6834 	s = new_stmt(BPF_ST);
6835 	s->s.k = regno;
6836 	sappend(inst->s, s);
6837 
6838 	return inst;
6839 }
6840 
6841 struct block *
6842 gen_relation(code, a0, a1, reversed)
6843 	int code;
6844 	struct arth *a0, *a1;
6845 	int reversed;
6846 {
6847 	struct slist *s0, *s1, *s2;
6848 	struct block *b, *tmp;
6849 
6850 	s0 = xfer_to_x(a1);
6851 	s1 = xfer_to_a(a0);
6852 	if (code == BPF_JEQ) {
6853 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6854 		b = new_block(JMP(code));
6855 		sappend(s1, s2);
6856 	}
6857 	else
6858 		b = new_block(BPF_JMP|code|BPF_X);
6859 	if (reversed)
6860 		gen_not(b);
6861 
6862 	sappend(s0, s1);
6863 	sappend(a1->s, s0);
6864 	sappend(a0->s, a1->s);
6865 
6866 	b->stmts = a0->s;
6867 
6868 	free_reg(a0->regno);
6869 	free_reg(a1->regno);
6870 
6871 	/* 'and' together protocol checks */
6872 	if (a0->b) {
6873 		if (a1->b) {
6874 			gen_and(a0->b, tmp = a1->b);
6875 		}
6876 		else
6877 			tmp = a0->b;
6878 	} else
6879 		tmp = a1->b;
6880 
6881 	if (tmp)
6882 		gen_and(tmp, b);
6883 
6884 	return b;
6885 }
6886 
6887 struct arth *
6888 gen_loadlen()
6889 {
6890 	int regno = alloc_reg();
6891 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6892 	struct slist *s;
6893 
6894 	s = new_stmt(BPF_LD|BPF_LEN);
6895 	s->next = new_stmt(BPF_ST);
6896 	s->next->s.k = regno;
6897 	a->s = s;
6898 	a->regno = regno;
6899 
6900 	return a;
6901 }
6902 
6903 struct arth *
6904 gen_loadi(val)
6905 	int val;
6906 {
6907 	struct arth *a;
6908 	struct slist *s;
6909 	int reg;
6910 
6911 	a = (struct arth *)newchunk(sizeof(*a));
6912 
6913 	reg = alloc_reg();
6914 
6915 	s = new_stmt(BPF_LD|BPF_IMM);
6916 	s->s.k = val;
6917 	s->next = new_stmt(BPF_ST);
6918 	s->next->s.k = reg;
6919 	a->s = s;
6920 	a->regno = reg;
6921 
6922 	return a;
6923 }
6924 
6925 struct arth *
6926 gen_neg(a)
6927 	struct arth *a;
6928 {
6929 	struct slist *s;
6930 
6931 	s = xfer_to_a(a);
6932 	sappend(a->s, s);
6933 	s = new_stmt(BPF_ALU|BPF_NEG);
6934 	s->s.k = 0;
6935 	sappend(a->s, s);
6936 	s = new_stmt(BPF_ST);
6937 	s->s.k = a->regno;
6938 	sappend(a->s, s);
6939 
6940 	return a;
6941 }
6942 
6943 struct arth *
6944 gen_arth(code, a0, a1)
6945 	int code;
6946 	struct arth *a0, *a1;
6947 {
6948 	struct slist *s0, *s1, *s2;
6949 
6950 	s0 = xfer_to_x(a1);
6951 	s1 = xfer_to_a(a0);
6952 	s2 = new_stmt(BPF_ALU|BPF_X|code);
6953 
6954 	sappend(s1, s2);
6955 	sappend(s0, s1);
6956 	sappend(a1->s, s0);
6957 	sappend(a0->s, a1->s);
6958 
6959 	free_reg(a0->regno);
6960 	free_reg(a1->regno);
6961 
6962 	s0 = new_stmt(BPF_ST);
6963 	a0->regno = s0->s.k = alloc_reg();
6964 	sappend(a0->s, s0);
6965 
6966 	return a0;
6967 }
6968 
6969 /*
6970  * Here we handle simple allocation of the scratch registers.
6971  * If too many registers are alloc'd, the allocator punts.
6972  */
6973 static int regused[BPF_MEMWORDS];
6974 static int curreg;
6975 
6976 /*
6977  * Initialize the table of used registers and the current register.
6978  */
6979 static void
6980 init_regs()
6981 {
6982 	curreg = 0;
6983 	memset(regused, 0, sizeof regused);
6984 }
6985 
6986 /*
6987  * Return the next free register.
6988  */
6989 static int
6990 alloc_reg()
6991 {
6992 	int n = BPF_MEMWORDS;
6993 
6994 	while (--n >= 0) {
6995 		if (regused[curreg])
6996 			curreg = (curreg + 1) % BPF_MEMWORDS;
6997 		else {
6998 			regused[curreg] = 1;
6999 			return curreg;
7000 		}
7001 	}
7002 	bpf_error("too many registers needed to evaluate expression");
7003 	/* NOTREACHED */
7004 	return 0;
7005 }
7006 
7007 /*
7008  * Return a register to the table so it can
7009  * be used later.
7010  */
7011 static void
7012 free_reg(n)
7013 	int n;
7014 {
7015 	regused[n] = 0;
7016 }
7017 
7018 static struct block *
7019 gen_len(jmp, n)
7020 	int jmp, n;
7021 {
7022 	struct slist *s;
7023 	struct block *b;
7024 
7025 	s = new_stmt(BPF_LD|BPF_LEN);
7026 	b = new_block(JMP(jmp));
7027 	b->stmts = s;
7028 	b->s.k = n;
7029 
7030 	return b;
7031 }
7032 
7033 struct block *
7034 gen_greater(n)
7035 	int n;
7036 {
7037 	return gen_len(BPF_JGE, n);
7038 }
7039 
7040 /*
7041  * Actually, this is less than or equal.
7042  */
7043 struct block *
7044 gen_less(n)
7045 	int n;
7046 {
7047 	struct block *b;
7048 
7049 	b = gen_len(BPF_JGT, n);
7050 	gen_not(b);
7051 
7052 	return b;
7053 }
7054 
7055 /*
7056  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7057  * the beginning of the link-layer header.
7058  * XXX - that means you can't test values in the radiotap header, but
7059  * as that header is difficult if not impossible to parse generally
7060  * without a loop, that might not be a severe problem.  A new keyword
7061  * "radio" could be added for that, although what you'd really want
7062  * would be a way of testing particular radio header values, which
7063  * would generate code appropriate to the radio header in question.
7064  */
7065 struct block *
7066 gen_byteop(op, idx, val)
7067 	int op, idx, val;
7068 {
7069 	struct block *b;
7070 	struct slist *s;
7071 
7072 	switch (op) {
7073 	default:
7074 		abort();
7075 
7076 	case '=':
7077 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7078 
7079 	case '<':
7080 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7081 		return b;
7082 
7083 	case '>':
7084 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7085 		return b;
7086 
7087 	case '|':
7088 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7089 		break;
7090 
7091 	case '&':
7092 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7093 		break;
7094 	}
7095 	s->s.k = val;
7096 	b = new_block(JMP(BPF_JEQ));
7097 	b->stmts = s;
7098 	gen_not(b);
7099 
7100 	return b;
7101 }
7102 
7103 static u_char abroadcast[] = { 0x0 };
7104 
7105 struct block *
7106 gen_broadcast(proto)
7107 	int proto;
7108 {
7109 	bpf_u_int32 hostmask;
7110 	struct block *b0, *b1, *b2;
7111 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7112 
7113 	switch (proto) {
7114 
7115 	case Q_DEFAULT:
7116 	case Q_LINK:
7117 		switch (linktype) {
7118 		case DLT_ARCNET:
7119 		case DLT_ARCNET_LINUX:
7120 			return gen_ahostop(abroadcast, Q_DST);
7121 		case DLT_EN10MB:
7122 			return gen_ehostop(ebroadcast, Q_DST);
7123 		case DLT_FDDI:
7124 			return gen_fhostop(ebroadcast, Q_DST);
7125 		case DLT_IEEE802:
7126 			return gen_thostop(ebroadcast, Q_DST);
7127 		case DLT_IEEE802_11:
7128 		case DLT_PRISM_HEADER:
7129 		case DLT_IEEE802_11_RADIO_AVS:
7130 		case DLT_IEEE802_11_RADIO:
7131 		case DLT_PPI:
7132 			return gen_wlanhostop(ebroadcast, Q_DST);
7133 		case DLT_IP_OVER_FC:
7134 			return gen_ipfchostop(ebroadcast, Q_DST);
7135 		case DLT_SUNATM:
7136 			if (is_lane) {
7137 				/*
7138 				 * Check that the packet doesn't begin with an
7139 				 * LE Control marker.  (We've already generated
7140 				 * a test for LANE.)
7141 				 */
7142 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7143 				    BPF_H, 0xFF00);
7144 				gen_not(b1);
7145 
7146 				/*
7147 				 * Now check the MAC address.
7148 				 */
7149 				b0 = gen_ehostop(ebroadcast, Q_DST);
7150 				gen_and(b1, b0);
7151 				return b0;
7152 			}
7153 			break;
7154 		default:
7155 			bpf_error("not a broadcast link");
7156 		}
7157 		break;
7158 
7159 	case Q_IP:
7160 		/*
7161 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7162 		 * as an indication that we don't know the netmask, and fail
7163 		 * in that case.
7164 		 */
7165 		if (netmask == PCAP_NETMASK_UNKNOWN)
7166 			bpf_error("netmask not known, so 'ip broadcast' not supported");
7167 		b0 = gen_linktype(ETHERTYPE_IP);
7168 		hostmask = ~netmask;
7169 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7170 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7171 			      (bpf_int32)(~0 & hostmask), hostmask);
7172 		gen_or(b1, b2);
7173 		gen_and(b0, b2);
7174 		return b2;
7175 	}
7176 	bpf_error("only link-layer/IP broadcast filters supported");
7177 	/* NOTREACHED */
7178 	return NULL;
7179 }
7180 
7181 /*
7182  * Generate code to test the low-order bit of a MAC address (that's
7183  * the bottom bit of the *first* byte).
7184  */
7185 static struct block *
7186 gen_mac_multicast(offset)
7187 	int offset;
7188 {
7189 	register struct block *b0;
7190 	register struct slist *s;
7191 
7192 	/* link[offset] & 1 != 0 */
7193 	s = gen_load_a(OR_LINK, offset, BPF_B);
7194 	b0 = new_block(JMP(BPF_JSET));
7195 	b0->s.k = 1;
7196 	b0->stmts = s;
7197 	return b0;
7198 }
7199 
7200 struct block *
7201 gen_multicast(proto)
7202 	int proto;
7203 {
7204 	register struct block *b0, *b1, *b2;
7205 	register struct slist *s;
7206 
7207 	switch (proto) {
7208 
7209 	case Q_DEFAULT:
7210 	case Q_LINK:
7211 		switch (linktype) {
7212 		case DLT_ARCNET:
7213 		case DLT_ARCNET_LINUX:
7214 			/* all ARCnet multicasts use the same address */
7215 			return gen_ahostop(abroadcast, Q_DST);
7216 		case DLT_EN10MB:
7217 			/* ether[0] & 1 != 0 */
7218 			return gen_mac_multicast(0);
7219 		case DLT_FDDI:
7220 			/*
7221 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7222 			 *
7223 			 * XXX - was that referring to bit-order issues?
7224 			 */
7225 			/* fddi[1] & 1 != 0 */
7226 			return gen_mac_multicast(1);
7227 		case DLT_IEEE802:
7228 			/* tr[2] & 1 != 0 */
7229 			return gen_mac_multicast(2);
7230 		case DLT_IEEE802_11:
7231 		case DLT_PRISM_HEADER:
7232 		case DLT_IEEE802_11_RADIO_AVS:
7233 		case DLT_IEEE802_11_RADIO:
7234 		case DLT_PPI:
7235 			/*
7236 			 * Oh, yuk.
7237 			 *
7238 			 *	For control frames, there is no DA.
7239 			 *
7240 			 *	For management frames, DA is at an
7241 			 *	offset of 4 from the beginning of
7242 			 *	the packet.
7243 			 *
7244 			 *	For data frames, DA is at an offset
7245 			 *	of 4 from the beginning of the packet
7246 			 *	if To DS is clear and at an offset of
7247 			 *	16 from the beginning of the packet
7248 			 *	if To DS is set.
7249 			 */
7250 
7251 			/*
7252 			 * Generate the tests to be done for data frames.
7253 			 *
7254 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7255 			 */
7256 			s = gen_load_a(OR_LINK, 1, BPF_B);
7257 			b1 = new_block(JMP(BPF_JSET));
7258 			b1->s.k = 0x01;	/* To DS */
7259 			b1->stmts = s;
7260 
7261 			/*
7262 			 * If To DS is set, the DA is at 16.
7263 			 */
7264 			b0 = gen_mac_multicast(16);
7265 			gen_and(b1, b0);
7266 
7267 			/*
7268 			 * Now, check for To DS not set, i.e. check
7269 			 * "!(link[1] & 0x01)".
7270 			 */
7271 			s = gen_load_a(OR_LINK, 1, BPF_B);
7272 			b2 = new_block(JMP(BPF_JSET));
7273 			b2->s.k = 0x01;	/* To DS */
7274 			b2->stmts = s;
7275 			gen_not(b2);
7276 
7277 			/*
7278 			 * If To DS is not set, the DA is at 4.
7279 			 */
7280 			b1 = gen_mac_multicast(4);
7281 			gen_and(b2, b1);
7282 
7283 			/*
7284 			 * Now OR together the last two checks.  That gives
7285 			 * the complete set of checks for data frames.
7286 			 */
7287 			gen_or(b1, b0);
7288 
7289 			/*
7290 			 * Now check for a data frame.
7291 			 * I.e, check "link[0] & 0x08".
7292 			 */
7293 			s = gen_load_a(OR_LINK, 0, BPF_B);
7294 			b1 = new_block(JMP(BPF_JSET));
7295 			b1->s.k = 0x08;
7296 			b1->stmts = s;
7297 
7298 			/*
7299 			 * AND that with the checks done for data frames.
7300 			 */
7301 			gen_and(b1, b0);
7302 
7303 			/*
7304 			 * If the high-order bit of the type value is 0, this
7305 			 * is a management frame.
7306 			 * I.e, check "!(link[0] & 0x08)".
7307 			 */
7308 			s = gen_load_a(OR_LINK, 0, BPF_B);
7309 			b2 = new_block(JMP(BPF_JSET));
7310 			b2->s.k = 0x08;
7311 			b2->stmts = s;
7312 			gen_not(b2);
7313 
7314 			/*
7315 			 * For management frames, the DA is at 4.
7316 			 */
7317 			b1 = gen_mac_multicast(4);
7318 			gen_and(b2, b1);
7319 
7320 			/*
7321 			 * OR that with the checks done for data frames.
7322 			 * That gives the checks done for management and
7323 			 * data frames.
7324 			 */
7325 			gen_or(b1, b0);
7326 
7327 			/*
7328 			 * If the low-order bit of the type value is 1,
7329 			 * this is either a control frame or a frame
7330 			 * with a reserved type, and thus not a
7331 			 * frame with an SA.
7332 			 *
7333 			 * I.e., check "!(link[0] & 0x04)".
7334 			 */
7335 			s = gen_load_a(OR_LINK, 0, BPF_B);
7336 			b1 = new_block(JMP(BPF_JSET));
7337 			b1->s.k = 0x04;
7338 			b1->stmts = s;
7339 			gen_not(b1);
7340 
7341 			/*
7342 			 * AND that with the checks for data and management
7343 			 * frames.
7344 			 */
7345 			gen_and(b1, b0);
7346 			return b0;
7347 		case DLT_IP_OVER_FC:
7348 			b0 = gen_mac_multicast(2);
7349 			return b0;
7350 		case DLT_SUNATM:
7351 			if (is_lane) {
7352 				/*
7353 				 * Check that the packet doesn't begin with an
7354 				 * LE Control marker.  (We've already generated
7355 				 * a test for LANE.)
7356 				 */
7357 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7358 				    BPF_H, 0xFF00);
7359 				gen_not(b1);
7360 
7361 				/* ether[off_mac] & 1 != 0 */
7362 				b0 = gen_mac_multicast(off_mac);
7363 				gen_and(b1, b0);
7364 				return b0;
7365 			}
7366 			break;
7367 		default:
7368 			break;
7369 		}
7370 		/* Link not known to support multicasts */
7371 		break;
7372 
7373 	case Q_IP:
7374 		b0 = gen_linktype(ETHERTYPE_IP);
7375 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7376 		gen_and(b0, b1);
7377 		return b1;
7378 
7379 #ifdef INET6
7380 	case Q_IPV6:
7381 		b0 = gen_linktype(ETHERTYPE_IPV6);
7382 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7383 		gen_and(b0, b1);
7384 		return b1;
7385 #endif /* INET6 */
7386 	}
7387 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7388 	/* NOTREACHED */
7389 	return NULL;
7390 }
7391 
7392 /*
7393  * generate command for inbound/outbound.  It's here so we can
7394  * make it link-type specific.  'dir' = 0 implies "inbound",
7395  * = 1 implies "outbound".
7396  */
7397 struct block *
7398 gen_inbound(dir)
7399 	int dir;
7400 {
7401 	register struct block *b0;
7402 
7403 	/*
7404 	 * Only some data link types support inbound/outbound qualifiers.
7405 	 */
7406 	switch (linktype) {
7407 	case DLT_SLIP:
7408 		b0 = gen_relation(BPF_JEQ,
7409 			  gen_load(Q_LINK, gen_loadi(0), 1),
7410 			  gen_loadi(0),
7411 			  dir);
7412 		break;
7413 
7414 	case DLT_IPNET:
7415 		if (dir) {
7416 			/* match outgoing packets */
7417 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7418 		} else {
7419 			/* match incoming packets */
7420 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7421 		}
7422 		break;
7423 
7424 	case DLT_LINUX_SLL:
7425 		if (dir) {
7426 			/*
7427 			 * Match packets sent by this machine.
7428 			 */
7429 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7430 		} else {
7431 			/*
7432 			 * Match packets sent to this machine.
7433 			 * (No broadcast or multicast packets, or
7434 			 * packets sent to some other machine and
7435 			 * received promiscuously.)
7436 			 *
7437 			 * XXX - packets sent to other machines probably
7438 			 * shouldn't be matched, but what about broadcast
7439 			 * or multicast packets we received?
7440 			 */
7441 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
7442 		}
7443 		break;
7444 
7445 #ifdef HAVE_NET_PFVAR_H
7446 	case DLT_PFLOG:
7447 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7448 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7449 		break;
7450 #endif
7451 
7452 	case DLT_PPP_PPPD:
7453 		if (dir) {
7454 			/* match outgoing packets */
7455 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7456 		} else {
7457 			/* match incoming packets */
7458 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7459 		}
7460 		break;
7461 
7462         case DLT_JUNIPER_MFR:
7463         case DLT_JUNIPER_MLFR:
7464         case DLT_JUNIPER_MLPPP:
7465 	case DLT_JUNIPER_ATM1:
7466 	case DLT_JUNIPER_ATM2:
7467 	case DLT_JUNIPER_PPPOE:
7468 	case DLT_JUNIPER_PPPOE_ATM:
7469         case DLT_JUNIPER_GGSN:
7470         case DLT_JUNIPER_ES:
7471         case DLT_JUNIPER_MONITOR:
7472         case DLT_JUNIPER_SERVICES:
7473         case DLT_JUNIPER_ETHER:
7474         case DLT_JUNIPER_PPP:
7475         case DLT_JUNIPER_FRELAY:
7476         case DLT_JUNIPER_CHDLC:
7477         case DLT_JUNIPER_VP:
7478         case DLT_JUNIPER_ST:
7479         case DLT_JUNIPER_ISM:
7480 		/* juniper flags (including direction) are stored
7481 		 * the byte after the 3-byte magic number */
7482 		if (dir) {
7483 			/* match outgoing packets */
7484 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7485 		} else {
7486 			/* match incoming packets */
7487 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7488 		}
7489 		break;
7490 
7491 	default:
7492 		bpf_error("inbound/outbound not supported on linktype %d",
7493 		    linktype);
7494 		b0 = NULL;
7495 		/* NOTREACHED */
7496 	}
7497 	return (b0);
7498 }
7499 
7500 #ifdef HAVE_NET_PFVAR_H
7501 /* PF firewall log matched interface */
7502 struct block *
7503 gen_pf_ifname(const char *ifname)
7504 {
7505 	struct block *b0;
7506 	u_int len, off;
7507 
7508 	if (linktype != DLT_PFLOG) {
7509 		bpf_error("ifname supported only on PF linktype");
7510 		/* NOTREACHED */
7511 	}
7512 	len = sizeof(((struct pfloghdr *)0)->ifname);
7513 	off = offsetof(struct pfloghdr, ifname);
7514 	if (strlen(ifname) >= len) {
7515 		bpf_error("ifname interface names can only be %d characters",
7516 		    len-1);
7517 		/* NOTREACHED */
7518 	}
7519 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7520 	return (b0);
7521 }
7522 
7523 /* PF firewall log ruleset name */
7524 struct block *
7525 gen_pf_ruleset(char *ruleset)
7526 {
7527 	struct block *b0;
7528 
7529 	if (linktype != DLT_PFLOG) {
7530 		bpf_error("ruleset supported only on PF linktype");
7531 		/* NOTREACHED */
7532 	}
7533 
7534 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7535 		bpf_error("ruleset names can only be %ld characters",
7536 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7537 		/* NOTREACHED */
7538 	}
7539 
7540 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7541 	    strlen(ruleset), (const u_char *)ruleset);
7542 	return (b0);
7543 }
7544 
7545 /* PF firewall log rule number */
7546 struct block *
7547 gen_pf_rnr(int rnr)
7548 {
7549 	struct block *b0;
7550 
7551 	if (linktype != DLT_PFLOG) {
7552 		bpf_error("rnr supported only on PF linktype");
7553 		/* NOTREACHED */
7554 	}
7555 
7556 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7557 		 (bpf_int32)rnr);
7558 	return (b0);
7559 }
7560 
7561 /* PF firewall log sub-rule number */
7562 struct block *
7563 gen_pf_srnr(int srnr)
7564 {
7565 	struct block *b0;
7566 
7567 	if (linktype != DLT_PFLOG) {
7568 		bpf_error("srnr supported only on PF linktype");
7569 		/* NOTREACHED */
7570 	}
7571 
7572 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7573 	    (bpf_int32)srnr);
7574 	return (b0);
7575 }
7576 
7577 /* PF firewall log reason code */
7578 struct block *
7579 gen_pf_reason(int reason)
7580 {
7581 	struct block *b0;
7582 
7583 	if (linktype != DLT_PFLOG) {
7584 		bpf_error("reason supported only on PF linktype");
7585 		/* NOTREACHED */
7586 	}
7587 
7588 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7589 	    (bpf_int32)reason);
7590 	return (b0);
7591 }
7592 
7593 /* PF firewall log action */
7594 struct block *
7595 gen_pf_action(int action)
7596 {
7597 	struct block *b0;
7598 
7599 	if (linktype != DLT_PFLOG) {
7600 		bpf_error("action supported only on PF linktype");
7601 		/* NOTREACHED */
7602 	}
7603 
7604 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7605 	    (bpf_int32)action);
7606 	return (b0);
7607 }
7608 #else /* !HAVE_NET_PFVAR_H */
7609 struct block *
7610 gen_pf_ifname(const char *ifname)
7611 {
7612 	bpf_error("libpcap was compiled without pf support");
7613 	/* NOTREACHED */
7614 	return (NULL);
7615 }
7616 
7617 struct block *
7618 gen_pf_ruleset(char *ruleset)
7619 {
7620 	bpf_error("libpcap was compiled on a machine without pf support");
7621 	/* NOTREACHED */
7622 	return (NULL);
7623 }
7624 
7625 struct block *
7626 gen_pf_rnr(int rnr)
7627 {
7628 	bpf_error("libpcap was compiled on a machine without pf support");
7629 	/* NOTREACHED */
7630 	return (NULL);
7631 }
7632 
7633 struct block *
7634 gen_pf_srnr(int srnr)
7635 {
7636 	bpf_error("libpcap was compiled on a machine without pf support");
7637 	/* NOTREACHED */
7638 	return (NULL);
7639 }
7640 
7641 struct block *
7642 gen_pf_reason(int reason)
7643 {
7644 	bpf_error("libpcap was compiled on a machine without pf support");
7645 	/* NOTREACHED */
7646 	return (NULL);
7647 }
7648 
7649 struct block *
7650 gen_pf_action(int action)
7651 {
7652 	bpf_error("libpcap was compiled on a machine without pf support");
7653 	/* NOTREACHED */
7654 	return (NULL);
7655 }
7656 #endif /* HAVE_NET_PFVAR_H */
7657 
7658 /* IEEE 802.11 wireless header */
7659 struct block *
7660 gen_p80211_type(int type, int mask)
7661 {
7662 	struct block *b0;
7663 
7664 	switch (linktype) {
7665 
7666 	case DLT_IEEE802_11:
7667 	case DLT_PRISM_HEADER:
7668 	case DLT_IEEE802_11_RADIO_AVS:
7669 	case DLT_IEEE802_11_RADIO:
7670 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7671 		    (bpf_int32)mask);
7672 		break;
7673 
7674 	default:
7675 		bpf_error("802.11 link-layer types supported only on 802.11");
7676 		/* NOTREACHED */
7677 	}
7678 
7679 	return (b0);
7680 }
7681 
7682 struct block *
7683 gen_p80211_fcdir(int fcdir)
7684 {
7685 	struct block *b0;
7686 
7687 	switch (linktype) {
7688 
7689 	case DLT_IEEE802_11:
7690 	case DLT_PRISM_HEADER:
7691 	case DLT_IEEE802_11_RADIO_AVS:
7692 	case DLT_IEEE802_11_RADIO:
7693 		break;
7694 
7695 	default:
7696 		bpf_error("frame direction supported only with 802.11 headers");
7697 		/* NOTREACHED */
7698 	}
7699 
7700 	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7701 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7702 
7703 	return (b0);
7704 }
7705 
7706 struct block *
7707 gen_acode(eaddr, q)
7708 	register const u_char *eaddr;
7709 	struct qual q;
7710 {
7711 	switch (linktype) {
7712 
7713 	case DLT_ARCNET:
7714 	case DLT_ARCNET_LINUX:
7715 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7716 		    q.proto == Q_LINK)
7717 			return (gen_ahostop(eaddr, (int)q.dir));
7718 		else {
7719 			bpf_error("ARCnet address used in non-arc expression");
7720 			/* NOTREACHED */
7721 		}
7722 		break;
7723 
7724 	default:
7725 		bpf_error("aid supported only on ARCnet");
7726 		/* NOTREACHED */
7727 	}
7728 	bpf_error("ARCnet address used in non-arc expression");
7729 	/* NOTREACHED */
7730 	return NULL;
7731 }
7732 
7733 static struct block *
7734 gen_ahostop(eaddr, dir)
7735 	register const u_char *eaddr;
7736 	register int dir;
7737 {
7738 	register struct block *b0, *b1;
7739 
7740 	switch (dir) {
7741 	/* src comes first, different from Ethernet */
7742 	case Q_SRC:
7743 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7744 
7745 	case Q_DST:
7746 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7747 
7748 	case Q_AND:
7749 		b0 = gen_ahostop(eaddr, Q_SRC);
7750 		b1 = gen_ahostop(eaddr, Q_DST);
7751 		gen_and(b0, b1);
7752 		return b1;
7753 
7754 	case Q_DEFAULT:
7755 	case Q_OR:
7756 		b0 = gen_ahostop(eaddr, Q_SRC);
7757 		b1 = gen_ahostop(eaddr, Q_DST);
7758 		gen_or(b0, b1);
7759 		return b1;
7760 	}
7761 	abort();
7762 	/* NOTREACHED */
7763 }
7764 
7765 /*
7766  * support IEEE 802.1Q VLAN trunk over ethernet
7767  */
7768 struct block *
7769 gen_vlan(vlan_num)
7770 	int vlan_num;
7771 {
7772 	struct	block	*b0, *b1;
7773 
7774 	/* can't check for VLAN-encapsulated packets inside MPLS */
7775 	if (label_stack_depth > 0)
7776 		bpf_error("no VLAN match after MPLS");
7777 
7778 	/*
7779 	 * Check for a VLAN packet, and then change the offsets to point
7780 	 * to the type and data fields within the VLAN packet.  Just
7781 	 * increment the offsets, so that we can support a hierarchy, e.g.
7782 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7783 	 * VLAN 100.
7784 	 *
7785 	 * XXX - this is a bit of a kludge.  If we were to split the
7786 	 * compiler into a parser that parses an expression and
7787 	 * generates an expression tree, and a code generator that
7788 	 * takes an expression tree (which could come from our
7789 	 * parser or from some other parser) and generates BPF code,
7790 	 * we could perhaps make the offsets parameters of routines
7791 	 * and, in the handler for an "AND" node, pass to subnodes
7792 	 * other than the VLAN node the adjusted offsets.
7793 	 *
7794 	 * This would mean that "vlan" would, instead of changing the
7795 	 * behavior of *all* tests after it, change only the behavior
7796 	 * of tests ANDed with it.  That would change the documented
7797 	 * semantics of "vlan", which might break some expressions.
7798 	 * However, it would mean that "(vlan and ip) or ip" would check
7799 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7800 	 * checking only for VLAN-encapsulated IP, so that could still
7801 	 * be considered worth doing; it wouldn't break expressions
7802 	 * that are of the form "vlan and ..." or "vlan N and ...",
7803 	 * which I suspect are the most common expressions involving
7804 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7805 	 * would really want, now, as all the "or ..." tests would
7806 	 * be done assuming a VLAN, even though the "or" could be viewed
7807 	 * as meaning "or, if this isn't a VLAN packet...".
7808 	 */
7809 	orig_nl = off_nl;
7810 
7811 	switch (linktype) {
7812 
7813 	case DLT_EN10MB:
7814 		/* check for VLAN */
7815 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7816 		    (bpf_int32)ETHERTYPE_8021Q);
7817 
7818 		/* If a specific VLAN is requested, check VLAN id */
7819 		if (vlan_num >= 0) {
7820 			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7821 			    (bpf_int32)vlan_num, 0x0fff);
7822 			gen_and(b0, b1);
7823 			b0 = b1;
7824 		}
7825 
7826 		off_macpl += 4;
7827 		off_linktype += 4;
7828 #if 0
7829 		off_nl_nosnap += 4;
7830 		off_nl += 4;
7831 #endif
7832 		break;
7833 
7834 	default:
7835 		bpf_error("no VLAN support for data link type %d",
7836 		      linktype);
7837 		/*NOTREACHED*/
7838 	}
7839 
7840 	return (b0);
7841 }
7842 
7843 /*
7844  * support for MPLS
7845  */
7846 struct block *
7847 gen_mpls(label_num)
7848 	int label_num;
7849 {
7850 	struct	block	*b0,*b1;
7851 
7852 	/*
7853 	 * Change the offsets to point to the type and data fields within
7854 	 * the MPLS packet.  Just increment the offsets, so that we
7855 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7856 	 * capture packets with an outer label of 100000 and an inner
7857 	 * label of 1024.
7858 	 *
7859 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7860 	 */
7861         orig_nl = off_nl;
7862 
7863         if (label_stack_depth > 0) {
7864             /* just match the bottom-of-stack bit clear */
7865             b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7866         } else {
7867             /*
7868              * Indicate that we're checking MPLS-encapsulated headers,
7869              * to make sure higher level code generators don't try to
7870              * match against IP-related protocols such as Q_ARP, Q_RARP
7871              * etc.
7872              */
7873             switch (linktype) {
7874 
7875             case DLT_C_HDLC: /* fall through */
7876             case DLT_EN10MB:
7877                     b0 = gen_linktype(ETHERTYPE_MPLS);
7878                     break;
7879 
7880             case DLT_PPP:
7881                     b0 = gen_linktype(PPP_MPLS_UCAST);
7882                     break;
7883 
7884                     /* FIXME add other DLT_s ...
7885                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
7886                      * leave it for now */
7887 
7888             default:
7889                     bpf_error("no MPLS support for data link type %d",
7890                           linktype);
7891                     b0 = NULL;
7892                     /*NOTREACHED*/
7893                     break;
7894             }
7895         }
7896 
7897 	/* If a specific MPLS label is requested, check it */
7898 	if (label_num >= 0) {
7899 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
7900 		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
7901 		    0xfffff000); /* only compare the first 20 bits */
7902 		gen_and(b0, b1);
7903 		b0 = b1;
7904 	}
7905 
7906         off_nl_nosnap += 4;
7907         off_nl += 4;
7908         label_stack_depth++;
7909 	return (b0);
7910 }
7911 
7912 /*
7913  * Support PPPOE discovery and session.
7914  */
7915 struct block *
7916 gen_pppoed()
7917 {
7918 	/* check for PPPoE discovery */
7919 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
7920 }
7921 
7922 struct block *
7923 gen_pppoes()
7924 {
7925 	struct block *b0;
7926 
7927 	/*
7928 	 * Test against the PPPoE session link-layer type.
7929 	 */
7930 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
7931 
7932 	/*
7933 	 * Change the offsets to point to the type and data fields within
7934 	 * the PPP packet, and note that this is PPPoE rather than
7935 	 * raw PPP.
7936 	 *
7937 	 * XXX - this is a bit of a kludge.  If we were to split the
7938 	 * compiler into a parser that parses an expression and
7939 	 * generates an expression tree, and a code generator that
7940 	 * takes an expression tree (which could come from our
7941 	 * parser or from some other parser) and generates BPF code,
7942 	 * we could perhaps make the offsets parameters of routines
7943 	 * and, in the handler for an "AND" node, pass to subnodes
7944 	 * other than the PPPoE node the adjusted offsets.
7945 	 *
7946 	 * This would mean that "pppoes" would, instead of changing the
7947 	 * behavior of *all* tests after it, change only the behavior
7948 	 * of tests ANDed with it.  That would change the documented
7949 	 * semantics of "pppoes", which might break some expressions.
7950 	 * However, it would mean that "(pppoes and ip) or ip" would check
7951 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7952 	 * checking only for VLAN-encapsulated IP, so that could still
7953 	 * be considered worth doing; it wouldn't break expressions
7954 	 * that are of the form "pppoes and ..." which I suspect are the
7955 	 * most common expressions involving "pppoes".  "pppoes or ..."
7956 	 * doesn't necessarily do what the user would really want, now,
7957 	 * as all the "or ..." tests would be done assuming PPPoE, even
7958 	 * though the "or" could be viewed as meaning "or, if this isn't
7959 	 * a PPPoE packet...".
7960 	 */
7961 	orig_linktype = off_linktype;	/* save original values */
7962 	orig_nl = off_nl;
7963 	is_pppoes = 1;
7964 
7965 	/*
7966 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
7967 	 * PPPoE header, followed by a PPP packet.
7968 	 *
7969 	 * There is no HDLC encapsulation for the PPP packet (it's
7970 	 * encapsulated in PPPoES instead), so the link-layer type
7971 	 * starts at the first byte of the PPP packet.  For PPPoE,
7972 	 * that offset is relative to the beginning of the total
7973 	 * link-layer payload, including any 802.2 LLC header, so
7974 	 * it's 6 bytes past off_nl.
7975 	 */
7976 	off_linktype = off_nl + 6;
7977 
7978 	/*
7979 	 * The network-layer offsets are relative to the beginning
7980 	 * of the MAC-layer payload; that's past the 6-byte
7981 	 * PPPoE header and the 2-byte PPP header.
7982 	 */
7983 	off_nl = 6+2;
7984 	off_nl_nosnap = 6+2;
7985 
7986 	return b0;
7987 }
7988 
7989 struct block *
7990 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
7991 	int atmfield;
7992 	bpf_int32 jvalue;
7993 	bpf_u_int32 jtype;
7994 	int reverse;
7995 {
7996 	struct block *b0;
7997 
7998 	switch (atmfield) {
7999 
8000 	case A_VPI:
8001 		if (!is_atm)
8002 			bpf_error("'vpi' supported only on raw ATM");
8003 		if (off_vpi == (u_int)-1)
8004 			abort();
8005 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8006 		    reverse, jvalue);
8007 		break;
8008 
8009 	case A_VCI:
8010 		if (!is_atm)
8011 			bpf_error("'vci' supported only on raw ATM");
8012 		if (off_vci == (u_int)-1)
8013 			abort();
8014 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8015 		    reverse, jvalue);
8016 		break;
8017 
8018 	case A_PROTOTYPE:
8019 		if (off_proto == (u_int)-1)
8020 			abort();	/* XXX - this isn't on FreeBSD */
8021 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8022 		    reverse, jvalue);
8023 		break;
8024 
8025 	case A_MSGTYPE:
8026 		if (off_payload == (u_int)-1)
8027 			abort();
8028 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8029 		    0xffffffff, jtype, reverse, jvalue);
8030 		break;
8031 
8032 	case A_CALLREFTYPE:
8033 		if (!is_atm)
8034 			bpf_error("'callref' supported only on raw ATM");
8035 		if (off_proto == (u_int)-1)
8036 			abort();
8037 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8038 		    jtype, reverse, jvalue);
8039 		break;
8040 
8041 	default:
8042 		abort();
8043 	}
8044 	return b0;
8045 }
8046 
8047 struct block *
8048 gen_atmtype_abbrev(type)
8049 	int type;
8050 {
8051 	struct block *b0, *b1;
8052 
8053 	switch (type) {
8054 
8055 	case A_METAC:
8056 		/* Get all packets in Meta signalling Circuit */
8057 		if (!is_atm)
8058 			bpf_error("'metac' supported only on raw ATM");
8059 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8060 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8061 		gen_and(b0, b1);
8062 		break;
8063 
8064 	case A_BCC:
8065 		/* Get all packets in Broadcast Circuit*/
8066 		if (!is_atm)
8067 			bpf_error("'bcc' supported only on raw ATM");
8068 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8069 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8070 		gen_and(b0, b1);
8071 		break;
8072 
8073 	case A_OAMF4SC:
8074 		/* Get all cells in Segment OAM F4 circuit*/
8075 		if (!is_atm)
8076 			bpf_error("'oam4sc' supported only on raw ATM");
8077 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8078 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8079 		gen_and(b0, b1);
8080 		break;
8081 
8082 	case A_OAMF4EC:
8083 		/* Get all cells in End-to-End OAM F4 Circuit*/
8084 		if (!is_atm)
8085 			bpf_error("'oam4ec' supported only on raw ATM");
8086 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8087 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8088 		gen_and(b0, b1);
8089 		break;
8090 
8091 	case A_SC:
8092 		/*  Get all packets in connection Signalling Circuit */
8093 		if (!is_atm)
8094 			bpf_error("'sc' supported only on raw ATM");
8095 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8096 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8097 		gen_and(b0, b1);
8098 		break;
8099 
8100 	case A_ILMIC:
8101 		/* Get all packets in ILMI Circuit */
8102 		if (!is_atm)
8103 			bpf_error("'ilmic' supported only on raw ATM");
8104 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8105 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8106 		gen_and(b0, b1);
8107 		break;
8108 
8109 	case A_LANE:
8110 		/* Get all LANE packets */
8111 		if (!is_atm)
8112 			bpf_error("'lane' supported only on raw ATM");
8113 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8114 
8115 		/*
8116 		 * Arrange that all subsequent tests assume LANE
8117 		 * rather than LLC-encapsulated packets, and set
8118 		 * the offsets appropriately for LANE-encapsulated
8119 		 * Ethernet.
8120 		 *
8121 		 * "off_mac" is the offset of the Ethernet header,
8122 		 * which is 2 bytes past the ATM pseudo-header
8123 		 * (skipping the pseudo-header and 2-byte LE Client
8124 		 * field).  The other offsets are Ethernet offsets
8125 		 * relative to "off_mac".
8126 		 */
8127 		is_lane = 1;
8128 		off_mac = off_payload + 2;	/* MAC header */
8129 		off_linktype = off_mac + 12;
8130 		off_macpl = off_mac + 14;	/* Ethernet */
8131 		off_nl = 0;			/* Ethernet II */
8132 		off_nl_nosnap = 3;		/* 802.3+802.2 */
8133 		break;
8134 
8135 	case A_LLC:
8136 		/* Get all LLC-encapsulated packets */
8137 		if (!is_atm)
8138 			bpf_error("'llc' supported only on raw ATM");
8139 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8140 		is_lane = 0;
8141 		break;
8142 
8143 	default:
8144 		abort();
8145 	}
8146 	return b1;
8147 }
8148 
8149 /*
8150  * Filtering for MTP2 messages based on li value
8151  * FISU, length is null
8152  * LSSU, length is 1 or 2
8153  * MSU, length is 3 or more
8154  */
8155 struct block *
8156 gen_mtp2type_abbrev(type)
8157 	int type;
8158 {
8159 	struct block *b0, *b1;
8160 
8161 	switch (type) {
8162 
8163 	case M_FISU:
8164 		if ( (linktype != DLT_MTP2) &&
8165 		     (linktype != DLT_ERF) &&
8166 		     (linktype != DLT_MTP2_WITH_PHDR) )
8167 			bpf_error("'fisu' supported only on MTP2");
8168 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8169 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8170 		break;
8171 
8172 	case M_LSSU:
8173 		if ( (linktype != DLT_MTP2) &&
8174 		     (linktype != DLT_ERF) &&
8175 		     (linktype != DLT_MTP2_WITH_PHDR) )
8176 			bpf_error("'lssu' supported only on MTP2");
8177 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8178 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8179 		gen_and(b1, b0);
8180 		break;
8181 
8182 	case M_MSU:
8183 		if ( (linktype != DLT_MTP2) &&
8184 		     (linktype != DLT_ERF) &&
8185 		     (linktype != DLT_MTP2_WITH_PHDR) )
8186 			bpf_error("'msu' supported only on MTP2");
8187 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8188 		break;
8189 
8190 	default:
8191 		abort();
8192 	}
8193 	return b0;
8194 }
8195 
8196 struct block *
8197 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8198 	int mtp3field;
8199 	bpf_u_int32 jvalue;
8200 	bpf_u_int32 jtype;
8201 	int reverse;
8202 {
8203 	struct block *b0;
8204 	bpf_u_int32 val1 , val2 , val3;
8205 
8206 	switch (mtp3field) {
8207 
8208 	case M_SIO:
8209 		if (off_sio == (u_int)-1)
8210 			bpf_error("'sio' supported only on SS7");
8211 		/* sio coded on 1 byte so max value 255 */
8212 		if(jvalue > 255)
8213 		        bpf_error("sio value %u too big; max value = 255",
8214 		            jvalue);
8215 		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8216 		    (u_int)jtype, reverse, (u_int)jvalue);
8217 		break;
8218 
8219         case M_OPC:
8220 	        if (off_opc == (u_int)-1)
8221 			bpf_error("'opc' supported only on SS7");
8222 		/* opc coded on 14 bits so max value 16383 */
8223 		if (jvalue > 16383)
8224 		        bpf_error("opc value %u too big; max value = 16383",
8225 		            jvalue);
8226 		/* the following instructions are made to convert jvalue
8227 		 * to the form used to write opc in an ss7 message*/
8228 		val1 = jvalue & 0x00003c00;
8229 		val1 = val1 >>10;
8230 		val2 = jvalue & 0x000003fc;
8231 		val2 = val2 <<6;
8232 		val3 = jvalue & 0x00000003;
8233 		val3 = val3 <<22;
8234 		jvalue = val1 + val2 + val3;
8235 		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8236 		    (u_int)jtype, reverse, (u_int)jvalue);
8237 		break;
8238 
8239 	case M_DPC:
8240 	        if (off_dpc == (u_int)-1)
8241 			bpf_error("'dpc' supported only on SS7");
8242 		/* dpc coded on 14 bits so max value 16383 */
8243 		if (jvalue > 16383)
8244 		        bpf_error("dpc value %u too big; max value = 16383",
8245 		            jvalue);
8246 		/* the following instructions are made to convert jvalue
8247 		 * to the forme used to write dpc in an ss7 message*/
8248 		val1 = jvalue & 0x000000ff;
8249 		val1 = val1 << 24;
8250 		val2 = jvalue & 0x00003f00;
8251 		val2 = val2 << 8;
8252 		jvalue = val1 + val2;
8253 		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8254 		    (u_int)jtype, reverse, (u_int)jvalue);
8255 		break;
8256 
8257 	case M_SLS:
8258 	        if (off_sls == (u_int)-1)
8259 			bpf_error("'sls' supported only on SS7");
8260 		/* sls coded on 4 bits so max value 15 */
8261 		if (jvalue > 15)
8262 		         bpf_error("sls value %u too big; max value = 15",
8263 		             jvalue);
8264 		/* the following instruction is made to convert jvalue
8265 		 * to the forme used to write sls in an ss7 message*/
8266 		jvalue = jvalue << 4;
8267 		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8268 		    (u_int)jtype,reverse, (u_int)jvalue);
8269 		break;
8270 
8271 	default:
8272 		abort();
8273 	}
8274 	return b0;
8275 }
8276 
8277 static struct block *
8278 gen_msg_abbrev(type)
8279 	int type;
8280 {
8281 	struct block *b1;
8282 
8283 	/*
8284 	 * Q.2931 signalling protocol messages for handling virtual circuits
8285 	 * establishment and teardown
8286 	 */
8287 	switch (type) {
8288 
8289 	case A_SETUP:
8290 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8291 		break;
8292 
8293 	case A_CALLPROCEED:
8294 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8295 		break;
8296 
8297 	case A_CONNECT:
8298 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8299 		break;
8300 
8301 	case A_CONNECTACK:
8302 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8303 		break;
8304 
8305 	case A_RELEASE:
8306 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8307 		break;
8308 
8309 	case A_RELEASE_DONE:
8310 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8311 		break;
8312 
8313 	default:
8314 		abort();
8315 	}
8316 	return b1;
8317 }
8318 
8319 struct block *
8320 gen_atmmulti_abbrev(type)
8321 	int type;
8322 {
8323 	struct block *b0, *b1;
8324 
8325 	switch (type) {
8326 
8327 	case A_OAM:
8328 		if (!is_atm)
8329 			bpf_error("'oam' supported only on raw ATM");
8330 		b1 = gen_atmmulti_abbrev(A_OAMF4);
8331 		break;
8332 
8333 	case A_OAMF4:
8334 		if (!is_atm)
8335 			bpf_error("'oamf4' supported only on raw ATM");
8336 		/* OAM F4 type */
8337 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8338 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8339 		gen_or(b0, b1);
8340 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8341 		gen_and(b0, b1);
8342 		break;
8343 
8344 	case A_CONNECTMSG:
8345 		/*
8346 		 * Get Q.2931 signalling messages for switched
8347 		 * virtual connection
8348 		 */
8349 		if (!is_atm)
8350 			bpf_error("'connectmsg' supported only on raw ATM");
8351 		b0 = gen_msg_abbrev(A_SETUP);
8352 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8353 		gen_or(b0, b1);
8354 		b0 = gen_msg_abbrev(A_CONNECT);
8355 		gen_or(b0, b1);
8356 		b0 = gen_msg_abbrev(A_CONNECTACK);
8357 		gen_or(b0, b1);
8358 		b0 = gen_msg_abbrev(A_RELEASE);
8359 		gen_or(b0, b1);
8360 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8361 		gen_or(b0, b1);
8362 		b0 = gen_atmtype_abbrev(A_SC);
8363 		gen_and(b0, b1);
8364 		break;
8365 
8366 	case A_METACONNECT:
8367 		if (!is_atm)
8368 			bpf_error("'metaconnect' supported only on raw ATM");
8369 		b0 = gen_msg_abbrev(A_SETUP);
8370 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8371 		gen_or(b0, b1);
8372 		b0 = gen_msg_abbrev(A_CONNECT);
8373 		gen_or(b0, b1);
8374 		b0 = gen_msg_abbrev(A_RELEASE);
8375 		gen_or(b0, b1);
8376 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8377 		gen_or(b0, b1);
8378 		b0 = gen_atmtype_abbrev(A_METAC);
8379 		gen_and(b0, b1);
8380 		break;
8381 
8382 	default:
8383 		abort();
8384 	}
8385 	return b1;
8386 }
8387