xref: /netbsd/external/bsd/ntp/dist/ntpd/refclock_arc.c (revision 6550d01e)
1 /*	$NetBSD: refclock_arc.c,v 1.2 2009/12/14 00:46:21 christos Exp $	*/
2 
3 /*
4  * refclock_arc - clock driver for ARCRON MSF/DCF/WWVB receivers
5  */
6 
7 #ifdef HAVE_CONFIG_H
8 #include <config.h>
9 #endif
10 
11 #if defined(REFCLOCK) && defined(CLOCK_ARCRON_MSF)
12 
13 static const char arc_version[] = { "V1.3 2003/02/21" };
14 
15 /* define PRE_NTP420 for compatibility to previous versions of NTP (at least
16    to 4.1.0 */
17 #undef PRE_NTP420
18 
19 #ifndef ARCRON_NOT_KEEN
20 #define ARCRON_KEEN 1 /* Be keen, and trusting of the clock, if defined. */
21 #endif
22 
23 #ifndef ARCRON_NOT_MULTIPLE_SAMPLES
24 #define ARCRON_MULTIPLE_SAMPLES 1 /* Use all timestamp bytes as samples. */
25 #endif
26 
27 #ifndef ARCRON_NOT_LEAPSECOND_KEEN
28 #ifndef ARCRON_LEAPSECOND_KEEN
29 #undef ARCRON_LEAPSECOND_KEEN /* Respond quickly to leap seconds: doesn't work yet. */
30 #endif
31 #endif
32 
33 /*
34 Code by Derek Mulcahy, <derek@toybox.demon.co.uk>, 1997.
35 Modifications by Damon Hart-Davis, <d@hd.org>, 1997.
36 Modifications by Paul Alfille, <palfille@partners.org>, 2003.
37 Modifications by Christopher Price, <cprice@cs-home.com>, 2003.
38 Modifications by Nigel Roles <nigel@9fs.org>, 2003.
39 
40 
41 THIS CODE IS SUPPLIED AS IS, WITH NO WARRANTY OF ANY KIND.  USE AT
42 YOUR OWN RISK.
43 
44 Orginally developed and used with ntp3-5.85 by Derek Mulcahy.
45 
46 Built against ntp3-5.90 on Solaris 2.5 using gcc 2.7.2.
47 
48 This code may be freely copied and used and incorporated in other
49 systems providing the disclaimer and notice of authorship are
50 reproduced.
51 
52 -------------------------------------------------------------------------------
53 
54 Nigel's notes:
55 
56 1) Called tcgetattr() before modifying, so that fields correctly initialised
57    for all operating systems
58 
59 2) Altered parsing of timestamp line so that it copes with fields which are
60    not always ASCII digits (e.g. status field when battery low)
61 
62 -------------------------------------------------------------------------------
63 
64 Christopher's notes:
65 
66 MAJOR CHANGES SINCE V1.2
67 ========================
68  1) Applied patch by Andrey Bray <abuse@madhouse.demon.co.uk>
69     2001-02-17 comp.protocols.time.ntp
70 
71  2) Added WWVB support via clock mode command, localtime/UTC time configured
72     via flag1=(0=UTC, 1=localtime)
73 
74  3) Added ignore resync request via flag2=(0=resync, 1=ignore resync)
75 
76  4) Added simplified conversion from localtime to UTC with dst/bst translation
77 
78  5) Added average signal quality poll
79 
80  6) Fixed a badformat error when no code is available due to stripping
81     \n & \r's
82 
83  7) Fixed a badformat error when clearing lencode & memset a_lastcode in poll
84     routine
85 
86  8) Lots of code cleanup, including standardized DEBUG macros and removal
87     of unused code
88 
89 -------------------------------------------------------------------------------
90 
91 Author's original note:
92 
93 I enclose my ntp driver for the Galleon Systems Arc MSF receiver.
94 
95 It works (after a fashion) on both Solaris-1 and Solaris-2.
96 
97 I am currently using ntp3-5.85.  I have been running the code for
98 about 7 months without any problems.  Even coped with the change to BST!
99 
100 I had to do some funky things to read from the clock because it uses the
101 power from the receive lines to drive the transmit lines.  This makes the
102 code look a bit stupid but it works.  I also had to put in some delays to
103 allow for the turnaround time from receive to transmit.  These delays
104 are between characters when requesting a time stamp so that shouldn't affect
105 the results too drastically.
106 
107 ...
108 
109 The bottom line is that it works but could easily be improved.  You are
110 free to do what you will with the code.  I haven't been able to determine
111 how good the clock is.  I think that this requires a known good clock
112 to compare it against.
113 
114 -------------------------------------------------------------------------------
115 
116 Damon's notes for adjustments:
117 
118 MAJOR CHANGES SINCE V1.0
119 ========================
120  1) Removal of pollcnt variable that made the clock go permanently
121     off-line once two time polls failed to gain responses.
122 
123  2) Avoiding (at least on Solaris-2) terminal becoming the controlling
124     terminal of the process when we do a low-level open().
125 
126  3) Additional logic (conditional on ARCRON_LEAPSECOND_KEEN being
127     defined) to try to resync quickly after a potential leap-second
128     insertion or deletion.
129 
130  4) Code significantly slimmer at run-time than V1.0.
131 
132 
133 GENERAL
134 =======
135 
136  1) The C preprocessor symbol to have the clock built has been changed
137     from ARC to ARCRON_MSF to CLOCK_ARCRON_MSF to minimise the
138     possiblity of clashes with other symbols in the future.
139 
140  2) PRECISION should be -4/-5 (63ms/31ms) for the following reasons:
141 
142      a) The ARC documentation claims the internal clock is (only)
143 	accurate to about 20ms relative to Rugby (plus there must be
144 	noticable drift and delay in the ms range due to transmission
145 	delays and changing atmospheric effects).  This clock is not
146 	designed for ms accuracy as NTP has spoilt us all to expect.
147 
148      b) The clock oscillator looks like a simple uncompensated quartz
149 	crystal of the sort used in digital watches (ie 32768Hz) which
150 	can have large temperature coefficients and drifts; it is not
151 	clear if this oscillator is properly disciplined to the MSF
152 	transmission, but as the default is to resync only once per
153 	*day*, we can imagine that it is not, and is free-running.  We
154 	can minimise drift by resyncing more often (at the cost of
155 	reduced battery life), but drift/wander may still be
156 	significant.
157 
158      c) Note that the bit time of 3.3ms adds to the potential error in
159 	the the clock timestamp, since the bit clock of the serial link
160 	may effectively be free-running with respect to the host clock
161 	and the MSF clock.  Actually, the error is probably 1/16th of
162 	the above, since the input data is probably sampled at at least
163 	16x the bit rate.
164 
165     By keeping the clock marked as not very precise, it will have a
166     fairly large dispersion, and thus will tend to be used as a
167     `backup' time source and sanity checker, which this clock is
168     probably ideal for.  For an isolated network without other time
169     sources, this clock can probably be expected to provide *much*
170     better than 1s accuracy, which will be fine.
171 
172     By default, PRECISION is set to -4, but experience, especially at a
173     particular geographic location with a particular clock, may allow
174     this to be altered to -5.  (Note that skews of +/- 10ms are to be
175     expected from the clock from time-to-time.)  This improvement of
176     reported precision can be instigated by setting flag3 to 1, though
177     the PRECISION will revert to the normal value while the clock
178     signal quality is unknown whatever the flag3 setting.
179 
180     IN ANY CASE, BE SURE TO SET AN APPROPRIATE FUDGE FACTOR TO REMOVE
181     ANY RESIDUAL SKEW, eg:
182 
183 	server 127.127.27.0 # ARCRON MSF radio clock unit 0.
184 	# Fudge timestamps by about 20ms.
185 	fudge 127.127.27.0 time1 0.020
186 
187     You will need to observe your system's behaviour, assuming you have
188     some other NTP source to compare it with, to work out what the
189     fudge factor should be.  For my Sun SS1 running SunOS 4.1.3_U1 with
190     my MSF clock with my distance from the MSF transmitter, +20ms
191     seemed about right, after some observation.
192 
193  3) REFID has been made "MSFa" to reflect the MSF time source and the
194     ARCRON receiver.
195 
196  4) DEFAULT_RESYNC_TIME is the time in seconds (by default) before
197     forcing a resync since the last attempt.  This is picked to give a
198     little less than an hour between resyncs and to try to avoid
199     clashing with any regular event at a regular time-past-the-hour
200     which might cause systematic errors.
201 
202     The INITIAL_RESYNC_DELAY is to avoid bothering the clock and
203     running down its batteries unnecesarily if ntpd is going to crash
204     or be killed or reconfigured quickly.  If ARCRON_KEEN is defined
205     then this period is long enough for (with normal polling rates)
206     enough time samples to have been taken to allow ntpd to sync to
207     the clock before the interruption for the clock to resync to MSF.
208     This avoids ntpd syncing to another peer first and then
209     almost immediately hopping to the MSF clock.
210 
211     The RETRY_RESYNC_TIME is used before rescheduling a resync after a
212     resync failed to reveal a statisfatory signal quality (too low or
213     unknown).
214 
215  5) The clock seems quite jittery, so I have increased the
216     median-filter size from the typical (previous) value of 3.  I
217     discard up to half the results in the filter.  It looks like maybe
218     1 sample in 10 or so (maybe less) is a spike, so allow the median
219     filter to discard at least 10% of its entries or 1 entry, whichever
220     is greater.
221 
222  6) Sleeping *before* each character sent to the unit to allow required
223     inter-character time but without introducting jitter and delay in
224     handling the response if possible.
225 
226  7) If the flag ARCRON_KEEN is defined, take time samples whenever
227     possible, even while resyncing, etc.  We rely, in this case, on the
228     clock always giving us a reasonable time or else telling us in the
229     status byte at the end of the timestamp that it failed to sync to
230     MSF---thus we should never end up syncing to completely the wrong
231     time.
232 
233  8) If the flag ARCRON_OWN_FILTER is defined, use own versions of
234     refclock median-filter routines to get round small bug in 3-5.90
235     code which does not return the median offset. XXX Removed this
236     bit due NTP Version 4 upgrade - dlm.
237 
238  9) We would appear to have a year-2000 problem with this clock since
239     it returns only the two least-significant digits of the year.  But
240     ntpd ignores the year and uses the local-system year instead, so
241     this is in fact not a problem.  Nevertheless, we attempt to do a
242     sensible thing with the dates, wrapping them into a 100-year
243     window.
244 
245  10)Logs stats information that can be used by Derek's Tcl/Tk utility
246     to show the status of the clock.
247 
248  11)The clock documentation insists that the number of bits per
249     character to be sent to the clock, and sent by it, is 11, including
250     one start bit and two stop bits.  The data format is either 7+even
251     or 8+none.
252 
253 
254 TO-DO LIST
255 ==========
256 
257   * Eliminate use of scanf(), and maybe sprintf().
258 
259   * Allow user setting of resync interval to trade battery life for
260     accuracy; maybe could be done via fudge factor or unit number.
261 
262   * Possibly note the time since the last resync of the MSF clock to
263     MSF as the age of the last reference timestamp, ie trust the
264     clock's oscillator not very much...
265 
266   * Add very slow auto-adjustment up to a value of +/- time2 to correct
267     for long-term errors in the clock value (time2 defaults to 0 so the
268     correction would be disabled by default).
269 
270   * Consider trying to use the tty_clk/ppsclock support.
271 
272   * Possibly use average or maximum signal quality reported during
273     resync, rather than just the last one, which may be atypical.
274 
275 */
276 
277 
278 /* Notes for HKW Elektronik GmBH Radio clock driver */
279 /* Author Lyndon David, Sentinet Ltd, Feb 1997      */
280 /* These notes seem also to apply usefully to the ARCRON clock. */
281 
282 /* The HKW clock module is a radio receiver tuned into the Rugby */
283 /* MSF time signal tranmitted on 60 kHz. The clock module connects */
284 /* to the computer via a serial line and transmits the time encoded */
285 /* in 15 bytes at 300 baud 7 bits two stop bits even parity */
286 
287 /* Clock communications, from the datasheet */
288 /* All characters sent to the clock are echoed back to the controlling */
289 /* device. */
290 /* Transmit time/date information */
291 /* syntax ASCII o<cr> */
292 /* Character o may be replaced if neccesary by a character whose code */
293 /* contains the lowest four bits f(hex) eg */
294 /* syntax binary: xxxx1111 00001101 */
295 
296 /* DHD note:
297 You have to wait for character echo + 10ms before sending next character.
298 */
299 
300 /* The clock replies to this command with a sequence of 15 characters */
301 /* which contain the complete time and a final <cr> making 16 characters */
302 /* in total. */
303 /* The RC computer clock will not reply immediately to this command because */
304 /* the start bit edge of the first reply character marks the beginning of */
305 /* the second. So the RC Computer Clock will reply to this command at the */
306 /* start of the next second */
307 /* The characters have the following meaning */
308 /* 1. hours tens   */
309 /* 2. hours units  */
310 /* 3. minutes tens */
311 /* 4. minutes units */
312 /* 5. seconds tens  */
313 /* 6. seconds units */
314 /* 7. day of week 1-monday 7-sunday */
315 /* 8. day of month tens */
316 /* 9. day of month units */
317 /* 10. month tens */
318 /* 11. month units */
319 /* 12. year tens */
320 /* 13. year units */
321 /* 14. BST/UTC status */
322 /*	bit 7	parity */
323 /*	bit 6	always 0 */
324 /*	bit 5	always 1 */
325 /*	bit 4	always 1 */
326 /*	bit 3	always 0 */
327 /*	bit 2	=1 if UTC is in effect, complementary to the BST bit */
328 /*	bit 1	=1 if BST is in effect, according to the BST bit     */
329 /*	bit 0	BST/UTC change impending bit=1 in case of change impending */
330 /* 15. status */
331 /*	bit 7	parity */
332 /*	bit 6	always 0 */
333 /*	bit 5	always 1 */
334 /*	bit 4	always 1 */
335 /*	bit 3	=1 if low battery is detected */
336 /*	bit 2	=1 if the very last reception attempt failed and a valid */
337 /*		time information already exists (bit0=1) */
338 /*		=0 if the last reception attempt was successful */
339 /*	bit 1	=1 if at least one reception since 2:30 am was successful */
340 /*		=0 if no reception attempt since 2:30 am was successful */
341 /*	bit 0	=1 if the RC Computer Clock contains valid time information */
342 /*		This bit is zero after reset and one after the first */
343 /*		successful reception attempt */
344 
345 /* DHD note:
346 Also note g<cr> command which confirms that a resync is in progress, and
347 if so what signal quality (0--5) is available.
348 Also note h<cr> command which starts a resync to MSF signal.
349 */
350 
351 
352 #include "ntpd.h"
353 #include "ntp_io.h"
354 #include "ntp_refclock.h"
355 #include "ntp_calendar.h"
356 #include "ntp_stdlib.h"
357 
358 #include <stdio.h>
359 #include <ctype.h>
360 
361 #if defined(HAVE_BSD_TTYS)
362 #include <sgtty.h>
363 #endif /* HAVE_BSD_TTYS */
364 
365 #if defined(HAVE_SYSV_TTYS)
366 #include <termio.h>
367 #endif /* HAVE_SYSV_TTYS */
368 
369 #if defined(HAVE_TERMIOS)
370 #include <termios.h>
371 #endif
372 
373 /*
374  * This driver supports the ARCRON MSF/DCF/WWVB Radio Controlled Clock
375  */
376 
377 /*
378  * Interface definitions
379  */
380 #define DEVICE		"/dev/arc%d"	/* Device name and unit. */
381 #define SPEED		B300		/* UART speed (300 baud) */
382 #define PRECISION	(-4)		/* Precision  (~63 ms). */
383 #define HIGHPRECISION	(-5)		/* If things are going well... */
384 #define REFID		"MSFa"		/* Reference ID. */
385 #define REFID_MSF	"MSF"		/* Reference ID. */
386 #define REFID_DCF77	"DCF"		/* Reference ID. */
387 #define REFID_WWVB	"WWVB"		/* Reference ID. */
388 #define DESCRIPTION	"ARCRON MSF/DCF/WWVB Receiver"
389 
390 #ifdef PRE_NTP420
391 #define MODE ttlmax
392 #else
393 #define MODE ttl
394 #endif
395 
396 #define LENARC		16		/* Format `o' timecode length. */
397 
398 #define BITSPERCHAR	11		/* Bits per character. */
399 #define BITTIME		0x0DA740E	/* Time for 1 bit at 300bps. */
400 #define CHARTIME10	0x8888888	/* Time for 10-bit char at 300bps. */
401 #define CHARTIME11	0x962FC96	/* Time for 11-bit char at 300bps. */
402 #define CHARTIME			/* Time for char at 300bps. */ \
403 ( (BITSPERCHAR == 11) ? CHARTIME11 : ( (BITSPERCHAR == 10) ? CHARTIME10 : \
404 				       (BITSPERCHAR * BITTIME) ) )
405 
406      /* Allow for UART to accept char half-way through final stop bit. */
407 #define INITIALOFFSET (u_int32)(-BITTIME/2)
408 
409      /*
410     charoffsets[x] is the time after the start of the second that byte
411     x (with the first byte being byte 1) is received by the UART,
412     assuming that the initial edge of the start bit of the first byte
413     is on-time.  The values are represented as the fractional part of
414     an l_fp.
415 
416     We store enough values to have the offset of each byte including
417     the trailing \r, on the assumption that the bytes follow one
418     another without gaps.
419     */
420      static const u_int32 charoffsets[LENARC+1] = {
421 #if BITSPERCHAR == 11 /* Usual case. */
422 	     /* Offsets computed as accurately as possible... */
423 	     0,
424 	     INITIALOFFSET + 0x0962fc96, /*  1 chars,  11 bits */
425 	     INITIALOFFSET + 0x12c5f92c, /*  2 chars,  22 bits */
426 	     INITIALOFFSET + 0x1c28f5c3, /*  3 chars,  33 bits */
427 	     INITIALOFFSET + 0x258bf259, /*  4 chars,  44 bits */
428 	     INITIALOFFSET + 0x2eeeeeef, /*  5 chars,  55 bits */
429 	     INITIALOFFSET + 0x3851eb85, /*  6 chars,  66 bits */
430 	     INITIALOFFSET + 0x41b4e81b, /*  7 chars,  77 bits */
431 	     INITIALOFFSET + 0x4b17e4b1, /*  8 chars,  88 bits */
432 	     INITIALOFFSET + 0x547ae148, /*  9 chars,  99 bits */
433 	     INITIALOFFSET + 0x5dddddde, /* 10 chars, 110 bits */
434 	     INITIALOFFSET + 0x6740da74, /* 11 chars, 121 bits */
435 	     INITIALOFFSET + 0x70a3d70a, /* 12 chars, 132 bits */
436 	     INITIALOFFSET + 0x7a06d3a0, /* 13 chars, 143 bits */
437 	     INITIALOFFSET + 0x8369d037, /* 14 chars, 154 bits */
438 	     INITIALOFFSET + 0x8ccccccd, /* 15 chars, 165 bits */
439 	     INITIALOFFSET + 0x962fc963  /* 16 chars, 176 bits */
440 #else
441 	     /* Offsets computed with a small rounding error... */
442 	     0,
443 	     INITIALOFFSET +  1 * CHARTIME,
444 	     INITIALOFFSET +  2 * CHARTIME,
445 	     INITIALOFFSET +  3 * CHARTIME,
446 	     INITIALOFFSET +  4 * CHARTIME,
447 	     INITIALOFFSET +  5 * CHARTIME,
448 	     INITIALOFFSET +  6 * CHARTIME,
449 	     INITIALOFFSET +  7 * CHARTIME,
450 	     INITIALOFFSET +  8 * CHARTIME,
451 	     INITIALOFFSET +  9 * CHARTIME,
452 	     INITIALOFFSET + 10 * CHARTIME,
453 	     INITIALOFFSET + 11 * CHARTIME,
454 	     INITIALOFFSET + 12 * CHARTIME,
455 	     INITIALOFFSET + 13 * CHARTIME,
456 	     INITIALOFFSET + 14 * CHARTIME,
457 	     INITIALOFFSET + 15 * CHARTIME,
458 	     INITIALOFFSET + 16 * CHARTIME
459 #endif
460      };
461 
462 #define DEFAULT_RESYNC_TIME  (57*60)	/* Gap between resync attempts (s). */
463 #define RETRY_RESYNC_TIME    (27*60)	/* Gap to emergency resync attempt. */
464 #ifdef ARCRON_KEEN
465 #define INITIAL_RESYNC_DELAY 500	/* Delay before first resync. */
466 #else
467 #define INITIAL_RESYNC_DELAY 50		/* Delay before first resync. */
468 #endif
469 
470      static const int moff[12] =
471 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
472 /* Flags for a raw open() of the clock serial device. */
473 #ifdef O_NOCTTY /* Good, we can avoid tty becoming controlling tty. */
474 #define OPEN_FLAGS (O_RDWR | O_NOCTTY)
475 #else		/* Oh well, it may not matter... */
476 #define OPEN_FLAGS (O_RDWR)
477 #endif
478 
479 
480 /* Length of queue of command bytes to be sent. */
481 #define CMDQUEUELEN 4			/* Enough for two cmds + each \r. */
482 /* Queue tick time; interval in seconds between chars taken off queue. */
483 /* Must be >= 2 to allow o\r response to come back uninterrupted. */
484 #define QUEUETICK   2			/* Allow o\r reply to finish. */
485 
486 /*
487  * ARC unit control structure
488  */
489 struct arcunit {
490 	l_fp lastrec;	    /* Time tag for the receive time (system). */
491 	int status;	    /* Clock status. */
492 
493 	int quality;	    /* Quality of reception 0--5 for unit. */
494 	/* We may also use the values -1 or 6 internally. */
495 	u_long quality_stamp; /* Next time to reset quality average. */
496 
497 	u_long next_resync; /* Next resync time (s) compared to current_time. */
498 	int resyncing;	    /* Resync in progress if true. */
499 
500 	/* In the outgoing queue, cmdqueue[0] is next to be sent. */
501 	char cmdqueue[CMDQUEUELEN+1]; /* Queue of outgoing commands + \0. */
502 
503 	u_long saved_flags; /* Saved fudge flags. */
504 };
505 
506 #ifdef ARCRON_LEAPSECOND_KEEN
507 /* The flag `possible_leap' is set non-zero when any MSF unit
508        thinks a leap-second may have happened.
509 
510        Set whenever we receive a valid time sample in the first hour of
511        the first day of the first/seventh months.
512 
513        Outside the special hour this value is unconditionally set
514        to zero by the receive routine.
515 
516        On finding itself in this timeslot, as long as the value is
517        non-negative, the receive routine sets it to a positive value to
518        indicate a resync to MSF should be performed.
519 
520        In the poll routine, if this value is positive and we are not
521        already resyncing (eg from a sync that started just before
522        midnight), start resyncing and set this value negative to
523        indicate that a leap-triggered resync has been started.  Having
524        set this negative prevents the receive routine setting it
525        positive and thus prevents multiple resyncs during the witching
526        hour.
527      */
528 static int possible_leap = 0;       /* No resync required by default. */
529 #endif
530 
531 #if 0
532 static void dummy_event_handler (struct peer *);
533 static void   arc_event_handler (struct peer *);
534 #endif /* 0 */
535 
536 #define QUALITY_UNKNOWN	    -1 /* Indicates unknown clock quality. */
537 #define MIN_CLOCK_QUALITY    0 /* Min quality clock will return. */
538 #define MIN_CLOCK_QUALITY_OK 3 /* Min quality for OK reception. */
539 #define MAX_CLOCK_QUALITY    5 /* Max quality clock will return. */
540 
541 /*
542  * Function prototypes
543  */
544 static	int	arc_start	(int, struct peer *);
545 static	void	arc_shutdown	(int, struct peer *);
546 static	void	arc_receive	(struct recvbuf *);
547 static	void	arc_poll	(int, struct peer *);
548 
549 /*
550  * Transfer vector
551  */
552 struct  refclock refclock_arc = {
553 	arc_start,		/* start up driver */
554 	arc_shutdown,		/* shut down driver */
555 	arc_poll,		/* transmit poll message */
556 	noentry,		/* not used (old arc_control) */
557 	noentry,		/* initialize driver (not used) */
558 	noentry,		/* not used (old arc_buginfo) */
559 	NOFLAGS			/* not used */
560 };
561 
562 /* Queue us up for the next tick. */
563 #define ENQUEUE(up) \
564 	do { \
565 	     peer->nextaction = current_time + QUEUETICK; \
566 	} while(0)
567 
568 /* Placeholder event handler---does nothing safely---soaks up loose tick. */
569 static void
570 dummy_event_handler(
571 	struct peer *peer
572 	)
573 {
574 #ifdef DEBUG
575 	if(debug) { printf("arc: dummy_event_handler() called.\n"); }
576 #endif
577 }
578 
579 /*
580 Normal event handler.
581 
582 Take first character off queue and send to clock if not a null.
583 
584 Shift characters down and put a null on the end.
585 
586 We assume that there is no parallelism so no race condition, but even
587 if there is nothing bad will happen except that we might send some bad
588 data to the clock once in a while.
589 */
590 static void
591 arc_event_handler(
592 	struct peer *peer
593 	)
594 {
595 	struct refclockproc *pp = peer->procptr;
596 	register struct arcunit *up = (struct arcunit *)pp->unitptr;
597 	int i;
598 	char c;
599 #ifdef DEBUG
600 	if(debug > 2) { printf("arc: arc_event_handler() called.\n"); }
601 #endif
602 
603 	c = up->cmdqueue[0];       /* Next char to be sent. */
604 	/* Shift down characters, shifting trailing \0 in at end. */
605 	for(i = 0; i < CMDQUEUELEN; ++i)
606 	{ up->cmdqueue[i] = up->cmdqueue[i+1]; }
607 
608 	/* Don't send '\0' characters. */
609 	if(c != '\0') {
610 		if(write(pp->io.fd, &c, 1) != 1) {
611 			msyslog(LOG_NOTICE, "ARCRON: write to fd %d failed", pp->io.fd);
612 		}
613 #ifdef DEBUG
614 		else if(debug) { printf("arc: sent `%2.2x', fd %d.\n", c, pp->io.fd); }
615 #endif
616 	}
617 
618 	ENQUEUE(up);
619 }
620 
621 /*
622  * arc_start - open the devices and initialize data for processing
623  */
624 static int
625 arc_start(
626 	int unit,
627 	struct peer *peer
628 	)
629 {
630 	register struct arcunit *up;
631 	struct refclockproc *pp;
632 	int fd;
633 	char device[20];
634 #ifdef HAVE_TERMIOS
635 	struct termios arg;
636 #endif
637 
638 	msyslog(LOG_NOTICE, "ARCRON: %s: opening unit %d", arc_version, unit);
639 #ifdef DEBUG
640 	if(debug) {
641 		printf("arc: %s: attempt to open unit %d.\n", arc_version, unit);
642 	}
643 #endif
644 
645 	/* Prevent a ridiculous device number causing overflow of device[]. */
646 	if((unit < 0) || (unit > 255)) { return(0); }
647 
648 	/*
649 	 * Open serial port. Use CLK line discipline, if available.
650 	 */
651 	(void)sprintf(device, DEVICE, unit);
652 	if (!(fd = refclock_open(device, SPEED, LDISC_CLK)))
653 		return(0);
654 #ifdef DEBUG
655 	if(debug) { printf("arc: unit %d using open().\n", unit); }
656 #endif
657 	fd = tty_open(device, OPEN_FLAGS, 0777);
658 	if(fd < 0) {
659 #ifdef DEBUG
660 		if(debug) { printf("arc: failed [tty_open()] to open %s.\n", device); }
661 #endif
662 		return(0);
663 	}
664 
665 #ifndef SYS_WINNT
666 	fcntl(fd, F_SETFL, 0); /* clear the descriptor flags */
667 #endif
668 #ifdef DEBUG
669 	if(debug)
670 	{ printf("arc: opened RS232 port with file descriptor %d.\n", fd); }
671 #endif
672 
673 #ifdef HAVE_TERMIOS
674 
675 	tcgetattr(fd, &arg);
676 
677 	arg.c_iflag = IGNBRK | ISTRIP;
678 	arg.c_oflag = 0;
679 	arg.c_cflag = B300 | CS8 | CREAD | CLOCAL | CSTOPB;
680 	arg.c_lflag = 0;
681 	arg.c_cc[VMIN] = 1;
682 	arg.c_cc[VTIME] = 0;
683 
684 	tcsetattr(fd, TCSANOW, &arg);
685 
686 #else
687 
688 	msyslog(LOG_ERR, "ARCRON: termios not supported in this driver");
689 	(void)close(fd);
690 
691 	return 0;
692 
693 #endif
694 
695 	up = (struct arcunit *) emalloc(sizeof(struct arcunit));
696 	if(!up) { (void) close(fd); return(0); }
697 	/* Set structure to all zeros... */
698 	memset((char *)up, 0, sizeof(struct arcunit));
699 	pp = peer->procptr;
700 	pp->io.clock_recv = arc_receive;
701 	pp->io.srcclock = (caddr_t)peer;
702 	pp->io.datalen = 0;
703 	pp->io.fd = fd;
704 	if(!io_addclock(&pp->io)) { (void) close(fd); free(up); return(0); }
705 	pp->unitptr = (caddr_t)up;
706 
707 	/*
708 	 * Initialize miscellaneous variables
709 	 */
710 	peer->precision = PRECISION;
711 	peer->stratum = 2;              /* Default to stratum 2 not 0. */
712 	pp->clockdesc = DESCRIPTION;
713 	if (peer->MODE > 3) {
714 		msyslog(LOG_NOTICE, "ARCRON: Invalid mode %d", peer->MODE);
715 		return 0;
716 	}
717 #ifdef DEBUG
718 	if(debug) { printf("arc: mode = %d.\n", peer->MODE); }
719 #endif
720 	switch (peer->MODE) {
721 	    case 1:
722 		memcpy((char *)&pp->refid, REFID_MSF, 4);
723 		break;
724 	    case 2:
725 		memcpy((char *)&pp->refid, REFID_DCF77, 4);
726 		break;
727 	    case 3:
728 		memcpy((char *)&pp->refid, REFID_WWVB, 4);
729 		break;
730 	    default:
731 		memcpy((char *)&pp->refid, REFID, 4);
732 		break;
733 	}
734 	/* Spread out resyncs so that they should remain separated. */
735 	up->next_resync = current_time + INITIAL_RESYNC_DELAY + (67*unit)%1009;
736 
737 #if 0 /* Not needed because of zeroing of arcunit structure... */
738 	up->resyncing = 0;              /* Not resyncing yet. */
739 	up->saved_flags = 0;            /* Default is all flags off. */
740 	/* Clear send buffer out... */
741 	{
742 		int i;
743 		for(i = CMDQUEUELEN; i >= 0; --i) { up->cmdqueue[i] = '\0'; }
744 	}
745 #endif
746 
747 #ifdef ARCRON_KEEN
748 	up->quality = QUALITY_UNKNOWN;  /* Trust the clock immediately. */
749 #else
750 	up->quality = MIN_CLOCK_QUALITY;/* Don't trust the clock yet. */
751 #endif
752 
753 	peer->action = arc_event_handler;
754 
755 	ENQUEUE(up);
756 
757 	return(1);
758 }
759 
760 
761 /*
762  * arc_shutdown - shut down the clock
763  */
764 static void
765 arc_shutdown(
766 	int unit,
767 	struct peer *peer
768 	)
769 {
770 	register struct arcunit *up;
771 	struct refclockproc *pp;
772 
773 	peer->action = dummy_event_handler;
774 
775 	pp = peer->procptr;
776 	up = (struct arcunit *)pp->unitptr;
777 	io_closeclock(&pp->io);
778 	free(up);
779 }
780 
781 /*
782 Compute space left in output buffer.
783 */
784 static int
785 space_left(
786 	register struct arcunit *up
787 	)
788 {
789 	int spaceleft;
790 
791 	/* Compute space left in buffer after any pending output. */
792 	for(spaceleft = 0; spaceleft < CMDQUEUELEN; ++spaceleft)
793 	{ if(up->cmdqueue[CMDQUEUELEN - 1 - spaceleft] != '\0') { break; } }
794 	return(spaceleft);
795 }
796 
797 /*
798 Send command by copying into command buffer as far forward as possible,
799 after any pending output.
800 
801 Indicate an error by returning 0 if there is not space for the command.
802 */
803 static int
804 send_slow(
805 	register struct arcunit *up,
806 	int fd,
807 	const char *s
808 	)
809 {
810 	int sl = strlen(s);
811 	int spaceleft = space_left(up);
812 
813 #ifdef DEBUG
814 	if(debug > 1) { printf("arc: spaceleft = %d.\n", spaceleft); }
815 #endif
816 	if(spaceleft < sl) { /* Should not normally happen... */
817 #ifdef DEBUG
818 		msyslog(LOG_NOTICE, "ARCRON: send-buffer overrun (%d/%d)",
819 			sl, spaceleft);
820 #endif
821 		return(0);			/* FAILED! */
822 	}
823 
824 	/* Copy in the command to be sent. */
825 	while(*s && spaceleft > 0) { up->cmdqueue[CMDQUEUELEN - spaceleft--] = *s++; }
826 
827 	return(1);
828 }
829 
830 
831 static int
832 get2(char *p, int *val)
833 {
834   if (!isdigit((unsigned char)p[0]) || !isdigit((unsigned char)p[1])) return 0;
835   *val = (p[0] - '0') * 10 + p[1] - '0';
836   return 1;
837 }
838 
839 static int
840 get1(char *p, int *val)
841 {
842   if (!isdigit((unsigned char)p[0])) return 0;
843   *val = p[0] - '0';
844   return 1;
845 }
846 
847 /* Macro indicating action we will take for different quality values. */
848 #define quality_action(q) \
849 (((q) == QUALITY_UNKNOWN) ?         "UNKNOWN, will use clock anyway" : \
850  (((q) < MIN_CLOCK_QUALITY_OK) ? "TOO POOR, will not use clock" : \
851   "OK, will use clock"))
852 
853 /*
854  * arc_receive - receive data from the serial interface
855  */
856 static void
857 arc_receive(
858 	struct recvbuf *rbufp
859 	)
860 {
861 	register struct arcunit *up;
862 	struct refclockproc *pp;
863 	struct peer *peer;
864 	char c;
865 	int i, n, wday, month, flags, status;
866 	int arc_last_offset;
867 	static int quality_average = 0;
868 	static int quality_sum = 0;
869 	static int quality_polls = 0;
870 
871 	/*
872 	 * Initialize pointers and read the timecode and timestamp
873 	 */
874 	peer = (struct peer *)rbufp->recv_srcclock;
875 	pp = peer->procptr;
876 	up = (struct arcunit *)pp->unitptr;
877 
878 
879 	/*
880 	  If the command buffer is empty, and we are resyncing, insert a
881 	  g\r quality request into it to poll for signal quality again.
882 	*/
883 	if((up->resyncing) && (space_left(up) == CMDQUEUELEN)) {
884 #ifdef DEBUG
885 		if(debug > 1) { printf("arc: inserting signal-quality poll.\n"); }
886 #endif
887 		send_slow(up, pp->io.fd, "g\r");
888 	}
889 
890 	/*
891 	  The `arc_last_offset' is the offset in lastcode[] of the last byte
892 	  received, and which we assume actually received the input
893 	  timestamp.
894 
895 	  (When we get round to using tty_clk and it is available, we
896 	  assume that we will receive the whole timecode with the
897 	  trailing \r, and that that \r will be timestamped.  But this
898 	  assumption also works if receive the characters one-by-one.)
899 	*/
900 	arc_last_offset = pp->lencode+rbufp->recv_length - 1;
901 
902 	/*
903 	  We catch a timestamp iff:
904 
905 	  * The command code is `o' for a timestamp.
906 
907 	  * If ARCRON_MULTIPLE_SAMPLES is undefined then we must have
908 	  exactly char in the buffer (the command code) so that we
909 	  only sample the first character of the timecode as our
910 	  `on-time' character.
911 
912 	  * The first character in the buffer is not the echoed `\r'
913 	  from the `o` command (so if we are to timestamp an `\r' it
914 	  must not be first in the receive buffer with lencode==1.
915 	  (Even if we had other characters following it, we probably
916 	  would have a premature timestamp on the '\r'.)
917 
918 	  * We have received at least one character (I cannot imagine
919 	  how it could be otherwise, but anyway...).
920 	*/
921 	c = rbufp->recv_buffer[0];
922 	if((pp->a_lastcode[0] == 'o') &&
923 #ifndef ARCRON_MULTIPLE_SAMPLES
924 	   (pp->lencode == 1) &&
925 #endif
926 	   ((pp->lencode != 1) || (c != '\r')) &&
927 	   (arc_last_offset >= 1)) {
928 		/* Note that the timestamp should be corrected if >1 char rcvd. */
929 		l_fp timestamp;
930 		timestamp = rbufp->recv_time;
931 #ifdef DEBUG
932 		if(debug) { /* Show \r as `R', other non-printing char as `?'. */
933 			printf("arc: stamp -->%c<-- (%d chars rcvd)\n",
934 			       ((c == '\r') ? 'R' : (isgraph((unsigned char)c) ? c : '?')),
935 			       rbufp->recv_length);
936 		}
937 #endif
938 
939 		/*
940 		  Now correct timestamp by offset of last byte received---we
941 		  subtract from the receive time the delay implied by the
942 		  extra characters received.
943 
944 		  Reject the input if the resulting code is too long, but
945 		  allow for the trailing \r, normally not used but a good
946 		  handle for tty_clk or somesuch kernel timestamper.
947 		*/
948 		if(arc_last_offset > LENARC) {
949 #ifdef DEBUG
950 			if(debug) {
951 				printf("arc: input code too long (%d cf %d); rejected.\n",
952 				       arc_last_offset, LENARC);
953 			}
954 #endif
955 			pp->lencode = 0;
956 			refclock_report(peer, CEVNT_BADREPLY);
957 			return;
958 		}
959 
960 		L_SUBUF(&timestamp, charoffsets[arc_last_offset]);
961 #ifdef DEBUG
962 		if(debug > 1) {
963 			printf(
964 				"arc: %s%d char(s) rcvd, the last for lastcode[%d]; -%sms offset applied.\n",
965 				((rbufp->recv_length > 1) ? "*** " : ""),
966 				rbufp->recv_length,
967 				arc_last_offset,
968 				mfptoms((unsigned long)0,
969 					charoffsets[arc_last_offset],
970 					1));
971 		}
972 #endif
973 
974 #ifdef ARCRON_MULTIPLE_SAMPLES
975 		/*
976 		  If taking multiple samples, capture the current adjusted
977 		  sample iff:
978 
979 		  * No timestamp has yet been captured (it is zero), OR
980 
981 		  * This adjusted timestamp is earlier than the one already
982 		  captured, on the grounds that this one suffered less
983 		  delay in being delivered to us and is more accurate.
984 
985 		*/
986 		if(L_ISZERO(&(up->lastrec)) ||
987 		   L_ISGEQ(&(up->lastrec), &timestamp))
988 #endif
989 		{
990 #ifdef DEBUG
991 			if(debug > 1) {
992 				printf("arc: system timestamp captured.\n");
993 #ifdef ARCRON_MULTIPLE_SAMPLES
994 				if(!L_ISZERO(&(up->lastrec))) {
995 					l_fp diff;
996 					diff = up->lastrec;
997 					L_SUB(&diff, &timestamp);
998 					printf("arc: adjusted timestamp by -%sms.\n",
999 					       mfptoms(diff.l_i, diff.l_f, 3));
1000 				}
1001 #endif
1002 			}
1003 #endif
1004 			up->lastrec = timestamp;
1005 		}
1006 
1007 	}
1008 
1009 	/* Just in case we still have lots of rubbish in the buffer... */
1010 	/* ...and to avoid the same timestamp being reused by mistake, */
1011 	/* eg on receipt of the \r coming in on its own after the      */
1012 	/* timecode.						       */
1013 	if(pp->lencode >= LENARC) {
1014 #ifdef DEBUG
1015 		if(debug && (rbufp->recv_buffer[0] != '\r'))
1016 		{ printf("arc: rubbish in pp->a_lastcode[].\n"); }
1017 #endif
1018 		pp->lencode = 0;
1019 		return;
1020 	}
1021 
1022 	/* Append input to code buffer, avoiding overflow. */
1023 	for(i = 0; i < rbufp->recv_length; i++) {
1024 		if(pp->lencode >= LENARC) { break; } /* Avoid overflow... */
1025 		c = rbufp->recv_buffer[i];
1026 
1027 		/* Drop trailing '\r's and drop `h' command echo totally. */
1028 		if(c != '\r' && c != 'h') { pp->a_lastcode[pp->lencode++] = c; }
1029 
1030 		/*
1031 		  If we've just put an `o' in the lastcode[0], clear the
1032 		  timestamp in anticipation of a timecode arriving soon.
1033 
1034 		  We would expect to get to process this before any of the
1035 		  timecode arrives.
1036 		*/
1037 		if((c == 'o') && (pp->lencode == 1)) {
1038 			L_CLR(&(up->lastrec));
1039 #ifdef DEBUG
1040 			if(debug > 1) { printf("arc: clearing timestamp.\n"); }
1041 #endif
1042 		}
1043 	}
1044 	if (pp->lencode == 0) return;
1045 
1046 	/* Handle a quality message. */
1047 	if(pp->a_lastcode[0] == 'g') {
1048 		int r, q;
1049 
1050 		if(pp->lencode < 3) { return; } /* Need more data... */
1051 		r = (pp->a_lastcode[1] & 0x7f); /* Strip parity. */
1052 		q = (pp->a_lastcode[2] & 0x7f); /* Strip parity. */
1053 		if(((q & 0x70) != 0x30) || ((q & 0xf) > MAX_CLOCK_QUALITY) ||
1054 		   ((r & 0x70) != 0x30)) {
1055 			/* Badly formatted response. */
1056 #ifdef DEBUG
1057 			if(debug) { printf("arc: bad `g' response %2x %2x.\n", r, q); }
1058 #endif
1059 			return;
1060 		}
1061 		if(r == '3') { /* Only use quality value whilst sync in progress. */
1062 			if (up->quality_stamp < current_time) {
1063 				struct calendar cal;
1064 				l_fp new_stamp;
1065 
1066 				get_systime (&new_stamp);
1067 				caljulian (new_stamp.l_ui, &cal);
1068 				up->quality_stamp =
1069 					current_time + 60 - cal.second + 5;
1070 				quality_sum = 0;
1071 				quality_polls = 0;
1072 			}
1073 			quality_sum += (q & 0xf);
1074 			quality_polls++;
1075 			quality_average = (quality_sum / quality_polls);
1076 #ifdef DEBUG
1077 			if(debug) { printf("arc: signal quality %d (%d).\n", quality_average, (q & 0xf)); }
1078 #endif
1079 		} else if( /* (r == '2') && */ up->resyncing) {
1080 			up->quality = quality_average;
1081 #ifdef DEBUG
1082 			if(debug)
1083 			{
1084 				printf("arc: sync finished, signal quality %d: %s\n",
1085 				       up->quality,
1086 				       quality_action(up->quality));
1087 			}
1088 #endif
1089 			msyslog(LOG_NOTICE,
1090 				"ARCRON: sync finished, signal quality %d: %s",
1091 				up->quality,
1092 				quality_action(up->quality));
1093 			up->resyncing = 0; /* Resync is over. */
1094 			quality_average = 0;
1095 			quality_sum = 0;
1096 			quality_polls = 0;
1097 
1098 #ifdef ARCRON_KEEN
1099 			/* Clock quality dubious; resync earlier than usual. */
1100 			if((up->quality == QUALITY_UNKNOWN) ||
1101 			   (up->quality < MIN_CLOCK_QUALITY_OK))
1102 			{ up->next_resync = current_time + RETRY_RESYNC_TIME; }
1103 #endif
1104 		}
1105 		pp->lencode = 0;
1106 		return;
1107 	}
1108 
1109 	/* Stop now if this is not a timecode message. */
1110 	if(pp->a_lastcode[0] != 'o') {
1111 		pp->lencode = 0;
1112 		refclock_report(peer, CEVNT_BADREPLY);
1113 		return;
1114 	}
1115 
1116 	/* If we don't have enough data, wait for more... */
1117 	if(pp->lencode < LENARC) { return; }
1118 
1119 
1120 	/* WE HAVE NOW COLLECTED ONE TIMESTAMP (phew)... */
1121 #ifdef DEBUG
1122 	if(debug > 1) { printf("arc: NOW HAVE TIMESTAMP...\n"); }
1123 #endif
1124 
1125 	/* But check that we actually captured a system timestamp on it. */
1126 	if(L_ISZERO(&(up->lastrec))) {
1127 #ifdef DEBUG
1128 		if(debug) { printf("arc: FAILED TO GET SYSTEM TIMESTAMP\n"); }
1129 #endif
1130 		pp->lencode = 0;
1131 		refclock_report(peer, CEVNT_BADREPLY);
1132 		return;
1133 	}
1134 	/*
1135 	  Append a mark of the clock's received signal quality for the
1136 	  benefit of Derek Mulcahy's Tcl/Tk utility (we map the `unknown'
1137 	  quality value to `6' for his s/w) and terminate the string for
1138 	  sure.  This should not go off the buffer end.
1139 	*/
1140 	pp->a_lastcode[pp->lencode] = ((up->quality == QUALITY_UNKNOWN) ?
1141 				       '6' : ('0' + up->quality));
1142 	pp->a_lastcode[pp->lencode + 1] = '\0'; /* Terminate for printf(). */
1143 
1144 #ifdef PRE_NTP420
1145 	/* We don't use the micro-/milli- second part... */
1146 	pp->usec = 0;
1147 	pp->msec = 0;
1148 #else
1149 	/* We don't use the nano-second part... */
1150 	pp->nsec = 0;
1151 #endif
1152 	/* Validate format and numbers. */
1153 	if (pp->a_lastcode[0] != 'o'
1154 		|| !get2(pp->a_lastcode + 1, &pp->hour)
1155 		|| !get2(pp->a_lastcode + 3, &pp->minute)
1156 		|| !get2(pp->a_lastcode + 5, &pp->second)
1157 		|| !get1(pp->a_lastcode + 7, &wday)
1158 		|| !get2(pp->a_lastcode + 8, &pp->day)
1159 		|| !get2(pp->a_lastcode + 10, &month)
1160 		|| !get2(pp->a_lastcode + 12, &pp->year)) {
1161 #ifdef DEBUG
1162 		/* Would expect to have caught major problems already... */
1163 		if(debug) { printf("arc: badly formatted data.\n"); }
1164 #endif
1165 		pp->lencode = 0;
1166 		refclock_report(peer, CEVNT_BADREPLY);
1167 		return;
1168 	}
1169 	flags = pp->a_lastcode[14];
1170 	status = pp->a_lastcode[15];
1171 #ifdef DEBUG
1172 	if(debug) { printf("arc: status 0x%.2x flags 0x%.2x\n", flags, status); }
1173 #endif
1174 	n = 9;
1175 
1176 	/*
1177 	  Validate received values at least enough to prevent internal
1178 	  array-bounds problems, etc.
1179 	*/
1180 	if((pp->hour < 0) || (pp->hour > 23) ||
1181 	   (pp->minute < 0) || (pp->minute > 59) ||
1182 	   (pp->second < 0) || (pp->second > 60) /*Allow for leap seconds.*/ ||
1183 	   (wday < 1) || (wday > 7) ||
1184 	   (pp->day < 1) || (pp->day > 31) ||
1185 	   (month < 1) || (month > 12) ||
1186 	   (pp->year < 0) || (pp->year > 99)) {
1187 		/* Data out of range. */
1188 		pp->lencode = 0;
1189 		refclock_report(peer, CEVNT_BADREPLY);
1190 		return;
1191 	}
1192 
1193 
1194 	if(peer->MODE == 0) { /* compatiblity to original version */
1195 		int bst = flags;
1196 		/* Check that BST/UTC bits are the complement of one another. */
1197 		if(!(bst & 2) == !(bst & 4)) {
1198 			pp->lencode = 0;
1199 			refclock_report(peer, CEVNT_BADREPLY);
1200 			return;
1201 		}
1202 	}
1203 	if(status & 0x8) { msyslog(LOG_NOTICE, "ARCRON: battery low"); }
1204 
1205 	/* Year-2000 alert! */
1206 	/* Attempt to wrap 2-digit date into sensible window. */
1207 	if(pp->year < YEAR_PIVOT) { pp->year += 100; }		/* Y2KFixes */
1208 	pp->year += 1900;	/* use full four-digit year */	/* Y2KFixes */
1209 	/*
1210 	  Attempt to do the right thing by screaming that the code will
1211 	  soon break when we get to the end of its useful life.  What a
1212 	  hero I am...  PLEASE FIX LEAP-YEAR AND WRAP CODE IN 209X!
1213 	*/
1214 	if(pp->year >= YEAR_PIVOT+2000-2 ) {  			/* Y2KFixes */
1215 		/*This should get attention B^> */
1216 		msyslog(LOG_NOTICE,
1217 			"ARCRON: fix me!  EITHER YOUR DATE IS BADLY WRONG or else I will break soon!");
1218 	}
1219 #ifdef DEBUG
1220 	if(debug) {
1221 		printf("arc: n=%d %02d:%02d:%02d %02d/%02d/%04d %1d %1d\n",
1222 		       n,
1223 		       pp->hour, pp->minute, pp->second,
1224 		       pp->day, month, pp->year, flags, status);
1225 	}
1226 #endif
1227 
1228 	/*
1229 	  The status value tested for is not strictly supported by the
1230 	  clock spec since the value of bit 2 (0x4) is claimed to be
1231 	  undefined for MSF, yet does seem to indicate if the last resync
1232 	  was successful or not.
1233 	*/
1234 	pp->leap = LEAP_NOWARNING;
1235 	status &= 0x7;
1236 	if(status == 0x3) {
1237 		if(status != up->status)
1238 		{ msyslog(LOG_NOTICE, "ARCRON: signal acquired"); }
1239 	} else {
1240 		if(status != up->status) {
1241 			msyslog(LOG_NOTICE, "ARCRON: signal lost");
1242 			pp->leap = LEAP_NOTINSYNC; /* MSF clock is free-running. */
1243 			up->status = status;
1244 			pp->lencode = 0;
1245 			refclock_report(peer, CEVNT_FAULT);
1246 			return;
1247 		}
1248 	}
1249 	up->status = status;
1250 
1251 	if (peer->MODE == 0) { /* compatiblity to original version */
1252 		int bst = flags;
1253 
1254 		pp->day += moff[month - 1];
1255 
1256 		if(isleap_4(pp->year) && month > 2) { pp->day++; }/* Y2KFixes */
1257 
1258 		/* Convert to UTC if required */
1259 		if(bst & 2) {
1260 			pp->hour--;
1261 			if (pp->hour < 0) {
1262 				pp->hour = 23;
1263 				pp->day--;
1264 				/* If we try to wrap round the year
1265 				 * (BST on 1st Jan), reject.*/
1266 				if(pp->day < 0) {
1267 					pp->lencode = 0;
1268 					refclock_report(peer, CEVNT_BADTIME);
1269 					return;
1270 				}
1271 			}
1272 		}
1273 	}
1274 
1275 	if(peer->MODE > 0) {
1276 		if(pp->sloppyclockflag & CLK_FLAG1) {
1277 			struct tm  local;
1278 			struct tm *gmtp;
1279 			time_t	   unixtime;
1280 
1281 			/*
1282 			 * Convert to GMT for sites that distribute localtime.
1283 			 * This means we have to do Y2K conversion on the
1284 			 * 2-digit year; otherwise, we get the time wrong.
1285 			 */
1286 
1287 			memset(&local, 0, sizeof(local));
1288 
1289 			local.tm_year  = pp->year-1900;
1290 			local.tm_mon   = month-1;
1291 			local.tm_mday  = pp->day;
1292 			local.tm_hour  = pp->hour;
1293 			local.tm_min   = pp->minute;
1294 			local.tm_sec   = pp->second;
1295 			switch (peer->MODE) {
1296 			    case 1:
1297 				local.tm_isdst = (flags & 2);
1298 				break;
1299 			    case 2:
1300 				local.tm_isdst = (flags & 2);
1301 				break;
1302 			    case 3:
1303 				switch (flags & 3) {
1304 				    case 0: /* It is unclear exactly when the
1305 					       Arcron changes from DST->ST and
1306 					       ST->DST. Testing has shown this
1307 					       to be irregular. For the time
1308 					       being, let the OS decide. */
1309 					local.tm_isdst = 0;
1310 #ifdef DEBUG
1311 					if (debug)
1312 					    printf ("arc: DST = 00 (0)\n");
1313 #endif
1314 					break;
1315 				    case 1: /* dst->st time */
1316 					local.tm_isdst = -1;
1317 #ifdef DEBUG
1318 					if (debug)
1319 					    printf ("arc: DST = 01 (1)\n");
1320 #endif
1321 					break;
1322 				    case 2: /* st->dst time */
1323 					local.tm_isdst = -1;
1324 #ifdef DEBUG
1325 					if (debug)
1326 					    printf ("arc: DST = 10 (2)\n");
1327 #endif
1328 					break;
1329 				    case 3: /* dst time */
1330 				        local.tm_isdst = 1;
1331 #ifdef DEBUG
1332 					if (debug)
1333 					    printf ("arc: DST = 11 (3)\n");
1334 #endif
1335 					break;
1336 				}
1337 				break;
1338 			    default:
1339 				msyslog(LOG_NOTICE, "ARCRON: Invalid mode %d",
1340 					peer->MODE);
1341 				return;
1342 				break;
1343 			}
1344 			unixtime = mktime (&local);
1345 			if ((gmtp = gmtime (&unixtime)) == NULL)
1346 			{
1347 				pp->lencode = 0;
1348 				refclock_report (peer, CEVNT_FAULT);
1349 				return;
1350 			}
1351 			pp->year = gmtp->tm_year+1900;
1352 			month = gmtp->tm_mon+1;
1353 			pp->day = ymd2yd(pp->year,month,gmtp->tm_mday);
1354 			/* pp->day = gmtp->tm_yday; */
1355 			pp->hour = gmtp->tm_hour;
1356 			pp->minute = gmtp->tm_min;
1357 			pp->second = gmtp->tm_sec;
1358 #ifdef DEBUG
1359 			if (debug)
1360 			{
1361 				printf ("arc: time is %04d/%02d/%02d %02d:%02d:%02d UTC\n",
1362 					pp->year,month,gmtp->tm_mday,pp->hour,pp->minute,
1363 					pp->second);
1364 			}
1365 #endif
1366 		} else
1367 		{
1368 			/*
1369 			* For more rational sites distributing UTC
1370 			*/
1371 			pp->day    = ymd2yd(pp->year,month,pp->day);
1372 		}
1373 	}
1374 
1375 	if (peer->MODE == 0) { /* compatiblity to original version */
1376 				/* If clock signal quality is
1377 				 * unknown, revert to default PRECISION...*/
1378 		if(up->quality == QUALITY_UNKNOWN) {
1379 			peer->precision = PRECISION;
1380 		} else { /* ...else improve precision if flag3 is set... */
1381 			peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ?
1382 					   HIGHPRECISION : PRECISION);
1383 		}
1384 	} else {
1385 		if ((status == 0x3) && (pp->sloppyclockflag & CLK_FLAG2)) {
1386 			peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ?
1387 					   HIGHPRECISION : PRECISION);
1388 		} else if (up->quality == QUALITY_UNKNOWN) {
1389 			peer->precision = PRECISION;
1390 		} else {
1391 			peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ?
1392 					   HIGHPRECISION : PRECISION);
1393 		}
1394 	}
1395 
1396 	/* Notice and log any change (eg from initial defaults) for flags. */
1397 	if(up->saved_flags != pp->sloppyclockflag) {
1398 #ifdef DEBUG
1399 		msyslog(LOG_NOTICE, "ARCRON: flags enabled: %s%s%s%s",
1400 			((pp->sloppyclockflag & CLK_FLAG1) ? "1" : "."),
1401 			((pp->sloppyclockflag & CLK_FLAG2) ? "2" : "."),
1402 			((pp->sloppyclockflag & CLK_FLAG3) ? "3" : "."),
1403 			((pp->sloppyclockflag & CLK_FLAG4) ? "4" : "."));
1404 		/* Note effects of flags changing... */
1405 		if(debug) {
1406 			printf("arc: PRECISION = %d.\n", peer->precision);
1407 		}
1408 #endif
1409 		up->saved_flags = pp->sloppyclockflag;
1410 	}
1411 
1412 	/* Note time of last believable timestamp. */
1413 	pp->lastrec = up->lastrec;
1414 
1415 #ifdef ARCRON_LEAPSECOND_KEEN
1416 	/* Find out if a leap-second might just have happened...
1417 	   (ie is this the first hour of the first day of Jan or Jul?)
1418 	*/
1419 	if((pp->hour == 0) &&
1420 	   (pp->day == 1) &&
1421 	   ((month == 1) || (month == 7))) {
1422 		if(possible_leap >= 0) {
1423 			/* A leap may have happened, and no resync has started yet...*/
1424 			possible_leap = 1;
1425 		}
1426 	} else {
1427 		/* Definitely not leap-second territory... */
1428 		possible_leap = 0;
1429 	}
1430 #endif
1431 
1432 	if (!refclock_process(pp)) {
1433 		pp->lencode = 0;
1434 		refclock_report(peer, CEVNT_BADTIME);
1435 		return;
1436 	}
1437 	record_clock_stats(&peer->srcadr, pp->a_lastcode);
1438 	refclock_receive(peer);
1439 }
1440 
1441 
1442 /* request_time() sends a time request to the clock with given peer. */
1443 /* This automatically reports a fault if necessary. */
1444 /* No data should be sent after this until arc_poll() returns. */
1445 static  void    request_time    (int, struct peer *);
1446 static void
1447 request_time(
1448 	int unit,
1449 	struct peer *peer
1450 	)
1451 {
1452 	struct refclockproc *pp = peer->procptr;
1453 	register struct arcunit *up = (struct arcunit *)pp->unitptr;
1454 #ifdef DEBUG
1455 	if(debug) { printf("arc: unit %d: requesting time.\n", unit); }
1456 #endif
1457 	if (!send_slow(up, pp->io.fd, "o\r")) {
1458 #ifdef DEBUG
1459 		if (debug) {
1460 			printf("arc: unit %d: problem sending", unit);
1461 		}
1462 #endif
1463 		pp->lencode = 0;
1464 		refclock_report(peer, CEVNT_FAULT);
1465 		return;
1466 	}
1467 	pp->polls++;
1468 }
1469 
1470 /*
1471  * arc_poll - called by the transmit procedure
1472  */
1473 static void
1474 arc_poll(
1475 	int unit,
1476 	struct peer *peer
1477 	)
1478 {
1479 	register struct arcunit *up;
1480 	struct refclockproc *pp;
1481 	int resync_needed;              /* Should we start a resync? */
1482 
1483 	pp = peer->procptr;
1484 	up = (struct arcunit *)pp->unitptr;
1485 #if 0
1486 	pp->lencode = 0;
1487 	memset(pp->a_lastcode, 0, sizeof(pp->a_lastcode));
1488 #endif
1489 
1490 #if 0
1491 	/* Flush input. */
1492 	tcflush(pp->io.fd, TCIFLUSH);
1493 #endif
1494 
1495 	/* Resync if our next scheduled resync time is here or has passed. */
1496 	resync_needed = ( !(pp->sloppyclockflag & CLK_FLAG2) &&
1497 			  (up->next_resync <= current_time) );
1498 
1499 #ifdef ARCRON_LEAPSECOND_KEEN
1500 	/*
1501 	  Try to catch a potential leap-second insertion or deletion quickly.
1502 
1503 	  In addition to the normal NTP fun of clocks that don't report
1504 	  leap-seconds spooking their hosts, this clock does not even
1505 	  sample the radio sugnal the whole time, so may miss a
1506 	  leap-second insertion or deletion for up to a whole sample
1507 	  time.
1508 
1509 	  To try to minimise this effect, if in the first few minutes of
1510 	  the day immediately following a leap-second-insertion point
1511 	  (ie in the first hour of the first day of the first and sixth
1512 	  months), and if the last resync was in the previous day, and a
1513 	  resync is not already in progress, resync the clock
1514 	  immediately.
1515 
1516 	*/
1517 	if((possible_leap > 0) &&       /* Must be 00:XX 01/0{1,7}/XXXX. */
1518 	   (!up->resyncing)) {          /* No resync in progress yet. */
1519 		resync_needed = 1;
1520 		possible_leap = -1;          /* Prevent multiple resyncs. */
1521 		msyslog(LOG_NOTICE,"ARCRON: unit %d: checking for leap second",unit);
1522 	}
1523 #endif
1524 
1525 	/* Do a resync if required... */
1526 	if(resync_needed) {
1527 		/* First, reset quality value to `unknown' so we can detect */
1528 		/* when a quality message has been responded to by this     */
1529 		/* being set to some other value.                           */
1530 		up->quality = QUALITY_UNKNOWN;
1531 
1532 		/* Note that we are resyncing... */
1533 		up->resyncing = 1;
1534 
1535 		/* Now actually send the resync command and an immediate poll. */
1536 #ifdef DEBUG
1537 		if(debug) { printf("arc: sending resync command (h\\r).\n"); }
1538 #endif
1539 		msyslog(LOG_NOTICE, "ARCRON: unit %d: sending resync command", unit);
1540 		send_slow(up, pp->io.fd, "h\r");
1541 
1542 		/* Schedule our next resync... */
1543 		up->next_resync = current_time + DEFAULT_RESYNC_TIME;
1544 
1545 		/* Drop through to request time if appropriate. */
1546 	}
1547 
1548 	/* If clock quality is too poor to trust, indicate a fault. */
1549 	/* If quality is QUALITY_UNKNOWN and ARCRON_KEEN is defined,*/
1550 	/* we'll cross our fingers and just hope that the thing     */
1551 	/* synced so quickly we did not catch it---we'll            */
1552 	/* double-check the clock is OK elsewhere.                  */
1553 	if(
1554 #ifdef ARCRON_KEEN
1555 		(up->quality != QUALITY_UNKNOWN) &&
1556 #else
1557 		(up->quality == QUALITY_UNKNOWN) ||
1558 #endif
1559 		(up->quality < MIN_CLOCK_QUALITY_OK)) {
1560 #ifdef DEBUG
1561 		if(debug) {
1562 			printf("arc: clock quality %d too poor.\n", up->quality);
1563 		}
1564 #endif
1565 		pp->lencode = 0;
1566 		refclock_report(peer, CEVNT_FAULT);
1567 		return;
1568 	}
1569 	/* This is the normal case: request a timestamp. */
1570 	request_time(unit, peer);
1571 }
1572 
1573 #else
1574 int refclock_arc_bs;
1575 #endif
1576