1 /*	$NetBSD: refclock_datum.c,v 1.2 2010/12/04 23:08:35 christos Exp $	*/
2 
3 /*
4 ** refclock_datum - clock driver for the Datum Programmable Time Server
5 **
6 ** Important note: This driver assumes that you have termios. If you have
7 ** a system that does not have termios, you will have to modify this driver.
8 **
9 ** Sorry, I have only tested this driver on SUN and HP platforms.
10 */
11 
12 #ifdef HAVE_CONFIG_H
13 # include <config.h>
14 #endif
15 
16 #if defined(REFCLOCK) && defined(CLOCK_DATUM)
17 
18 /*
19 ** Include Files
20 */
21 
22 #include "ntpd.h"
23 #include "ntp_io.h"
24 #include "ntp_refclock.h"
25 #include "ntp_unixtime.h"
26 #include "ntp_stdlib.h"
27 
28 #include <stdio.h>
29 #include <ctype.h>
30 
31 #if defined(HAVE_BSD_TTYS)
32 #include <sgtty.h>
33 #endif /* HAVE_BSD_TTYS */
34 
35 #if defined(HAVE_SYSV_TTYS)
36 #include <termio.h>
37 #endif /* HAVE_SYSV_TTYS */
38 
39 #if defined(HAVE_TERMIOS)
40 #include <termios.h>
41 #endif
42 #if defined(STREAM)
43 #include <stropts.h>
44 #if defined(WWVBCLK)
45 #include <sys/clkdefs.h>
46 #endif /* WWVBCLK */
47 #endif /* STREAM */
48 
49 #include "ntp_stdlib.h"
50 
51 /*
52 ** This driver supports the Datum Programmable Time System (PTS) clock.
53 ** The clock works in very straight forward manner. When it receives a
54 ** time code request (e.g., the ascii string "//k/mn"), it responds with
55 ** a seven byte BCD time code. This clock only responds with a
56 ** time code after it first receives the "//k/mn" message. It does not
57 ** periodically send time codes back at some rate once it is started.
58 ** the returned time code can be broken down into the following fields.
59 **
60 **            _______________________________
61 ** Bit Index | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
62 **            ===============================
63 ** byte 0:   | -   -   -   - |      H D      |
64 **            ===============================
65 ** byte 1:   |      T D      |      U D      |
66 **            ===============================
67 ** byte 2:   | -   - |  T H  |      U H      |
68 **            ===============================
69 ** byte 3:   | - |    T M    |      U M      |
70 **            ===============================
71 ** byte 4:   | - |    T S    |      U S      |
72 **            ===============================
73 ** byte 5:   |      t S      |      h S      |
74 **            ===============================
75 ** byte 6:   |      m S      | -   -   -   - |
76 **            ===============================
77 **
78 ** In the table above:
79 **
80 **	"-" means don't care
81 **	"H D", "T D", and "U D" means Hundreds, Tens, and Units of Days
82 **	"T H", and "UH" means Tens and Units of Hours
83 **	"T M", and "U M" means Tens and Units of Minutes
84 **	"T S", and "U S" means Tens and Units of Seconds
85 **	"t S", "h S", and "m S" means tenths, hundredths, and thousandths
86 **				of seconds
87 **
88 ** The Datum PTS communicates throught the RS232 port on your machine.
89 ** Right now, it assumes that you have termios. This driver has been tested
90 ** on SUN and HP workstations. The Datum PTS supports various IRIG and
91 ** NASA input codes. This driver assumes that the name of the device is
92 ** /dev/datum. You will need to make a soft link to your RS232 device or
93 ** create a new driver to use this refclock.
94 */
95 
96 /*
97 ** Datum PTS defines
98 */
99 
100 /*
101 ** Note that if GMT is defined, then the Datum PTS must use Greenwich
102 ** time. Otherwise, this driver allows the Datum PTS to use the current
103 ** wall clock for its time. It determines the time zone offset by minimizing
104 ** the error after trying several time zone offsets. If the Datum PTS
105 ** time is Greenwich time and GMT is not defined, everything should still
106 ** work since the time zone will be found to be 0. What this really means
107 ** is that your system time (at least to start with) must be within the
108 ** correct time by less than +- 30 minutes. The default is for GMT to not
109 ** defined. If you really want to force GMT without the funny +- 30 minute
110 ** stuff then you must define (uncomment) GMT below.
111 */
112 
113 /*
114 #define GMT
115 #define DEBUG_DATUM_PTC
116 #define LOG_TIME_ERRORS
117 */
118 
119 
120 #define	PRECISION	(-10)		/* precision assumed 1/1024 ms */
121 #define	REFID "DATM"			/* reference id */
122 #define DATUM_DISPERSION 0		/* fixed dispersion = 0 ms */
123 #define DATUM_MAX_ERROR 0.100		/* limits on sigma squared */
124 #define DATUM_DEV	"/dev/datum"	/* device name */
125 
126 #define DATUM_MAX_ERROR2 (DATUM_MAX_ERROR*DATUM_MAX_ERROR)
127 
128 /*
129 ** The Datum PTS structure
130 */
131 
132 /*
133 ** I don't use a fixed array of MAXUNITS like everyone else just because
134 ** I don't like to program that way. Sorry if this bothers anyone. I assume
135 ** that you can use any id for your unit and I will search for it in a
136 ** dynamic array of units until I find it. I was worried that users might
137 ** enter a bad id in their configuration file (larger than MAXUNITS) and
138 ** besides, it is just cleaner not to have to assume that you have a fixed
139 ** number of anything in a program.
140 */
141 
142 struct datum_pts_unit {
143 	struct peer *peer;		/* peer used by ntp */
144 	struct refclockio io;		/* io structure used by ntp */
145 	int PTS_fd;			/* file descriptor for PTS */
146 	u_int unit;			/* id for unit */
147 	u_long timestarted;		/* time started */
148 	l_fp lastrec;			/* time tag for the receive time (system) */
149 	l_fp lastref;			/* reference time (Datum time) */
150 	u_long yearstart;		/* the year that this clock started */
151 	int coderecv;			/* number of time codes received */
152 	int day;			/* day */
153 	int hour;			/* hour */
154 	int minute;			/* minutes */
155 	int second;			/* seconds */
156 	int msec;			/* miliseconds */
157 	int usec;			/* miliseconds */
158 	u_char leap;			/* funny leap character code */
159 	char retbuf[8];		/* returned time from the datum pts */
160 	char nbytes;			/* number of bytes received from datum pts */
161 	double sigma2;		/* average squared error (roughly) */
162 	int tzoff;			/* time zone offest from GMT */
163 };
164 
165 /*
166 ** PTS static constant variables for internal use
167 */
168 
169 static char TIME_REQUEST[6];	/* request message sent to datum for time */
170 static int nunits;		/* number of active units */
171 static struct datum_pts_unit
172 **datum_pts_unit;	/* dynamic array of datum PTS structures */
173 
174 /*
175 ** Callback function prototypes that ntpd needs to know about.
176 */
177 
178 static	int	datum_pts_start		(int, struct peer *);
179 static	void	datum_pts_shutdown	(int, struct peer *);
180 static	void	datum_pts_poll		(int, struct peer *);
181 static	void	datum_pts_control	(int, struct refclockstat *,
182 					   struct refclockstat *, struct peer *);
183 static	void	datum_pts_init		(void);
184 static	void	datum_pts_buginfo	(int, struct refclockbug *, struct peer *);
185 
186 /*
187 ** This is the call back function structure that ntpd actually uses for
188 ** this refclock.
189 */
190 
191 struct	refclock refclock_datum = {
192 	datum_pts_start,		/* start up a new Datum refclock */
193 	datum_pts_shutdown,		/* shutdown a Datum refclock */
194 	datum_pts_poll,		/* sends out the time request */
195 	datum_pts_control,		/* not used */
196 	datum_pts_init,		/* initialization (called first) */
197 	datum_pts_buginfo,		/* not used */
198 	NOFLAGS			/* we are not setting any special flags */
199 };
200 
201 /*
202 ** The datum_pts_receive callback function is handled differently from the
203 ** rest. It is passed to the ntpd io data structure. Basically, every
204 ** 64 seconds, the datum_pts_poll() routine is called. It sends out the time
205 ** request message to the Datum Programmable Time System. Then, ntpd
206 ** waits on a select() call to receive data back. The datum_pts_receive()
207 ** function is called as data comes back. We expect a seven byte time
208 ** code to be returned but the datum_pts_receive() function may only get
209 ** a few bytes passed to it at a time. In other words, this routine may
210 ** get called by the io stuff in ntpd a few times before we get all seven
211 ** bytes. Once the last byte is received, we process it and then pass the
212 ** new time measurement to ntpd for updating the system time. For now,
213 ** there is no 3 state filtering done on the time measurements. The
214 ** jitter may be a little high but at least for its current use, it is not
215 ** a problem. We have tried to keep things as simple as possible. This
216 ** clock should not jitter more than 1 or 2 mseconds at the most once
217 ** things settle down. It is important to get the right drift calibrated
218 ** in the ntpd.drift file as well as getting the right tick set up right
219 ** using tickadj for SUNs. Tickadj is not used for the HP but you need to
220 ** remember to bring up the adjtime daemon because HP does not support
221 ** the adjtime() call.
222 */
223 
224 static	void	datum_pts_receive	(struct recvbuf *);
225 
226 /*......................................................................*/
227 /*	datum_pts_start - start up the datum PTS. This means open the	*/
228 /*	RS232 device and set up the data structure for my unit.		*/
229 /*......................................................................*/
230 
231 static int
232 datum_pts_start(
233 	int unit,
234 	struct peer *peer
235 	)
236 {
237 	struct datum_pts_unit **temp_datum_pts_unit;
238 	struct datum_pts_unit *datum_pts;
239 	int fd;
240 #ifdef HAVE_TERMIOS
241 	struct termios arg;
242 #endif
243 
244 #ifdef DEBUG_DATUM_PTC
245 	if (debug)
246 	    printf("Starting Datum PTS unit %d\n", unit);
247 #endif
248 
249 	/*
250 	** Open the Datum PTS device
251 	*/
252 	fd = open(DATUM_DEV, O_RDWR);
253 
254 	if (fd < 0) {
255 		msyslog(LOG_ERR, "Datum_PTS: open(\"%s\", O_RDWR) failed: %m", DATUM_DEV);
256 		return 0;
257 	}
258 
259 	/*
260 	** Create the memory for the new unit
261 	*/
262 
263 	temp_datum_pts_unit = (struct datum_pts_unit **)
264 		emalloc((nunits+1)*sizeof(struct datum_pts_unit *));
265 	if (nunits > 0) memcpy(temp_datum_pts_unit, datum_pts_unit,
266 			       nunits*sizeof(struct datum_pts_unit *));
267 	free(datum_pts_unit);
268 	datum_pts_unit = temp_datum_pts_unit;
269 	datum_pts_unit[nunits] = (struct datum_pts_unit *)
270 		emalloc(sizeof(struct datum_pts_unit));
271 	datum_pts = datum_pts_unit[nunits];
272 
273 	datum_pts->unit = unit;	/* set my unit id */
274 	datum_pts->yearstart = 0;	/* initialize the yearstart to 0 */
275 	datum_pts->sigma2 = 0.0;	/* initialize the sigma2 to 0 */
276 
277 	datum_pts->PTS_fd = fd;
278 
279 	fcntl(datum_pts->PTS_fd, F_SETFL, 0); /* clear the descriptor flags */
280 
281 #ifdef DEBUG_DATUM_PTC
282 	if (debug)
283 	    printf("Opening RS232 port with file descriptor %d\n",
284 		   datum_pts->PTS_fd);
285 #endif
286 
287 	/*
288 	** Set up the RS232 terminal device information. Note that we assume that
289 	** we have termios. This code has only been tested on SUNs and HPs. If your
290 	** machine does not have termios this driver cannot be initialized. You can change this
291 	** if you want by editing this source. Please give the changes back to the
292 	** ntp folks so that it can become part of their regular distribution.
293 	*/
294 
295 #ifdef HAVE_TERMIOS
296 
297 	memset(&arg, 0, sizeof(arg));
298 
299 	arg.c_iflag = IGNBRK;
300 	arg.c_oflag = 0;
301 	arg.c_cflag = B9600 | CS8 | CREAD | PARENB | CLOCAL;
302 	arg.c_lflag = 0;
303 	arg.c_cc[VMIN] = 0;		/* start timeout timer right away (not used) */
304 	arg.c_cc[VTIME] = 30;		/* 3 second timout on reads (not used) */
305 
306 	tcsetattr(datum_pts->PTS_fd, TCSANOW, &arg);
307 
308 #else
309 
310 	msyslog(LOG_ERR, "Datum_PTS: Termios not supported in this driver");
311 	(void)close(datum_pts->PTS_fd);
312 
313 	peer->precision = PRECISION;
314 	pp->clockdesc = DESCRIPTION;
315 	memcpy((char *)&pp->refid, REFID, 4);
316 
317 	return 0;
318 
319 #endif
320 
321 	/*
322 	** Initialize the ntpd IO structure
323 	*/
324 
325 	datum_pts->peer = peer;
326 	datum_pts->io.clock_recv = datum_pts_receive;
327 	datum_pts->io.srcclock = (caddr_t)datum_pts;
328 	datum_pts->io.datalen = 0;
329 	datum_pts->io.fd = datum_pts->PTS_fd;
330 
331 	if (!io_addclock(&(datum_pts->io))) {
332 
333 #ifdef DEBUG_DATUM_PTC
334 		if (debug)
335 		    printf("Problem adding clock\n");
336 #endif
337 
338 		msyslog(LOG_ERR, "Datum_PTS: Problem adding clock");
339 		(void)close(datum_pts->PTS_fd);
340 
341 		return 0;
342 	}
343 
344 	/*
345 	** Now add one to the number of units and return a successful code
346 	*/
347 
348 	nunits++;
349 	return 1;
350 
351 }
352 
353 
354 /*......................................................................*/
355 /*	datum_pts_shutdown - this routine shuts doen the device and	*/
356 /*	removes the memory for the unit.				*/
357 /*......................................................................*/
358 
359 static void
360 datum_pts_shutdown(
361 	int unit,
362 	struct peer *peer
363 	)
364 {
365 	int i,j;
366 	struct datum_pts_unit **temp_datum_pts_unit;
367 
368 #ifdef DEBUG_DATUM_PTC
369 	if (debug)
370 	    printf("Shutdown Datum PTS\n");
371 #endif
372 
373 	msyslog(LOG_ERR, "Datum_PTS: Shutdown Datum PTS");
374 
375 	/*
376 	** First we have to find the right unit (i.e., the one with the same id).
377 	** We do this by looping through the dynamic array of units intil we find
378 	** it. Note, that I don't simply use an array with a maximimum number of
379 	** Datum PTS units. Everything is completely dynamic.
380 	*/
381 
382 	for (i=0; i<nunits; i++) {
383 		if ((int)datum_pts_unit[i]->unit == unit) {
384 
385 			/*
386 			** We found the unit so close the file descriptor and free up the memory used
387 			** by the structure.
388 			*/
389 
390 			io_closeclock(&datum_pts_unit[i]->io);
391 			close(datum_pts_unit[i]->PTS_fd);
392 			free(datum_pts_unit[i]);
393 
394 			/*
395 			** Now clean up the datum_pts_unit dynamic array so that there are no holes.
396 			** This may mean moving pointers around, etc., to keep things compact.
397 			*/
398 
399 			if (nunits > 1) {
400 
401 				temp_datum_pts_unit = (struct datum_pts_unit **)
402 					emalloc((nunits-1)*sizeof(struct datum_pts_unit *));
403 				if (i!= 0) memcpy(temp_datum_pts_unit, datum_pts_unit,
404 						  i*sizeof(struct datum_pts_unit *));
405 
406 				for (j=i+1; j<nunits; j++) {
407 					temp_datum_pts_unit[j-1] = datum_pts_unit[j];
408 				}
409 
410 				free(datum_pts_unit);
411 				datum_pts_unit = temp_datum_pts_unit;
412 
413 			}else{
414 
415 				free(datum_pts_unit);
416 				datum_pts_unit = NULL;
417 
418 			}
419 
420 			return;
421 
422 		}
423 	}
424 
425 #ifdef DEBUG_DATUM_PTC
426 	if (debug)
427 	    printf("Error, could not shut down unit %d\n",unit);
428 #endif
429 
430 	msyslog(LOG_ERR, "Datum_PTS: Could not shut down Datum PTS unit %d",unit);
431 
432 }
433 
434 /*......................................................................*/
435 /*	datum_pts_poll - this routine sends out the time request to the */
436 /*	Datum PTS device. The time will be passed back in the 		*/
437 /*	datum_pts_receive() routine.					*/
438 /*......................................................................*/
439 
440 static void
441 datum_pts_poll(
442 	int unit,
443 	struct peer *peer
444 	)
445 {
446 	int i;
447 	int unit_index;
448 	int error_code;
449 	struct datum_pts_unit *datum_pts;
450 
451 #ifdef DEBUG_DATUM_PTC
452 	if (debug)
453 	    printf("Poll Datum PTS\n");
454 #endif
455 
456 	/*
457 	** Find the right unit and send out a time request once it is found.
458 	*/
459 
460 	unit_index = -1;
461 	for (i=0; i<nunits; i++) {
462 		if ((int)datum_pts_unit[i]->unit == unit) {
463 			unit_index = i;
464 			datum_pts = datum_pts_unit[i];
465 			error_code = write(datum_pts->PTS_fd, TIME_REQUEST, 6);
466 			if (error_code != 6) perror("TIME_REQUEST");
467 			datum_pts->nbytes = 0;
468 			break;
469 		}
470 	}
471 
472 	/*
473 	** Print out an error message if we could not find the right unit.
474 	*/
475 
476 	if (unit_index == -1) {
477 
478 #ifdef DEBUG_DATUM_PTC
479 		if (debug)
480 		    printf("Error, could not poll unit %d\n",unit);
481 #endif
482 
483 		msyslog(LOG_ERR, "Datum_PTS: Could not poll unit %d",unit);
484 		return;
485 
486 	}
487 
488 }
489 
490 
491 /*......................................................................*/
492 /*	datum_pts_control - not used					*/
493 /*......................................................................*/
494 
495 static void
496 datum_pts_control(
497 	int unit,
498 	struct refclockstat *in,
499 	struct refclockstat *out,
500 	struct peer *peer
501 	)
502 {
503 
504 #ifdef DEBUG_DATUM_PTC
505 	if (debug)
506 	    printf("Control Datum PTS\n");
507 #endif
508 
509 }
510 
511 
512 /*......................................................................*/
513 /*	datum_pts_init - initializes things for all possible Datum	*/
514 /*	time code generators that might be used. In practice, this is	*/
515 /*	only called once at the beginning before anything else is	*/
516 /*	called.								*/
517 /*......................................................................*/
518 
519 static void
520 datum_pts_init(void)
521 {
522 
523 	/*									*/
524 	/*...... open up the log file if we are debugging ......................*/
525 	/*									*/
526 
527 	/*
528 	** Open up the log file if we are debugging. For now, send data out to the
529 	** screen (stdout).
530 	*/
531 
532 #ifdef DEBUG_DATUM_PTC
533 	if (debug)
534 	    printf("Init Datum PTS\n");
535 #endif
536 
537 	/*
538 	** Initialize the time request command string. This is the only message
539 	** that we ever have to send to the Datum PTS (although others are defined).
540 	*/
541 
542 	memcpy(TIME_REQUEST, "//k/mn",6);
543 
544 	/*
545 	** Initialize the number of units to 0 and set the dynamic array of units to
546 	** NULL since there are no units defined yet.
547 	*/
548 
549 	datum_pts_unit = NULL;
550 	nunits = 0;
551 
552 }
553 
554 
555 /*......................................................................*/
556 /*	datum_pts_buginfo - not used					*/
557 /*......................................................................*/
558 
559 static void
560 datum_pts_buginfo(
561 	int unit,
562 	register struct refclockbug *bug,
563 	register struct peer *peer
564 	)
565 {
566 
567 #ifdef DEBUG_DATUM_PTC
568 	if (debug)
569 	    printf("Buginfo Datum PTS\n");
570 #endif
571 
572 }
573 
574 
575 /*......................................................................*/
576 /*	datum_pts_receive - receive the time buffer that was read in	*/
577 /*	by the ntpd io handling routines. When 7 bytes have been	*/
578 /*	received (it may take several tries before all 7 bytes are	*/
579 /*	received), then the time code must be unpacked and sent to	*/
580 /*	the ntpd clock_receive() routine which causes the systems	*/
581 /*	clock to be updated (several layers down).			*/
582 /*......................................................................*/
583 
584 static void
585 datum_pts_receive(
586 	struct recvbuf *rbufp
587 	)
588 {
589 	int i;
590 	l_fp tstmp;
591 	struct datum_pts_unit *datum_pts;
592 	char *dpt;
593 	int dpend;
594 	int tzoff;
595 	int timerr;
596 	double ftimerr, abserr;
597 #ifdef DEBUG_DATUM_PTC
598 	double dispersion;
599 #endif
600 	int goodtime;
601       /*double doffset;*/
602 
603 	/*
604 	** Get the time code (maybe partial) message out of the rbufp buffer.
605 	*/
606 
607 	datum_pts = (struct datum_pts_unit *)rbufp->recv_srcclock;
608 	dpt = (char *)&rbufp->recv_space;
609 	dpend = rbufp->recv_length;
610 
611 #ifdef DEBUG_DATUM_PTC
612 	if (debug)
613 	    printf("Receive Datum PTS: %d bytes\n", dpend);
614 #endif
615 
616 	/*									*/
617 	/*...... save the ntp system time when the first byte is received ......*/
618 	/*									*/
619 
620 	/*
621 	** Save the ntp system time when the first byte is received. Note that
622 	** because it may take several calls to this routine before all seven
623 	** bytes of our return message are finally received by the io handlers in
624 	** ntpd, we really do want to use the time tag when the first byte is
625 	** received to reduce the jitter.
626 	*/
627 
628 	if (datum_pts->nbytes == 0) {
629 		datum_pts->lastrec = rbufp->recv_time;
630 	}
631 
632 	/*
633 	** Increment our count to the number of bytes received so far. Return if we
634 	** haven't gotten all seven bytes yet.
635 	*/
636 
637 	for (i=0; i<dpend; i++) {
638 		datum_pts->retbuf[datum_pts->nbytes+i] = dpt[i];
639 	}
640 
641 	datum_pts->nbytes += dpend;
642 
643 	if (datum_pts->nbytes != 7) {
644 		return;
645 	}
646 
647 	/*
648 	** Convert the seven bytes received in our time buffer to day, hour, minute,
649 	** second, and msecond values. The usec value is not used for anything
650 	** currently. It is just the fractional part of the time stored in units
651 	** of microseconds.
652 	*/
653 
654 	datum_pts->day =	100*(datum_pts->retbuf[0] & 0x0f) +
655 		10*((datum_pts->retbuf[1] & 0xf0)>>4) +
656 		(datum_pts->retbuf[1] & 0x0f);
657 
658 	datum_pts->hour =	10*((datum_pts->retbuf[2] & 0x30)>>4) +
659 		(datum_pts->retbuf[2] & 0x0f);
660 
661 	datum_pts->minute =	10*((datum_pts->retbuf[3] & 0x70)>>4) +
662 		(datum_pts->retbuf[3] & 0x0f);
663 
664 	datum_pts->second =	10*((datum_pts->retbuf[4] & 0x70)>>4) +
665 		(datum_pts->retbuf[4] & 0x0f);
666 
667 	datum_pts->msec =	100*((datum_pts->retbuf[5] & 0xf0) >> 4) +
668 		10*(datum_pts->retbuf[5] & 0x0f) +
669 		((datum_pts->retbuf[6] & 0xf0)>>4);
670 
671 	datum_pts->usec =	1000*datum_pts->msec;
672 
673 #ifdef DEBUG_DATUM_PTC
674 	if (debug)
675 	    printf("day %d, hour %d, minute %d, second %d, msec %d\n",
676 		   datum_pts->day,
677 		   datum_pts->hour,
678 		   datum_pts->minute,
679 		   datum_pts->second,
680 		   datum_pts->msec);
681 #endif
682 
683 	/*
684 	** Get the GMT time zone offset. Note that GMT should be zero if the Datum
685 	** reference time is using GMT as its time base. Otherwise we have to
686 	** determine the offset if the Datum PTS is using time of day as its time
687 	** base.
688 	*/
689 
690 	goodtime = 0;		/* We are not sure about the time and offset yet */
691 
692 #ifdef GMT
693 
694 	/*
695 	** This is the case where the Datum PTS is using GMT so there is no time
696 	** zone offset.
697 	*/
698 
699 	tzoff = 0;		/* set time zone offset to 0 */
700 
701 #else
702 
703 	/*
704 	** This is the case where the Datum PTS is using regular time of day for its
705 	** time so we must compute the time zone offset. The way we do it is kind of
706 	** funny but it works. We loop through different time zones (0 to 24) and
707 	** pick the one that gives the smallest error (+- one half hour). The time
708 	** zone offset is stored in the datum_pts structure for future use. Normally,
709 	** the clocktime() routine is only called once (unless the time zone offset
710 	** changes due to daylight savings) since the goodtime flag is set when a
711 	** good time is found (with a good offset). Note that even if the Datum
712 	** PTS is using GMT, this mechanism will still work since it should come up
713 	** with a value for tzoff = 0 (assuming that your system clock is within
714 	** a half hour of the Datum time (even with time zone differences).
715 	*/
716 
717 	for (tzoff=0; tzoff<24; tzoff++) {
718 		if (clocktime( datum_pts->day,
719 			       datum_pts->hour,
720 			       datum_pts->minute,
721 			       datum_pts->second,
722 			       (tzoff + datum_pts->tzoff) % 24,
723 			       datum_pts->lastrec.l_ui,
724 			       &datum_pts->yearstart,
725 			       &datum_pts->lastref.l_ui) ) {
726 
727 			datum_pts->lastref.l_uf = 0;
728 			error = datum_pts->lastref.l_ui - datum_pts->lastrec.l_ui;
729 
730 #ifdef DEBUG_DATUM_PTC
731 			printf("Time Zone (clocktime method) = %d, error = %d\n", tzoff, error);
732 #endif
733 
734 			if ((error < 1799) && (error > -1799)) {
735 				tzoff = (tzoff + datum_pts->tzoff) % 24;
736 				datum_pts->tzoff = tzoff;
737 				goodtime = 1;
738 
739 #ifdef DEBUG_DATUM_PTC
740 				printf("Time Zone found (clocktime method) = %d\n",tzoff);
741 #endif
742 
743 				break;
744 			}
745 
746 		}
747 	}
748 
749 #endif
750 
751 	/*
752 	** Make sure that we have a good time from the Datum PTS. Clocktime() also
753 	** sets yearstart and lastref.l_ui. We will have to set astref.l_uf (i.e.,
754 	** the fraction of a second) stuff later.
755 	*/
756 
757 	if (!goodtime) {
758 
759 		if (!clocktime( datum_pts->day,
760 				datum_pts->hour,
761 				datum_pts->minute,
762 				datum_pts->second,
763 				tzoff,
764 				datum_pts->lastrec.l_ui,
765 				&datum_pts->yearstart,
766 				&datum_pts->lastref.l_ui) ) {
767 
768 #ifdef DEBUG_DATUM_PTC
769 			if (debug)
770 			{
771 				printf("Error: bad clocktime\n");
772 				printf("GMT %d, lastrec %d, yearstart %d, lastref %d\n",
773 				       tzoff,
774 				       datum_pts->lastrec.l_ui,
775 				       datum_pts->yearstart,
776 				       datum_pts->lastref.l_ui);
777 			}
778 #endif
779 
780 			msyslog(LOG_ERR, "Datum_PTS: Bad clocktime");
781 
782 			return;
783 
784 		}else{
785 
786 #ifdef DEBUG_DATUM_PTC
787 			if (debug)
788 			    printf("Good clocktime\n");
789 #endif
790 
791 		}
792 
793 	}
794 
795 	/*
796 	** We have datum_pts->lastref.l_ui set (which is the integer part of the
797 	** time. Now set the microseconds field.
798 	*/
799 
800 	TVUTOTSF(datum_pts->usec, datum_pts->lastref.l_uf);
801 
802 	/*
803 	** Compute the time correction as the difference between the reference
804 	** time (i.e., the Datum time) minus the receive time (system time).
805 	*/
806 
807 	tstmp = datum_pts->lastref;		/* tstmp is the datum ntp time */
808 	L_SUB(&tstmp, &datum_pts->lastrec);	/* tstmp is now the correction */
809 	datum_pts->coderecv++;		/* increment a counter */
810 
811 #ifdef DEBUG_DATUM_PTC
812 	dispersion = DATUM_DISPERSION;	/* set the dispersion to 0 */
813 	ftimerr = dispersion;
814 	ftimerr /= (1024.0 * 64.0);
815 	if (debug)
816 	    printf("dispersion = %d, %f\n", dispersion, ftimerr);
817 #endif
818 
819 	/*
820 	** Pass the new time to ntpd through the refclock_receive function. Note
821 	** that we are not trying to make any corrections due to the time it takes
822 	** for the Datum PTS to send the message back. I am (erroneously) assuming
823 	** that the time for the Datum PTS to send the time back to us is negligable.
824 	** I suspect that this time delay may be as much as 15 ms or so (but probably
825 	** less). For our needs at JPL, this kind of error is ok so it is not
826 	** necessary to use fudge factors in the ntp.conf file. Maybe later we will.
827 	*/
828       /*LFPTOD(&tstmp, doffset);*/
829 	datum_pts->lastref = datum_pts->lastrec;
830 	refclock_receive(datum_pts->peer);
831 
832 	/*
833 	** Compute sigma squared (not used currently). Maybe later, this could be
834 	** used for the dispersion estimate. The problem is that ntpd does not link
835 	** in the math library so sqrt() is not available. Anyway, this is useful
836 	** for debugging. Maybe later I will just use absolute values for the time
837 	** error to come up with my dispersion estimate. Anyway, for now my dispersion
838 	** is set to 0.
839 	*/
840 
841 	timerr = tstmp.l_ui<<20;
842 	timerr |= (tstmp.l_uf>>12) & 0x000fffff;
843 	ftimerr = timerr;
844 	ftimerr /= 1024*1024;
845 	abserr = ftimerr;
846 	if (ftimerr < 0.0) abserr = -ftimerr;
847 
848 	if (datum_pts->sigma2 == 0.0) {
849 		if (abserr < DATUM_MAX_ERROR) {
850 			datum_pts->sigma2 = abserr*abserr;
851 		}else{
852 			datum_pts->sigma2 = DATUM_MAX_ERROR2;
853 		}
854 	}else{
855 		if (abserr < DATUM_MAX_ERROR) {
856 			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*abserr*abserr;
857 		}else{
858 			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*DATUM_MAX_ERROR2;
859 		}
860 	}
861 
862 #ifdef DEBUG_DATUM_PTC
863 	if (debug)
864 	    printf("Time error = %f seconds\n", ftimerr);
865 #endif
866 
867 #if defined(DEBUG_DATUM_PTC) || defined(LOG_TIME_ERRORS)
868 	if (debug)
869 	    printf("PTS: day %d, hour %d, minute %d, second %d, msec %d, Time Error %f\n",
870 		   datum_pts->day,
871 		   datum_pts->hour,
872 		   datum_pts->minute,
873 		   datum_pts->second,
874 		   datum_pts->msec,
875 		   ftimerr);
876 #endif
877 
878 }
879 #else
880 int refclock_datum_bs;
881 #endif /* REFCLOCK */
882