1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/time.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/vnode.h>
34 #include <sys/file.h>
35 #include <sys/mode.h>
36 #include <sys/kmem.h>
37 #include <sys/uio.h>
38 #include <sys/pathname.h>
39 #include <sys/cmn_err.h>
40 #include <sys/errno.h>
41 #include <sys/stat.h>
42 #include <sys/unistd.h>
43 #include <sys/sunddi.h>
44 #include <sys/random.h>
45 #include <sys/policy.h>
46 #include <sys/zfs_dir.h>
47 #include <sys/zfs_acl.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/zap.h>
50 #include <sys/dmu.h>
51 #include <sys/atomic.h>
52 #include <sys/zfs_ctldir.h>
53 #include <sys/zfs_fuid.h>
54 #include <sys/dnlc.h>
55 #include <sys/extdirent.h>
56 
57 /*
58  * zfs_match_find() is used by zfs_dirent_lock() to peform zap lookups
59  * of names after deciding which is the appropriate lookup interface.
60  */
61 static int
62 zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, char *name, boolean_t exact,
63     boolean_t update, int *deflags, pathname_t *rpnp, uint64_t *zoid)
64 {
65 	int error;
66 
67 	if (zfsvfs->z_norm) {
68 		matchtype_t mt = MT_FIRST;
69 		boolean_t conflict = B_FALSE;
70 		size_t bufsz = 0;
71 		char *buf = NULL;
72 
73 		if (rpnp) {
74 			buf = rpnp->pn_buf;
75 			bufsz = rpnp->pn_bufsize;
76 		}
77 		if (exact)
78 			mt = MT_EXACT;
79 		/*
80 		 * In the non-mixed case we only expect there would ever
81 		 * be one match, but we need to use the normalizing lookup.
82 		 */
83 		error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
84 		    zoid, mt, buf, bufsz, &conflict);
85 		if (!error && deflags)
86 			*deflags = conflict ? ED_CASE_CONFLICT : 0;
87 	} else {
88 		error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
89 	}
90 	*zoid = ZFS_DIRENT_OBJ(*zoid);
91 
92 	if (error == ENOENT && update)
93 		dnlc_update(ZTOV(dzp), name, DNLC_NO_VNODE);
94 
95 	return (error);
96 }
97 
98 /*
99  * Lock a directory entry.  A dirlock on <dzp, name> protects that name
100  * in dzp's directory zap object.  As long as you hold a dirlock, you can
101  * assume two things: (1) dzp cannot be reaped, and (2) no other thread
102  * can change the zap entry for (i.e. link or unlink) this name.
103  *
104  * Input arguments:
105  *	dzp	- znode for directory
106  *	name	- name of entry to lock
107  *	flag	- ZNEW: if the entry already exists, fail with EEXIST.
108  *		  ZEXISTS: if the entry does not exist, fail with ENOENT.
109  *		  ZSHARED: allow concurrent access with other ZSHARED callers.
110  *		  ZXATTR: we want dzp's xattr directory
111  *		  ZCILOOK: On a mixed sensitivity file system,
112  *			   this lookup should be case-insensitive.
113  *		  ZCIEXACT: On a purely case-insensitive file system,
114  *			    this lookup should be case-sensitive.
115  *		  ZRENAMING: we are locking for renaming, force narrow locks
116  *		  ZHAVELOCK: Don't grab the z_name_lock for this call. The
117  *			     current thread already holds it.
118  *
119  * Output arguments:
120  *	zpp	- pointer to the znode for the entry (NULL if there isn't one)
121  *	dlpp	- pointer to the dirlock for this entry (NULL on error)
122  *      direntflags - (case-insensitive lookup only)
123  *		flags if multiple case-sensitive matches exist in directory
124  *      realpnp     - (case-insensitive lookup only)
125  *		actual name matched within the directory
126  *
127  * Return value: 0 on success or errno on failure.
128  *
129  * NOTE: Always checks for, and rejects, '.' and '..'.
130  * NOTE: For case-insensitive file systems we take wide locks (see below),
131  *	 but return znode pointers to a single match.
132  */
133 int
134 zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name, znode_t **zpp,
135     int flag, int *direntflags, pathname_t *realpnp)
136 {
137 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
138 	zfs_dirlock_t	*dl;
139 	boolean_t	update;
140 	boolean_t	exact;
141 	uint64_t	zoid;
142 	vnode_t		*vp = NULL;
143 	int		error = 0;
144 	int		cmpflags;
145 
146 	*zpp = NULL;
147 	*dlpp = NULL;
148 
149 	/*
150 	 * Verify that we are not trying to lock '.', '..', or '.zfs'
151 	 */
152 	if (name[0] == '.' &&
153 	    (name[1] == '\0' || (name[1] == '.' && name[2] == '\0')) ||
154 	    zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0)
155 		return (EEXIST);
156 
157 	/*
158 	 * Case sensitivity and normalization preferences are set when
159 	 * the file system is created.  These are stored in the
160 	 * zfsvfs->z_case and zfsvfs->z_norm fields.  These choices
161 	 * affect what vnodes can be cached in the DNLC, how we
162 	 * perform zap lookups, and the "width" of our dirlocks.
163 	 *
164 	 * A normal dirlock locks a single name.  Note that with
165 	 * normalization a name can be composed multiple ways, but
166 	 * when normalized, these names all compare equal.  A wide
167 	 * dirlock locks multiple names.  We need these when the file
168 	 * system is supporting mixed-mode access.  It is sometimes
169 	 * necessary to lock all case permutations of file name at
170 	 * once so that simultaneous case-insensitive/case-sensitive
171 	 * behaves as rationally as possible.
172 	 */
173 
174 	/*
175 	 * Decide if exact matches should be requested when performing
176 	 * a zap lookup on file systems supporting case-insensitive
177 	 * access.
178 	 */
179 	exact =
180 	    ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE) && (flag & ZCIEXACT)) ||
181 	    ((zfsvfs->z_case == ZFS_CASE_MIXED) && !(flag & ZCILOOK));
182 
183 	/*
184 	 * Only look in or update the DNLC if we are looking for the
185 	 * name on a file system that does not require normalization
186 	 * or case folding.  We can also look there if we happen to be
187 	 * on a non-normalizing, mixed sensitivity file system IF we
188 	 * are looking for the exact name.
189 	 *
190 	 * Maybe can add TO-UPPERed version of name to dnlc in ci-only
191 	 * case for performance improvement?
192 	 */
193 	update = !zfsvfs->z_norm ||
194 	    ((zfsvfs->z_case == ZFS_CASE_MIXED) &&
195 	    !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK));
196 
197 	/*
198 	 * ZRENAMING indicates we are in a situation where we should
199 	 * take narrow locks regardless of the file system's
200 	 * preferences for normalizing and case folding.  This will
201 	 * prevent us deadlocking trying to grab the same wide lock
202 	 * twice if the two names happen to be case-insensitive
203 	 * matches.
204 	 */
205 	if (flag & ZRENAMING)
206 		cmpflags = 0;
207 	else
208 		cmpflags = zfsvfs->z_norm;
209 
210 	/*
211 	 * Wait until there are no locks on this name.
212 	 *
213 	 * Don't grab the the lock if it is already held. However, cannot
214 	 * have both ZSHARED and ZHAVELOCK together.
215 	 */
216 	ASSERT(!(flag & ZSHARED) || !(flag & ZHAVELOCK));
217 	if (!(flag & ZHAVELOCK))
218 		rw_enter(&dzp->z_name_lock, RW_READER);
219 
220 	mutex_enter(&dzp->z_lock);
221 	for (;;) {
222 		if (dzp->z_unlinked) {
223 			mutex_exit(&dzp->z_lock);
224 			if (!(flag & ZHAVELOCK))
225 				rw_exit(&dzp->z_name_lock);
226 			return (ENOENT);
227 		}
228 		for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) {
229 			if ((u8_strcmp(name, dl->dl_name, 0, cmpflags,
230 			    U8_UNICODE_LATEST, &error) == 0) || error != 0)
231 				break;
232 		}
233 		if (error != 0) {
234 			mutex_exit(&dzp->z_lock);
235 			if (!(flag & ZHAVELOCK))
236 				rw_exit(&dzp->z_name_lock);
237 			return (ENOENT);
238 		}
239 		if (dl == NULL)	{
240 			/*
241 			 * Allocate a new dirlock and add it to the list.
242 			 */
243 			dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP);
244 			cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL);
245 			dl->dl_name = name;
246 			dl->dl_sharecnt = 0;
247 			dl->dl_namelock = 0;
248 			dl->dl_namesize = 0;
249 			dl->dl_dzp = dzp;
250 			dl->dl_next = dzp->z_dirlocks;
251 			dzp->z_dirlocks = dl;
252 			break;
253 		}
254 		if ((flag & ZSHARED) && dl->dl_sharecnt != 0)
255 			break;
256 		cv_wait(&dl->dl_cv, &dzp->z_lock);
257 	}
258 
259 	/*
260 	 * If the z_name_lock was NOT held for this dirlock record it.
261 	 */
262 	if (flag & ZHAVELOCK)
263 		dl->dl_namelock = 1;
264 
265 	if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) {
266 		/*
267 		 * We're the second shared reference to dl.  Make a copy of
268 		 * dl_name in case the first thread goes away before we do.
269 		 * Note that we initialize the new name before storing its
270 		 * pointer into dl_name, because the first thread may load
271 		 * dl->dl_name at any time.  He'll either see the old value,
272 		 * which is his, or the new shared copy; either is OK.
273 		 */
274 		dl->dl_namesize = strlen(dl->dl_name) + 1;
275 		name = kmem_alloc(dl->dl_namesize, KM_SLEEP);
276 		bcopy(dl->dl_name, name, dl->dl_namesize);
277 		dl->dl_name = name;
278 	}
279 
280 	mutex_exit(&dzp->z_lock);
281 
282 	/*
283 	 * We have a dirlock on the name.  (Note that it is the dirlock,
284 	 * not the dzp's z_lock, that protects the name in the zap object.)
285 	 * See if there's an object by this name; if so, put a hold on it.
286 	 */
287 	if (flag & ZXATTR) {
288 		zoid = dzp->z_phys->zp_xattr;
289 		error = (zoid == 0 ? ENOENT : 0);
290 	} else {
291 		if (update)
292 			vp = dnlc_lookup(ZTOV(dzp), name);
293 		if (vp == DNLC_NO_VNODE) {
294 			VN_RELE(vp);
295 			error = ENOENT;
296 		} else if (vp) {
297 			if (flag & ZNEW) {
298 				zfs_dirent_unlock(dl);
299 				VN_RELE(vp);
300 				return (EEXIST);
301 			}
302 			*dlpp = dl;
303 			*zpp = VTOZ(vp);
304 			return (0);
305 		} else {
306 			error = zfs_match_find(zfsvfs, dzp, name, exact,
307 			    update, direntflags, realpnp, &zoid);
308 		}
309 	}
310 	if (error) {
311 		if (error != ENOENT || (flag & ZEXISTS)) {
312 			zfs_dirent_unlock(dl);
313 			return (error);
314 		}
315 	} else {
316 		if (flag & ZNEW) {
317 			zfs_dirent_unlock(dl);
318 			return (EEXIST);
319 		}
320 		error = zfs_zget(zfsvfs, zoid, zpp);
321 		if (error) {
322 			zfs_dirent_unlock(dl);
323 			return (error);
324 		}
325 		if (!(flag & ZXATTR) && update)
326 			dnlc_update(ZTOV(dzp), name, ZTOV(*zpp));
327 	}
328 
329 	*dlpp = dl;
330 
331 	return (0);
332 }
333 
334 /*
335  * Unlock this directory entry and wake anyone who was waiting for it.
336  */
337 void
338 zfs_dirent_unlock(zfs_dirlock_t *dl)
339 {
340 	znode_t *dzp = dl->dl_dzp;
341 	zfs_dirlock_t **prev_dl, *cur_dl;
342 
343 	mutex_enter(&dzp->z_lock);
344 
345 	if (!dl->dl_namelock)
346 		rw_exit(&dzp->z_name_lock);
347 
348 	if (dl->dl_sharecnt > 1) {
349 		dl->dl_sharecnt--;
350 		mutex_exit(&dzp->z_lock);
351 		return;
352 	}
353 	prev_dl = &dzp->z_dirlocks;
354 	while ((cur_dl = *prev_dl) != dl)
355 		prev_dl = &cur_dl->dl_next;
356 	*prev_dl = dl->dl_next;
357 	cv_broadcast(&dl->dl_cv);
358 	mutex_exit(&dzp->z_lock);
359 
360 	if (dl->dl_namesize != 0)
361 		kmem_free(dl->dl_name, dl->dl_namesize);
362 	cv_destroy(&dl->dl_cv);
363 	kmem_free(dl, sizeof (*dl));
364 }
365 
366 /*
367  * Look up an entry in a directory.
368  *
369  * NOTE: '.' and '..' are handled as special cases because
370  *	no directory entries are actually stored for them.  If this is
371  *	the root of a filesystem, then '.zfs' is also treated as a
372  *	special pseudo-directory.
373  */
374 int
375 zfs_dirlook(znode_t *dzp, char *name, vnode_t **vpp, int flags,
376     int *deflg, pathname_t *rpnp)
377 {
378 	zfs_dirlock_t *dl;
379 	znode_t *zp;
380 	int error = 0;
381 
382 	if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
383 		*vpp = ZTOV(dzp);
384 		VN_HOLD(*vpp);
385 	} else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
386 		zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
387 		/*
388 		 * If we are a snapshot mounted under .zfs, return
389 		 * the vp for the snapshot directory.
390 		 */
391 		if (dzp->z_phys->zp_parent == dzp->z_id &&
392 		    zfsvfs->z_parent != zfsvfs) {
393 			error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir,
394 			    "snapshot", vpp, NULL, 0, NULL, kcred,
395 			    NULL, NULL, NULL);
396 			return (error);
397 		}
398 		rw_enter(&dzp->z_parent_lock, RW_READER);
399 		error = zfs_zget(zfsvfs, dzp->z_phys->zp_parent, &zp);
400 		if (error == 0)
401 			*vpp = ZTOV(zp);
402 		rw_exit(&dzp->z_parent_lock);
403 	} else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) {
404 		*vpp = zfsctl_root(dzp);
405 	} else {
406 		int zf;
407 
408 		zf = ZEXISTS | ZSHARED;
409 		if (flags & FIGNORECASE)
410 			zf |= ZCILOOK;
411 
412 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp);
413 		if (error == 0) {
414 			*vpp = ZTOV(zp);
415 			zfs_dirent_unlock(dl);
416 			dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */
417 		}
418 		rpnp = NULL;
419 	}
420 
421 	if ((flags & FIGNORECASE) && rpnp && !error)
422 		(void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize);
423 
424 	return (error);
425 }
426 
427 /*
428  * unlinked Set (formerly known as the "delete queue") Error Handling
429  *
430  * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
431  * don't specify the name of the entry that we will be manipulating.  We
432  * also fib and say that we won't be adding any new entries to the
433  * unlinked set, even though we might (this is to lower the minimum file
434  * size that can be deleted in a full filesystem).  So on the small
435  * chance that the nlink list is using a fat zap (ie. has more than
436  * 2000 entries), we *may* not pre-read a block that's needed.
437  * Therefore it is remotely possible for some of the assertions
438  * regarding the unlinked set below to fail due to i/o error.  On a
439  * nondebug system, this will result in the space being leaked.
440  */
441 void
442 zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
443 {
444 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
445 
446 	ASSERT(zp->z_unlinked);
447 	ASSERT3U(zp->z_phys->zp_links, ==, 0);
448 
449 	VERIFY3U(0, ==,
450 	    zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
451 }
452 
453 /*
454  * Clean up any znodes that had no links when we either crashed or
455  * (force) umounted the file system.
456  */
457 void
458 zfs_unlinked_drain(zfsvfs_t *zfsvfs)
459 {
460 	zap_cursor_t	zc;
461 	zap_attribute_t zap;
462 	dmu_object_info_t doi;
463 	znode_t		*zp;
464 	int		error;
465 
466 	/*
467 	 * Interate over the contents of the unlinked set.
468 	 */
469 	for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj);
470 	    zap_cursor_retrieve(&zc, &zap) == 0;
471 	    zap_cursor_advance(&zc)) {
472 
473 		/*
474 		 * See what kind of object we have in list
475 		 */
476 
477 		error = dmu_object_info(zfsvfs->z_os,
478 		    zap.za_first_integer, &doi);
479 		if (error != 0)
480 			continue;
481 
482 		ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) ||
483 		    (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS));
484 		/*
485 		 * We need to re-mark these list entries for deletion,
486 		 * so we pull them back into core and set zp->z_unlinked.
487 		 */
488 		error = zfs_zget(zfsvfs, zap.za_first_integer, &zp);
489 
490 		/*
491 		 * We may pick up znodes that are already marked for deletion.
492 		 * This could happen during the purge of an extended attribute
493 		 * directory.  All we need to do is skip over them, since they
494 		 * are already in the system marked z_unlinked.
495 		 */
496 		if (error != 0)
497 			continue;
498 
499 		zp->z_unlinked = B_TRUE;
500 		VN_RELE(ZTOV(zp));
501 	}
502 	zap_cursor_fini(&zc);
503 }
504 
505 /*
506  * Delete the entire contents of a directory.  Return a count
507  * of the number of entries that could not be deleted. If we encounter
508  * an error, return a count of at least one so that the directory stays
509  * in the unlinked set.
510  *
511  * NOTE: this function assumes that the directory is inactive,
512  *	so there is no need to lock its entries before deletion.
513  *	Also, it assumes the directory contents is *only* regular
514  *	files.
515  */
516 static int
517 zfs_purgedir(znode_t *dzp)
518 {
519 	zap_cursor_t	zc;
520 	zap_attribute_t	zap;
521 	znode_t		*xzp;
522 	dmu_tx_t	*tx;
523 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
524 	zfs_dirlock_t	dl;
525 	int skipped = 0;
526 	int error;
527 
528 	for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
529 	    (error = zap_cursor_retrieve(&zc, &zap)) == 0;
530 	    zap_cursor_advance(&zc)) {
531 		error = zfs_zget(zfsvfs,
532 		    ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp);
533 		if (error) {
534 			skipped += 1;
535 			continue;
536 		}
537 
538 		ASSERT((ZTOV(xzp)->v_type == VREG) ||
539 		    (ZTOV(xzp)->v_type == VLNK));
540 
541 		tx = dmu_tx_create(zfsvfs->z_os);
542 		dmu_tx_hold_bonus(tx, dzp->z_id);
543 		dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name);
544 		dmu_tx_hold_bonus(tx, xzp->z_id);
545 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
546 		error = dmu_tx_assign(tx, TXG_WAIT);
547 		if (error) {
548 			dmu_tx_abort(tx);
549 			VN_RELE(ZTOV(xzp));
550 			skipped += 1;
551 			continue;
552 		}
553 		bzero(&dl, sizeof (dl));
554 		dl.dl_dzp = dzp;
555 		dl.dl_name = zap.za_name;
556 
557 		error = zfs_link_destroy(&dl, xzp, tx, 0, NULL);
558 		if (error)
559 			skipped += 1;
560 		dmu_tx_commit(tx);
561 
562 		VN_RELE(ZTOV(xzp));
563 	}
564 	zap_cursor_fini(&zc);
565 	if (error != ENOENT)
566 		skipped += 1;
567 	return (skipped);
568 }
569 
570 void
571 zfs_rmnode(znode_t *zp)
572 {
573 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
574 	objset_t	*os = zfsvfs->z_os;
575 	znode_t		*xzp = NULL;
576 	dmu_tx_t	*tx;
577 	uint64_t	acl_obj;
578 	int		error;
579 
580 	ASSERT(ZTOV(zp)->v_count == 0);
581 	ASSERT(zp->z_phys->zp_links == 0);
582 
583 	/*
584 	 * If this is an attribute directory, purge its contents.
585 	 */
586 	if (ZTOV(zp)->v_type == VDIR && (zp->z_phys->zp_flags & ZFS_XATTR)) {
587 		if (zfs_purgedir(zp) != 0) {
588 			/*
589 			 * Not enough space to delete some xattrs.
590 			 * Leave it in the unlinked set.
591 			 */
592 			zfs_znode_dmu_fini(zp);
593 			zfs_znode_free(zp);
594 			return;
595 		}
596 	}
597 
598 	/*
599 	 * Free up all the data in the file.
600 	 */
601 	error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END);
602 	if (error) {
603 		/*
604 		 * Not enough space.  Leave the file in the unlinked set.
605 		 */
606 		zfs_znode_dmu_fini(zp);
607 		zfs_znode_free(zp);
608 		return;
609 	}
610 
611 	/*
612 	 * If the file has extended attributes, we're going to unlink
613 	 * the xattr dir.
614 	 */
615 	if (zp->z_phys->zp_xattr) {
616 		error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
617 		ASSERT(error == 0);
618 	}
619 
620 	acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
621 
622 	/*
623 	 * Set up the final transaction.
624 	 */
625 	tx = dmu_tx_create(os);
626 	dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
627 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
628 	if (xzp) {
629 		dmu_tx_hold_bonus(tx, xzp->z_id);
630 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);
631 	}
632 	if (acl_obj)
633 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
634 	error = dmu_tx_assign(tx, TXG_WAIT);
635 	if (error) {
636 		/*
637 		 * Not enough space to delete the file.  Leave it in the
638 		 * unlinked set, leaking it until the fs is remounted (at
639 		 * which point we'll call zfs_unlinked_drain() to process it).
640 		 */
641 		dmu_tx_abort(tx);
642 		zfs_znode_dmu_fini(zp);
643 		zfs_znode_free(zp);
644 		goto out;
645 	}
646 
647 	if (xzp) {
648 		dmu_buf_will_dirty(xzp->z_dbuf, tx);
649 		mutex_enter(&xzp->z_lock);
650 		xzp->z_unlinked = B_TRUE;	/* mark xzp for deletion */
651 		xzp->z_phys->zp_links = 0;	/* no more links to it */
652 		mutex_exit(&xzp->z_lock);
653 		zfs_unlinked_add(xzp, tx);
654 	}
655 
656 	/* Remove this znode from the unlinked set */
657 	VERIFY3U(0, ==,
658 	    zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
659 
660 	zfs_znode_delete(zp, tx);
661 
662 	dmu_tx_commit(tx);
663 out:
664 	if (xzp)
665 		VN_RELE(ZTOV(xzp));
666 }
667 
668 static uint64_t
669 zfs_dirent(znode_t *zp)
670 {
671 	uint64_t de = zp->z_id;
672 	if (zp->z_zfsvfs->z_version >= ZPL_VERSION_DIRENT_TYPE)
673 		de |= IFTODT((zp)->z_phys->zp_mode) << 60;
674 	return (de);
675 }
676 
677 /*
678  * Link zp into dl.  Can only fail if zp has been unlinked.
679  */
680 int
681 zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag)
682 {
683 	znode_t *dzp = dl->dl_dzp;
684 	vnode_t *vp = ZTOV(zp);
685 	uint64_t value;
686 	int zp_is_dir = (vp->v_type == VDIR);
687 	int error;
688 
689 	dmu_buf_will_dirty(zp->z_dbuf, tx);
690 	mutex_enter(&zp->z_lock);
691 
692 	if (!(flag & ZRENAMING)) {
693 		if (zp->z_unlinked) {	/* no new links to unlinked zp */
694 			ASSERT(!(flag & (ZNEW | ZEXISTS)));
695 			mutex_exit(&zp->z_lock);
696 			return (ENOENT);
697 		}
698 		zp->z_phys->zp_links++;
699 	}
700 	zp->z_phys->zp_parent = dzp->z_id;	/* dzp is now zp's parent */
701 
702 	if (!(flag & ZNEW))
703 		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
704 	mutex_exit(&zp->z_lock);
705 
706 	dmu_buf_will_dirty(dzp->z_dbuf, tx);
707 	mutex_enter(&dzp->z_lock);
708 	dzp->z_phys->zp_size++;			/* one dirent added */
709 	dzp->z_phys->zp_links += zp_is_dir;	/* ".." link from zp */
710 	zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx);
711 	mutex_exit(&dzp->z_lock);
712 
713 	value = zfs_dirent(zp);
714 	error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name,
715 	    8, 1, &value, tx);
716 	ASSERT(error == 0);
717 
718 	dnlc_update(ZTOV(dzp), dl->dl_name, vp);
719 
720 	return (0);
721 }
722 
723 /*
724  * Unlink zp from dl, and mark zp for deletion if this was the last link.
725  * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST).
726  * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list.
727  * If it's non-NULL, we use it to indicate whether the znode needs deletion,
728  * and it's the caller's job to do it.
729  */
730 int
731 zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag,
732 	boolean_t *unlinkedp)
733 {
734 	znode_t *dzp = dl->dl_dzp;
735 	vnode_t *vp = ZTOV(zp);
736 	int zp_is_dir = (vp->v_type == VDIR);
737 	boolean_t unlinked = B_FALSE;
738 	int error;
739 
740 	dnlc_remove(ZTOV(dzp), dl->dl_name);
741 
742 	if (!(flag & ZRENAMING)) {
743 		dmu_buf_will_dirty(zp->z_dbuf, tx);
744 
745 		if (vn_vfswlock(vp))		/* prevent new mounts on zp */
746 			return (EBUSY);
747 
748 		if (vn_ismntpt(vp)) {		/* don't remove mount point */
749 			vn_vfsunlock(vp);
750 			return (EBUSY);
751 		}
752 
753 		mutex_enter(&zp->z_lock);
754 		if (zp_is_dir && !zfs_dirempty(zp)) {	/* dir not empty */
755 			mutex_exit(&zp->z_lock);
756 			vn_vfsunlock(vp);
757 			return (EEXIST);
758 		}
759 		if (zp->z_phys->zp_links <= zp_is_dir) {
760 			zfs_panic_recover("zfs: link count on vnode %p is %u, "
761 				"should be at least %u",
762 				zp->z_vnode, (int)zp->z_phys->zp_links,
763 		                zp_is_dir + 1);
764 			zp->z_phys->zp_links = zp_is_dir + 1;
765 		}
766 		if (--zp->z_phys->zp_links == zp_is_dir) {
767 			zp->z_unlinked = B_TRUE;
768 			zp->z_phys->zp_links = 0;
769 			unlinked = B_TRUE;
770 		} else {
771 			zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
772 		}
773 		mutex_exit(&zp->z_lock);
774 		vn_vfsunlock(vp);
775 	}
776 
777 	dmu_buf_will_dirty(dzp->z_dbuf, tx);
778 	mutex_enter(&dzp->z_lock);
779 	dzp->z_phys->zp_size--;			/* one dirent removed */
780 	dzp->z_phys->zp_links -= zp_is_dir;	/* ".." link from zp */
781 	zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx);
782 	mutex_exit(&dzp->z_lock);
783 
784 	if (zp->z_zfsvfs->z_norm) {
785 		if (((zp->z_zfsvfs->z_case == ZFS_CASE_INSENSITIVE) &&
786 		    (flag & ZCIEXACT)) ||
787 		    ((zp->z_zfsvfs->z_case == ZFS_CASE_MIXED) &&
788 		    !(flag & ZCILOOK)))
789 			error = zap_remove_norm(zp->z_zfsvfs->z_os,
790 			    dzp->z_id, dl->dl_name, MT_EXACT, tx);
791 		else
792 			error = zap_remove_norm(zp->z_zfsvfs->z_os,
793 			    dzp->z_id, dl->dl_name, MT_FIRST, tx);
794 	} else {
795 		error = zap_remove(zp->z_zfsvfs->z_os,
796 		    dzp->z_id, dl->dl_name, tx);
797 	}
798 	ASSERT(error == 0);
799 
800 	if (unlinkedp != NULL)
801 		*unlinkedp = unlinked;
802 	else if (unlinked)
803 		zfs_unlinked_add(zp, tx);
804 
805 	return (0);
806 }
807 
808 /*
809  * Indicate whether the directory is empty.  Works with or without z_lock
810  * held, but can only be consider a hint in the latter case.  Returns true
811  * if only "." and ".." remain and there's no work in progress.
812  */
813 boolean_t
814 zfs_dirempty(znode_t *dzp)
815 {
816 	return (dzp->z_phys->zp_size == 2 && dzp->z_dirlocks == 0);
817 }
818 
819 int
820 zfs_make_xattrdir(znode_t *zp, vattr_t *vap, vnode_t **xvpp, cred_t *cr)
821 {
822 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
823 	znode_t *xzp;
824 	dmu_tx_t *tx;
825 	int error;
826 	zfs_acl_ids_t acl_ids;
827 	boolean_t fuid_dirtied;
828 
829 	*xvpp = NULL;
830 
831 	if (error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, 0, B_FALSE, cr))
832 		return (error);
833 
834 	if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL,
835 	    &acl_ids)) != 0)
836 		return (error);
837 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
838 		zfs_acl_ids_free(&acl_ids);
839 		return (EDQUOT);
840 	}
841 
842 	tx = dmu_tx_create(zfsvfs->z_os);
843 	dmu_tx_hold_bonus(tx, zp->z_id);
844 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
845 	fuid_dirtied = zfsvfs->z_fuid_dirty;
846 	if (fuid_dirtied)
847 		zfs_fuid_txhold(zfsvfs, tx);
848 	error = dmu_tx_assign(tx, TXG_NOWAIT);
849 	if (error) {
850 		zfs_acl_ids_free(&acl_ids);
851 		if (error == ERESTART)
852 			dmu_tx_wait(tx);
853 		dmu_tx_abort(tx);
854 		return (error);
855 	}
856 	zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, 0, &acl_ids);
857 
858 	if (fuid_dirtied)
859 		zfs_fuid_sync(zfsvfs, tx);
860 
861 	ASSERT(xzp->z_phys->zp_parent == zp->z_id);
862 	dmu_buf_will_dirty(zp->z_dbuf, tx);
863 	zp->z_phys->zp_xattr = xzp->z_id;
864 
865 	(void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp,
866 	    xzp, "", NULL, acl_ids.z_fuidp, vap);
867 
868 	zfs_acl_ids_free(&acl_ids);
869 	dmu_tx_commit(tx);
870 
871 	*xvpp = ZTOV(xzp);
872 
873 	return (0);
874 }
875 
876 /*
877  * Return a znode for the extended attribute directory for zp.
878  * ** If the directory does not already exist, it is created **
879  *
880  *	IN:	zp	- znode to obtain attribute directory from
881  *		cr	- credentials of caller
882  *		flags	- flags from the VOP_LOOKUP call
883  *
884  *	OUT:	xzpp	- pointer to extended attribute znode
885  *
886  *	RETURN:	0 on success
887  *		error number on failure
888  */
889 int
890 zfs_get_xattrdir(znode_t *zp, vnode_t **xvpp, cred_t *cr, int flags)
891 {
892 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
893 	znode_t		*xzp;
894 	zfs_dirlock_t	*dl;
895 	vattr_t		va;
896 	int		error;
897 top:
898 	error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL);
899 	if (error)
900 		return (error);
901 
902 	if (xzp != NULL) {
903 		*xvpp = ZTOV(xzp);
904 		zfs_dirent_unlock(dl);
905 		return (0);
906 	}
907 
908 	ASSERT(zp->z_phys->zp_xattr == 0);
909 
910 	if (!(flags & CREATE_XATTR_DIR)) {
911 		zfs_dirent_unlock(dl);
912 		return (ENOENT);
913 	}
914 
915 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
916 		zfs_dirent_unlock(dl);
917 		return (EROFS);
918 	}
919 
920 	/*
921 	 * The ability to 'create' files in an attribute
922 	 * directory comes from the write_xattr permission on the base file.
923 	 *
924 	 * The ability to 'search' an attribute directory requires
925 	 * read_xattr permission on the base file.
926 	 *
927 	 * Once in a directory the ability to read/write attributes
928 	 * is controlled by the permissions on the attribute file.
929 	 */
930 	va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID;
931 	va.va_type = VDIR;
932 	va.va_mode = S_IFDIR | S_ISVTX | 0777;
933 	zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid);
934 
935 	error = zfs_make_xattrdir(zp, &va, xvpp, cr);
936 	zfs_dirent_unlock(dl);
937 
938 	if (error == ERESTART) {
939 		/* NB: we already did dmu_tx_wait() if necessary */
940 		goto top;
941 	}
942 
943 	return (error);
944 }
945 
946 /*
947  * Decide whether it is okay to remove within a sticky directory.
948  *
949  * In sticky directories, write access is not sufficient;
950  * you can remove entries from a directory only if:
951  *
952  *	you own the directory,
953  *	you own the entry,
954  *	the entry is a plain file and you have write access,
955  *	or you are privileged (checked in secpolicy...).
956  *
957  * The function returns 0 if remove access is granted.
958  */
959 int
960 zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
961 {
962 	uid_t  		uid;
963 	uid_t		downer;
964 	uid_t		fowner;
965 	zfsvfs_t	*zfsvfs = zdp->z_zfsvfs;
966 
967 	if (zdp->z_zfsvfs->z_replay)
968 		return (0);
969 
970 	if ((zdp->z_phys->zp_mode & S_ISVTX) == 0)
971 		return (0);
972 
973 	downer = zfs_fuid_map_id(zfsvfs, zdp->z_phys->zp_uid, cr, ZFS_OWNER);
974 	fowner = zfs_fuid_map_id(zfsvfs, zp->z_phys->zp_uid, cr, ZFS_OWNER);
975 
976 	if ((uid = crgetuid(cr)) == downer || uid == fowner ||
977 	    (ZTOV(zp)->v_type == VREG &&
978 	    zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0))
979 		return (0);
980 	else
981 		return (secpolicy_vnode_remove(cr));
982 }
983