1 /* X86-64 specific support for 64-bit ELF
2    Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3    Free Software Foundation, Inc.
4    Contributed by Jan Hubicka <jh@suse.cz>.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29 
30 #include "elf/x86-64.h"
31 
32 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
33 #define MINUS_ONE (~ (bfd_vma) 0)
34 
35 /* The relocation "howto" table.  Order of fields:
36    type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
37    special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset.  */
38 static reloc_howto_type x86_64_elf_howto_table[] =
39 {
40   HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
41 	bfd_elf_generic_reloc, "R_X86_64_NONE",	FALSE, 0x00000000, 0x00000000,
42 	FALSE),
43   HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
44 	bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
45 	FALSE),
46   HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
47 	bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
48 	TRUE),
49   HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
50 	bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
51 	FALSE),
52   HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
53 	bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
54 	TRUE),
55   HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
56 	bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
57 	FALSE),
58   HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 	bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
60 	MINUS_ONE, FALSE),
61   HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 	bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
63 	MINUS_ONE, FALSE),
64   HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
65 	bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
66 	MINUS_ONE, FALSE),
67   HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
68 	bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
69 	0xffffffff, TRUE),
70   HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
71 	bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
72 	FALSE),
73   HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
74 	bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
75 	FALSE),
76   HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
77 	bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
78   HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
79 	bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
80   HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
81 	bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
82   HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
83 	bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
84   HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 	bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
86 	MINUS_ONE, FALSE),
87   HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 	bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
89 	MINUS_ONE, FALSE),
90   HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
91 	bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
92 	MINUS_ONE, FALSE),
93   HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 	bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
95 	0xffffffff, TRUE),
96   HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
97 	bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
98 	0xffffffff, TRUE),
99   HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
100 	bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
101 	0xffffffff, FALSE),
102   HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
103 	bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
104 	0xffffffff, TRUE),
105   HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
106 	bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
107 	0xffffffff, FALSE),
108   HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
109 	bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
110 	TRUE),
111   HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
112 	bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
113 	FALSE, MINUS_ONE, MINUS_ONE, FALSE),
114   HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 	bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
116 	FALSE, 0xffffffff, 0xffffffff, TRUE),
117   HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
118 	bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
119 	FALSE),
120   HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
121 	bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
122 	MINUS_ONE, TRUE),
123   HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
124 	bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
125 	FALSE, MINUS_ONE, MINUS_ONE, TRUE),
126   HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
127 	bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
128 	MINUS_ONE, FALSE),
129   HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
130 	bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
131 	MINUS_ONE, FALSE),
132   EMPTY_HOWTO (32),
133   EMPTY_HOWTO (33),
134   HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
135 	complain_overflow_bitfield, bfd_elf_generic_reloc,
136 	"R_X86_64_GOTPC32_TLSDESC",
137 	FALSE, 0xffffffff, 0xffffffff, TRUE),
138   HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
139 	complain_overflow_dont, bfd_elf_generic_reloc,
140 	"R_X86_64_TLSDESC_CALL",
141 	FALSE, 0, 0, FALSE),
142   HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
143 	complain_overflow_bitfield, bfd_elf_generic_reloc,
144 	"R_X86_64_TLSDESC",
145 	FALSE, MINUS_ONE, MINUS_ONE, FALSE),
146 
147   /* We have a gap in the reloc numbers here.
148      R_X86_64_standard counts the number up to this point, and
149      R_X86_64_vt_offset is the value to subtract from a reloc type of
150      R_X86_64_GNU_VT* to form an index into this table.  */
151 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
152 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
153 
154 /* GNU extension to record C++ vtable hierarchy.  */
155   HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
156 	 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
157 
158 /* GNU extension to record C++ vtable member usage.  */
159   HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
160 	 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
161 	 FALSE)
162 };
163 
164 /* Map BFD relocs to the x86_64 elf relocs.  */
165 struct elf_reloc_map
166 {
167   bfd_reloc_code_real_type bfd_reloc_val;
168   unsigned char elf_reloc_val;
169 };
170 
171 static const struct elf_reloc_map x86_64_reloc_map[] =
172 {
173   { BFD_RELOC_NONE,		R_X86_64_NONE, },
174   { BFD_RELOC_64,		R_X86_64_64,   },
175   { BFD_RELOC_32_PCREL,		R_X86_64_PC32, },
176   { BFD_RELOC_X86_64_GOT32,	R_X86_64_GOT32,},
177   { BFD_RELOC_X86_64_PLT32,	R_X86_64_PLT32,},
178   { BFD_RELOC_X86_64_COPY,	R_X86_64_COPY, },
179   { BFD_RELOC_X86_64_GLOB_DAT,	R_X86_64_GLOB_DAT, },
180   { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
181   { BFD_RELOC_X86_64_RELATIVE,	R_X86_64_RELATIVE, },
182   { BFD_RELOC_X86_64_GOTPCREL,	R_X86_64_GOTPCREL, },
183   { BFD_RELOC_32,		R_X86_64_32, },
184   { BFD_RELOC_X86_64_32S,	R_X86_64_32S, },
185   { BFD_RELOC_16,		R_X86_64_16, },
186   { BFD_RELOC_16_PCREL,		R_X86_64_PC16, },
187   { BFD_RELOC_8,		R_X86_64_8, },
188   { BFD_RELOC_8_PCREL,		R_X86_64_PC8, },
189   { BFD_RELOC_X86_64_DTPMOD64,	R_X86_64_DTPMOD64, },
190   { BFD_RELOC_X86_64_DTPOFF64,	R_X86_64_DTPOFF64, },
191   { BFD_RELOC_X86_64_TPOFF64,	R_X86_64_TPOFF64, },
192   { BFD_RELOC_X86_64_TLSGD,	R_X86_64_TLSGD, },
193   { BFD_RELOC_X86_64_TLSLD,	R_X86_64_TLSLD, },
194   { BFD_RELOC_X86_64_DTPOFF32,	R_X86_64_DTPOFF32, },
195   { BFD_RELOC_X86_64_GOTTPOFF,	R_X86_64_GOTTPOFF, },
196   { BFD_RELOC_X86_64_TPOFF32,	R_X86_64_TPOFF32, },
197   { BFD_RELOC_64_PCREL,		R_X86_64_PC64, },
198   { BFD_RELOC_X86_64_GOTOFF64,	R_X86_64_GOTOFF64, },
199   { BFD_RELOC_X86_64_GOTPC32,	R_X86_64_GOTPC32, },
200   { BFD_RELOC_X86_64_GOT64,	R_X86_64_GOT64, },
201   { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
202   { BFD_RELOC_X86_64_GOTPC64,	R_X86_64_GOTPC64, },
203   { BFD_RELOC_X86_64_GOTPLT64,	R_X86_64_GOTPLT64, },
204   { BFD_RELOC_X86_64_PLTOFF64,	R_X86_64_PLTOFF64, },
205   { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
206   { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
207   { BFD_RELOC_X86_64_TLSDESC,	R_X86_64_TLSDESC, },
208   { BFD_RELOC_VTABLE_INHERIT,	R_X86_64_GNU_VTINHERIT, },
209   { BFD_RELOC_VTABLE_ENTRY,	R_X86_64_GNU_VTENTRY, },
210 };
211 
212 static reloc_howto_type *
213 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
214 {
215   unsigned i;
216 
217   if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
218       || r_type >= (unsigned int) R_X86_64_max)
219     {
220       if (r_type >= (unsigned int) R_X86_64_standard)
221 	{
222 	  (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
223 				 abfd, (int) r_type);
224 	  r_type = R_X86_64_NONE;
225 	}
226       i = r_type;
227     }
228   else
229     i = r_type - (unsigned int) R_X86_64_vt_offset;
230   BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
231   return &x86_64_elf_howto_table[i];
232 }
233 
234 /* Given a BFD reloc type, return a HOWTO structure.  */
235 static reloc_howto_type *
236 elf64_x86_64_reloc_type_lookup (bfd *abfd,
237 				bfd_reloc_code_real_type code)
238 {
239   unsigned int i;
240 
241   for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
242        i++)
243     {
244       if (x86_64_reloc_map[i].bfd_reloc_val == code)
245 	return elf64_x86_64_rtype_to_howto (abfd,
246 					    x86_64_reloc_map[i].elf_reloc_val);
247     }
248   return 0;
249 }
250 
251 static reloc_howto_type *
252 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
253 				const char *r_name)
254 {
255   unsigned int i;
256 
257   for (i = 0;
258        i < (sizeof (x86_64_elf_howto_table)
259 	    / sizeof (x86_64_elf_howto_table[0]));
260        i++)
261     if (x86_64_elf_howto_table[i].name != NULL
262 	&& strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
263       return &x86_64_elf_howto_table[i];
264 
265   return NULL;
266 }
267 
268 /* Given an x86_64 ELF reloc type, fill in an arelent structure.  */
269 
270 static void
271 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
272 			    Elf_Internal_Rela *dst)
273 {
274   unsigned r_type;
275 
276   r_type = ELF64_R_TYPE (dst->r_info);
277   cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
278   BFD_ASSERT (r_type == cache_ptr->howto->type);
279 }
280 
281 /* Support for core dump NOTE sections.  */
282 static bfd_boolean
283 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
284 {
285   int offset;
286   size_t size;
287 
288   switch (note->descsz)
289     {
290       default:
291 	return FALSE;
292 
293       case 336:		/* sizeof(istruct elf_prstatus) on Linux/x86_64 */
294 	/* pr_cursig */
295 	elf_tdata (abfd)->core_signal
296 	  = bfd_get_16 (abfd, note->descdata + 12);
297 
298 	/* pr_pid */
299 	elf_tdata (abfd)->core_pid
300 	  = bfd_get_32 (abfd, note->descdata + 32);
301 
302 	/* pr_reg */
303 	offset = 112;
304 	size = 216;
305 
306 	break;
307     }
308 
309   /* Make a ".reg/999" section.  */
310   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
311 					  size, note->descpos + offset);
312 }
313 
314 static bfd_boolean
315 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
316 {
317   switch (note->descsz)
318     {
319       default:
320 	return FALSE;
321 
322       case 136:		/* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
323 	elf_tdata (abfd)->core_program
324 	 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
325 	elf_tdata (abfd)->core_command
326 	 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
327     }
328 
329   /* Note that for some reason, a spurious space is tacked
330      onto the end of the args in some (at least one anyway)
331      implementations, so strip it off if it exists.  */
332 
333   {
334     char *command = elf_tdata (abfd)->core_command;
335     int n = strlen (command);
336 
337     if (0 < n && command[n - 1] == ' ')
338       command[n - 1] = '\0';
339   }
340 
341   return TRUE;
342 }
343 
344 /* Functions for the x86-64 ELF linker.	 */
345 
346 /* The name of the dynamic interpreter.	 This is put in the .interp
347    section.  */
348 
349 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
350 
351 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
352    copying dynamic variables from a shared lib into an app's dynbss
353    section, and instead use a dynamic relocation to point into the
354    shared lib.  */
355 #define ELIMINATE_COPY_RELOCS 1
356 
357 /* The size in bytes of an entry in the global offset table.  */
358 
359 #define GOT_ENTRY_SIZE 8
360 
361 /* The size in bytes of an entry in the procedure linkage table.  */
362 
363 #define PLT_ENTRY_SIZE 16
364 
365 /* The first entry in a procedure linkage table looks like this.  See the
366    SVR4 ABI i386 supplement and the x86-64 ABI to see how this works.  */
367 
368 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
369 {
370   0xff, 0x35, 8, 0, 0, 0,	/* pushq GOT+8(%rip)  */
371   0xff, 0x25, 16, 0, 0, 0,	/* jmpq *GOT+16(%rip) */
372   0x0f, 0x1f, 0x40, 0x00	/* nopl 0(%rax)       */
373 };
374 
375 /* Subsequent entries in a procedure linkage table look like this.  */
376 
377 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
378 {
379   0xff, 0x25,	/* jmpq *name@GOTPC(%rip) */
380   0, 0, 0, 0,	/* replaced with offset to this symbol in .got.	 */
381   0x68,		/* pushq immediate */
382   0, 0, 0, 0,	/* replaced with index into relocation table.  */
383   0xe9,		/* jmp relative */
384   0, 0, 0, 0	/* replaced with offset to start of .plt0.  */
385 };
386 
387 /* The x86-64 linker needs to keep track of the number of relocs that
388    it decides to copy as dynamic relocs in check_relocs for each symbol.
389    This is so that it can later discard them if they are found to be
390    unnecessary.  We store the information in a field extending the
391    regular ELF linker hash table.  */
392 
393 struct elf64_x86_64_dyn_relocs
394 {
395   /* Next section.  */
396   struct elf64_x86_64_dyn_relocs *next;
397 
398   /* The input section of the reloc.  */
399   asection *sec;
400 
401   /* Total number of relocs copied for the input section.  */
402   bfd_size_type count;
403 
404   /* Number of pc-relative relocs copied for the input section.  */
405   bfd_size_type pc_count;
406 };
407 
408 /* x86-64 ELF linker hash entry.  */
409 
410 struct elf64_x86_64_link_hash_entry
411 {
412   struct elf_link_hash_entry elf;
413 
414   /* Track dynamic relocs copied for this symbol.  */
415   struct elf64_x86_64_dyn_relocs *dyn_relocs;
416 
417 #define GOT_UNKNOWN	0
418 #define GOT_NORMAL	1
419 #define GOT_TLS_GD	2
420 #define GOT_TLS_IE	3
421 #define GOT_TLS_GDESC	4
422 #define GOT_TLS_GD_BOTH_P(type) \
423   ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
424 #define GOT_TLS_GD_P(type) \
425   ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
426 #define GOT_TLS_GDESC_P(type) \
427   ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
428 #define GOT_TLS_GD_ANY_P(type) \
429   (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
430   unsigned char tls_type;
431 
432   /* Offset of the GOTPLT entry reserved for the TLS descriptor,
433      starting at the end of the jump table.  */
434   bfd_vma tlsdesc_got;
435 };
436 
437 #define elf64_x86_64_hash_entry(ent) \
438   ((struct elf64_x86_64_link_hash_entry *)(ent))
439 
440 struct elf64_x86_64_obj_tdata
441 {
442   struct elf_obj_tdata root;
443 
444   /* tls_type for each local got entry.  */
445   char *local_got_tls_type;
446 
447   /* GOTPLT entries for TLS descriptors.  */
448   bfd_vma *local_tlsdesc_gotent;
449 };
450 
451 #define elf64_x86_64_tdata(abfd) \
452   ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
453 
454 #define elf64_x86_64_local_got_tls_type(abfd) \
455   (elf64_x86_64_tdata (abfd)->local_got_tls_type)
456 
457 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
458   (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
459 
460 #define is_x86_64_elf(bfd)				\
461   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
462    && elf_tdata (bfd) != NULL				\
463    && elf_object_id (bfd) == X86_64_ELF_TDATA)
464 
465 static bfd_boolean
466 elf64_x86_64_mkobject (bfd *abfd)
467 {
468   return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
469 				  X86_64_ELF_TDATA);
470 }
471 
472 /* x86-64 ELF linker hash table.  */
473 
474 struct elf64_x86_64_link_hash_table
475 {
476   struct elf_link_hash_table elf;
477 
478   /* Short-cuts to get to dynamic linker sections.  */
479   asection *sgot;
480   asection *sgotplt;
481   asection *srelgot;
482   asection *splt;
483   asection *srelplt;
484   asection *sdynbss;
485   asection *srelbss;
486 
487   /* The offset into splt of the PLT entry for the TLS descriptor
488      resolver.  Special values are 0, if not necessary (or not found
489      to be necessary yet), and -1 if needed but not determined
490      yet.  */
491   bfd_vma tlsdesc_plt;
492   /* The offset into sgot of the GOT entry used by the PLT entry
493      above.  */
494   bfd_vma tlsdesc_got;
495 
496   union {
497     bfd_signed_vma refcount;
498     bfd_vma offset;
499   } tls_ld_got;
500 
501   /* The amount of space used by the jump slots in the GOT.  */
502   bfd_vma sgotplt_jump_table_size;
503 
504   /* Small local sym to section mapping cache.  */
505   struct sym_sec_cache sym_sec;
506 
507   /* _TLS_MODULE_BASE_ symbol.  */
508   struct bfd_link_hash_entry *tls_module_base;
509 };
510 
511 /* Get the x86-64 ELF linker hash table from a link_info structure.  */
512 
513 #define elf64_x86_64_hash_table(p) \
514   ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
515 
516 #define elf64_x86_64_compute_jump_table_size(htab) \
517   ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
518 
519 /* Create an entry in an x86-64 ELF linker hash table.	*/
520 
521 static struct bfd_hash_entry *
522 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
523 		   const char *string)
524 {
525   /* Allocate the structure if it has not already been allocated by a
526      subclass.  */
527   if (entry == NULL)
528     {
529       entry = bfd_hash_allocate (table,
530 				 sizeof (struct elf64_x86_64_link_hash_entry));
531       if (entry == NULL)
532 	return entry;
533     }
534 
535   /* Call the allocation method of the superclass.  */
536   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
537   if (entry != NULL)
538     {
539       struct elf64_x86_64_link_hash_entry *eh;
540 
541       eh = (struct elf64_x86_64_link_hash_entry *) entry;
542       eh->dyn_relocs = NULL;
543       eh->tls_type = GOT_UNKNOWN;
544       eh->tlsdesc_got = (bfd_vma) -1;
545     }
546 
547   return entry;
548 }
549 
550 /* Create an X86-64 ELF linker hash table.  */
551 
552 static struct bfd_link_hash_table *
553 elf64_x86_64_link_hash_table_create (bfd *abfd)
554 {
555   struct elf64_x86_64_link_hash_table *ret;
556   bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
557 
558   ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
559   if (ret == NULL)
560     return NULL;
561 
562   if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
563 				      sizeof (struct elf64_x86_64_link_hash_entry)))
564     {
565       free (ret);
566       return NULL;
567     }
568 
569   ret->sgot = NULL;
570   ret->sgotplt = NULL;
571   ret->srelgot = NULL;
572   ret->splt = NULL;
573   ret->srelplt = NULL;
574   ret->sdynbss = NULL;
575   ret->srelbss = NULL;
576   ret->sym_sec.abfd = NULL;
577   ret->tlsdesc_plt = 0;
578   ret->tlsdesc_got = 0;
579   ret->tls_ld_got.refcount = 0;
580   ret->sgotplt_jump_table_size = 0;
581   ret->tls_module_base = NULL;
582 
583   return &ret->elf.root;
584 }
585 
586 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
587    shortcuts to them in our hash table.  */
588 
589 static bfd_boolean
590 create_got_section (bfd *dynobj, struct bfd_link_info *info)
591 {
592   struct elf64_x86_64_link_hash_table *htab;
593 
594   if (! _bfd_elf_create_got_section (dynobj, info))
595     return FALSE;
596 
597   htab = elf64_x86_64_hash_table (info);
598   htab->sgot = bfd_get_section_by_name (dynobj, ".got");
599   htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
600   if (!htab->sgot || !htab->sgotplt)
601     abort ();
602 
603   htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
604 					       (SEC_ALLOC | SEC_LOAD
605 						| SEC_HAS_CONTENTS
606 						| SEC_IN_MEMORY
607 						| SEC_LINKER_CREATED
608 						| SEC_READONLY));
609   if (htab->srelgot == NULL
610       || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
611     return FALSE;
612   return TRUE;
613 }
614 
615 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
616    .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
617    hash table.  */
618 
619 static bfd_boolean
620 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
621 {
622   struct elf64_x86_64_link_hash_table *htab;
623 
624   htab = elf64_x86_64_hash_table (info);
625   if (!htab->sgot && !create_got_section (dynobj, info))
626     return FALSE;
627 
628   if (!_bfd_elf_create_dynamic_sections (dynobj, info))
629     return FALSE;
630 
631   htab->splt = bfd_get_section_by_name (dynobj, ".plt");
632   htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
633   htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
634   if (!info->shared)
635     htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
636 
637   if (!htab->splt || !htab->srelplt || !htab->sdynbss
638       || (!info->shared && !htab->srelbss))
639     abort ();
640 
641   return TRUE;
642 }
643 
644 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
645 
646 static void
647 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
648 				   struct elf_link_hash_entry *dir,
649 				   struct elf_link_hash_entry *ind)
650 {
651   struct elf64_x86_64_link_hash_entry *edir, *eind;
652 
653   edir = (struct elf64_x86_64_link_hash_entry *) dir;
654   eind = (struct elf64_x86_64_link_hash_entry *) ind;
655 
656   if (eind->dyn_relocs != NULL)
657     {
658       if (edir->dyn_relocs != NULL)
659 	{
660 	  struct elf64_x86_64_dyn_relocs **pp;
661 	  struct elf64_x86_64_dyn_relocs *p;
662 
663 	  /* Add reloc counts against the indirect sym to the direct sym
664 	     list.  Merge any entries against the same section.  */
665 	  for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
666 	    {
667 	      struct elf64_x86_64_dyn_relocs *q;
668 
669 	      for (q = edir->dyn_relocs; q != NULL; q = q->next)
670 		if (q->sec == p->sec)
671 		  {
672 		    q->pc_count += p->pc_count;
673 		    q->count += p->count;
674 		    *pp = p->next;
675 		    break;
676 		  }
677 	      if (q == NULL)
678 		pp = &p->next;
679 	    }
680 	  *pp = edir->dyn_relocs;
681 	}
682 
683       edir->dyn_relocs = eind->dyn_relocs;
684       eind->dyn_relocs = NULL;
685     }
686 
687   if (ind->root.type == bfd_link_hash_indirect
688       && dir->got.refcount <= 0)
689     {
690       edir->tls_type = eind->tls_type;
691       eind->tls_type = GOT_UNKNOWN;
692     }
693 
694   if (ELIMINATE_COPY_RELOCS
695       && ind->root.type != bfd_link_hash_indirect
696       && dir->dynamic_adjusted)
697     {
698       /* If called to transfer flags for a weakdef during processing
699 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
700 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
701       dir->ref_dynamic |= ind->ref_dynamic;
702       dir->ref_regular |= ind->ref_regular;
703       dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
704       dir->needs_plt |= ind->needs_plt;
705       dir->pointer_equality_needed |= ind->pointer_equality_needed;
706     }
707   else
708     _bfd_elf_link_hash_copy_indirect (info, dir, ind);
709 }
710 
711 static bfd_boolean
712 elf64_x86_64_elf_object_p (bfd *abfd)
713 {
714   /* Set the right machine number for an x86-64 elf64 file.  */
715   bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
716   return TRUE;
717 }
718 
719 typedef union
720   {
721     unsigned char c[2];
722     uint16_t i;
723   }
724 x86_64_opcode16;
725 
726 typedef union
727   {
728     unsigned char c[4];
729     uint32_t i;
730   }
731 x86_64_opcode32;
732 
733 /* Return TRUE if the TLS access code sequence support transition
734    from R_TYPE.  */
735 
736 static bfd_boolean
737 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
738 				   bfd_byte *contents,
739 				   Elf_Internal_Shdr *symtab_hdr,
740 				   struct elf_link_hash_entry **sym_hashes,
741 				   unsigned int r_type,
742 				   const Elf_Internal_Rela *rel,
743 				   const Elf_Internal_Rela *relend)
744 {
745   unsigned int val;
746   unsigned long r_symndx;
747   struct elf_link_hash_entry *h;
748   bfd_vma offset;
749 
750   /* Get the section contents.  */
751   if (contents == NULL)
752     {
753       if (elf_section_data (sec)->this_hdr.contents != NULL)
754 	contents = elf_section_data (sec)->this_hdr.contents;
755       else
756 	{
757 	  /* FIXME: How to better handle error condition?  */
758 	  if (!bfd_malloc_and_get_section (abfd, sec, &contents))
759 	    return FALSE;
760 
761 	  /* Cache the section contents for elf_link_input_bfd.  */
762 	  elf_section_data (sec)->this_hdr.contents = contents;
763 	}
764     }
765 
766   offset = rel->r_offset;
767   switch (r_type)
768     {
769     case R_X86_64_TLSGD:
770     case R_X86_64_TLSLD:
771       if ((rel + 1) >= relend)
772 	return FALSE;
773 
774       if (r_type == R_X86_64_TLSGD)
775 	{
776 	  /* Check transition from GD access model.  Only
777 		.byte 0x66; leaq foo@tlsgd(%rip), %rdi
778 		.word 0x6666; rex64; call __tls_get_addr
779 	     can transit to different access model.  */
780 
781 	  static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
782 				 call = { { 0x66, 0x66, 0x48, 0xe8 } };
783 	  if (offset < 4
784 	      || (offset + 12) > sec->size
785 	      || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
786 	      || bfd_get_32 (abfd, contents + offset + 4) != call.i)
787 	    return FALSE;
788 	}
789       else
790 	{
791 	  /* Check transition from LD access model.  Only
792 		leaq foo@tlsld(%rip), %rdi;
793 		call __tls_get_addr
794 	     can transit to different access model.  */
795 
796 	  static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
797 	  x86_64_opcode32 op;
798 
799 	  if (offset < 3 || (offset + 9) > sec->size)
800 	    return FALSE;
801 
802 	  op.i = bfd_get_32 (abfd, contents + offset - 3);
803 	  op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
804 	  if (op.i != ld.i)
805 	    return FALSE;
806 	}
807 
808       r_symndx = ELF64_R_SYM (rel[1].r_info);
809       if (r_symndx < symtab_hdr->sh_info)
810 	return FALSE;
811 
812       h = sym_hashes[r_symndx - symtab_hdr->sh_info];
813       return (h != NULL
814 	      && h->root.root.string != NULL
815 	      && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
816 		  || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
817 	      && (strcmp (h->root.root.string, "__tls_get_addr") == 0));
818 
819     case R_X86_64_GOTTPOFF:
820       /* Check transition from IE access model:
821 		movq foo@gottpoff(%rip), %reg
822 		addq foo@gottpoff(%rip), %reg
823        */
824 
825       if (offset < 3 || (offset + 4) > sec->size)
826 	return FALSE;
827 
828       val = bfd_get_8 (abfd, contents + offset - 3);
829       if (val != 0x48 && val != 0x4c)
830 	return FALSE;
831 
832       val = bfd_get_8 (abfd, contents + offset - 2);
833       if (val != 0x8b && val != 0x03)
834 	return FALSE;
835 
836       val = bfd_get_8 (abfd, contents + offset - 1);
837       return (val & 0xc7) == 5;
838 
839     case R_X86_64_GOTPC32_TLSDESC:
840       /* Check transition from GDesc access model:
841 		leaq x@tlsdesc(%rip), %rax
842 
843 	 Make sure it's a leaq adding rip to a 32-bit offset
844 	 into any register, although it's probably almost always
845 	 going to be rax.  */
846 
847       if (offset < 3 || (offset + 4) > sec->size)
848 	return FALSE;
849 
850       val = bfd_get_8 (abfd, contents + offset - 3);
851       if ((val & 0xfb) != 0x48)
852 	return FALSE;
853 
854       if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
855 	return FALSE;
856 
857       val = bfd_get_8 (abfd, contents + offset - 1);
858       return (val & 0xc7) == 0x05;
859 
860     case R_X86_64_TLSDESC_CALL:
861       /* Check transition from GDesc access model:
862 		call *x@tlsdesc(%rax)
863        */
864       if (offset + 2 <= sec->size)
865 	{
866 	  /* Make sure that it's a call *x@tlsdesc(%rax).  */
867 	  static x86_64_opcode16 call = { { 0xff, 0x10 } };
868 	  return bfd_get_16 (abfd, contents + offset) == call.i;
869 	}
870 
871       return FALSE;
872 
873     default:
874       abort ();
875     }
876 }
877 
878 /* Return TRUE if the TLS access transition is OK or no transition
879    will be performed.  Update R_TYPE if there is a transition.  */
880 
881 static bfd_boolean
882 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
883 			     asection *sec, bfd_byte *contents,
884 			     Elf_Internal_Shdr *symtab_hdr,
885 			     struct elf_link_hash_entry **sym_hashes,
886 			     unsigned int *r_type, int tls_type,
887 			     const Elf_Internal_Rela *rel,
888 			     const Elf_Internal_Rela *relend,
889 			     struct elf_link_hash_entry *h)
890 {
891   unsigned int from_type = *r_type;
892   unsigned int to_type = from_type;
893   bfd_boolean check = TRUE;
894 
895   switch (from_type)
896     {
897     case R_X86_64_TLSGD:
898     case R_X86_64_GOTPC32_TLSDESC:
899     case R_X86_64_TLSDESC_CALL:
900     case R_X86_64_GOTTPOFF:
901       if (!info->shared)
902 	{
903 	  if (h == NULL)
904 	    to_type = R_X86_64_TPOFF32;
905 	  else
906 	    to_type = R_X86_64_GOTTPOFF;
907 	}
908 
909       /* When we are called from elf64_x86_64_relocate_section,
910 	 CONTENTS isn't NULL and there may be additional transitions
911 	 based on TLS_TYPE.  */
912       if (contents != NULL)
913 	{
914 	  unsigned int new_to_type = to_type;
915 
916 	  if (!info->shared
917 	      && h != NULL
918 	      && h->dynindx == -1
919 	      && tls_type == GOT_TLS_IE)
920 	    new_to_type = R_X86_64_TPOFF32;
921 
922 	  if (to_type == R_X86_64_TLSGD
923 	      || to_type == R_X86_64_GOTPC32_TLSDESC
924 	      || to_type == R_X86_64_TLSDESC_CALL)
925 	    {
926 	      if (tls_type == GOT_TLS_IE)
927 		new_to_type = R_X86_64_GOTTPOFF;
928 	    }
929 
930 	  /* We checked the transition before when we were called from
931 	     elf64_x86_64_check_relocs.  We only want to check the new
932 	     transition which hasn't been checked before.  */
933 	  check = new_to_type != to_type && from_type == to_type;
934 	  to_type = new_to_type;
935 	}
936 
937       break;
938 
939     case R_X86_64_TLSLD:
940       if (!info->shared)
941 	to_type = R_X86_64_TPOFF32;
942       break;
943 
944     default:
945       return TRUE;
946     }
947 
948   /* Return TRUE if there is no transition.  */
949   if (from_type == to_type)
950     return TRUE;
951 
952   /* Check if the transition can be performed.  */
953   if (check
954       && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
955 					      symtab_hdr, sym_hashes,
956 					      from_type, rel, relend))
957     {
958       reloc_howto_type *from, *to;
959 
960       from = elf64_x86_64_rtype_to_howto (abfd, from_type);
961       to = elf64_x86_64_rtype_to_howto (abfd, to_type);
962 
963       (*_bfd_error_handler)
964 	(_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
965 	   "in section `%A' failed"),
966 	 abfd, sec, from->name, to->name,
967 	 h ? h->root.root.string : "a local symbol",
968 	 (unsigned long) rel->r_offset);
969       bfd_set_error (bfd_error_bad_value);
970       return FALSE;
971     }
972 
973   *r_type = to_type;
974   return TRUE;
975 }
976 
977 /* Look through the relocs for a section during the first phase, and
978    calculate needed space in the global offset table, procedure
979    linkage table, and dynamic reloc sections.  */
980 
981 static bfd_boolean
982 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
983 			   asection *sec,
984 			   const Elf_Internal_Rela *relocs)
985 {
986   struct elf64_x86_64_link_hash_table *htab;
987   Elf_Internal_Shdr *symtab_hdr;
988   struct elf_link_hash_entry **sym_hashes;
989   const Elf_Internal_Rela *rel;
990   const Elf_Internal_Rela *rel_end;
991   asection *sreloc;
992 
993   if (info->relocatable)
994     return TRUE;
995 
996   BFD_ASSERT (is_x86_64_elf (abfd));
997 
998   htab = elf64_x86_64_hash_table (info);
999   symtab_hdr = &elf_symtab_hdr (abfd);
1000   sym_hashes = elf_sym_hashes (abfd);
1001 
1002   sreloc = NULL;
1003 
1004   rel_end = relocs + sec->reloc_count;
1005   for (rel = relocs; rel < rel_end; rel++)
1006     {
1007       unsigned int r_type;
1008       unsigned long r_symndx;
1009       struct elf_link_hash_entry *h;
1010 
1011       r_symndx = ELF64_R_SYM (rel->r_info);
1012       r_type = ELF64_R_TYPE (rel->r_info);
1013 
1014       if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1015 	{
1016 	  (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1017 				 abfd, r_symndx);
1018 	  return FALSE;
1019 	}
1020 
1021       if (r_symndx < symtab_hdr->sh_info)
1022 	h = NULL;
1023       else
1024 	{
1025 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1026 	  while (h->root.type == bfd_link_hash_indirect
1027 		 || h->root.type == bfd_link_hash_warning)
1028 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1029 	}
1030 
1031       if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1032 					 symtab_hdr, sym_hashes,
1033 					 &r_type, GOT_UNKNOWN,
1034 					 rel, rel_end, h))
1035 	return FALSE;
1036 
1037       switch (r_type)
1038 	{
1039 	case R_X86_64_TLSLD:
1040 	  htab->tls_ld_got.refcount += 1;
1041 	  goto create_got;
1042 
1043 	case R_X86_64_TPOFF32:
1044 	  if (info->shared)
1045 	    {
1046 	      (*_bfd_error_handler)
1047 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1048 		 abfd,
1049 		 x86_64_elf_howto_table[r_type].name,
1050 		 (h) ? h->root.root.string : "a local symbol");
1051 	      bfd_set_error (bfd_error_bad_value);
1052 	      return FALSE;
1053 	    }
1054 	  break;
1055 
1056 	case R_X86_64_GOTTPOFF:
1057 	  if (info->shared)
1058 	    info->flags |= DF_STATIC_TLS;
1059 	  /* Fall through */
1060 
1061 	case R_X86_64_GOT32:
1062 	case R_X86_64_GOTPCREL:
1063 	case R_X86_64_TLSGD:
1064 	case R_X86_64_GOT64:
1065 	case R_X86_64_GOTPCREL64:
1066 	case R_X86_64_GOTPLT64:
1067 	case R_X86_64_GOTPC32_TLSDESC:
1068 	case R_X86_64_TLSDESC_CALL:
1069 	  /* This symbol requires a global offset table entry.	*/
1070 	  {
1071 	    int tls_type, old_tls_type;
1072 
1073 	    switch (r_type)
1074 	      {
1075 	      default: tls_type = GOT_NORMAL; break;
1076 	      case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1077 	      case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1078 	      case R_X86_64_GOTPC32_TLSDESC:
1079 	      case R_X86_64_TLSDESC_CALL:
1080 		tls_type = GOT_TLS_GDESC; break;
1081 	      }
1082 
1083 	    if (h != NULL)
1084 	      {
1085 		if (r_type == R_X86_64_GOTPLT64)
1086 		  {
1087 		    /* This relocation indicates that we also need
1088 		       a PLT entry, as this is a function.  We don't need
1089 		       a PLT entry for local symbols.  */
1090 		    h->needs_plt = 1;
1091 		    h->plt.refcount += 1;
1092 		  }
1093 		h->got.refcount += 1;
1094 		old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1095 	      }
1096 	    else
1097 	      {
1098 		bfd_signed_vma *local_got_refcounts;
1099 
1100 		/* This is a global offset table entry for a local symbol.  */
1101 		local_got_refcounts = elf_local_got_refcounts (abfd);
1102 		if (local_got_refcounts == NULL)
1103 		  {
1104 		    bfd_size_type size;
1105 
1106 		    size = symtab_hdr->sh_info;
1107 		    size *= sizeof (bfd_signed_vma)
1108 		      + sizeof (bfd_vma) + sizeof (char);
1109 		    local_got_refcounts = ((bfd_signed_vma *)
1110 					   bfd_zalloc (abfd, size));
1111 		    if (local_got_refcounts == NULL)
1112 		      return FALSE;
1113 		    elf_local_got_refcounts (abfd) = local_got_refcounts;
1114 		    elf64_x86_64_local_tlsdesc_gotent (abfd)
1115 		      = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1116 		    elf64_x86_64_local_got_tls_type (abfd)
1117 		      = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1118 		  }
1119 		local_got_refcounts[r_symndx] += 1;
1120 		old_tls_type
1121 		  = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1122 	      }
1123 
1124 	    /* If a TLS symbol is accessed using IE at least once,
1125 	       there is no point to use dynamic model for it.  */
1126 	    if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1127 		&& (! GOT_TLS_GD_ANY_P (old_tls_type)
1128 		    || tls_type != GOT_TLS_IE))
1129 	      {
1130 		if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1131 		  tls_type = old_tls_type;
1132 		else if (GOT_TLS_GD_ANY_P (old_tls_type)
1133 			 && GOT_TLS_GD_ANY_P (tls_type))
1134 		  tls_type |= old_tls_type;
1135 		else
1136 		  {
1137 		    (*_bfd_error_handler)
1138 		      (_("%B: '%s' accessed both as normal and thread local symbol"),
1139 		       abfd, h ? h->root.root.string : "<local>");
1140 		    return FALSE;
1141 		  }
1142 	      }
1143 
1144 	    if (old_tls_type != tls_type)
1145 	      {
1146 		if (h != NULL)
1147 		  elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1148 		else
1149 		  elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1150 	      }
1151 	  }
1152 	  /* Fall through */
1153 
1154 	case R_X86_64_GOTOFF64:
1155 	case R_X86_64_GOTPC32:
1156 	case R_X86_64_GOTPC64:
1157 	create_got:
1158 	  if (htab->sgot == NULL)
1159 	    {
1160 	      if (htab->elf.dynobj == NULL)
1161 		htab->elf.dynobj = abfd;
1162 	      if (!create_got_section (htab->elf.dynobj, info))
1163 		return FALSE;
1164 	    }
1165 	  break;
1166 
1167 	case R_X86_64_PLT32:
1168 	  /* This symbol requires a procedure linkage table entry.  We
1169 	     actually build the entry in adjust_dynamic_symbol,
1170 	     because this might be a case of linking PIC code which is
1171 	     never referenced by a dynamic object, in which case we
1172 	     don't need to generate a procedure linkage table entry
1173 	     after all.	 */
1174 
1175 	  /* If this is a local symbol, we resolve it directly without
1176 	     creating a procedure linkage table entry.	*/
1177 	  if (h == NULL)
1178 	    continue;
1179 
1180 	  h->needs_plt = 1;
1181 	  h->plt.refcount += 1;
1182 	  break;
1183 
1184 	case R_X86_64_PLTOFF64:
1185 	  /* This tries to form the 'address' of a function relative
1186 	     to GOT.  For global symbols we need a PLT entry.  */
1187 	  if (h != NULL)
1188 	    {
1189 	      h->needs_plt = 1;
1190 	      h->plt.refcount += 1;
1191 	    }
1192 	  goto create_got;
1193 
1194 	case R_X86_64_8:
1195 	case R_X86_64_16:
1196 	case R_X86_64_32:
1197 	case R_X86_64_32S:
1198 	  /* Let's help debug shared library creation.  These relocs
1199 	     cannot be used in shared libs.  Don't error out for
1200 	     sections we don't care about, such as debug sections or
1201 	     non-constant sections.  */
1202 	  if (info->shared
1203 	      && (sec->flags & SEC_ALLOC) != 0
1204 	      && (sec->flags & SEC_READONLY) != 0)
1205 	    {
1206 	      (*_bfd_error_handler)
1207 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1208 		 abfd,
1209 		 x86_64_elf_howto_table[r_type].name,
1210 		 (h) ? h->root.root.string : "a local symbol");
1211 	      bfd_set_error (bfd_error_bad_value);
1212 	      return FALSE;
1213 	    }
1214 	  /* Fall through.  */
1215 
1216 	case R_X86_64_PC8:
1217 	case R_X86_64_PC16:
1218 	case R_X86_64_PC32:
1219 	case R_X86_64_PC64:
1220 	case R_X86_64_64:
1221 	  if (h != NULL && !info->shared)
1222 	    {
1223 	      /* If this reloc is in a read-only section, we might
1224 		 need a copy reloc.  We can't check reliably at this
1225 		 stage whether the section is read-only, as input
1226 		 sections have not yet been mapped to output sections.
1227 		 Tentatively set the flag for now, and correct in
1228 		 adjust_dynamic_symbol.  */
1229 	      h->non_got_ref = 1;
1230 
1231 	      /* We may need a .plt entry if the function this reloc
1232 		 refers to is in a shared lib.  */
1233 	      h->plt.refcount += 1;
1234 	      if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1235 		h->pointer_equality_needed = 1;
1236 	    }
1237 
1238 	  /* If we are creating a shared library, and this is a reloc
1239 	     against a global symbol, or a non PC relative reloc
1240 	     against a local symbol, then we need to copy the reloc
1241 	     into the shared library.  However, if we are linking with
1242 	     -Bsymbolic, we do not need to copy a reloc against a
1243 	     global symbol which is defined in an object we are
1244 	     including in the link (i.e., DEF_REGULAR is set).	At
1245 	     this point we have not seen all the input files, so it is
1246 	     possible that DEF_REGULAR is not set now but will be set
1247 	     later (it is never cleared).  In case of a weak definition,
1248 	     DEF_REGULAR may be cleared later by a strong definition in
1249 	     a shared library.  We account for that possibility below by
1250 	     storing information in the relocs_copied field of the hash
1251 	     table entry.  A similar situation occurs when creating
1252 	     shared libraries and symbol visibility changes render the
1253 	     symbol local.
1254 
1255 	     If on the other hand, we are creating an executable, we
1256 	     may need to keep relocations for symbols satisfied by a
1257 	     dynamic library if we manage to avoid copy relocs for the
1258 	     symbol.  */
1259 	  if ((info->shared
1260 	       && (sec->flags & SEC_ALLOC) != 0
1261 	       && (((r_type != R_X86_64_PC8)
1262 		    && (r_type != R_X86_64_PC16)
1263 		    && (r_type != R_X86_64_PC32)
1264 		    && (r_type != R_X86_64_PC64))
1265 		   || (h != NULL
1266 		       && (! SYMBOLIC_BIND (info, h)
1267 			   || h->root.type == bfd_link_hash_defweak
1268 			   || !h->def_regular))))
1269 	      || (ELIMINATE_COPY_RELOCS
1270 		  && !info->shared
1271 		  && (sec->flags & SEC_ALLOC) != 0
1272 		  && h != NULL
1273 		  && (h->root.type == bfd_link_hash_defweak
1274 		      || !h->def_regular)))
1275 	    {
1276 	      struct elf64_x86_64_dyn_relocs *p;
1277 	      struct elf64_x86_64_dyn_relocs **head;
1278 
1279 	      /* We must copy these reloc types into the output file.
1280 		 Create a reloc section in dynobj and make room for
1281 		 this reloc.  */
1282 	      if (sreloc == NULL)
1283 		{
1284 		  const char *name;
1285 		  bfd *dynobj;
1286 
1287 		  name = (bfd_elf_string_from_elf_section
1288 			  (abfd,
1289 			   elf_elfheader (abfd)->e_shstrndx,
1290 			   elf_section_data (sec)->rel_hdr.sh_name));
1291 		  if (name == NULL)
1292 		    return FALSE;
1293 
1294 		  if (! CONST_STRNEQ (name, ".rela")
1295 		      || strcmp (bfd_get_section_name (abfd, sec),
1296 				 name + 5) != 0)
1297 		    {
1298 		      (*_bfd_error_handler)
1299 			(_("%B: bad relocation section name `%s\'"),
1300 			 abfd, name);
1301 		    }
1302 
1303 		  if (htab->elf.dynobj == NULL)
1304 		    htab->elf.dynobj = abfd;
1305 
1306 		  dynobj = htab->elf.dynobj;
1307 
1308 		  sreloc = bfd_get_section_by_name (dynobj, name);
1309 		  if (sreloc == NULL)
1310 		    {
1311 		      flagword flags;
1312 
1313 		      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1314 			       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1315 		      if ((sec->flags & SEC_ALLOC) != 0)
1316 			flags |= SEC_ALLOC | SEC_LOAD;
1317 		      sreloc = bfd_make_section_with_flags (dynobj,
1318 							    name,
1319 							    flags);
1320 		      if (sreloc == NULL
1321 			  || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1322 			return FALSE;
1323 		    }
1324 		  elf_section_data (sec)->sreloc = sreloc;
1325 		}
1326 
1327 	      /* If this is a global symbol, we count the number of
1328 		 relocations we need for this symbol.  */
1329 	      if (h != NULL)
1330 		{
1331 		  head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1332 		}
1333 	      else
1334 		{
1335 		  void **vpp;
1336 		  /* Track dynamic relocs needed for local syms too.
1337 		     We really need local syms available to do this
1338 		     easily.  Oh well.  */
1339 
1340 		  asection *s;
1341 		  s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1342 						 sec, r_symndx);
1343 		  if (s == NULL)
1344 		    return FALSE;
1345 
1346 		  /* Beware of type punned pointers vs strict aliasing
1347 		     rules.  */
1348 		  vpp = &(elf_section_data (s)->local_dynrel);
1349 		  head = (struct elf64_x86_64_dyn_relocs **)vpp;
1350 		}
1351 
1352 	      p = *head;
1353 	      if (p == NULL || p->sec != sec)
1354 		{
1355 		  bfd_size_type amt = sizeof *p;
1356 		  p = ((struct elf64_x86_64_dyn_relocs *)
1357 		       bfd_alloc (htab->elf.dynobj, amt));
1358 		  if (p == NULL)
1359 		    return FALSE;
1360 		  p->next = *head;
1361 		  *head = p;
1362 		  p->sec = sec;
1363 		  p->count = 0;
1364 		  p->pc_count = 0;
1365 		}
1366 
1367 	      p->count += 1;
1368 	      if (r_type == R_X86_64_PC8
1369 		  || r_type == R_X86_64_PC16
1370 		  || r_type == R_X86_64_PC32
1371 		  || r_type == R_X86_64_PC64)
1372 		p->pc_count += 1;
1373 	    }
1374 	  break;
1375 
1376 	  /* This relocation describes the C++ object vtable hierarchy.
1377 	     Reconstruct it for later use during GC.  */
1378 	case R_X86_64_GNU_VTINHERIT:
1379 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1380 	    return FALSE;
1381 	  break;
1382 
1383 	  /* This relocation describes which C++ vtable entries are actually
1384 	     used.  Record for later use during GC.  */
1385 	case R_X86_64_GNU_VTENTRY:
1386 	  BFD_ASSERT (h != NULL);
1387 	  if (h != NULL
1388 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1389 	    return FALSE;
1390 	  break;
1391 
1392 	default:
1393 	  break;
1394 	}
1395     }
1396 
1397   return TRUE;
1398 }
1399 
1400 /* Return the section that should be marked against GC for a given
1401    relocation.	*/
1402 
1403 static asection *
1404 elf64_x86_64_gc_mark_hook (asection *sec,
1405 			   struct bfd_link_info *info,
1406 			   Elf_Internal_Rela *rel,
1407 			   struct elf_link_hash_entry *h,
1408 			   Elf_Internal_Sym *sym)
1409 {
1410   if (h != NULL)
1411     switch (ELF64_R_TYPE (rel->r_info))
1412       {
1413       case R_X86_64_GNU_VTINHERIT:
1414       case R_X86_64_GNU_VTENTRY:
1415 	return NULL;
1416       }
1417 
1418   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1419 }
1420 
1421 /* Update the got entry reference counts for the section being removed.	 */
1422 
1423 static bfd_boolean
1424 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1425 			    asection *sec,
1426 			    const Elf_Internal_Rela *relocs)
1427 {
1428   Elf_Internal_Shdr *symtab_hdr;
1429   struct elf_link_hash_entry **sym_hashes;
1430   bfd_signed_vma *local_got_refcounts;
1431   const Elf_Internal_Rela *rel, *relend;
1432 
1433   if (info->relocatable)
1434     return TRUE;
1435 
1436   elf_section_data (sec)->local_dynrel = NULL;
1437 
1438   symtab_hdr = &elf_symtab_hdr (abfd);
1439   sym_hashes = elf_sym_hashes (abfd);
1440   local_got_refcounts = elf_local_got_refcounts (abfd);
1441 
1442   relend = relocs + sec->reloc_count;
1443   for (rel = relocs; rel < relend; rel++)
1444     {
1445       unsigned long r_symndx;
1446       unsigned int r_type;
1447       struct elf_link_hash_entry *h = NULL;
1448 
1449       r_symndx = ELF64_R_SYM (rel->r_info);
1450       if (r_symndx >= symtab_hdr->sh_info)
1451 	{
1452 	  struct elf64_x86_64_link_hash_entry *eh;
1453 	  struct elf64_x86_64_dyn_relocs **pp;
1454 	  struct elf64_x86_64_dyn_relocs *p;
1455 
1456 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1457 	  while (h->root.type == bfd_link_hash_indirect
1458 		 || h->root.type == bfd_link_hash_warning)
1459 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1460 	  eh = (struct elf64_x86_64_link_hash_entry *) h;
1461 
1462 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1463 	    if (p->sec == sec)
1464 	      {
1465 		/* Everything must go for SEC.  */
1466 		*pp = p->next;
1467 		break;
1468 	      }
1469 	}
1470 
1471       r_type = ELF64_R_TYPE (rel->r_info);
1472       if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1473 					 symtab_hdr, sym_hashes,
1474 					 &r_type, GOT_UNKNOWN,
1475 					 rel, relend, h))
1476 	return FALSE;
1477 
1478       switch (r_type)
1479 	{
1480 	case R_X86_64_TLSLD:
1481 	  if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1482 	    elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1483 	  break;
1484 
1485 	case R_X86_64_TLSGD:
1486 	case R_X86_64_GOTPC32_TLSDESC:
1487 	case R_X86_64_TLSDESC_CALL:
1488 	case R_X86_64_GOTTPOFF:
1489 	case R_X86_64_GOT32:
1490 	case R_X86_64_GOTPCREL:
1491 	case R_X86_64_GOT64:
1492 	case R_X86_64_GOTPCREL64:
1493 	case R_X86_64_GOTPLT64:
1494 	  if (h != NULL)
1495 	    {
1496 	      if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1497 	        h->plt.refcount -= 1;
1498 	      if (h->got.refcount > 0)
1499 		h->got.refcount -= 1;
1500 	    }
1501 	  else if (local_got_refcounts != NULL)
1502 	    {
1503 	      if (local_got_refcounts[r_symndx] > 0)
1504 		local_got_refcounts[r_symndx] -= 1;
1505 	    }
1506 	  break;
1507 
1508 	case R_X86_64_8:
1509 	case R_X86_64_16:
1510 	case R_X86_64_32:
1511 	case R_X86_64_64:
1512 	case R_X86_64_32S:
1513 	case R_X86_64_PC8:
1514 	case R_X86_64_PC16:
1515 	case R_X86_64_PC32:
1516 	case R_X86_64_PC64:
1517 	  if (info->shared)
1518 	    break;
1519 	  /* Fall thru */
1520 
1521 	case R_X86_64_PLT32:
1522 	case R_X86_64_PLTOFF64:
1523 	  if (h != NULL)
1524 	    {
1525 	      if (h->plt.refcount > 0)
1526 		h->plt.refcount -= 1;
1527 	    }
1528 	  break;
1529 
1530 	default:
1531 	  break;
1532 	}
1533     }
1534 
1535   return TRUE;
1536 }
1537 
1538 /* Adjust a symbol defined by a dynamic object and referenced by a
1539    regular object.  The current definition is in some section of the
1540    dynamic object, but we're not including those sections.  We have to
1541    change the definition to something the rest of the link can
1542    understand.	*/
1543 
1544 static bfd_boolean
1545 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1546 				    struct elf_link_hash_entry *h)
1547 {
1548   struct elf64_x86_64_link_hash_table *htab;
1549   asection *s;
1550 
1551   /* If this is a function, put it in the procedure linkage table.  We
1552      will fill in the contents of the procedure linkage table later,
1553      when we know the address of the .got section.  */
1554   if (h->type == STT_FUNC
1555       || h->needs_plt)
1556     {
1557       if (h->plt.refcount <= 0
1558 	  || SYMBOL_CALLS_LOCAL (info, h)
1559 	  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1560 	      && h->root.type == bfd_link_hash_undefweak))
1561 	{
1562 	  /* This case can occur if we saw a PLT32 reloc in an input
1563 	     file, but the symbol was never referred to by a dynamic
1564 	     object, or if all references were garbage collected.  In
1565 	     such a case, we don't actually need to build a procedure
1566 	     linkage table, and we can just do a PC32 reloc instead.  */
1567 	  h->plt.offset = (bfd_vma) -1;
1568 	  h->needs_plt = 0;
1569 	}
1570 
1571       return TRUE;
1572     }
1573   else
1574     /* It's possible that we incorrectly decided a .plt reloc was
1575        needed for an R_X86_64_PC32 reloc to a non-function sym in
1576        check_relocs.  We can't decide accurately between function and
1577        non-function syms in check-relocs;  Objects loaded later in
1578        the link may change h->type.  So fix it now.  */
1579     h->plt.offset = (bfd_vma) -1;
1580 
1581   /* If this is a weak symbol, and there is a real definition, the
1582      processor independent code will have arranged for us to see the
1583      real definition first, and we can just use the same value.	 */
1584   if (h->u.weakdef != NULL)
1585     {
1586       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1587 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
1588       h->root.u.def.section = h->u.weakdef->root.u.def.section;
1589       h->root.u.def.value = h->u.weakdef->root.u.def.value;
1590       if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1591 	h->non_got_ref = h->u.weakdef->non_got_ref;
1592       return TRUE;
1593     }
1594 
1595   /* This is a reference to a symbol defined by a dynamic object which
1596      is not a function.	 */
1597 
1598   /* If we are creating a shared library, we must presume that the
1599      only references to the symbol are via the global offset table.
1600      For such cases we need not do anything here; the relocations will
1601      be handled correctly by relocate_section.	*/
1602   if (info->shared)
1603     return TRUE;
1604 
1605   /* If there are no references to this symbol that do not use the
1606      GOT, we don't need to generate a copy reloc.  */
1607   if (!h->non_got_ref)
1608     return TRUE;
1609 
1610   /* If -z nocopyreloc was given, we won't generate them either.  */
1611   if (info->nocopyreloc)
1612     {
1613       h->non_got_ref = 0;
1614       return TRUE;
1615     }
1616 
1617   if (ELIMINATE_COPY_RELOCS)
1618     {
1619       struct elf64_x86_64_link_hash_entry * eh;
1620       struct elf64_x86_64_dyn_relocs *p;
1621 
1622       eh = (struct elf64_x86_64_link_hash_entry *) h;
1623       for (p = eh->dyn_relocs; p != NULL; p = p->next)
1624 	{
1625 	  s = p->sec->output_section;
1626 	  if (s != NULL && (s->flags & SEC_READONLY) != 0)
1627 	    break;
1628 	}
1629 
1630       /* If we didn't find any dynamic relocs in read-only sections, then
1631 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1632       if (p == NULL)
1633 	{
1634 	  h->non_got_ref = 0;
1635 	  return TRUE;
1636 	}
1637     }
1638 
1639   if (h->size == 0)
1640     {
1641       (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1642 			     h->root.root.string);
1643       return TRUE;
1644     }
1645 
1646   /* We must allocate the symbol in our .dynbss section, which will
1647      become part of the .bss section of the executable.	 There will be
1648      an entry for this symbol in the .dynsym section.  The dynamic
1649      object will contain position independent code, so all references
1650      from the dynamic object to this symbol will go through the global
1651      offset table.  The dynamic linker will use the .dynsym entry to
1652      determine the address it must put in the global offset table, so
1653      both the dynamic object and the regular object will refer to the
1654      same memory location for the variable.  */
1655 
1656   htab = elf64_x86_64_hash_table (info);
1657 
1658   /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1659      to copy the initial value out of the dynamic object and into the
1660      runtime process image.  */
1661   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1662     {
1663       htab->srelbss->size += sizeof (Elf64_External_Rela);
1664       h->needs_copy = 1;
1665     }
1666 
1667   s = htab->sdynbss;
1668 
1669   return _bfd_elf_adjust_dynamic_copy (h, s);
1670 }
1671 
1672 /* Allocate space in .plt, .got and associated reloc sections for
1673    dynamic relocs.  */
1674 
1675 static bfd_boolean
1676 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1677 {
1678   struct bfd_link_info *info;
1679   struct elf64_x86_64_link_hash_table *htab;
1680   struct elf64_x86_64_link_hash_entry *eh;
1681   struct elf64_x86_64_dyn_relocs *p;
1682 
1683   if (h->root.type == bfd_link_hash_indirect)
1684     return TRUE;
1685 
1686   if (h->root.type == bfd_link_hash_warning)
1687     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1688 
1689   info = (struct bfd_link_info *) inf;
1690   htab = elf64_x86_64_hash_table (info);
1691 
1692   if (htab->elf.dynamic_sections_created
1693       && h->plt.refcount > 0)
1694     {
1695       /* Make sure this symbol is output as a dynamic symbol.
1696 	 Undefined weak syms won't yet be marked as dynamic.  */
1697       if (h->dynindx == -1
1698 	  && !h->forced_local)
1699 	{
1700 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1701 	    return FALSE;
1702 	}
1703 
1704       if (info->shared
1705 	  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1706 	{
1707 	  asection *s = htab->splt;
1708 
1709 	  /* If this is the first .plt entry, make room for the special
1710 	     first entry.  */
1711 	  if (s->size == 0)
1712 	    s->size += PLT_ENTRY_SIZE;
1713 
1714 	  h->plt.offset = s->size;
1715 
1716 	  /* If this symbol is not defined in a regular file, and we are
1717 	     not generating a shared library, then set the symbol to this
1718 	     location in the .plt.  This is required to make function
1719 	     pointers compare as equal between the normal executable and
1720 	     the shared library.  */
1721 	  if (! info->shared
1722 	      && !h->def_regular)
1723 	    {
1724 	      h->root.u.def.section = s;
1725 	      h->root.u.def.value = h->plt.offset;
1726 	    }
1727 
1728 	  /* Make room for this entry.  */
1729 	  s->size += PLT_ENTRY_SIZE;
1730 
1731 	  /* We also need to make an entry in the .got.plt section, which
1732 	     will be placed in the .got section by the linker script.  */
1733 	  htab->sgotplt->size += GOT_ENTRY_SIZE;
1734 
1735 	  /* We also need to make an entry in the .rela.plt section.  */
1736 	  htab->srelplt->size += sizeof (Elf64_External_Rela);
1737 	  htab->srelplt->reloc_count++;
1738 	}
1739       else
1740 	{
1741 	  h->plt.offset = (bfd_vma) -1;
1742 	  h->needs_plt = 0;
1743 	}
1744     }
1745   else
1746     {
1747       h->plt.offset = (bfd_vma) -1;
1748       h->needs_plt = 0;
1749     }
1750 
1751   eh = (struct elf64_x86_64_link_hash_entry *) h;
1752   eh->tlsdesc_got = (bfd_vma) -1;
1753 
1754   /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1755      make it a R_X86_64_TPOFF32 requiring no GOT entry.  */
1756   if (h->got.refcount > 0
1757       && !info->shared
1758       && h->dynindx == -1
1759       && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1760     h->got.offset = (bfd_vma) -1;
1761   else if (h->got.refcount > 0)
1762     {
1763       asection *s;
1764       bfd_boolean dyn;
1765       int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1766 
1767       /* Make sure this symbol is output as a dynamic symbol.
1768 	 Undefined weak syms won't yet be marked as dynamic.  */
1769       if (h->dynindx == -1
1770 	  && !h->forced_local)
1771 	{
1772 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1773 	    return FALSE;
1774 	}
1775 
1776       if (GOT_TLS_GDESC_P (tls_type))
1777 	{
1778 	  eh->tlsdesc_got = htab->sgotplt->size
1779 	    - elf64_x86_64_compute_jump_table_size (htab);
1780 	  htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1781 	  h->got.offset = (bfd_vma) -2;
1782 	}
1783       if (! GOT_TLS_GDESC_P (tls_type)
1784 	  || GOT_TLS_GD_P (tls_type))
1785 	{
1786 	  s = htab->sgot;
1787 	  h->got.offset = s->size;
1788 	  s->size += GOT_ENTRY_SIZE;
1789 	  if (GOT_TLS_GD_P (tls_type))
1790 	    s->size += GOT_ENTRY_SIZE;
1791 	}
1792       dyn = htab->elf.dynamic_sections_created;
1793       /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1794 	 and two if global.
1795 	 R_X86_64_GOTTPOFF needs one dynamic relocation.  */
1796       if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1797 	  || tls_type == GOT_TLS_IE)
1798 	htab->srelgot->size += sizeof (Elf64_External_Rela);
1799       else if (GOT_TLS_GD_P (tls_type))
1800 	htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1801       else if (! GOT_TLS_GDESC_P (tls_type)
1802 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1803 		   || h->root.type != bfd_link_hash_undefweak)
1804 	       && (info->shared
1805 		   || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1806 	htab->srelgot->size += sizeof (Elf64_External_Rela);
1807       if (GOT_TLS_GDESC_P (tls_type))
1808 	{
1809 	  htab->srelplt->size += sizeof (Elf64_External_Rela);
1810 	  htab->tlsdesc_plt = (bfd_vma) -1;
1811 	}
1812     }
1813   else
1814     h->got.offset = (bfd_vma) -1;
1815 
1816   if (eh->dyn_relocs == NULL)
1817     return TRUE;
1818 
1819   /* In the shared -Bsymbolic case, discard space allocated for
1820      dynamic pc-relative relocs against symbols which turn out to be
1821      defined in regular objects.  For the normal shared case, discard
1822      space for pc-relative relocs that have become local due to symbol
1823      visibility changes.  */
1824 
1825   if (info->shared)
1826     {
1827       /* Relocs that use pc_count are those that appear on a call
1828 	 insn, or certain REL relocs that can generated via assembly.
1829 	 We want calls to protected symbols to resolve directly to the
1830 	 function rather than going via the plt.  If people want
1831 	 function pointer comparisons to work as expected then they
1832 	 should avoid writing weird assembly.  */
1833       if (SYMBOL_CALLS_LOCAL (info, h))
1834 	{
1835 	  struct elf64_x86_64_dyn_relocs **pp;
1836 
1837 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1838 	    {
1839 	      p->count -= p->pc_count;
1840 	      p->pc_count = 0;
1841 	      if (p->count == 0)
1842 		*pp = p->next;
1843 	      else
1844 		pp = &p->next;
1845 	    }
1846 	}
1847 
1848       /* Also discard relocs on undefined weak syms with non-default
1849 	 visibility.  */
1850       if (eh->dyn_relocs != NULL
1851 	  && h->root.type == bfd_link_hash_undefweak)
1852 	{
1853 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1854 	    eh->dyn_relocs = NULL;
1855 
1856 	  /* Make sure undefined weak symbols are output as a dynamic
1857 	     symbol in PIEs.  */
1858 	  else if (h->dynindx == -1
1859 		   && !h->forced_local)
1860 	    {
1861 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
1862 		return FALSE;
1863 	    }
1864 	}
1865     }
1866   else if (ELIMINATE_COPY_RELOCS)
1867     {
1868       /* For the non-shared case, discard space for relocs against
1869 	 symbols which turn out to need copy relocs or are not
1870 	 dynamic.  */
1871 
1872       if (!h->non_got_ref
1873 	  && ((h->def_dynamic
1874 	       && !h->def_regular)
1875 	      || (htab->elf.dynamic_sections_created
1876 		  && (h->root.type == bfd_link_hash_undefweak
1877 		      || h->root.type == bfd_link_hash_undefined))))
1878 	{
1879 	  /* Make sure this symbol is output as a dynamic symbol.
1880 	     Undefined weak syms won't yet be marked as dynamic.  */
1881 	  if (h->dynindx == -1
1882 	      && !h->forced_local)
1883 	    {
1884 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
1885 		return FALSE;
1886 	    }
1887 
1888 	  /* If that succeeded, we know we'll be keeping all the
1889 	     relocs.  */
1890 	  if (h->dynindx != -1)
1891 	    goto keep;
1892 	}
1893 
1894       eh->dyn_relocs = NULL;
1895 
1896     keep: ;
1897     }
1898 
1899   /* Finally, allocate space.  */
1900   for (p = eh->dyn_relocs; p != NULL; p = p->next)
1901     {
1902       asection *sreloc = elf_section_data (p->sec)->sreloc;
1903       sreloc->size += p->count * sizeof (Elf64_External_Rela);
1904     }
1905 
1906   return TRUE;
1907 }
1908 
1909 /* Find any dynamic relocs that apply to read-only sections.  */
1910 
1911 static bfd_boolean
1912 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1913 {
1914   struct elf64_x86_64_link_hash_entry *eh;
1915   struct elf64_x86_64_dyn_relocs *p;
1916 
1917   if (h->root.type == bfd_link_hash_warning)
1918     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1919 
1920   eh = (struct elf64_x86_64_link_hash_entry *) h;
1921   for (p = eh->dyn_relocs; p != NULL; p = p->next)
1922     {
1923       asection *s = p->sec->output_section;
1924 
1925       if (s != NULL && (s->flags & SEC_READONLY) != 0)
1926 	{
1927 	  struct bfd_link_info *info = (struct bfd_link_info *) inf;
1928 
1929           if (info->warn_shared_textrel)
1930             (*_bfd_error_handler)
1931               (_("warning: dynamic relocation in readonly section `%s'"),
1932               h->root.root.string);
1933 	  info->flags |= DF_TEXTREL;
1934 
1935 	  /* Not an error, just cut short the traversal.  */
1936 	  return FALSE;
1937 	}
1938     }
1939   return TRUE;
1940 }
1941 
1942 /* Set the sizes of the dynamic sections.  */
1943 
1944 static bfd_boolean
1945 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1946 				    struct bfd_link_info *info)
1947 {
1948   struct elf64_x86_64_link_hash_table *htab;
1949   bfd *dynobj;
1950   asection *s;
1951   bfd_boolean relocs;
1952   bfd *ibfd;
1953 
1954   htab = elf64_x86_64_hash_table (info);
1955   dynobj = htab->elf.dynobj;
1956   if (dynobj == NULL)
1957     abort ();
1958 
1959   if (htab->elf.dynamic_sections_created)
1960     {
1961       /* Set the contents of the .interp section to the interpreter.  */
1962       if (info->executable)
1963 	{
1964 	  s = bfd_get_section_by_name (dynobj, ".interp");
1965 	  if (s == NULL)
1966 	    abort ();
1967 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1968 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1969 	}
1970     }
1971 
1972   /* Set up .got offsets for local syms, and space for local dynamic
1973      relocs.  */
1974   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1975     {
1976       bfd_signed_vma *local_got;
1977       bfd_signed_vma *end_local_got;
1978       char *local_tls_type;
1979       bfd_vma *local_tlsdesc_gotent;
1980       bfd_size_type locsymcount;
1981       Elf_Internal_Shdr *symtab_hdr;
1982       asection *srel;
1983 
1984       if (! is_x86_64_elf (ibfd))
1985 	continue;
1986 
1987       for (s = ibfd->sections; s != NULL; s = s->next)
1988 	{
1989 	  struct elf64_x86_64_dyn_relocs *p;
1990 
1991 	  for (p = (struct elf64_x86_64_dyn_relocs *)
1992 		    (elf_section_data (s)->local_dynrel);
1993 	       p != NULL;
1994 	       p = p->next)
1995 	    {
1996 	      if (!bfd_is_abs_section (p->sec)
1997 		  && bfd_is_abs_section (p->sec->output_section))
1998 		{
1999 		  /* Input section has been discarded, either because
2000 		     it is a copy of a linkonce section or due to
2001 		     linker script /DISCARD/, so we'll be discarding
2002 		     the relocs too.  */
2003 		}
2004 	      else if (p->count != 0)
2005 		{
2006 		  srel = elf_section_data (p->sec)->sreloc;
2007 		  srel->size += p->count * sizeof (Elf64_External_Rela);
2008 		  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2009 		    info->flags |= DF_TEXTREL;
2010 
2011 		}
2012 	    }
2013 	}
2014 
2015       local_got = elf_local_got_refcounts (ibfd);
2016       if (!local_got)
2017 	continue;
2018 
2019       symtab_hdr = &elf_symtab_hdr (ibfd);
2020       locsymcount = symtab_hdr->sh_info;
2021       end_local_got = local_got + locsymcount;
2022       local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
2023       local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
2024       s = htab->sgot;
2025       srel = htab->srelgot;
2026       for (; local_got < end_local_got;
2027 	   ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2028 	{
2029 	  *local_tlsdesc_gotent = (bfd_vma) -1;
2030 	  if (*local_got > 0)
2031 	    {
2032 	      if (GOT_TLS_GDESC_P (*local_tls_type))
2033 		{
2034 		  *local_tlsdesc_gotent = htab->sgotplt->size
2035 		    - elf64_x86_64_compute_jump_table_size (htab);
2036 		  htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
2037 		  *local_got = (bfd_vma) -2;
2038 		}
2039 	      if (! GOT_TLS_GDESC_P (*local_tls_type)
2040 		  || GOT_TLS_GD_P (*local_tls_type))
2041 		{
2042 		  *local_got = s->size;
2043 		  s->size += GOT_ENTRY_SIZE;
2044 		  if (GOT_TLS_GD_P (*local_tls_type))
2045 		    s->size += GOT_ENTRY_SIZE;
2046 		}
2047 	      if (info->shared
2048 		  || GOT_TLS_GD_ANY_P (*local_tls_type)
2049 		  || *local_tls_type == GOT_TLS_IE)
2050 		{
2051 		  if (GOT_TLS_GDESC_P (*local_tls_type))
2052 		    {
2053 		      htab->srelplt->size += sizeof (Elf64_External_Rela);
2054 		      htab->tlsdesc_plt = (bfd_vma) -1;
2055 		    }
2056 		  if (! GOT_TLS_GDESC_P (*local_tls_type)
2057 		      || GOT_TLS_GD_P (*local_tls_type))
2058 		    srel->size += sizeof (Elf64_External_Rela);
2059 		}
2060 	    }
2061 	  else
2062 	    *local_got = (bfd_vma) -1;
2063 	}
2064     }
2065 
2066   if (htab->tls_ld_got.refcount > 0)
2067     {
2068       /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2069 	 relocs.  */
2070       htab->tls_ld_got.offset = htab->sgot->size;
2071       htab->sgot->size += 2 * GOT_ENTRY_SIZE;
2072       htab->srelgot->size += sizeof (Elf64_External_Rela);
2073     }
2074   else
2075     htab->tls_ld_got.offset = -1;
2076 
2077   /* Allocate global sym .plt and .got entries, and space for global
2078      sym dynamic relocs.  */
2079   elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2080 
2081   /* For every jump slot reserved in the sgotplt, reloc_count is
2082      incremented.  However, when we reserve space for TLS descriptors,
2083      it's not incremented, so in order to compute the space reserved
2084      for them, it suffices to multiply the reloc count by the jump
2085      slot size.  */
2086   if (htab->srelplt)
2087     htab->sgotplt_jump_table_size
2088       = elf64_x86_64_compute_jump_table_size (htab);
2089 
2090   if (htab->tlsdesc_plt)
2091     {
2092       /* If we're not using lazy TLS relocations, don't generate the
2093 	 PLT and GOT entries they require.  */
2094       if ((info->flags & DF_BIND_NOW))
2095 	htab->tlsdesc_plt = 0;
2096       else
2097 	{
2098 	  htab->tlsdesc_got = htab->sgot->size;
2099 	  htab->sgot->size += GOT_ENTRY_SIZE;
2100 	  /* Reserve room for the initial entry.
2101 	     FIXME: we could probably do away with it in this case.  */
2102 	  if (htab->splt->size == 0)
2103 	    htab->splt->size += PLT_ENTRY_SIZE;
2104 	  htab->tlsdesc_plt = htab->splt->size;
2105 	  htab->splt->size += PLT_ENTRY_SIZE;
2106 	}
2107     }
2108 
2109   /* We now have determined the sizes of the various dynamic sections.
2110      Allocate memory for them.  */
2111   relocs = FALSE;
2112   for (s = dynobj->sections; s != NULL; s = s->next)
2113     {
2114       if ((s->flags & SEC_LINKER_CREATED) == 0)
2115 	continue;
2116 
2117       if (s == htab->splt
2118 	  || s == htab->sgot
2119 	  || s == htab->sgotplt
2120 	  || s == htab->sdynbss)
2121 	{
2122 	  /* Strip this section if we don't need it; see the
2123 	     comment below.  */
2124 	}
2125       else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2126 	{
2127 	  if (s->size != 0 && s != htab->srelplt)
2128 	    relocs = TRUE;
2129 
2130 	  /* We use the reloc_count field as a counter if we need
2131 	     to copy relocs into the output file.  */
2132 	  if (s != htab->srelplt)
2133 	    s->reloc_count = 0;
2134 	}
2135       else
2136 	{
2137 	  /* It's not one of our sections, so don't allocate space.  */
2138 	  continue;
2139 	}
2140 
2141       if (s->size == 0)
2142 	{
2143 	  /* If we don't need this section, strip it from the
2144 	     output file.  This is mostly to handle .rela.bss and
2145 	     .rela.plt.  We must create both sections in
2146 	     create_dynamic_sections, because they must be created
2147 	     before the linker maps input sections to output
2148 	     sections.  The linker does that before
2149 	     adjust_dynamic_symbol is called, and it is that
2150 	     function which decides whether anything needs to go
2151 	     into these sections.  */
2152 
2153 	  s->flags |= SEC_EXCLUDE;
2154 	  continue;
2155 	}
2156 
2157       if ((s->flags & SEC_HAS_CONTENTS) == 0)
2158 	continue;
2159 
2160       /* Allocate memory for the section contents.  We use bfd_zalloc
2161 	 here in case unused entries are not reclaimed before the
2162 	 section's contents are written out.  This should not happen,
2163 	 but this way if it does, we get a R_X86_64_NONE reloc instead
2164 	 of garbage.  */
2165       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2166       if (s->contents == NULL)
2167 	return FALSE;
2168     }
2169 
2170   if (htab->elf.dynamic_sections_created)
2171     {
2172       /* Add some entries to the .dynamic section.  We fill in the
2173 	 values later, in elf64_x86_64_finish_dynamic_sections, but we
2174 	 must add the entries now so that we get the correct size for
2175 	 the .dynamic section.	The DT_DEBUG entry is filled in by the
2176 	 dynamic linker and used by the debugger.  */
2177 #define add_dynamic_entry(TAG, VAL) \
2178   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2179 
2180       if (info->executable)
2181 	{
2182 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2183 	    return FALSE;
2184 	}
2185 
2186       if (htab->splt->size != 0)
2187 	{
2188 	  if (!add_dynamic_entry (DT_PLTGOT, 0)
2189 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
2190 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2191 	      || !add_dynamic_entry (DT_JMPREL, 0))
2192 	    return FALSE;
2193 
2194 	  if (htab->tlsdesc_plt
2195 	      && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2196 		  || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2197 	    return FALSE;
2198 	}
2199 
2200       if (relocs)
2201 	{
2202 	  if (!add_dynamic_entry (DT_RELA, 0)
2203 	      || !add_dynamic_entry (DT_RELASZ, 0)
2204 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2205 	    return FALSE;
2206 
2207 	  /* If any dynamic relocs apply to a read-only section,
2208 	     then we need a DT_TEXTREL entry.  */
2209 	  if ((info->flags & DF_TEXTREL) == 0)
2210 	    elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2211 				    (PTR) info);
2212 
2213 	  if ((info->flags & DF_TEXTREL) != 0)
2214 	    {
2215 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2216 		return FALSE;
2217 	    }
2218 	}
2219     }
2220 #undef add_dynamic_entry
2221 
2222   return TRUE;
2223 }
2224 
2225 static bfd_boolean
2226 elf64_x86_64_always_size_sections (bfd *output_bfd,
2227 				   struct bfd_link_info *info)
2228 {
2229   asection *tls_sec = elf_hash_table (info)->tls_sec;
2230 
2231   if (tls_sec)
2232     {
2233       struct elf_link_hash_entry *tlsbase;
2234 
2235       tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2236 				      "_TLS_MODULE_BASE_",
2237 				      FALSE, FALSE, FALSE);
2238 
2239       if (tlsbase && tlsbase->type == STT_TLS)
2240 	{
2241 	  struct bfd_link_hash_entry *bh = NULL;
2242 	  const struct elf_backend_data *bed
2243 	    = get_elf_backend_data (output_bfd);
2244 
2245 	  if (!(_bfd_generic_link_add_one_symbol
2246 		(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2247 		 tls_sec, 0, NULL, FALSE,
2248 		 bed->collect, &bh)))
2249 	    return FALSE;
2250 
2251 	  elf64_x86_64_hash_table (info)->tls_module_base = bh;
2252 
2253 	  tlsbase = (struct elf_link_hash_entry *)bh;
2254 	  tlsbase->def_regular = 1;
2255 	  tlsbase->other = STV_HIDDEN;
2256 	  (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2257 	}
2258     }
2259 
2260   return TRUE;
2261 }
2262 
2263 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2264    executables.  Rather than setting it to the beginning of the TLS
2265    section, we have to set it to the end.  This function may be called
2266    multiple times, it is idempotent.  */
2267 
2268 static void
2269 set_tls_module_base (struct bfd_link_info *info)
2270 {
2271   struct bfd_link_hash_entry *base;
2272 
2273   if (!info->executable)
2274     return;
2275 
2276   base = elf64_x86_64_hash_table (info)->tls_module_base;
2277 
2278   if (!base)
2279     return;
2280 
2281   base->u.def.value = elf_hash_table (info)->tls_size;
2282 }
2283 
2284 /* Return the base VMA address which should be subtracted from real addresses
2285    when resolving @dtpoff relocation.
2286    This is PT_TLS segment p_vaddr.  */
2287 
2288 static bfd_vma
2289 dtpoff_base (struct bfd_link_info *info)
2290 {
2291   /* If tls_sec is NULL, we should have signalled an error already.  */
2292   if (elf_hash_table (info)->tls_sec == NULL)
2293     return 0;
2294   return elf_hash_table (info)->tls_sec->vma;
2295 }
2296 
2297 /* Return the relocation value for @tpoff relocation
2298    if STT_TLS virtual address is ADDRESS.  */
2299 
2300 static bfd_vma
2301 tpoff (struct bfd_link_info *info, bfd_vma address)
2302 {
2303   struct elf_link_hash_table *htab = elf_hash_table (info);
2304 
2305   /* If tls_segment is NULL, we should have signalled an error already.  */
2306   if (htab->tls_sec == NULL)
2307     return 0;
2308   return address - htab->tls_size - htab->tls_sec->vma;
2309 }
2310 
2311 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2312    branch?  */
2313 
2314 static bfd_boolean
2315 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2316 {
2317   /* Opcode		Instruction
2318      0xe8		call
2319      0xe9		jump
2320      0x0f 0x8x		conditional jump */
2321   return ((offset > 0
2322 	   && (contents [offset - 1] == 0xe8
2323 	       || contents [offset - 1] == 0xe9))
2324 	  || (offset > 1
2325 	      && contents [offset - 2] == 0x0f
2326 	      && (contents [offset - 1] & 0xf0) == 0x80));
2327 }
2328 
2329 /* Relocate an x86_64 ELF section.  */
2330 
2331 static bfd_boolean
2332 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2333 			       bfd *input_bfd, asection *input_section,
2334 			       bfd_byte *contents, Elf_Internal_Rela *relocs,
2335 			       Elf_Internal_Sym *local_syms,
2336 			       asection **local_sections)
2337 {
2338   struct elf64_x86_64_link_hash_table *htab;
2339   Elf_Internal_Shdr *symtab_hdr;
2340   struct elf_link_hash_entry **sym_hashes;
2341   bfd_vma *local_got_offsets;
2342   bfd_vma *local_tlsdesc_gotents;
2343   Elf_Internal_Rela *rel;
2344   Elf_Internal_Rela *relend;
2345 
2346   BFD_ASSERT (is_x86_64_elf (input_bfd));
2347 
2348   htab = elf64_x86_64_hash_table (info);
2349   symtab_hdr = &elf_symtab_hdr (input_bfd);
2350   sym_hashes = elf_sym_hashes (input_bfd);
2351   local_got_offsets = elf_local_got_offsets (input_bfd);
2352   local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2353 
2354   set_tls_module_base (info);
2355 
2356   rel = relocs;
2357   relend = relocs + input_section->reloc_count;
2358   for (; rel < relend; rel++)
2359     {
2360       unsigned int r_type;
2361       reloc_howto_type *howto;
2362       unsigned long r_symndx;
2363       struct elf_link_hash_entry *h;
2364       Elf_Internal_Sym *sym;
2365       asection *sec;
2366       bfd_vma off, offplt;
2367       bfd_vma relocation;
2368       bfd_boolean unresolved_reloc;
2369       bfd_reloc_status_type r;
2370       int tls_type;
2371 
2372       r_type = ELF64_R_TYPE (rel->r_info);
2373       if (r_type == (int) R_X86_64_GNU_VTINHERIT
2374 	  || r_type == (int) R_X86_64_GNU_VTENTRY)
2375 	continue;
2376 
2377       if (r_type >= R_X86_64_max)
2378 	{
2379 	  bfd_set_error (bfd_error_bad_value);
2380 	  return FALSE;
2381 	}
2382 
2383       howto = x86_64_elf_howto_table + r_type;
2384       r_symndx = ELF64_R_SYM (rel->r_info);
2385       h = NULL;
2386       sym = NULL;
2387       sec = NULL;
2388       unresolved_reloc = FALSE;
2389       if (r_symndx < symtab_hdr->sh_info)
2390 	{
2391 	  sym = local_syms + r_symndx;
2392 	  sec = local_sections[r_symndx];
2393 
2394 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2395 	}
2396       else
2397 	{
2398 	  bfd_boolean warned;
2399 
2400 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2401 				   r_symndx, symtab_hdr, sym_hashes,
2402 				   h, sec, relocation,
2403 				   unresolved_reloc, warned);
2404 	}
2405 
2406       if (sec != NULL && elf_discarded_section (sec))
2407 	{
2408 	  /* For relocs against symbols from removed linkonce sections,
2409 	     or sections discarded by a linker script, we just want the
2410 	     section contents zeroed.  Avoid any special processing.  */
2411 	  _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2412 	  rel->r_info = 0;
2413 	  rel->r_addend = 0;
2414 	  continue;
2415 	}
2416 
2417       if (info->relocatable)
2418 	continue;
2419 
2420       /* When generating a shared object, the relocations handled here are
2421 	 copied into the output file to be resolved at run time.  */
2422       switch (r_type)
2423 	{
2424 	asection *base_got;
2425 	case R_X86_64_GOT32:
2426 	case R_X86_64_GOT64:
2427 	  /* Relocation is to the entry for this symbol in the global
2428 	     offset table.  */
2429 	case R_X86_64_GOTPCREL:
2430 	case R_X86_64_GOTPCREL64:
2431 	  /* Use global offset table entry as symbol value.  */
2432 	case R_X86_64_GOTPLT64:
2433 	  /* This is the same as GOT64 for relocation purposes, but
2434 	     indicates the existence of a PLT entry.  The difficulty is,
2435 	     that we must calculate the GOT slot offset from the PLT
2436 	     offset, if this symbol got a PLT entry (it was global).
2437 	     Additionally if it's computed from the PLT entry, then that
2438 	     GOT offset is relative to .got.plt, not to .got.  */
2439 	  base_got = htab->sgot;
2440 
2441 	  if (htab->sgot == NULL)
2442 	    abort ();
2443 
2444 	  if (h != NULL)
2445 	    {
2446 	      bfd_boolean dyn;
2447 
2448 	      off = h->got.offset;
2449 	      if (h->needs_plt
2450 	          && h->plt.offset != (bfd_vma)-1
2451 		  && off == (bfd_vma)-1)
2452 		{
2453 		  /* We can't use h->got.offset here to save
2454 		     state, or even just remember the offset, as
2455 		     finish_dynamic_symbol would use that as offset into
2456 		     .got.  */
2457 		  bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2458 		  off = (plt_index + 3) * GOT_ENTRY_SIZE;
2459 		  base_got = htab->sgotplt;
2460 		}
2461 
2462 	      dyn = htab->elf.dynamic_sections_created;
2463 
2464 	      if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2465 		  || (info->shared
2466 		      && SYMBOL_REFERENCES_LOCAL (info, h))
2467 		  || (ELF_ST_VISIBILITY (h->other)
2468 		      && h->root.type == bfd_link_hash_undefweak))
2469 		{
2470 		  /* This is actually a static link, or it is a -Bsymbolic
2471 		     link and the symbol is defined locally, or the symbol
2472 		     was forced to be local because of a version file.	We
2473 		     must initialize this entry in the global offset table.
2474 		     Since the offset must always be a multiple of 8, we
2475 		     use the least significant bit to record whether we
2476 		     have initialized it already.
2477 
2478 		     When doing a dynamic link, we create a .rela.got
2479 		     relocation entry to initialize the value.	This is
2480 		     done in the finish_dynamic_symbol routine.	 */
2481 		  if ((off & 1) != 0)
2482 		    off &= ~1;
2483 		  else
2484 		    {
2485 		      bfd_put_64 (output_bfd, relocation,
2486 				  base_got->contents + off);
2487 		      /* Note that this is harmless for the GOTPLT64 case,
2488 		         as -1 | 1 still is -1.  */
2489 		      h->got.offset |= 1;
2490 		    }
2491 		}
2492 	      else
2493 		unresolved_reloc = FALSE;
2494 	    }
2495 	  else
2496 	    {
2497 	      if (local_got_offsets == NULL)
2498 		abort ();
2499 
2500 	      off = local_got_offsets[r_symndx];
2501 
2502 	      /* The offset must always be a multiple of 8.  We use
2503 		 the least significant bit to record whether we have
2504 		 already generated the necessary reloc.	 */
2505 	      if ((off & 1) != 0)
2506 		off &= ~1;
2507 	      else
2508 		{
2509 		  bfd_put_64 (output_bfd, relocation,
2510 			      base_got->contents + off);
2511 
2512 		  if (info->shared)
2513 		    {
2514 		      asection *s;
2515 		      Elf_Internal_Rela outrel;
2516 		      bfd_byte *loc;
2517 
2518 		      /* We need to generate a R_X86_64_RELATIVE reloc
2519 			 for the dynamic linker.  */
2520 		      s = htab->srelgot;
2521 		      if (s == NULL)
2522 			abort ();
2523 
2524 		      outrel.r_offset = (base_got->output_section->vma
2525 					 + base_got->output_offset
2526 					 + off);
2527 		      outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2528 		      outrel.r_addend = relocation;
2529 		      loc = s->contents;
2530 		      loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2531 		      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2532 		    }
2533 
2534 		  local_got_offsets[r_symndx] |= 1;
2535 		}
2536 	    }
2537 
2538 	  if (off >= (bfd_vma) -2)
2539 	    abort ();
2540 
2541 	  relocation = base_got->output_section->vma
2542 		       + base_got->output_offset + off;
2543 	  if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2544 	    relocation -= htab->sgotplt->output_section->vma
2545 			  - htab->sgotplt->output_offset;
2546 
2547 	  break;
2548 
2549 	case R_X86_64_GOTOFF64:
2550 	  /* Relocation is relative to the start of the global offset
2551 	     table.  */
2552 
2553 	  /* Check to make sure it isn't a protected function symbol
2554 	     for shared library since it may not be local when used
2555 	     as function address.  */
2556 	  if (info->shared
2557 	      && h
2558 	      && h->def_regular
2559 	      && h->type == STT_FUNC
2560 	      && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2561 	    {
2562 	      (*_bfd_error_handler)
2563 		(_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2564 		 input_bfd, h->root.root.string);
2565 	      bfd_set_error (bfd_error_bad_value);
2566 	      return FALSE;
2567 	    }
2568 
2569 	  /* Note that sgot is not involved in this
2570 	     calculation.  We always want the start of .got.plt.  If we
2571 	     defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2572 	     permitted by the ABI, we might have to change this
2573 	     calculation.  */
2574 	  relocation -= htab->sgotplt->output_section->vma
2575 			+ htab->sgotplt->output_offset;
2576 	  break;
2577 
2578 	case R_X86_64_GOTPC32:
2579 	case R_X86_64_GOTPC64:
2580 	  /* Use global offset table as symbol value.  */
2581 	  relocation = htab->sgotplt->output_section->vma
2582 		       + htab->sgotplt->output_offset;
2583 	  unresolved_reloc = FALSE;
2584 	  break;
2585 
2586 	case R_X86_64_PLTOFF64:
2587 	  /* Relocation is PLT entry relative to GOT.  For local
2588 	     symbols it's the symbol itself relative to GOT.  */
2589           if (h != NULL
2590 	      /* See PLT32 handling.  */
2591 	      && h->plt.offset != (bfd_vma) -1
2592 	      && htab->splt != NULL)
2593 	    {
2594 	      relocation = (htab->splt->output_section->vma
2595 			    + htab->splt->output_offset
2596 			    + h->plt.offset);
2597 	      unresolved_reloc = FALSE;
2598 	    }
2599 
2600 	  relocation -= htab->sgotplt->output_section->vma
2601 			+ htab->sgotplt->output_offset;
2602 	  break;
2603 
2604 	case R_X86_64_PLT32:
2605 	  /* Relocation is to the entry for this symbol in the
2606 	     procedure linkage table.  */
2607 
2608 	  /* Resolve a PLT32 reloc against a local symbol directly,
2609 	     without using the procedure linkage table.	 */
2610 	  if (h == NULL)
2611 	    break;
2612 
2613 	  if (h->plt.offset == (bfd_vma) -1
2614 	      || htab->splt == NULL)
2615 	    {
2616 	      /* We didn't make a PLT entry for this symbol.  This
2617 		 happens when statically linking PIC code, or when
2618 		 using -Bsymbolic.  */
2619 	      break;
2620 	    }
2621 
2622 	  relocation = (htab->splt->output_section->vma
2623 			+ htab->splt->output_offset
2624 			+ h->plt.offset);
2625 	  unresolved_reloc = FALSE;
2626 	  break;
2627 
2628 	case R_X86_64_PC8:
2629 	case R_X86_64_PC16:
2630 	case R_X86_64_PC32:
2631 	  if (info->shared
2632 	      && (input_section->flags & SEC_ALLOC) != 0
2633 	      && (input_section->flags & SEC_READONLY) != 0
2634 	      && h != NULL)
2635 	    {
2636 	      bfd_boolean fail = FALSE;
2637 	      bfd_boolean branch
2638 		= (r_type == R_X86_64_PC32
2639 		   && is_32bit_relative_branch (contents, rel->r_offset));
2640 
2641 	      if (SYMBOL_REFERENCES_LOCAL (info, h))
2642 		{
2643 		  /* Symbol is referenced locally.  Make sure it is
2644 		     defined locally or for a branch.  */
2645 		  fail = !h->def_regular && !branch;
2646 		}
2647 	      else
2648 		{
2649 		  /* Symbol isn't referenced locally.  We only allow
2650 		     branch to symbol with non-default visibility. */
2651 		  fail = (!branch
2652 			  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
2653 		}
2654 
2655 	      if (fail)
2656 		{
2657 		  const char *fmt;
2658 		  const char *v;
2659 		  const char *pic = "";
2660 
2661 		  switch (ELF_ST_VISIBILITY (h->other))
2662 		    {
2663 		    case STV_HIDDEN:
2664 		      v = _("hidden symbol");
2665 		      break;
2666 		    case STV_INTERNAL:
2667 		      v = _("internal symbol");
2668 		      break;
2669 		    case STV_PROTECTED:
2670 		      v = _("protected symbol");
2671 		      break;
2672 		    default:
2673 		      v = _("symbol");
2674 		      pic = _("; recompile with -fPIC");
2675 		      break;
2676 		    }
2677 
2678 		  if (h->def_regular)
2679 		    fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
2680 		  else
2681 		    fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
2682 
2683 		  (*_bfd_error_handler) (fmt, input_bfd,
2684 					 x86_64_elf_howto_table[r_type].name,
2685 					 v,  h->root.root.string, pic);
2686 		  bfd_set_error (bfd_error_bad_value);
2687 		  return FALSE;
2688 		}
2689 	    }
2690 	  /* Fall through.  */
2691 
2692 	case R_X86_64_8:
2693 	case R_X86_64_16:
2694 	case R_X86_64_32:
2695 	case R_X86_64_PC64:
2696 	case R_X86_64_64:
2697 	  /* FIXME: The ABI says the linker should make sure the value is
2698 	     the same when it's zeroextended to 64 bit.	 */
2699 
2700 	  if ((input_section->flags & SEC_ALLOC) == 0)
2701 	    break;
2702 
2703 	  if ((info->shared
2704 	       && (h == NULL
2705 		   || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2706 		   || h->root.type != bfd_link_hash_undefweak)
2707 	       && ((r_type != R_X86_64_PC8
2708 		    && r_type != R_X86_64_PC16
2709 		    && r_type != R_X86_64_PC32
2710 		    && r_type != R_X86_64_PC64)
2711 		   || !SYMBOL_CALLS_LOCAL (info, h)))
2712 	      || (ELIMINATE_COPY_RELOCS
2713 		  && !info->shared
2714 		  && h != NULL
2715 		  && h->dynindx != -1
2716 		  && !h->non_got_ref
2717 		  && ((h->def_dynamic
2718 		       && !h->def_regular)
2719 		      || h->root.type == bfd_link_hash_undefweak
2720 		      || h->root.type == bfd_link_hash_undefined)))
2721 	    {
2722 	      Elf_Internal_Rela outrel;
2723 	      bfd_byte *loc;
2724 	      bfd_boolean skip, relocate;
2725 	      asection *sreloc;
2726 
2727 	      /* When generating a shared object, these relocations
2728 		 are copied into the output file to be resolved at run
2729 		 time.	*/
2730 	      skip = FALSE;
2731 	      relocate = FALSE;
2732 
2733 	      outrel.r_offset =
2734 		_bfd_elf_section_offset (output_bfd, info, input_section,
2735 					 rel->r_offset);
2736 	      if (outrel.r_offset == (bfd_vma) -1)
2737 		skip = TRUE;
2738 	      else if (outrel.r_offset == (bfd_vma) -2)
2739 		skip = TRUE, relocate = TRUE;
2740 
2741 	      outrel.r_offset += (input_section->output_section->vma
2742 				  + input_section->output_offset);
2743 
2744 	      if (skip)
2745 		memset (&outrel, 0, sizeof outrel);
2746 
2747 	      /* h->dynindx may be -1 if this symbol was marked to
2748 		 become local.  */
2749 	      else if (h != NULL
2750 		       && h->dynindx != -1
2751 		       && (r_type == R_X86_64_PC8
2752 			   || r_type == R_X86_64_PC16
2753 			   || r_type == R_X86_64_PC32
2754 			   || r_type == R_X86_64_PC64
2755 			   || !info->shared
2756 			   || !SYMBOLIC_BIND (info, h)
2757 			   || !h->def_regular))
2758 		{
2759 		  outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2760 		  outrel.r_addend = rel->r_addend;
2761 		}
2762 	      else
2763 		{
2764 		  /* This symbol is local, or marked to become local.  */
2765 		  if (r_type == R_X86_64_64)
2766 		    {
2767 		      relocate = TRUE;
2768 		      outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2769 		      outrel.r_addend = relocation + rel->r_addend;
2770 		    }
2771 		  else
2772 		    {
2773 		      long sindx;
2774 
2775 		      if (bfd_is_abs_section (sec))
2776 			sindx = 0;
2777 		      else if (sec == NULL || sec->owner == NULL)
2778 			{
2779 			  bfd_set_error (bfd_error_bad_value);
2780 			  return FALSE;
2781 			}
2782 		      else
2783 			{
2784 			  asection *osec;
2785 
2786 			  /* We are turning this relocation into one
2787 			     against a section symbol.  It would be
2788 			     proper to subtract the symbol's value,
2789 			     osec->vma, from the emitted reloc addend,
2790 			     but ld.so expects buggy relocs.  */
2791 			  osec = sec->output_section;
2792 			  sindx = elf_section_data (osec)->dynindx;
2793 			  if (sindx == 0)
2794 			    {
2795 			      asection *oi = htab->elf.text_index_section;
2796 			      sindx = elf_section_data (oi)->dynindx;
2797 			    }
2798 			  BFD_ASSERT (sindx != 0);
2799 			}
2800 
2801 		      outrel.r_info = ELF64_R_INFO (sindx, r_type);
2802 		      outrel.r_addend = relocation + rel->r_addend;
2803 		    }
2804 		}
2805 
2806 	      sreloc = elf_section_data (input_section)->sreloc;
2807 	      if (sreloc == NULL)
2808 		abort ();
2809 
2810 	      loc = sreloc->contents;
2811 	      loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2812 	      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2813 
2814 	      /* If this reloc is against an external symbol, we do
2815 		 not want to fiddle with the addend.  Otherwise, we
2816 		 need to include the symbol value so that it becomes
2817 		 an addend for the dynamic reloc.  */
2818 	      if (! relocate)
2819 		continue;
2820 	    }
2821 
2822 	  break;
2823 
2824 	case R_X86_64_TLSGD:
2825 	case R_X86_64_GOTPC32_TLSDESC:
2826 	case R_X86_64_TLSDESC_CALL:
2827 	case R_X86_64_GOTTPOFF:
2828 	  tls_type = GOT_UNKNOWN;
2829 	  if (h == NULL && local_got_offsets)
2830 	    tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2831 	  else if (h != NULL)
2832 	    tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2833 
2834 	  if (! elf64_x86_64_tls_transition (info, input_bfd,
2835 					     input_section, contents,
2836 					     symtab_hdr, sym_hashes,
2837 					     &r_type, tls_type, rel,
2838 					     relend, h))
2839 	    return FALSE;
2840 
2841 	  if (r_type == R_X86_64_TPOFF32)
2842 	    {
2843 	      bfd_vma roff = rel->r_offset;
2844 
2845 	      BFD_ASSERT (! unresolved_reloc);
2846 
2847 	      if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2848 		{
2849 		  /* GD->LE transition.
2850 		     .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2851 		     .word 0x6666; rex64; call __tls_get_addr
2852 		     Change it into:
2853 		     movq %fs:0, %rax
2854 		     leaq foo@tpoff(%rax), %rax */
2855 		  memcpy (contents + roff - 4,
2856 			  "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2857 			  16);
2858 		  bfd_put_32 (output_bfd, tpoff (info, relocation),
2859 			      contents + roff + 8);
2860 		  /* Skip R_X86_64_PC32/R_X86_64_PLT32.  */
2861 		  rel++;
2862 		  continue;
2863 		}
2864 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2865 		{
2866 		  /* GDesc -> LE transition.
2867 		     It's originally something like:
2868 		     leaq x@tlsdesc(%rip), %rax
2869 
2870 		     Change it to:
2871 		     movl $x@tpoff, %rax
2872 		   */
2873 
2874 		  unsigned int val, type, type2;
2875 
2876 		  type = bfd_get_8 (input_bfd, contents + roff - 3);
2877 		  type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2878 		  val = bfd_get_8 (input_bfd, contents + roff - 1);
2879 		  bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
2880 			     contents + roff - 3);
2881 		  bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
2882 		  bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2883 			     contents + roff - 1);
2884 		  bfd_put_32 (output_bfd, tpoff (info, relocation),
2885 			      contents + roff);
2886 		  continue;
2887 		}
2888 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2889 		{
2890 		  /* GDesc -> LE transition.
2891 		     It's originally:
2892 		     call *(%rax)
2893 		     Turn it into:
2894 		     xchg %ax,%ax.  */
2895 		  bfd_put_8 (output_bfd, 0x66, contents + roff);
2896 		  bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2897 		  continue;
2898 		}
2899 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
2900 		{
2901 		  /* IE->LE transition:
2902 		     Originally it can be one of:
2903 		     movq foo@gottpoff(%rip), %reg
2904 		     addq foo@gottpoff(%rip), %reg
2905 		     We change it into:
2906 		     movq $foo, %reg
2907 		     leaq foo(%reg), %reg
2908 		     addq $foo, %reg.  */
2909 
2910 		  unsigned int val, type, reg;
2911 
2912 		  val = bfd_get_8 (input_bfd, contents + roff - 3);
2913 		  type = bfd_get_8 (input_bfd, contents + roff - 2);
2914 		  reg = bfd_get_8 (input_bfd, contents + roff - 1);
2915 		  reg >>= 3;
2916 		  if (type == 0x8b)
2917 		    {
2918 		      /* movq */
2919 		      if (val == 0x4c)
2920 			bfd_put_8 (output_bfd, 0x49,
2921 				   contents + roff - 3);
2922 		      bfd_put_8 (output_bfd, 0xc7,
2923 				 contents + roff - 2);
2924 		      bfd_put_8 (output_bfd, 0xc0 | reg,
2925 				 contents + roff - 1);
2926 		    }
2927 		  else if (reg == 4)
2928 		    {
2929 		      /* addq -> addq - addressing with %rsp/%r12 is
2930 			 special  */
2931 		      if (val == 0x4c)
2932 			bfd_put_8 (output_bfd, 0x49,
2933 				   contents + roff - 3);
2934 		      bfd_put_8 (output_bfd, 0x81,
2935 				 contents + roff - 2);
2936 		      bfd_put_8 (output_bfd, 0xc0 | reg,
2937 				 contents + roff - 1);
2938 		    }
2939 		  else
2940 		    {
2941 		      /* addq -> leaq */
2942 		      if (val == 0x4c)
2943 			bfd_put_8 (output_bfd, 0x4d,
2944 				   contents + roff - 3);
2945 		      bfd_put_8 (output_bfd, 0x8d,
2946 				 contents + roff - 2);
2947 		      bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2948 				 contents + roff - 1);
2949 		    }
2950 		  bfd_put_32 (output_bfd, tpoff (info, relocation),
2951 			      contents + roff);
2952 		  continue;
2953 		}
2954 	      else
2955 		BFD_ASSERT (FALSE);
2956 	    }
2957 
2958 	  if (htab->sgot == NULL)
2959 	    abort ();
2960 
2961 	  if (h != NULL)
2962 	    {
2963 	      off = h->got.offset;
2964 	      offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
2965 	    }
2966 	  else
2967 	    {
2968 	      if (local_got_offsets == NULL)
2969 		abort ();
2970 
2971 	      off = local_got_offsets[r_symndx];
2972 	      offplt = local_tlsdesc_gotents[r_symndx];
2973 	    }
2974 
2975 	  if ((off & 1) != 0)
2976 	    off &= ~1;
2977 	  else
2978 	    {
2979 	      Elf_Internal_Rela outrel;
2980 	      bfd_byte *loc;
2981 	      int dr_type, indx;
2982 	      asection *sreloc;
2983 
2984 	      if (htab->srelgot == NULL)
2985 		abort ();
2986 
2987 	      indx = h && h->dynindx != -1 ? h->dynindx : 0;
2988 
2989 	      if (GOT_TLS_GDESC_P (tls_type))
2990 		{
2991 		  outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
2992 		  BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
2993 			      + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
2994 		  outrel.r_offset = (htab->sgotplt->output_section->vma
2995 				     + htab->sgotplt->output_offset
2996 				     + offplt
2997 				     + htab->sgotplt_jump_table_size);
2998 		  sreloc = htab->srelplt;
2999 		  loc = sreloc->contents;
3000 		  loc += sreloc->reloc_count++
3001 		    * sizeof (Elf64_External_Rela);
3002 		  BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3003 			      <= sreloc->contents + sreloc->size);
3004 		  if (indx == 0)
3005 		    outrel.r_addend = relocation - dtpoff_base (info);
3006 		  else
3007 		    outrel.r_addend = 0;
3008 		  bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3009 		}
3010 
3011 	      sreloc = htab->srelgot;
3012 
3013 	      outrel.r_offset = (htab->sgot->output_section->vma
3014 				 + htab->sgot->output_offset + off);
3015 
3016 	      if (GOT_TLS_GD_P (tls_type))
3017 		dr_type = R_X86_64_DTPMOD64;
3018 	      else if (GOT_TLS_GDESC_P (tls_type))
3019 		goto dr_done;
3020 	      else
3021 		dr_type = R_X86_64_TPOFF64;
3022 
3023 	      bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
3024 	      outrel.r_addend = 0;
3025 	      if ((dr_type == R_X86_64_TPOFF64
3026 		   || dr_type == R_X86_64_TLSDESC) && indx == 0)
3027 		outrel.r_addend = relocation - dtpoff_base (info);
3028 	      outrel.r_info = ELF64_R_INFO (indx, dr_type);
3029 
3030 	      loc = sreloc->contents;
3031 	      loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3032 	      BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3033 			  <= sreloc->contents + sreloc->size);
3034 	      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3035 
3036 	      if (GOT_TLS_GD_P (tls_type))
3037 		{
3038 		  if (indx == 0)
3039 		    {
3040 		      BFD_ASSERT (! unresolved_reloc);
3041 		      bfd_put_64 (output_bfd,
3042 				  relocation - dtpoff_base (info),
3043 				  htab->sgot->contents + off + GOT_ENTRY_SIZE);
3044 		    }
3045 		  else
3046 		    {
3047 		      bfd_put_64 (output_bfd, 0,
3048 				  htab->sgot->contents + off + GOT_ENTRY_SIZE);
3049 		      outrel.r_info = ELF64_R_INFO (indx,
3050 						    R_X86_64_DTPOFF64);
3051 		      outrel.r_offset += GOT_ENTRY_SIZE;
3052 		      sreloc->reloc_count++;
3053 		      loc += sizeof (Elf64_External_Rela);
3054 		      BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3055 				  <= sreloc->contents + sreloc->size);
3056 		      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3057 		    }
3058 		}
3059 
3060 	    dr_done:
3061 	      if (h != NULL)
3062 		h->got.offset |= 1;
3063 	      else
3064 		local_got_offsets[r_symndx] |= 1;
3065 	    }
3066 
3067 	  if (off >= (bfd_vma) -2
3068 	      && ! GOT_TLS_GDESC_P (tls_type))
3069 	    abort ();
3070 	  if (r_type == ELF64_R_TYPE (rel->r_info))
3071 	    {
3072 	      if (r_type == R_X86_64_GOTPC32_TLSDESC
3073 		  || r_type == R_X86_64_TLSDESC_CALL)
3074 		relocation = htab->sgotplt->output_section->vma
3075 		  + htab->sgotplt->output_offset
3076 		  + offplt + htab->sgotplt_jump_table_size;
3077 	      else
3078 		relocation = htab->sgot->output_section->vma
3079 		  + htab->sgot->output_offset + off;
3080 	      unresolved_reloc = FALSE;
3081 	    }
3082 	  else
3083 	    {
3084 	      bfd_vma roff = rel->r_offset;
3085 
3086 	      if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3087 		{
3088 		  /* GD->IE transition.
3089 		     .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3090 		     .word 0x6666; rex64; call __tls_get_addr@plt
3091 		     Change it into:
3092 		     movq %fs:0, %rax
3093 		     addq foo@gottpoff(%rip), %rax */
3094 		  memcpy (contents + roff - 4,
3095 			  "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3096 			  16);
3097 
3098 		  relocation = (htab->sgot->output_section->vma
3099 				+ htab->sgot->output_offset + off
3100 				- roff
3101 				- input_section->output_section->vma
3102 				- input_section->output_offset
3103 				- 12);
3104 		  bfd_put_32 (output_bfd, relocation,
3105 			      contents + roff + 8);
3106 		  /* Skip R_X86_64_PLT32.  */
3107 		  rel++;
3108 		  continue;
3109 		}
3110 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3111 		{
3112 		  /* GDesc -> IE transition.
3113 		     It's originally something like:
3114 		     leaq x@tlsdesc(%rip), %rax
3115 
3116 		     Change it to:
3117 		     movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3118 		   */
3119 
3120 		  unsigned int val, type, type2;
3121 
3122 		  type = bfd_get_8 (input_bfd, contents + roff - 3);
3123 		  type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3124 		  val = bfd_get_8 (input_bfd, contents + roff - 1);
3125 
3126 		  /* Now modify the instruction as appropriate. To
3127 		     turn a leaq into a movq in the form we use it, it
3128 		     suffices to change the second byte from 0x8d to
3129 		     0x8b.  */
3130 		  bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3131 
3132 		  bfd_put_32 (output_bfd,
3133 			      htab->sgot->output_section->vma
3134 			      + htab->sgot->output_offset + off
3135 			      - rel->r_offset
3136 			      - input_section->output_section->vma
3137 			      - input_section->output_offset
3138 			      - 4,
3139 			      contents + roff);
3140 		  continue;
3141 		}
3142 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3143 		{
3144 		  /* GDesc -> IE transition.
3145 		     It's originally:
3146 		     call *(%rax)
3147 
3148 		     Change it to:
3149 		     xchg %ax,%ax.  */
3150 
3151 		  unsigned int val, type;
3152 
3153 		  type = bfd_get_8 (input_bfd, contents + roff);
3154 		  val = bfd_get_8 (input_bfd, contents + roff + 1);
3155 		  bfd_put_8 (output_bfd, 0x66, contents + roff);
3156 		  bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3157 		  continue;
3158 		}
3159 	      else
3160 		BFD_ASSERT (FALSE);
3161 	    }
3162 	  break;
3163 
3164 	case R_X86_64_TLSLD:
3165 	  if (! elf64_x86_64_tls_transition (info, input_bfd,
3166 					     input_section, contents,
3167 					     symtab_hdr, sym_hashes,
3168 					     &r_type, GOT_UNKNOWN,
3169 					     rel, relend, h))
3170 	    return FALSE;
3171 
3172 	  if (r_type != R_X86_64_TLSLD)
3173 	    {
3174 	      /* LD->LE transition:
3175 		 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3176 		 We change it into:
3177 		 .word 0x6666; .byte 0x66; movl %fs:0, %rax.  */
3178 
3179 	      BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3180 	      memcpy (contents + rel->r_offset - 3,
3181 		      "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3182 	      /* Skip R_X86_64_PC32/R_X86_64_PLT32.  */
3183 	      rel++;
3184 	      continue;
3185 	    }
3186 
3187 	  if (htab->sgot == NULL)
3188 	    abort ();
3189 
3190 	  off = htab->tls_ld_got.offset;
3191 	  if (off & 1)
3192 	    off &= ~1;
3193 	  else
3194 	    {
3195 	      Elf_Internal_Rela outrel;
3196 	      bfd_byte *loc;
3197 
3198 	      if (htab->srelgot == NULL)
3199 		abort ();
3200 
3201 	      outrel.r_offset = (htab->sgot->output_section->vma
3202 				 + htab->sgot->output_offset + off);
3203 
3204 	      bfd_put_64 (output_bfd, 0,
3205 			  htab->sgot->contents + off);
3206 	      bfd_put_64 (output_bfd, 0,
3207 			  htab->sgot->contents + off + GOT_ENTRY_SIZE);
3208 	      outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3209 	      outrel.r_addend = 0;
3210 	      loc = htab->srelgot->contents;
3211 	      loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3212 	      bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3213 	      htab->tls_ld_got.offset |= 1;
3214 	    }
3215 	  relocation = htab->sgot->output_section->vma
3216 		       + htab->sgot->output_offset + off;
3217 	  unresolved_reloc = FALSE;
3218 	  break;
3219 
3220 	case R_X86_64_DTPOFF32:
3221 	  if (info->shared || (input_section->flags & SEC_CODE) == 0)
3222 	    relocation -= dtpoff_base (info);
3223 	  else
3224 	    relocation = tpoff (info, relocation);
3225 	  break;
3226 
3227 	case R_X86_64_TPOFF32:
3228 	  BFD_ASSERT (! info->shared);
3229 	  relocation = tpoff (info, relocation);
3230 	  break;
3231 
3232 	default:
3233 	  break;
3234 	}
3235 
3236       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3237 	 because such sections are not SEC_ALLOC and thus ld.so will
3238 	 not process them.  */
3239       if (unresolved_reloc
3240 	  && !((input_section->flags & SEC_DEBUGGING) != 0
3241 	       && h->def_dynamic))
3242 	(*_bfd_error_handler)
3243 	  (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3244 	   input_bfd,
3245 	   input_section,
3246 	   (long) rel->r_offset,
3247 	   howto->name,
3248 	   h->root.root.string);
3249 
3250       r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3251 				    contents, rel->r_offset,
3252 				    relocation, rel->r_addend);
3253 
3254       if (r != bfd_reloc_ok)
3255 	{
3256 	  const char *name;
3257 
3258 	  if (h != NULL)
3259 	    name = h->root.root.string;
3260 	  else
3261 	    {
3262 	      name = bfd_elf_string_from_elf_section (input_bfd,
3263 						      symtab_hdr->sh_link,
3264 						      sym->st_name);
3265 	      if (name == NULL)
3266 		return FALSE;
3267 	      if (*name == '\0')
3268 		name = bfd_section_name (input_bfd, sec);
3269 	    }
3270 
3271 	  if (r == bfd_reloc_overflow)
3272 	    {
3273 	      if (! ((*info->callbacks->reloc_overflow)
3274 		     (info, (h ? &h->root : NULL), name, howto->name,
3275 		      (bfd_vma) 0, input_bfd, input_section,
3276 		      rel->r_offset)))
3277 		return FALSE;
3278 	    }
3279 	  else
3280 	    {
3281 	      (*_bfd_error_handler)
3282 		(_("%B(%A+0x%lx): reloc against `%s': error %d"),
3283 		 input_bfd, input_section,
3284 		 (long) rel->r_offset, name, (int) r);
3285 	      return FALSE;
3286 	    }
3287 	}
3288     }
3289 
3290   return TRUE;
3291 }
3292 
3293 /* Finish up dynamic symbol handling.  We set the contents of various
3294    dynamic sections here.  */
3295 
3296 static bfd_boolean
3297 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3298 				    struct bfd_link_info *info,
3299 				    struct elf_link_hash_entry *h,
3300 				    Elf_Internal_Sym *sym)
3301 {
3302   struct elf64_x86_64_link_hash_table *htab;
3303 
3304   htab = elf64_x86_64_hash_table (info);
3305 
3306   if (h->plt.offset != (bfd_vma) -1)
3307     {
3308       bfd_vma plt_index;
3309       bfd_vma got_offset;
3310       Elf_Internal_Rela rela;
3311       bfd_byte *loc;
3312 
3313       /* This symbol has an entry in the procedure linkage table.  Set
3314 	 it up.	 */
3315       if (h->dynindx == -1
3316 	  || htab->splt == NULL
3317 	  || htab->sgotplt == NULL
3318 	  || htab->srelplt == NULL)
3319 	abort ();
3320 
3321       /* Get the index in the procedure linkage table which
3322 	 corresponds to this symbol.  This is the index of this symbol
3323 	 in all the symbols for which we are making plt entries.  The
3324 	 first entry in the procedure linkage table is reserved.  */
3325       plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3326 
3327       /* Get the offset into the .got table of the entry that
3328 	 corresponds to this function.	Each .got entry is GOT_ENTRY_SIZE
3329 	 bytes. The first three are reserved for the dynamic linker.  */
3330       got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3331 
3332       /* Fill in the entry in the procedure linkage table.  */
3333       memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3334 	      PLT_ENTRY_SIZE);
3335 
3336       /* Insert the relocation positions of the plt section.  The magic
3337 	 numbers at the end of the statements are the positions of the
3338 	 relocations in the plt section.  */
3339       /* Put offset for jmp *name@GOTPCREL(%rip), since the
3340 	 instruction uses 6 bytes, subtract this value.  */
3341       bfd_put_32 (output_bfd,
3342 		      (htab->sgotplt->output_section->vma
3343 		       + htab->sgotplt->output_offset
3344 		       + got_offset
3345 		       - htab->splt->output_section->vma
3346 		       - htab->splt->output_offset
3347 		       - h->plt.offset
3348 		       - 6),
3349 		  htab->splt->contents + h->plt.offset + 2);
3350       /* Put relocation index.  */
3351       bfd_put_32 (output_bfd, plt_index,
3352 		  htab->splt->contents + h->plt.offset + 7);
3353       /* Put offset for jmp .PLT0.  */
3354       bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3355 		  htab->splt->contents + h->plt.offset + 12);
3356 
3357       /* Fill in the entry in the global offset table, initially this
3358 	 points to the pushq instruction in the PLT which is at offset 6.  */
3359       bfd_put_64 (output_bfd, (htab->splt->output_section->vma
3360 			       + htab->splt->output_offset
3361 			       + h->plt.offset + 6),
3362 		  htab->sgotplt->contents + got_offset);
3363 
3364       /* Fill in the entry in the .rela.plt section.  */
3365       rela.r_offset = (htab->sgotplt->output_section->vma
3366 		       + htab->sgotplt->output_offset
3367 		       + got_offset);
3368       rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3369       rela.r_addend = 0;
3370       loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
3371       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3372 
3373       if (!h->def_regular)
3374 	{
3375 	  /* Mark the symbol as undefined, rather than as defined in
3376 	     the .plt section.  Leave the value if there were any
3377 	     relocations where pointer equality matters (this is a clue
3378 	     for the dynamic linker, to make function pointer
3379 	     comparisons work between an application and shared
3380 	     library), otherwise set it to zero.  If a function is only
3381 	     called from a binary, there is no need to slow down
3382 	     shared libraries because of that.  */
3383 	  sym->st_shndx = SHN_UNDEF;
3384 	  if (!h->pointer_equality_needed)
3385 	    sym->st_value = 0;
3386 	}
3387     }
3388 
3389   if (h->got.offset != (bfd_vma) -1
3390       && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3391       && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3392     {
3393       Elf_Internal_Rela rela;
3394       bfd_byte *loc;
3395 
3396       /* This symbol has an entry in the global offset table.  Set it
3397 	 up.  */
3398       if (htab->sgot == NULL || htab->srelgot == NULL)
3399 	abort ();
3400 
3401       rela.r_offset = (htab->sgot->output_section->vma
3402 		       + htab->sgot->output_offset
3403 		       + (h->got.offset &~ (bfd_vma) 1));
3404 
3405       /* If this is a static link, or it is a -Bsymbolic link and the
3406 	 symbol is defined locally or was forced to be local because
3407 	 of a version file, we just want to emit a RELATIVE reloc.
3408 	 The entry in the global offset table will already have been
3409 	 initialized in the relocate_section function.  */
3410       if (info->shared
3411 	  && SYMBOL_REFERENCES_LOCAL (info, h))
3412 	{
3413 	  if (!h->def_regular)
3414 	    return FALSE;
3415 	  BFD_ASSERT((h->got.offset & 1) != 0);
3416 	  rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3417 	  rela.r_addend = (h->root.u.def.value
3418 			   + h->root.u.def.section->output_section->vma
3419 			   + h->root.u.def.section->output_offset);
3420 	}
3421       else
3422 	{
3423 	  BFD_ASSERT((h->got.offset & 1) == 0);
3424 	  bfd_put_64 (output_bfd, (bfd_vma) 0,
3425 		      htab->sgot->contents + h->got.offset);
3426 	  rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3427 	  rela.r_addend = 0;
3428 	}
3429 
3430       loc = htab->srelgot->contents;
3431       loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3432       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3433     }
3434 
3435   if (h->needs_copy)
3436     {
3437       Elf_Internal_Rela rela;
3438       bfd_byte *loc;
3439 
3440       /* This symbol needs a copy reloc.  Set it up.  */
3441 
3442       if (h->dynindx == -1
3443 	  || (h->root.type != bfd_link_hash_defined
3444 	      && h->root.type != bfd_link_hash_defweak)
3445 	  || htab->srelbss == NULL)
3446 	abort ();
3447 
3448       rela.r_offset = (h->root.u.def.value
3449 		       + h->root.u.def.section->output_section->vma
3450 		       + h->root.u.def.section->output_offset);
3451       rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3452       rela.r_addend = 0;
3453       loc = htab->srelbss->contents;
3454       loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3455       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3456     }
3457 
3458   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
3459   if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3460       || h == htab->elf.hgot)
3461     sym->st_shndx = SHN_ABS;
3462 
3463   return TRUE;
3464 }
3465 
3466 /* Used to decide how to sort relocs in an optimal manner for the
3467    dynamic linker, before writing them out.  */
3468 
3469 static enum elf_reloc_type_class
3470 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3471 {
3472   switch ((int) ELF64_R_TYPE (rela->r_info))
3473     {
3474     case R_X86_64_RELATIVE:
3475       return reloc_class_relative;
3476     case R_X86_64_JUMP_SLOT:
3477       return reloc_class_plt;
3478     case R_X86_64_COPY:
3479       return reloc_class_copy;
3480     default:
3481       return reloc_class_normal;
3482     }
3483 }
3484 
3485 /* Finish up the dynamic sections.  */
3486 
3487 static bfd_boolean
3488 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3489 {
3490   struct elf64_x86_64_link_hash_table *htab;
3491   bfd *dynobj;
3492   asection *sdyn;
3493 
3494   htab = elf64_x86_64_hash_table (info);
3495   dynobj = htab->elf.dynobj;
3496   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3497 
3498   if (htab->elf.dynamic_sections_created)
3499     {
3500       Elf64_External_Dyn *dyncon, *dynconend;
3501 
3502       if (sdyn == NULL || htab->sgot == NULL)
3503 	abort ();
3504 
3505       dyncon = (Elf64_External_Dyn *) sdyn->contents;
3506       dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
3507       for (; dyncon < dynconend; dyncon++)
3508 	{
3509 	  Elf_Internal_Dyn dyn;
3510 	  asection *s;
3511 
3512 	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
3513 
3514 	  switch (dyn.d_tag)
3515 	    {
3516 	    default:
3517 	      continue;
3518 
3519 	    case DT_PLTGOT:
3520 	      s = htab->sgotplt;
3521 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3522 	      break;
3523 
3524 	    case DT_JMPREL:
3525 	      dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3526 	      break;
3527 
3528 	    case DT_PLTRELSZ:
3529 	      s = htab->srelplt->output_section;
3530 	      dyn.d_un.d_val = s->size;
3531 	      break;
3532 
3533 	    case DT_RELASZ:
3534 	      /* The procedure linkage table relocs (DT_JMPREL) should
3535 		 not be included in the overall relocs (DT_RELA).
3536 		 Therefore, we override the DT_RELASZ entry here to
3537 		 make it not include the JMPREL relocs.  Since the
3538 		 linker script arranges for .rela.plt to follow all
3539 		 other relocation sections, we don't have to worry
3540 		 about changing the DT_RELA entry.  */
3541 	      if (htab->srelplt != NULL)
3542 		{
3543 		  s = htab->srelplt->output_section;
3544 		  dyn.d_un.d_val -= s->size;
3545 		}
3546 	      break;
3547 
3548 	    case DT_TLSDESC_PLT:
3549 	      s = htab->splt;
3550 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3551 		+ htab->tlsdesc_plt;
3552 	      break;
3553 
3554 	    case DT_TLSDESC_GOT:
3555 	      s = htab->sgot;
3556 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3557 		+ htab->tlsdesc_got;
3558 	      break;
3559 	    }
3560 
3561 	  bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
3562 	}
3563 
3564       /* Fill in the special first entry in the procedure linkage table.  */
3565       if (htab->splt && htab->splt->size > 0)
3566 	{
3567 	  /* Fill in the first entry in the procedure linkage table.  */
3568 	  memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
3569 		  PLT_ENTRY_SIZE);
3570 	  /* Add offset for pushq GOT+8(%rip), since the instruction
3571 	     uses 6 bytes subtract this value.  */
3572 	  bfd_put_32 (output_bfd,
3573 		      (htab->sgotplt->output_section->vma
3574 		       + htab->sgotplt->output_offset
3575 		       + 8
3576 		       - htab->splt->output_section->vma
3577 		       - htab->splt->output_offset
3578 		       - 6),
3579 		      htab->splt->contents + 2);
3580 	  /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3581 	     the end of the instruction.  */
3582 	  bfd_put_32 (output_bfd,
3583 		      (htab->sgotplt->output_section->vma
3584 		       + htab->sgotplt->output_offset
3585 		       + 16
3586 		       - htab->splt->output_section->vma
3587 		       - htab->splt->output_offset
3588 		       - 12),
3589 		      htab->splt->contents + 8);
3590 
3591 	  elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
3592 	    PLT_ENTRY_SIZE;
3593 
3594 	  if (htab->tlsdesc_plt)
3595 	    {
3596 	      bfd_put_64 (output_bfd, (bfd_vma) 0,
3597 			  htab->sgot->contents + htab->tlsdesc_got);
3598 
3599 	      memcpy (htab->splt->contents + htab->tlsdesc_plt,
3600 		      elf64_x86_64_plt0_entry,
3601 		      PLT_ENTRY_SIZE);
3602 
3603 	      /* Add offset for pushq GOT+8(%rip), since the
3604 		 instruction uses 6 bytes subtract this value.  */
3605 	      bfd_put_32 (output_bfd,
3606 			  (htab->sgotplt->output_section->vma
3607 			   + htab->sgotplt->output_offset
3608 			   + 8
3609 			   - htab->splt->output_section->vma
3610 			   - htab->splt->output_offset
3611 			   - htab->tlsdesc_plt
3612 			   - 6),
3613 			  htab->splt->contents + htab->tlsdesc_plt + 2);
3614 	      /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3615 		 htab->tlsdesc_got. The 12 is the offset to the end of
3616 		 the instruction.  */
3617 	      bfd_put_32 (output_bfd,
3618 			  (htab->sgot->output_section->vma
3619 			   + htab->sgot->output_offset
3620 			   + htab->tlsdesc_got
3621 			   - htab->splt->output_section->vma
3622 			   - htab->splt->output_offset
3623 			   - htab->tlsdesc_plt
3624 			   - 12),
3625 			  htab->splt->contents + htab->tlsdesc_plt + 8);
3626 	    }
3627 	}
3628     }
3629 
3630   if (htab->sgotplt)
3631     {
3632       /* Fill in the first three entries in the global offset table.  */
3633       if (htab->sgotplt->size > 0)
3634 	{
3635 	  /* Set the first entry in the global offset table to the address of
3636 	     the dynamic section.  */
3637 	  if (sdyn == NULL)
3638 	    bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
3639 	  else
3640 	    bfd_put_64 (output_bfd,
3641 			sdyn->output_section->vma + sdyn->output_offset,
3642 			htab->sgotplt->contents);
3643 	  /* Write GOT[1] and GOT[2], needed for the dynamic linker.  */
3644 	  bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
3645 	  bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
3646 	}
3647 
3648       elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
3649 	GOT_ENTRY_SIZE;
3650     }
3651 
3652   if (htab->sgot && htab->sgot->size > 0)
3653     elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
3654       = GOT_ENTRY_SIZE;
3655 
3656   return TRUE;
3657 }
3658 
3659 /* Return address for Ith PLT stub in section PLT, for relocation REL
3660    or (bfd_vma) -1 if it should not be included.  */
3661 
3662 static bfd_vma
3663 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
3664 			  const arelent *rel ATTRIBUTE_UNUSED)
3665 {
3666   return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3667 }
3668 
3669 /* Handle an x86-64 specific section when reading an object file.  This
3670    is called when elfcode.h finds a section with an unknown type.  */
3671 
3672 static bfd_boolean
3673 elf64_x86_64_section_from_shdr (bfd *abfd,
3674 				Elf_Internal_Shdr *hdr,
3675 				const char *name,
3676 				int shindex)
3677 {
3678   if (hdr->sh_type != SHT_X86_64_UNWIND)
3679     return FALSE;
3680 
3681   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
3682     return FALSE;
3683 
3684   return TRUE;
3685 }
3686 
3687 /* Hook called by the linker routine which adds symbols from an object
3688    file.  We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3689    of .bss.  */
3690 
3691 static bfd_boolean
3692 elf64_x86_64_add_symbol_hook (bfd *abfd,
3693 			      struct bfd_link_info *info ATTRIBUTE_UNUSED,
3694 			      Elf_Internal_Sym *sym,
3695 			      const char **namep ATTRIBUTE_UNUSED,
3696 			      flagword *flagsp ATTRIBUTE_UNUSED,
3697 			      asection **secp, bfd_vma *valp)
3698 {
3699   asection *lcomm;
3700 
3701   switch (sym->st_shndx)
3702     {
3703     case SHN_X86_64_LCOMMON:
3704       lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
3705       if (lcomm == NULL)
3706 	{
3707 	  lcomm = bfd_make_section_with_flags (abfd,
3708 					       "LARGE_COMMON",
3709 					       (SEC_ALLOC
3710 						| SEC_IS_COMMON
3711 						| SEC_LINKER_CREATED));
3712 	  if (lcomm == NULL)
3713 	    return FALSE;
3714 	  elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
3715 	}
3716       *secp = lcomm;
3717       *valp = sym->st_size;
3718       break;
3719     }
3720   return TRUE;
3721 }
3722 
3723 
3724 /* Given a BFD section, try to locate the corresponding ELF section
3725    index.  */
3726 
3727 static bfd_boolean
3728 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
3729 					   asection *sec, int *index)
3730 {
3731   if (sec == &_bfd_elf_large_com_section)
3732     {
3733       *index = SHN_X86_64_LCOMMON;
3734       return TRUE;
3735     }
3736   return FALSE;
3737 }
3738 
3739 /* Process a symbol.  */
3740 
3741 static void
3742 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
3743 				asymbol *asym)
3744 {
3745   elf_symbol_type *elfsym = (elf_symbol_type *) asym;
3746 
3747   switch (elfsym->internal_elf_sym.st_shndx)
3748     {
3749     case SHN_X86_64_LCOMMON:
3750       asym->section = &_bfd_elf_large_com_section;
3751       asym->value = elfsym->internal_elf_sym.st_size;
3752       /* Common symbol doesn't set BSF_GLOBAL.  */
3753       asym->flags &= ~BSF_GLOBAL;
3754       break;
3755     }
3756 }
3757 
3758 static bfd_boolean
3759 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
3760 {
3761   return (sym->st_shndx == SHN_COMMON
3762 	  || sym->st_shndx == SHN_X86_64_LCOMMON);
3763 }
3764 
3765 static unsigned int
3766 elf64_x86_64_common_section_index (asection *sec)
3767 {
3768   if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3769     return SHN_COMMON;
3770   else
3771     return SHN_X86_64_LCOMMON;
3772 }
3773 
3774 static asection *
3775 elf64_x86_64_common_section (asection *sec)
3776 {
3777   if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3778     return bfd_com_section_ptr;
3779   else
3780     return &_bfd_elf_large_com_section;
3781 }
3782 
3783 static bfd_boolean
3784 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3785 			   struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3786 			   struct elf_link_hash_entry *h,
3787 			   Elf_Internal_Sym *sym,
3788 			   asection **psec,
3789 			   bfd_vma *pvalue ATTRIBUTE_UNUSED,
3790 			   unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3791 			   bfd_boolean *skip ATTRIBUTE_UNUSED,
3792 			   bfd_boolean *override ATTRIBUTE_UNUSED,
3793 			   bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3794 			   bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3795 			   bfd_boolean *newdef ATTRIBUTE_UNUSED,
3796 			   bfd_boolean *newdyn,
3797 			   bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3798 			   bfd_boolean *newweak ATTRIBUTE_UNUSED,
3799 			   bfd *abfd ATTRIBUTE_UNUSED,
3800 			   asection **sec,
3801 			   bfd_boolean *olddef ATTRIBUTE_UNUSED,
3802 			   bfd_boolean *olddyn,
3803 			   bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3804 			   bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3805 			   bfd *oldbfd,
3806 			   asection **oldsec)
3807 {
3808   /* A normal common symbol and a large common symbol result in a
3809      normal common symbol.  We turn the large common symbol into a
3810      normal one.  */
3811   if (!*olddyn
3812       && h->root.type == bfd_link_hash_common
3813       && !*newdyn
3814       && bfd_is_com_section (*sec)
3815       && *oldsec != *sec)
3816     {
3817       if (sym->st_shndx == SHN_COMMON
3818 	  && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3819 	{
3820 	  h->root.u.c.p->section
3821 	    = bfd_make_section_old_way (oldbfd, "COMMON");
3822 	  h->root.u.c.p->section->flags = SEC_ALLOC;
3823 	}
3824       else if (sym->st_shndx == SHN_X86_64_LCOMMON
3825 	       && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3826 	*psec = *sec = bfd_com_section_ptr;
3827     }
3828 
3829   return TRUE;
3830 }
3831 
3832 static int
3833 elf64_x86_64_additional_program_headers (bfd *abfd,
3834 					 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3835 {
3836   asection *s;
3837   int count = 0;
3838 
3839   /* Check to see if we need a large readonly segment.  */
3840   s = bfd_get_section_by_name (abfd, ".lrodata");
3841   if (s && (s->flags & SEC_LOAD))
3842     count++;
3843 
3844   /* Check to see if we need a large data segment.  Since .lbss sections
3845      is placed right after the .bss section, there should be no need for
3846      a large data segment just because of .lbss.  */
3847   s = bfd_get_section_by_name (abfd, ".ldata");
3848   if (s && (s->flags & SEC_LOAD))
3849     count++;
3850 
3851   return count;
3852 }
3853 
3854 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
3855 
3856 static bfd_boolean
3857 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
3858 {
3859   if (h->plt.offset != (bfd_vma) -1
3860       && !h->def_regular
3861       && !h->pointer_equality_needed)
3862     return FALSE;
3863 
3864   return _bfd_elf_hash_symbol (h);
3865 }
3866 
3867 static const struct bfd_elf_special_section
3868   elf64_x86_64_special_sections[]=
3869 {
3870   { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3871   { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3872   { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3873   { STRING_COMMA_LEN (".lbss"),	           -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3874   { STRING_COMMA_LEN (".ldata"),	   -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3875   { STRING_COMMA_LEN (".lrodata"),	   -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3876   { NULL,	                0,          0, 0,            0 }
3877 };
3878 
3879 #define TARGET_LITTLE_SYM		    bfd_elf64_x86_64_vec
3880 #define TARGET_LITTLE_NAME		    "elf64-x86-64"
3881 #define ELF_ARCH			    bfd_arch_i386
3882 #define ELF_MACHINE_CODE		    EM_X86_64
3883 #define ELF_MAXPAGESIZE			    0x200000
3884 #define ELF_MINPAGESIZE			    0x1000
3885 #define ELF_COMMONPAGESIZE		    0x1000
3886 
3887 #define elf_backend_can_gc_sections	    1
3888 #define elf_backend_can_refcount	    1
3889 #define elf_backend_want_got_plt	    1
3890 #define elf_backend_plt_readonly	    1
3891 #define elf_backend_want_plt_sym	    0
3892 #define elf_backend_got_header_size	    (GOT_ENTRY_SIZE*3)
3893 #define elf_backend_rela_normal		    1
3894 
3895 #define elf_info_to_howto		    elf64_x86_64_info_to_howto
3896 
3897 #define bfd_elf64_bfd_link_hash_table_create \
3898   elf64_x86_64_link_hash_table_create
3899 #define bfd_elf64_bfd_reloc_type_lookup	    elf64_x86_64_reloc_type_lookup
3900 #define bfd_elf64_bfd_reloc_name_lookup \
3901   elf64_x86_64_reloc_name_lookup
3902 
3903 #define elf_backend_adjust_dynamic_symbol   elf64_x86_64_adjust_dynamic_symbol
3904 #define elf_backend_relocs_compatible	    _bfd_elf_relocs_compatible
3905 #define elf_backend_check_relocs	    elf64_x86_64_check_relocs
3906 #define elf_backend_copy_indirect_symbol    elf64_x86_64_copy_indirect_symbol
3907 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3908 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3909 #define elf_backend_finish_dynamic_symbol   elf64_x86_64_finish_dynamic_symbol
3910 #define elf_backend_gc_mark_hook	    elf64_x86_64_gc_mark_hook
3911 #define elf_backend_gc_sweep_hook	    elf64_x86_64_gc_sweep_hook
3912 #define elf_backend_grok_prstatus	    elf64_x86_64_grok_prstatus
3913 #define elf_backend_grok_psinfo		    elf64_x86_64_grok_psinfo
3914 #define elf_backend_reloc_type_class	    elf64_x86_64_reloc_type_class
3915 #define elf_backend_relocate_section	    elf64_x86_64_relocate_section
3916 #define elf_backend_size_dynamic_sections   elf64_x86_64_size_dynamic_sections
3917 #define elf_backend_always_size_sections    elf64_x86_64_always_size_sections
3918 #define elf_backend_init_index_section	    _bfd_elf_init_1_index_section
3919 #define elf_backend_plt_sym_val		    elf64_x86_64_plt_sym_val
3920 #define elf_backend_object_p		    elf64_x86_64_elf_object_p
3921 #define bfd_elf64_mkobject		    elf64_x86_64_mkobject
3922 
3923 #define elf_backend_section_from_shdr \
3924 	elf64_x86_64_section_from_shdr
3925 
3926 #define elf_backend_section_from_bfd_section \
3927   elf64_x86_64_elf_section_from_bfd_section
3928 #define elf_backend_add_symbol_hook \
3929   elf64_x86_64_add_symbol_hook
3930 #define elf_backend_symbol_processing \
3931   elf64_x86_64_symbol_processing
3932 #define elf_backend_common_section_index \
3933   elf64_x86_64_common_section_index
3934 #define elf_backend_common_section \
3935   elf64_x86_64_common_section
3936 #define elf_backend_common_definition \
3937   elf64_x86_64_common_definition
3938 #define elf_backend_merge_symbol \
3939   elf64_x86_64_merge_symbol
3940 #define elf_backend_special_sections \
3941   elf64_x86_64_special_sections
3942 #define elf_backend_additional_program_headers \
3943   elf64_x86_64_additional_program_headers
3944 #define elf_backend_hash_symbol \
3945   elf64_x86_64_hash_symbol
3946 
3947 #include "elf64-target.h"
3948 
3949 /* FreeBSD support.  */
3950 
3951 #undef  TARGET_LITTLE_SYM
3952 #define TARGET_LITTLE_SYM		    bfd_elf64_x86_64_freebsd_vec
3953 #undef  TARGET_LITTLE_NAME
3954 #define TARGET_LITTLE_NAME		    "elf64-x86-64-freebsd"
3955 
3956 #undef	ELF_OSABI
3957 #define	ELF_OSABI			    ELFOSABI_FREEBSD
3958 
3959 #undef  elf_backend_post_process_headers
3960 #define elf_backend_post_process_headers  _bfd_elf_set_osabi
3961 
3962 #undef  elf64_bed
3963 #define elf64_bed elf64_x86_64_fbsd_bed
3964 
3965 #include "elf64-target.h"
3966