xref: /netbsd/external/gpl3/binutils/dist/bfd/linker.c (revision 6550d01e)
1 /* linker.c -- BFD linker routines
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006, 2007, 2008
4    Free Software Foundation, Inc.
5    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29 
30 /*
31 SECTION
32 	Linker Functions
33 
34 @cindex Linker
35 	The linker uses three special entry points in the BFD target
36 	vector.  It is not necessary to write special routines for
37 	these entry points when creating a new BFD back end, since
38 	generic versions are provided.  However, writing them can
39 	speed up linking and make it use significantly less runtime
40 	memory.
41 
42 	The first routine creates a hash table used by the other
43 	routines.  The second routine adds the symbols from an object
44 	file to the hash table.  The third routine takes all the
45 	object files and links them together to create the output
46 	file.  These routines are designed so that the linker proper
47 	does not need to know anything about the symbols in the object
48 	files that it is linking.  The linker merely arranges the
49 	sections as directed by the linker script and lets BFD handle
50 	the details of symbols and relocs.
51 
52 	The second routine and third routines are passed a pointer to
53 	a <<struct bfd_link_info>> structure (defined in
54 	<<bfdlink.h>>) which holds information relevant to the link,
55 	including the linker hash table (which was created by the
56 	first routine) and a set of callback functions to the linker
57 	proper.
58 
59 	The generic linker routines are in <<linker.c>>, and use the
60 	header file <<genlink.h>>.  As of this writing, the only back
61 	ends which have implemented versions of these routines are
62 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
63 	routines are used as examples throughout this section.
64 
65 @menu
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
69 @end menu
70 
71 INODE
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
73 SUBSECTION
74 	Creating a linker hash table
75 
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 	The linker routines must create a hash table, which must be
79 	derived from <<struct bfd_link_hash_table>> described in
80 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
81 	create a derived hash table.  This entry point is called using
82 	the target vector of the linker output file.
83 
84 	The <<_bfd_link_hash_table_create>> entry point must allocate
85 	and initialize an instance of the desired hash table.  If the
86 	back end does not require any additional information to be
87 	stored with the entries in the hash table, the entry point may
88 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
89 	however, some additional information will be needed.
90 
91 	For example, with each entry in the hash table the a.out
92 	linker keeps the index the symbol has in the final output file
93 	(this index number is used so that when doing a relocatable
94 	link the symbol index used in the output file can be quickly
95 	filled in when copying over a reloc).  The a.out linker code
96 	defines the required structures and functions for a hash table
97 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
98 	hash table is created by the function
99 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
100 	space for the hash table, initializes it, and returns a
101 	pointer to it.
102 
103 	When writing the linker routines for a new back end, you will
104 	generally not know exactly which fields will be required until
105 	you have finished.  You should simply create a new hash table
106 	which defines no additional fields, and then simply add fields
107 	as they become necessary.
108 
109 INODE
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
111 SUBSECTION
112 	Adding symbols to the hash table
113 
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 	The linker proper will call the <<_bfd_link_add_symbols>>
117 	entry point for each object file or archive which is to be
118 	linked (typically these are the files named on the command
119 	line, but some may also come from the linker script).  The
120 	entry point is responsible for examining the file.  For an
121 	object file, BFD must add any relevant symbol information to
122 	the hash table.  For an archive, BFD must determine which
123 	elements of the archive should be used and adding them to the
124 	link.
125 
126 	The a.out version of this entry point is
127 	<<NAME(aout,link_add_symbols)>>.
128 
129 @menu
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
133 @end menu
134 
135 INODE
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
137 SUBSUBSECTION
138 	Differing file formats
139 
140 	Normally all the files involved in a link will be of the same
141 	format, but it is also possible to link together different
142 	format object files, and the back end must support that.  The
143 	<<_bfd_link_add_symbols>> entry point is called via the target
144 	vector of the file to be added.  This has an important
145 	consequence: the function may not assume that the hash table
146 	is the type created by the corresponding
147 	<<_bfd_link_hash_table_create>> vector.  All the
148 	<<_bfd_link_add_symbols>> function can assume about the hash
149 	table is that it is derived from <<struct
150 	bfd_link_hash_table>>.
151 
152 	Sometimes the <<_bfd_link_add_symbols>> function must store
153 	some information in the hash table entry to be used by the
154 	<<_bfd_final_link>> function.  In such a case the output bfd
155 	xvec must be checked to make sure that the hash table was
156 	created by an object file of the same format.
157 
158 	The <<_bfd_final_link>> routine must be prepared to handle a
159 	hash entry without any extra information added by the
160 	<<_bfd_link_add_symbols>> function.  A hash entry without
161 	extra information will also occur when the linker script
162 	directs the linker to create a symbol.  Note that, regardless
163 	of how a hash table entry is added, all the fields will be
164 	initialized to some sort of null value by the hash table entry
165 	initialization function.
166 
167 	See <<ecoff_link_add_externals>> for an example of how to
168 	check the output bfd before saving information (in this
169 	case, the ECOFF external symbol debugging information) in a
170 	hash table entry.
171 
172 INODE
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
174 SUBSUBSECTION
175 	Adding symbols from an object file
176 
177 	When the <<_bfd_link_add_symbols>> routine is passed an object
178 	file, it must add all externally visible symbols in that
179 	object file to the hash table.  The actual work of adding the
180 	symbol to the hash table is normally handled by the function
181 	<<_bfd_generic_link_add_one_symbol>>.  The
182 	<<_bfd_link_add_symbols>> routine is responsible for reading
183 	all the symbols from the object file and passing the correct
184 	information to <<_bfd_generic_link_add_one_symbol>>.
185 
186 	The <<_bfd_link_add_symbols>> routine should not use
187 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
188 	providing this routine is to avoid the overhead of converting
189 	the symbols into generic <<asymbol>> structures.
190 
191 @findex _bfd_generic_link_add_one_symbol
192 	<<_bfd_generic_link_add_one_symbol>> handles the details of
193 	combining common symbols, warning about multiple definitions,
194 	and so forth.  It takes arguments which describe the symbol to
195 	add, notably symbol flags, a section, and an offset.  The
196 	symbol flags include such things as <<BSF_WEAK>> or
197 	<<BSF_INDIRECT>>.  The section is a section in the object
198 	file, or something like <<bfd_und_section_ptr>> for an undefined
199 	symbol or <<bfd_com_section_ptr>> for a common symbol.
200 
201 	If the <<_bfd_final_link>> routine is also going to need to
202 	read the symbol information, the <<_bfd_link_add_symbols>>
203 	routine should save it somewhere attached to the object file
204 	BFD.  However, the information should only be saved if the
205 	<<keep_memory>> field of the <<info>> argument is TRUE, so
206 	that the <<-no-keep-memory>> linker switch is effective.
207 
208 	The a.out function which adds symbols from an object file is
209 	<<aout_link_add_object_symbols>>, and most of the interesting
210 	work is in <<aout_link_add_symbols>>.  The latter saves
211 	pointers to the hash tables entries created by
212 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 	so that the <<_bfd_final_link>> routine does not have to call
214 	the hash table lookup routine to locate the entry.
215 
216 INODE
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
218 SUBSUBSECTION
219 	Adding symbols from an archive
220 
221 	When the <<_bfd_link_add_symbols>> routine is passed an
222 	archive, it must look through the symbols defined by the
223 	archive and decide which elements of the archive should be
224 	included in the link.  For each such element it must call the
225 	<<add_archive_element>> linker callback, and it must add the
226 	symbols from the object file to the linker hash table.
227 
228 @findex _bfd_generic_link_add_archive_symbols
229 	In most cases the work of looking through the symbols in the
230 	archive should be done by the
231 	<<_bfd_generic_link_add_archive_symbols>> function.  This
232 	function builds a hash table from the archive symbol table and
233 	looks through the list of undefined symbols to see which
234 	elements should be included.
235 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
236 	to call to make the final decision about adding an archive
237 	element to the link and to do the actual work of adding the
238 	symbols to the linker hash table.
239 
240 	The function passed to
241 	<<_bfd_generic_link_add_archive_symbols>> must read the
242 	symbols of the archive element and decide whether the archive
243 	element should be included in the link.  If the element is to
244 	be included, the <<add_archive_element>> linker callback
245 	routine must be called with the element as an argument, and
246 	the elements symbols must be added to the linker hash table
247 	just as though the element had itself been passed to the
248 	<<_bfd_link_add_symbols>> function.
249 
250 	When the a.out <<_bfd_link_add_symbols>> function receives an
251 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
252 	passing <<aout_link_check_archive_element>> as the function
253 	argument. <<aout_link_check_archive_element>> calls
254 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
255 	the element (an element is only added if it provides a real,
256 	non-common, definition for a previously undefined or common
257 	symbol) it calls the <<add_archive_element>> callback and then
258 	<<aout_link_check_archive_element>> calls
259 	<<aout_link_add_symbols>> to actually add the symbols to the
260 	linker hash table.
261 
262 	The ECOFF back end is unusual in that it does not normally
263 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
264 	archives already contain a hash table of symbols.  The ECOFF
265 	back end searches the archive itself to avoid the overhead of
266 	creating a new hash table.
267 
268 INODE
269 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
270 SUBSECTION
271 	Performing the final link
272 
273 @cindex _bfd_link_final_link in target vector
274 @cindex target vector (_bfd_final_link)
275 	When all the input files have been processed, the linker calls
276 	the <<_bfd_final_link>> entry point of the output BFD.  This
277 	routine is responsible for producing the final output file,
278 	which has several aspects.  It must relocate the contents of
279 	the input sections and copy the data into the output sections.
280 	It must build an output symbol table including any local
281 	symbols from the input files and the global symbols from the
282 	hash table.  When producing relocatable output, it must
283 	modify the input relocs and write them into the output file.
284 	There may also be object format dependent work to be done.
285 
286 	The linker will also call the <<write_object_contents>> entry
287 	point when the BFD is closed.  The two entry points must work
288 	together in order to produce the correct output file.
289 
290 	The details of how this works are inevitably dependent upon
291 	the specific object file format.  The a.out
292 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
293 
294 @menu
295 @* Information provided by the linker::
296 @* Relocating the section contents::
297 @* Writing the symbol table::
298 @end menu
299 
300 INODE
301 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
302 SUBSUBSECTION
303 	Information provided by the linker
304 
305 	Before the linker calls the <<_bfd_final_link>> entry point,
306 	it sets up some data structures for the function to use.
307 
308 	The <<input_bfds>> field of the <<bfd_link_info>> structure
309 	will point to a list of all the input files included in the
310 	link.  These files are linked through the <<link_next>> field
311 	of the <<bfd>> structure.
312 
313 	Each section in the output file will have a list of
314 	<<link_order>> structures attached to the <<map_head.link_order>>
315 	field (the <<link_order>> structure is defined in
316 	<<bfdlink.h>>).  These structures describe how to create the
317 	contents of the output section in terms of the contents of
318 	various input sections, fill constants, and, eventually, other
319 	types of information.  They also describe relocs that must be
320 	created by the BFD backend, but do not correspond to any input
321 	file; this is used to support -Ur, which builds constructors
322 	while generating a relocatable object file.
323 
324 INODE
325 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
326 SUBSUBSECTION
327 	Relocating the section contents
328 
329 	The <<_bfd_final_link>> function should look through the
330 	<<link_order>> structures attached to each section of the
331 	output file.  Each <<link_order>> structure should either be
332 	handled specially, or it should be passed to the function
333 	<<_bfd_default_link_order>> which will do the right thing
334 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
335 
336 	For efficiency, a <<link_order>> of type
337 	<<bfd_indirect_link_order>> whose associated section belongs
338 	to a BFD of the same format as the output BFD must be handled
339 	specially.  This type of <<link_order>> describes part of an
340 	output section in terms of a section belonging to one of the
341 	input files.  The <<_bfd_final_link>> function should read the
342 	contents of the section and any associated relocs, apply the
343 	relocs to the section contents, and write out the modified
344 	section contents.  If performing a relocatable link, the
345 	relocs themselves must also be modified and written out.
346 
347 @findex _bfd_relocate_contents
348 @findex _bfd_final_link_relocate
349 	The functions <<_bfd_relocate_contents>> and
350 	<<_bfd_final_link_relocate>> provide some general support for
351 	performing the actual relocations, notably overflow checking.
352 	Their arguments include information about the symbol the
353 	relocation is against and a <<reloc_howto_type>> argument
354 	which describes the relocation to perform.  These functions
355 	are defined in <<reloc.c>>.
356 
357 	The a.out function which handles reading, relocating, and
358 	writing section contents is <<aout_link_input_section>>.  The
359 	actual relocation is done in <<aout_link_input_section_std>>
360 	and <<aout_link_input_section_ext>>.
361 
362 INODE
363 Writing the symbol table, , Relocating the section contents, Performing the Final Link
364 SUBSUBSECTION
365 	Writing the symbol table
366 
367 	The <<_bfd_final_link>> function must gather all the symbols
368 	in the input files and write them out.  It must also write out
369 	all the symbols in the global hash table.  This must be
370 	controlled by the <<strip>> and <<discard>> fields of the
371 	<<bfd_link_info>> structure.
372 
373 	The local symbols of the input files will not have been
374 	entered into the linker hash table.  The <<_bfd_final_link>>
375 	routine must consider each input file and include the symbols
376 	in the output file.  It may be convenient to do this when
377 	looking through the <<link_order>> structures, or it may be
378 	done by stepping through the <<input_bfds>> list.
379 
380 	The <<_bfd_final_link>> routine must also traverse the global
381 	hash table to gather all the externally visible symbols.  It
382 	is possible that most of the externally visible symbols may be
383 	written out when considering the symbols of each input file,
384 	but it is still necessary to traverse the hash table since the
385 	linker script may have defined some symbols that are not in
386 	any of the input files.
387 
388 	The <<strip>> field of the <<bfd_link_info>> structure
389 	controls which symbols are written out.  The possible values
390 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
391 	then the <<keep_hash>> field of the <<bfd_link_info>>
392 	structure is a hash table of symbols to keep; each symbol
393 	should be looked up in this hash table, and only symbols which
394 	are present should be included in the output file.
395 
396 	If the <<strip>> field of the <<bfd_link_info>> structure
397 	permits local symbols to be written out, the <<discard>> field
398 	is used to further controls which local symbols are included
399 	in the output file.  If the value is <<discard_l>>, then all
400 	local symbols which begin with a certain prefix are discarded;
401 	this is controlled by the <<bfd_is_local_label_name>> entry point.
402 
403 	The a.out backend handles symbols by calling
404 	<<aout_link_write_symbols>> on each input BFD and then
405 	traversing the global hash table with the function
406 	<<aout_link_write_other_symbol>>.  It builds a string table
407 	while writing out the symbols, which is written to the output
408 	file at the end of <<NAME(aout,final_link)>>.
409 */
410 
411 static bfd_boolean generic_link_add_object_symbols
412   (bfd *, struct bfd_link_info *, bfd_boolean collect);
413 static bfd_boolean generic_link_add_symbols
414   (bfd *, struct bfd_link_info *, bfd_boolean);
415 static bfd_boolean generic_link_check_archive_element_no_collect
416   (bfd *, struct bfd_link_info *, bfd_boolean *);
417 static bfd_boolean generic_link_check_archive_element_collect
418   (bfd *, struct bfd_link_info *, bfd_boolean *);
419 static bfd_boolean generic_link_check_archive_element
420   (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
421 static bfd_boolean generic_link_add_symbol_list
422   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423    bfd_boolean);
424 static bfd_boolean generic_add_output_symbol
425   (bfd *, size_t *psymalloc, asymbol *);
426 static bfd_boolean default_data_link_order
427   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
428 static bfd_boolean default_indirect_link_order
429   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
430    bfd_boolean);
431 
432 /* The link hash table structure is defined in bfdlink.h.  It provides
433    a base hash table which the backend specific hash tables are built
434    upon.  */
435 
436 /* Routine to create an entry in the link hash table.  */
437 
438 struct bfd_hash_entry *
439 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
440 			struct bfd_hash_table *table,
441 			const char *string)
442 {
443   /* Allocate the structure if it has not already been allocated by a
444      subclass.  */
445   if (entry == NULL)
446     {
447       entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
448       if (entry == NULL)
449 	return entry;
450     }
451 
452   /* Call the allocation method of the superclass.  */
453   entry = bfd_hash_newfunc (entry, table, string);
454   if (entry)
455     {
456       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
457 
458       /* Initialize the local fields.  */
459       h->type = bfd_link_hash_new;
460       memset (&h->u.undef.next, 0,
461 	      (sizeof (struct bfd_link_hash_entry)
462 	       - offsetof (struct bfd_link_hash_entry, u.undef.next)));
463     }
464 
465   return entry;
466 }
467 
468 /* Initialize a link hash table.  The BFD argument is the one
469    responsible for creating this table.  */
470 
471 bfd_boolean
472 _bfd_link_hash_table_init
473   (struct bfd_link_hash_table *table,
474    bfd *abfd ATTRIBUTE_UNUSED,
475    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
476 				      struct bfd_hash_table *,
477 				      const char *),
478    unsigned int entsize)
479 {
480   table->undefs = NULL;
481   table->undefs_tail = NULL;
482   table->type = bfd_link_generic_hash_table;
483 
484   return bfd_hash_table_init (&table->table, newfunc, entsize);
485 }
486 
487 /* Look up a symbol in a link hash table.  If follow is TRUE, we
488    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
489    the real symbol.  */
490 
491 struct bfd_link_hash_entry *
492 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
493 		      const char *string,
494 		      bfd_boolean create,
495 		      bfd_boolean copy,
496 		      bfd_boolean follow)
497 {
498   struct bfd_link_hash_entry *ret;
499 
500   ret = ((struct bfd_link_hash_entry *)
501 	 bfd_hash_lookup (&table->table, string, create, copy));
502 
503   if (follow && ret != NULL)
504     {
505       while (ret->type == bfd_link_hash_indirect
506 	     || ret->type == bfd_link_hash_warning)
507 	ret = ret->u.i.link;
508     }
509 
510   return ret;
511 }
512 
513 /* Look up a symbol in the main linker hash table if the symbol might
514    be wrapped.  This should only be used for references to an
515    undefined symbol, not for definitions of a symbol.  */
516 
517 struct bfd_link_hash_entry *
518 bfd_wrapped_link_hash_lookup (bfd *abfd,
519 			      struct bfd_link_info *info,
520 			      const char *string,
521 			      bfd_boolean create,
522 			      bfd_boolean copy,
523 			      bfd_boolean follow)
524 {
525   bfd_size_type amt;
526 
527   if (info->wrap_hash != NULL)
528     {
529       const char *l;
530       char prefix = '\0';
531 
532       l = string;
533       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
534 	{
535 	  prefix = *l;
536 	  ++l;
537 	}
538 
539 #undef WRAP
540 #define WRAP "__wrap_"
541 
542       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
543 	{
544 	  char *n;
545 	  struct bfd_link_hash_entry *h;
546 
547 	  /* This symbol is being wrapped.  We want to replace all
548              references to SYM with references to __wrap_SYM.  */
549 
550 	  amt = strlen (l) + sizeof WRAP + 1;
551 	  n = bfd_malloc (amt);
552 	  if (n == NULL)
553 	    return NULL;
554 
555 	  n[0] = prefix;
556 	  n[1] = '\0';
557 	  strcat (n, WRAP);
558 	  strcat (n, l);
559 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
560 	  free (n);
561 	  return h;
562 	}
563 
564 #undef WRAP
565 
566 #undef  REAL
567 #define REAL "__real_"
568 
569       if (*l == '_'
570 	  && CONST_STRNEQ (l, REAL)
571 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
572 			      FALSE, FALSE) != NULL)
573 	{
574 	  char *n;
575 	  struct bfd_link_hash_entry *h;
576 
577 	  /* This is a reference to __real_SYM, where SYM is being
578              wrapped.  We want to replace all references to __real_SYM
579              with references to SYM.  */
580 
581 	  amt = strlen (l + sizeof REAL - 1) + 2;
582 	  n = bfd_malloc (amt);
583 	  if (n == NULL)
584 	    return NULL;
585 
586 	  n[0] = prefix;
587 	  n[1] = '\0';
588 	  strcat (n, l + sizeof REAL - 1);
589 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
590 	  free (n);
591 	  return h;
592 	}
593 
594 #undef REAL
595     }
596 
597   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
598 }
599 
600 /* Traverse a generic link hash table.  The only reason this is not a
601    macro is to do better type checking.  This code presumes that an
602    argument passed as a struct bfd_hash_entry * may be caught as a
603    struct bfd_link_hash_entry * with no explicit cast required on the
604    call.  */
605 
606 void
607 bfd_link_hash_traverse
608   (struct bfd_link_hash_table *table,
609    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
610    void *info)
611 {
612   bfd_hash_traverse (&table->table,
613 		     (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
614 		     info);
615 }
616 
617 /* Add a symbol to the linker hash table undefs list.  */
618 
619 void
620 bfd_link_add_undef (struct bfd_link_hash_table *table,
621 		    struct bfd_link_hash_entry *h)
622 {
623   BFD_ASSERT (h->u.undef.next == NULL);
624   if (table->undefs_tail != NULL)
625     table->undefs_tail->u.undef.next = h;
626   if (table->undefs == NULL)
627     table->undefs = h;
628   table->undefs_tail = h;
629 }
630 
631 /* The undefs list was designed so that in normal use we don't need to
632    remove entries.  However, if symbols on the list are changed from
633    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
634    bfd_link_hash_new for some reason, then they must be removed from the
635    list.  Failure to do so might result in the linker attempting to add
636    the symbol to the list again at a later stage.  */
637 
638 void
639 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
640 {
641   struct bfd_link_hash_entry **pun;
642 
643   pun = &table->undefs;
644   while (*pun != NULL)
645     {
646       struct bfd_link_hash_entry *h = *pun;
647 
648       if (h->type == bfd_link_hash_new
649 	  || h->type == bfd_link_hash_undefweak)
650 	{
651 	  *pun = h->u.undef.next;
652 	  h->u.undef.next = NULL;
653 	  if (h == table->undefs_tail)
654 	    {
655 	      if (pun == &table->undefs)
656 		table->undefs_tail = NULL;
657 	      else
658 		/* pun points at an u.undef.next field.  Go back to
659 		   the start of the link_hash_entry.  */
660 		table->undefs_tail = (struct bfd_link_hash_entry *)
661 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
662 	      break;
663 	    }
664 	}
665       else
666 	pun = &h->u.undef.next;
667     }
668 }
669 
670 /* Routine to create an entry in a generic link hash table.  */
671 
672 struct bfd_hash_entry *
673 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
674 				struct bfd_hash_table *table,
675 				const char *string)
676 {
677   /* Allocate the structure if it has not already been allocated by a
678      subclass.  */
679   if (entry == NULL)
680     {
681       entry =
682 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
683       if (entry == NULL)
684 	return entry;
685     }
686 
687   /* Call the allocation method of the superclass.  */
688   entry = _bfd_link_hash_newfunc (entry, table, string);
689   if (entry)
690     {
691       struct generic_link_hash_entry *ret;
692 
693       /* Set local fields.  */
694       ret = (struct generic_link_hash_entry *) entry;
695       ret->written = FALSE;
696       ret->sym = NULL;
697     }
698 
699   return entry;
700 }
701 
702 /* Create a generic link hash table.  */
703 
704 struct bfd_link_hash_table *
705 _bfd_generic_link_hash_table_create (bfd *abfd)
706 {
707   struct generic_link_hash_table *ret;
708   bfd_size_type amt = sizeof (struct generic_link_hash_table);
709 
710   ret = bfd_malloc (amt);
711   if (ret == NULL)
712     return NULL;
713   if (! _bfd_link_hash_table_init (&ret->root, abfd,
714 				   _bfd_generic_link_hash_newfunc,
715 				   sizeof (struct generic_link_hash_entry)))
716     {
717       free (ret);
718       return NULL;
719     }
720   return &ret->root;
721 }
722 
723 void
724 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
725 {
726   struct generic_link_hash_table *ret
727     = (struct generic_link_hash_table *) hash;
728 
729   bfd_hash_table_free (&ret->root.table);
730   free (ret);
731 }
732 
733 /* Grab the symbols for an object file when doing a generic link.  We
734    store the symbols in the outsymbols field.  We need to keep them
735    around for the entire link to ensure that we only read them once.
736    If we read them multiple times, we might wind up with relocs and
737    the hash table pointing to different instances of the symbol
738    structure.  */
739 
740 bfd_boolean
741 bfd_generic_link_read_symbols (bfd *abfd)
742 {
743   if (bfd_get_outsymbols (abfd) == NULL)
744     {
745       long symsize;
746       long symcount;
747 
748       symsize = bfd_get_symtab_upper_bound (abfd);
749       if (symsize < 0)
750 	return FALSE;
751       bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
752       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
753 	return FALSE;
754       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
755       if (symcount < 0)
756 	return FALSE;
757       bfd_get_symcount (abfd) = symcount;
758     }
759 
760   return TRUE;
761 }
762 
763 /* Generic function to add symbols to from an object file to the
764    global hash table.  This version does not automatically collect
765    constructors by name.  */
766 
767 bfd_boolean
768 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
769 {
770   return generic_link_add_symbols (abfd, info, FALSE);
771 }
772 
773 /* Generic function to add symbols from an object file to the global
774    hash table.  This version automatically collects constructors by
775    name, as the collect2 program does.  It should be used for any
776    target which does not provide some other mechanism for setting up
777    constructors and destructors; these are approximately those targets
778    for which gcc uses collect2 and do not support stabs.  */
779 
780 bfd_boolean
781 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
782 {
783   return generic_link_add_symbols (abfd, info, TRUE);
784 }
785 
786 /* Indicate that we are only retrieving symbol values from this
787    section.  We want the symbols to act as though the values in the
788    file are absolute.  */
789 
790 void
791 _bfd_generic_link_just_syms (asection *sec,
792 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
793 {
794   sec->output_section = bfd_abs_section_ptr;
795   sec->output_offset = sec->vma;
796 }
797 
798 /* Add symbols from an object file to the global hash table.  */
799 
800 static bfd_boolean
801 generic_link_add_symbols (bfd *abfd,
802 			  struct bfd_link_info *info,
803 			  bfd_boolean collect)
804 {
805   bfd_boolean ret;
806 
807   switch (bfd_get_format (abfd))
808     {
809     case bfd_object:
810       ret = generic_link_add_object_symbols (abfd, info, collect);
811       break;
812     case bfd_archive:
813       ret = (_bfd_generic_link_add_archive_symbols
814 	     (abfd, info,
815 	      (collect
816 	       ? generic_link_check_archive_element_collect
817 	       : generic_link_check_archive_element_no_collect)));
818       break;
819     default:
820       bfd_set_error (bfd_error_wrong_format);
821       ret = FALSE;
822     }
823 
824   return ret;
825 }
826 
827 /* Add symbols from an object file to the global hash table.  */
828 
829 static bfd_boolean
830 generic_link_add_object_symbols (bfd *abfd,
831 				 struct bfd_link_info *info,
832 				 bfd_boolean collect)
833 {
834   bfd_size_type symcount;
835   struct bfd_symbol **outsyms;
836 
837   if (!bfd_generic_link_read_symbols (abfd))
838     return FALSE;
839   symcount = _bfd_generic_link_get_symcount (abfd);
840   outsyms = _bfd_generic_link_get_symbols (abfd);
841   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
842 }
843 
844 /* We build a hash table of all symbols defined in an archive.  */
845 
846 /* An archive symbol may be defined by multiple archive elements.
847    This linked list is used to hold the elements.  */
848 
849 struct archive_list
850 {
851   struct archive_list *next;
852   unsigned int indx;
853 };
854 
855 /* An entry in an archive hash table.  */
856 
857 struct archive_hash_entry
858 {
859   struct bfd_hash_entry root;
860   /* Where the symbol is defined.  */
861   struct archive_list *defs;
862 };
863 
864 /* An archive hash table itself.  */
865 
866 struct archive_hash_table
867 {
868   struct bfd_hash_table table;
869 };
870 
871 /* Create a new entry for an archive hash table.  */
872 
873 static struct bfd_hash_entry *
874 archive_hash_newfunc (struct bfd_hash_entry *entry,
875 		      struct bfd_hash_table *table,
876 		      const char *string)
877 {
878   struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
879 
880   /* Allocate the structure if it has not already been allocated by a
881      subclass.  */
882   if (ret == NULL)
883     ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
884   if (ret == NULL)
885     return NULL;
886 
887   /* Call the allocation method of the superclass.  */
888   ret = ((struct archive_hash_entry *)
889 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
890 
891   if (ret)
892     {
893       /* Initialize the local fields.  */
894       ret->defs = NULL;
895     }
896 
897   return &ret->root;
898 }
899 
900 /* Initialize an archive hash table.  */
901 
902 static bfd_boolean
903 archive_hash_table_init
904   (struct archive_hash_table *table,
905    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
906 				      struct bfd_hash_table *,
907 				      const char *),
908    unsigned int entsize)
909 {
910   return bfd_hash_table_init (&table->table, newfunc, entsize);
911 }
912 
913 /* Look up an entry in an archive hash table.  */
914 
915 #define archive_hash_lookup(t, string, create, copy) \
916   ((struct archive_hash_entry *) \
917    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
918 
919 /* Allocate space in an archive hash table.  */
920 
921 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
922 
923 /* Free an archive hash table.  */
924 
925 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
926 
927 /* Generic function to add symbols from an archive file to the global
928    hash file.  This function presumes that the archive symbol table
929    has already been read in (this is normally done by the
930    bfd_check_format entry point).  It looks through the undefined and
931    common symbols and searches the archive symbol table for them.  If
932    it finds an entry, it includes the associated object file in the
933    link.
934 
935    The old linker looked through the archive symbol table for
936    undefined symbols.  We do it the other way around, looking through
937    undefined symbols for symbols defined in the archive.  The
938    advantage of the newer scheme is that we only have to look through
939    the list of undefined symbols once, whereas the old method had to
940    re-search the symbol table each time a new object file was added.
941 
942    The CHECKFN argument is used to see if an object file should be
943    included.  CHECKFN should set *PNEEDED to TRUE if the object file
944    should be included, and must also call the bfd_link_info
945    add_archive_element callback function and handle adding the symbols
946    to the global hash table.  CHECKFN should only return FALSE if some
947    sort of error occurs.
948 
949    For some formats, such as a.out, it is possible to look through an
950    object file but not actually include it in the link.  The
951    archive_pass field in a BFD is used to avoid checking the symbols
952    of an object files too many times.  When an object is included in
953    the link, archive_pass is set to -1.  If an object is scanned but
954    not included, archive_pass is set to the pass number.  The pass
955    number is incremented each time a new object file is included.  The
956    pass number is used because when a new object file is included it
957    may create new undefined symbols which cause a previously examined
958    object file to be included.  */
959 
960 bfd_boolean
961 _bfd_generic_link_add_archive_symbols
962   (bfd *abfd,
963    struct bfd_link_info *info,
964    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
965 {
966   carsym *arsyms;
967   carsym *arsym_end;
968   register carsym *arsym;
969   int pass;
970   struct archive_hash_table arsym_hash;
971   unsigned int indx;
972   struct bfd_link_hash_entry **pundef;
973 
974   if (! bfd_has_map (abfd))
975     {
976       /* An empty archive is a special case.  */
977       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
978 	return TRUE;
979       bfd_set_error (bfd_error_no_armap);
980       return FALSE;
981     }
982 
983   arsyms = bfd_ardata (abfd)->symdefs;
984   arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
985 
986   /* In order to quickly determine whether an symbol is defined in
987      this archive, we build a hash table of the symbols.  */
988   if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
989 				 sizeof (struct archive_hash_entry)))
990     return FALSE;
991   for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
992     {
993       struct archive_hash_entry *arh;
994       struct archive_list *l, **pp;
995 
996       arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
997       if (arh == NULL)
998 	goto error_return;
999       l = ((struct archive_list *)
1000 	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1001       if (l == NULL)
1002 	goto error_return;
1003       l->indx = indx;
1004       for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1005 	;
1006       *pp = l;
1007       l->next = NULL;
1008     }
1009 
1010   /* The archive_pass field in the archive itself is used to
1011      initialize PASS, sine we may search the same archive multiple
1012      times.  */
1013   pass = abfd->archive_pass + 1;
1014 
1015   /* New undefined symbols are added to the end of the list, so we
1016      only need to look through it once.  */
1017   pundef = &info->hash->undefs;
1018   while (*pundef != NULL)
1019     {
1020       struct bfd_link_hash_entry *h;
1021       struct archive_hash_entry *arh;
1022       struct archive_list *l;
1023 
1024       h = *pundef;
1025 
1026       /* When a symbol is defined, it is not necessarily removed from
1027 	 the list.  */
1028       if (h->type != bfd_link_hash_undefined
1029 	  && h->type != bfd_link_hash_common)
1030 	{
1031 	  /* Remove this entry from the list, for general cleanliness
1032 	     and because we are going to look through the list again
1033 	     if we search any more libraries.  We can't remove the
1034 	     entry if it is the tail, because that would lose any
1035 	     entries we add to the list later on (it would also cause
1036 	     us to lose track of whether the symbol has been
1037 	     referenced).  */
1038 	  if (*pundef != info->hash->undefs_tail)
1039 	    *pundef = (*pundef)->u.undef.next;
1040 	  else
1041 	    pundef = &(*pundef)->u.undef.next;
1042 	  continue;
1043 	}
1044 
1045       /* Look for this symbol in the archive symbol map.  */
1046       arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1047       if (arh == NULL)
1048 	{
1049 	  /* If we haven't found the exact symbol we're looking for,
1050 	     let's look for its import thunk */
1051 	  if (info->pei386_auto_import)
1052 	    {
1053 	      bfd_size_type amt = strlen (h->root.string) + 10;
1054 	      char *buf = bfd_malloc (amt);
1055 	      if (buf == NULL)
1056 		return FALSE;
1057 
1058 	      sprintf (buf, "__imp_%s", h->root.string);
1059 	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1060 	      free(buf);
1061 	    }
1062 	  if (arh == NULL)
1063 	    {
1064 	      pundef = &(*pundef)->u.undef.next;
1065 	      continue;
1066 	    }
1067 	}
1068       /* Look at all the objects which define this symbol.  */
1069       for (l = arh->defs; l != NULL; l = l->next)
1070 	{
1071 	  bfd *element;
1072 	  bfd_boolean needed;
1073 
1074 	  /* If the symbol has gotten defined along the way, quit.  */
1075 	  if (h->type != bfd_link_hash_undefined
1076 	      && h->type != bfd_link_hash_common)
1077 	    break;
1078 
1079 	  element = bfd_get_elt_at_index (abfd, l->indx);
1080 	  if (element == NULL)
1081 	    goto error_return;
1082 
1083 	  /* If we've already included this element, or if we've
1084 	     already checked it on this pass, continue.  */
1085 	  if (element->archive_pass == -1
1086 	      || element->archive_pass == pass)
1087 	    continue;
1088 
1089 	  /* If we can't figure this element out, just ignore it.  */
1090 	  if (! bfd_check_format (element, bfd_object))
1091 	    {
1092 	      element->archive_pass = -1;
1093 	      continue;
1094 	    }
1095 
1096 	  /* CHECKFN will see if this element should be included, and
1097 	     go ahead and include it if appropriate.  */
1098 	  if (! (*checkfn) (element, info, &needed))
1099 	    goto error_return;
1100 
1101 	  if (! needed)
1102 	    element->archive_pass = pass;
1103 	  else
1104 	    {
1105 	      element->archive_pass = -1;
1106 
1107 	      /* Increment the pass count to show that we may need to
1108 		 recheck object files which were already checked.  */
1109 	      ++pass;
1110 	    }
1111 	}
1112 
1113       pundef = &(*pundef)->u.undef.next;
1114     }
1115 
1116   archive_hash_table_free (&arsym_hash);
1117 
1118   /* Save PASS in case we are called again.  */
1119   abfd->archive_pass = pass;
1120 
1121   return TRUE;
1122 
1123  error_return:
1124   archive_hash_table_free (&arsym_hash);
1125   return FALSE;
1126 }
1127 
1128 /* See if we should include an archive element.  This version is used
1129    when we do not want to automatically collect constructors based on
1130    the symbol name, presumably because we have some other mechanism
1131    for finding them.  */
1132 
1133 static bfd_boolean
1134 generic_link_check_archive_element_no_collect (
1135 					       bfd *abfd,
1136 					       struct bfd_link_info *info,
1137 					       bfd_boolean *pneeded)
1138 {
1139   return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1140 }
1141 
1142 /* See if we should include an archive element.  This version is used
1143    when we want to automatically collect constructors based on the
1144    symbol name, as collect2 does.  */
1145 
1146 static bfd_boolean
1147 generic_link_check_archive_element_collect (bfd *abfd,
1148 					    struct bfd_link_info *info,
1149 					    bfd_boolean *pneeded)
1150 {
1151   return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1152 }
1153 
1154 /* See if we should include an archive element.  Optionally collect
1155    constructors.  */
1156 
1157 static bfd_boolean
1158 generic_link_check_archive_element (bfd *abfd,
1159 				    struct bfd_link_info *info,
1160 				    bfd_boolean *pneeded,
1161 				    bfd_boolean collect)
1162 {
1163   asymbol **pp, **ppend;
1164 
1165   *pneeded = FALSE;
1166 
1167   if (!bfd_generic_link_read_symbols (abfd))
1168     return FALSE;
1169 
1170   pp = _bfd_generic_link_get_symbols (abfd);
1171   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1172   for (; pp < ppend; pp++)
1173     {
1174       asymbol *p;
1175       struct bfd_link_hash_entry *h;
1176 
1177       p = *pp;
1178 
1179       /* We are only interested in globally visible symbols.  */
1180       if (! bfd_is_com_section (p->section)
1181 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1182 	continue;
1183 
1184       /* We are only interested if we know something about this
1185 	 symbol, and it is undefined or common.  An undefined weak
1186 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1187 	 a reference when pulling files out of an archive.  See the
1188 	 SVR4 ABI, p. 4-27.  */
1189       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1190 				FALSE, TRUE);
1191       if (h == NULL
1192 	  || (h->type != bfd_link_hash_undefined
1193 	      && h->type != bfd_link_hash_common))
1194 	continue;
1195 
1196       /* P is a symbol we are looking for.  */
1197 
1198       if (! bfd_is_com_section (p->section))
1199 	{
1200 	  bfd_size_type symcount;
1201 	  asymbol **symbols;
1202 
1203 	  /* This object file defines this symbol, so pull it in.  */
1204 	  if (! (*info->callbacks->add_archive_element) (info, abfd,
1205 							 bfd_asymbol_name (p)))
1206 	    return FALSE;
1207 	  symcount = _bfd_generic_link_get_symcount (abfd);
1208 	  symbols = _bfd_generic_link_get_symbols (abfd);
1209 	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1210 					      symbols, collect))
1211 	    return FALSE;
1212 	  *pneeded = TRUE;
1213 	  return TRUE;
1214 	}
1215 
1216       /* P is a common symbol.  */
1217 
1218       if (h->type == bfd_link_hash_undefined)
1219 	{
1220 	  bfd *symbfd;
1221 	  bfd_vma size;
1222 	  unsigned int power;
1223 
1224 	  symbfd = h->u.undef.abfd;
1225 	  if (symbfd == NULL)
1226 	    {
1227 	      /* This symbol was created as undefined from outside
1228 		 BFD.  We assume that we should link in the object
1229 		 file.  This is for the -u option in the linker.  */
1230 	      if (! (*info->callbacks->add_archive_element)
1231 		  (info, abfd, bfd_asymbol_name (p)))
1232 		return FALSE;
1233 	      *pneeded = TRUE;
1234 	      return TRUE;
1235 	    }
1236 
1237 	  /* Turn the symbol into a common symbol but do not link in
1238 	     the object file.  This is how a.out works.  Object
1239 	     formats that require different semantics must implement
1240 	     this function differently.  This symbol is already on the
1241 	     undefs list.  We add the section to a common section
1242 	     attached to symbfd to ensure that it is in a BFD which
1243 	     will be linked in.  */
1244 	  h->type = bfd_link_hash_common;
1245 	  h->u.c.p =
1246 	    bfd_hash_allocate (&info->hash->table,
1247 			       sizeof (struct bfd_link_hash_common_entry));
1248 	  if (h->u.c.p == NULL)
1249 	    return FALSE;
1250 
1251 	  size = bfd_asymbol_value (p);
1252 	  h->u.c.size = size;
1253 
1254 	  power = bfd_log2 (size);
1255 	  if (power > 4)
1256 	    power = 4;
1257 	  h->u.c.p->alignment_power = power;
1258 
1259 	  if (p->section == bfd_com_section_ptr)
1260 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1261 	  else
1262 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1263 							  p->section->name);
1264 	  h->u.c.p->section->flags = SEC_ALLOC;
1265 	}
1266       else
1267 	{
1268 	  /* Adjust the size of the common symbol if necessary.  This
1269 	     is how a.out works.  Object formats that require
1270 	     different semantics must implement this function
1271 	     differently.  */
1272 	  if (bfd_asymbol_value (p) > h->u.c.size)
1273 	    h->u.c.size = bfd_asymbol_value (p);
1274 	}
1275     }
1276 
1277   /* This archive element is not needed.  */
1278   return TRUE;
1279 }
1280 
1281 /* Add the symbols from an object file to the global hash table.  ABFD
1282    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1283    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1284    is TRUE if constructors should be automatically collected by name
1285    as is done by collect2.  */
1286 
1287 static bfd_boolean
1288 generic_link_add_symbol_list (bfd *abfd,
1289 			      struct bfd_link_info *info,
1290 			      bfd_size_type symbol_count,
1291 			      asymbol **symbols,
1292 			      bfd_boolean collect)
1293 {
1294   asymbol **pp, **ppend;
1295 
1296   pp = symbols;
1297   ppend = symbols + symbol_count;
1298   for (; pp < ppend; pp++)
1299     {
1300       asymbol *p;
1301 
1302       p = *pp;
1303 
1304       if ((p->flags & (BSF_INDIRECT
1305 		       | BSF_WARNING
1306 		       | BSF_GLOBAL
1307 		       | BSF_CONSTRUCTOR
1308 		       | BSF_WEAK)) != 0
1309 	  || bfd_is_und_section (bfd_get_section (p))
1310 	  || bfd_is_com_section (bfd_get_section (p))
1311 	  || bfd_is_ind_section (bfd_get_section (p)))
1312 	{
1313 	  const char *name;
1314 	  const char *string;
1315 	  struct generic_link_hash_entry *h;
1316 	  struct bfd_link_hash_entry *bh;
1317 
1318 	  string = name = bfd_asymbol_name (p);
1319 	  if (((p->flags & BSF_INDIRECT) != 0
1320 	       || bfd_is_ind_section (p->section))
1321 	      && pp + 1 < ppend)
1322 	    {
1323 	      pp++;
1324 	      string = bfd_asymbol_name (*pp);
1325 	    }
1326 	  else if ((p->flags & BSF_WARNING) != 0
1327 		   && pp + 1 < ppend)
1328 	    {
1329 	      /* The name of P is actually the warning string, and the
1330 		 next symbol is the one to warn about.  */
1331 	      pp++;
1332 	      name = bfd_asymbol_name (*pp);
1333 	    }
1334 
1335 	  bh = NULL;
1336 	  if (! (_bfd_generic_link_add_one_symbol
1337 		 (info, abfd, name, p->flags, bfd_get_section (p),
1338 		  p->value, string, FALSE, collect, &bh)))
1339 	    return FALSE;
1340 	  h = (struct generic_link_hash_entry *) bh;
1341 
1342 	  /* If this is a constructor symbol, and the linker didn't do
1343              anything with it, then we want to just pass the symbol
1344              through to the output file.  This will happen when
1345              linking with -r.  */
1346 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1347 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1348 	    {
1349 	      p->udata.p = NULL;
1350 	      continue;
1351 	    }
1352 
1353 	  /* Save the BFD symbol so that we don't lose any backend
1354 	     specific information that may be attached to it.  We only
1355 	     want this one if it gives more information than the
1356 	     existing one; we don't want to replace a defined symbol
1357 	     with an undefined one.  This routine may be called with a
1358 	     hash table other than the generic hash table, so we only
1359 	     do this if we are certain that the hash table is a
1360 	     generic one.  */
1361 	  if (info->output_bfd->xvec == abfd->xvec)
1362 	    {
1363 	      if (h->sym == NULL
1364 		  || (! bfd_is_und_section (bfd_get_section (p))
1365 		      && (! bfd_is_com_section (bfd_get_section (p))
1366 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1367 		{
1368 		  h->sym = p;
1369 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1370 		     reading, and it should go away when the COFF
1371 		     linker is switched to the new version.  */
1372 		  if (bfd_is_com_section (bfd_get_section (p)))
1373 		    p->flags |= BSF_OLD_COMMON;
1374 		}
1375 	    }
1376 
1377 	  /* Store a back pointer from the symbol to the hash
1378 	     table entry for the benefit of relaxation code until
1379 	     it gets rewritten to not use asymbol structures.
1380 	     Setting this is also used to check whether these
1381 	     symbols were set up by the generic linker.  */
1382 	  p->udata.p = h;
1383 	}
1384     }
1385 
1386   return TRUE;
1387 }
1388 
1389 /* We use a state table to deal with adding symbols from an object
1390    file.  The first index into the state table describes the symbol
1391    from the object file.  The second index into the state table is the
1392    type of the symbol in the hash table.  */
1393 
1394 /* The symbol from the object file is turned into one of these row
1395    values.  */
1396 
1397 enum link_row
1398 {
1399   UNDEF_ROW,		/* Undefined.  */
1400   UNDEFW_ROW,		/* Weak undefined.  */
1401   DEF_ROW,		/* Defined.  */
1402   DEFW_ROW,		/* Weak defined.  */
1403   COMMON_ROW,		/* Common.  */
1404   INDR_ROW,		/* Indirect.  */
1405   WARN_ROW,		/* Warning.  */
1406   SET_ROW		/* Member of set.  */
1407 };
1408 
1409 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1410 #undef FAIL
1411 
1412 /* The actions to take in the state table.  */
1413 
1414 enum link_action
1415 {
1416   FAIL,		/* Abort.  */
1417   UND,		/* Mark symbol undefined.  */
1418   WEAK,		/* Mark symbol weak undefined.  */
1419   DEF,		/* Mark symbol defined.  */
1420   DEFW,		/* Mark symbol weak defined.  */
1421   COM,		/* Mark symbol common.  */
1422   REF,		/* Mark defined symbol referenced.  */
1423   CREF,		/* Possibly warn about common reference to defined symbol.  */
1424   CDEF,		/* Define existing common symbol.  */
1425   NOACT,	/* No action.  */
1426   BIG,		/* Mark symbol common using largest size.  */
1427   MDEF,		/* Multiple definition error.  */
1428   MIND,		/* Multiple indirect symbols.  */
1429   IND,		/* Make indirect symbol.  */
1430   CIND,		/* Make indirect symbol from existing common symbol.  */
1431   SET,		/* Add value to set.  */
1432   MWARN,	/* Make warning symbol.  */
1433   WARN,		/* Issue warning.  */
1434   CWARN,	/* Warn if referenced, else MWARN.  */
1435   CYCLE,	/* Repeat with symbol pointed to.  */
1436   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1437   WARNC		/* Issue warning and then CYCLE.  */
1438 };
1439 
1440 /* The state table itself.  The first index is a link_row and the
1441    second index is a bfd_link_hash_type.  */
1442 
1443 static const enum link_action link_action[8][8] =
1444 {
1445   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1446   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1447   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1448   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1449   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1450   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1451   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1452   /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1453   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1454 };
1455 
1456 /* Most of the entries in the LINK_ACTION table are straightforward,
1457    but a few are somewhat subtle.
1458 
1459    A reference to an indirect symbol (UNDEF_ROW/indr or
1460    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1461    symbol and to the symbol the indirect symbol points to.
1462 
1463    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1464    causes the warning to be issued.
1465 
1466    A common definition of an indirect symbol (COMMON_ROW/indr) is
1467    treated as a multiple definition error.  Likewise for an indirect
1468    definition of a common symbol (INDR_ROW/com).
1469 
1470    An indirect definition of a warning (INDR_ROW/warn) does not cause
1471    the warning to be issued.
1472 
1473    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1474    warning is created for the symbol the indirect symbol points to.
1475 
1476    Adding an entry to a set does not count as a reference to a set,
1477    and no warning is issued (SET_ROW/warn).  */
1478 
1479 /* Return the BFD in which a hash entry has been defined, if known.  */
1480 
1481 static bfd *
1482 hash_entry_bfd (struct bfd_link_hash_entry *h)
1483 {
1484   while (h->type == bfd_link_hash_warning)
1485     h = h->u.i.link;
1486   switch (h->type)
1487     {
1488     default:
1489       return NULL;
1490     case bfd_link_hash_undefined:
1491     case bfd_link_hash_undefweak:
1492       return h->u.undef.abfd;
1493     case bfd_link_hash_defined:
1494     case bfd_link_hash_defweak:
1495       return h->u.def.section->owner;
1496     case bfd_link_hash_common:
1497       return h->u.c.p->section->owner;
1498     }
1499   /*NOTREACHED*/
1500 }
1501 
1502 /* Add a symbol to the global hash table.
1503    ABFD is the BFD the symbol comes from.
1504    NAME is the name of the symbol.
1505    FLAGS is the BSF_* bits associated with the symbol.
1506    SECTION is the section in which the symbol is defined; this may be
1507      bfd_und_section_ptr or bfd_com_section_ptr.
1508    VALUE is the value of the symbol, relative to the section.
1509    STRING is used for either an indirect symbol, in which case it is
1510      the name of the symbol to indirect to, or a warning symbol, in
1511      which case it is the warning string.
1512    COPY is TRUE if NAME or STRING must be copied into locally
1513      allocated memory if they need to be saved.
1514    COLLECT is TRUE if we should automatically collect gcc constructor
1515      or destructor names as collect2 does.
1516    HASHP, if not NULL, is a place to store the created hash table
1517      entry; if *HASHP is not NULL, the caller has already looked up
1518      the hash table entry, and stored it in *HASHP.  */
1519 
1520 bfd_boolean
1521 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1522 				  bfd *abfd,
1523 				  const char *name,
1524 				  flagword flags,
1525 				  asection *section,
1526 				  bfd_vma value,
1527 				  const char *string,
1528 				  bfd_boolean copy,
1529 				  bfd_boolean collect,
1530 				  struct bfd_link_hash_entry **hashp)
1531 {
1532   enum link_row row;
1533   struct bfd_link_hash_entry *h;
1534   bfd_boolean cycle;
1535 
1536   if (bfd_is_ind_section (section)
1537       || (flags & BSF_INDIRECT) != 0)
1538     row = INDR_ROW;
1539   else if ((flags & BSF_WARNING) != 0)
1540     row = WARN_ROW;
1541   else if ((flags & BSF_CONSTRUCTOR) != 0)
1542     row = SET_ROW;
1543   else if (bfd_is_und_section (section))
1544     {
1545       if ((flags & BSF_WEAK) != 0)
1546 	row = UNDEFW_ROW;
1547       else
1548 	row = UNDEF_ROW;
1549     }
1550   else if ((flags & BSF_WEAK) != 0)
1551     row = DEFW_ROW;
1552   else if (bfd_is_com_section (section))
1553     row = COMMON_ROW;
1554   else
1555     row = DEF_ROW;
1556 
1557   if (hashp != NULL && *hashp != NULL)
1558     h = *hashp;
1559   else
1560     {
1561       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1562 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1563       else
1564 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1565       if (h == NULL)
1566 	{
1567 	  if (hashp != NULL)
1568 	    *hashp = NULL;
1569 	  return FALSE;
1570 	}
1571     }
1572 
1573   if (info->notice_all
1574       || (info->notice_hash != NULL
1575 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1576     {
1577       if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1578 					value))
1579 	return FALSE;
1580     }
1581 
1582   if (hashp != NULL)
1583     *hashp = h;
1584 
1585   do
1586     {
1587       enum link_action action;
1588 
1589       cycle = FALSE;
1590       action = link_action[(int) row][(int) h->type];
1591       switch (action)
1592 	{
1593 	case FAIL:
1594 	  abort ();
1595 
1596 	case NOACT:
1597 	  /* Do nothing.  */
1598 	  break;
1599 
1600 	case UND:
1601 	  /* Make a new undefined symbol.  */
1602 	  h->type = bfd_link_hash_undefined;
1603 	  h->u.undef.abfd = abfd;
1604 	  bfd_link_add_undef (info->hash, h);
1605 	  break;
1606 
1607 	case WEAK:
1608 	  /* Make a new weak undefined symbol.  */
1609 	  h->type = bfd_link_hash_undefweak;
1610 	  h->u.undef.abfd = abfd;
1611 	  h->u.undef.weak = abfd;
1612 	  break;
1613 
1614 	case CDEF:
1615 	  /* We have found a definition for a symbol which was
1616 	     previously common.  */
1617 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1618 	  if (! ((*info->callbacks->multiple_common)
1619 		 (info, h->root.string,
1620 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1621 		  abfd, bfd_link_hash_defined, 0)))
1622 	    return FALSE;
1623 	  /* Fall through.  */
1624 	case DEF:
1625 	case DEFW:
1626 	  {
1627 	    enum bfd_link_hash_type oldtype;
1628 
1629 	    /* Define a symbol.  */
1630 	    oldtype = h->type;
1631 	    if (action == DEFW)
1632 	      h->type = bfd_link_hash_defweak;
1633 	    else
1634 	      h->type = bfd_link_hash_defined;
1635 	    h->u.def.section = section;
1636 	    h->u.def.value = value;
1637 
1638 	    /* If we have been asked to, we act like collect2 and
1639 	       identify all functions that might be global
1640 	       constructors and destructors and pass them up in a
1641 	       callback.  We only do this for certain object file
1642 	       types, since many object file types can handle this
1643 	       automatically.  */
1644 	    if (collect && name[0] == '_')
1645 	      {
1646 		const char *s;
1647 
1648 		/* A constructor or destructor name starts like this:
1649 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1650 		   the second are the same character (we accept any
1651 		   character there, in case a new object file format
1652 		   comes along with even worse naming restrictions).  */
1653 
1654 #define CONS_PREFIX "GLOBAL_"
1655 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1656 
1657 		s = name + 1;
1658 		while (*s == '_')
1659 		  ++s;
1660 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1661 		  {
1662 		    char c;
1663 
1664 		    c = s[CONS_PREFIX_LEN + 1];
1665 		    if ((c == 'I' || c == 'D')
1666 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1667 		      {
1668 			/* If this is a definition of a symbol which
1669                            was previously weakly defined, we are in
1670                            trouble.  We have already added a
1671                            constructor entry for the weak defined
1672                            symbol, and now we are trying to add one
1673                            for the new symbol.  Fortunately, this case
1674                            should never arise in practice.  */
1675 			if (oldtype == bfd_link_hash_defweak)
1676 			  abort ();
1677 
1678 			if (! ((*info->callbacks->constructor)
1679 			       (info, c == 'I',
1680 				h->root.string, abfd, section, value)))
1681 			  return FALSE;
1682 		      }
1683 		  }
1684 	      }
1685 	  }
1686 
1687 	  break;
1688 
1689 	case COM:
1690 	  /* We have found a common definition for a symbol.  */
1691 	  if (h->type == bfd_link_hash_new)
1692 	    bfd_link_add_undef (info->hash, h);
1693 	  h->type = bfd_link_hash_common;
1694 	  h->u.c.p =
1695 	    bfd_hash_allocate (&info->hash->table,
1696 			       sizeof (struct bfd_link_hash_common_entry));
1697 	  if (h->u.c.p == NULL)
1698 	    return FALSE;
1699 
1700 	  h->u.c.size = value;
1701 
1702 	  /* Select a default alignment based on the size.  This may
1703              be overridden by the caller.  */
1704 	  {
1705 	    unsigned int power;
1706 
1707 	    power = bfd_log2 (value);
1708 	    if (power > 4)
1709 	      power = 4;
1710 	    h->u.c.p->alignment_power = power;
1711 	  }
1712 
1713 	  /* The section of a common symbol is only used if the common
1714              symbol is actually allocated.  It basically provides a
1715              hook for the linker script to decide which output section
1716              the common symbols should be put in.  In most cases, the
1717              section of a common symbol will be bfd_com_section_ptr,
1718              the code here will choose a common symbol section named
1719              "COMMON", and the linker script will contain *(COMMON) in
1720              the appropriate place.  A few targets use separate common
1721              sections for small symbols, and they require special
1722              handling.  */
1723 	  if (section == bfd_com_section_ptr)
1724 	    {
1725 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1726 	      h->u.c.p->section->flags = SEC_ALLOC;
1727 	    }
1728 	  else if (section->owner != abfd)
1729 	    {
1730 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1731 							    section->name);
1732 	      h->u.c.p->section->flags = SEC_ALLOC;
1733 	    }
1734 	  else
1735 	    h->u.c.p->section = section;
1736 	  break;
1737 
1738 	case REF:
1739 	  /* A reference to a defined symbol.  */
1740 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1741 	    h->u.undef.next = h;
1742 	  break;
1743 
1744 	case BIG:
1745 	  /* We have found a common definition for a symbol which
1746 	     already had a common definition.  Use the maximum of the
1747 	     two sizes, and use the section required by the larger symbol.  */
1748 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1749 	  if (! ((*info->callbacks->multiple_common)
1750 		 (info, h->root.string,
1751 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1752 		  abfd, bfd_link_hash_common, value)))
1753 	    return FALSE;
1754 	  if (value > h->u.c.size)
1755 	    {
1756 	      unsigned int power;
1757 
1758 	      h->u.c.size = value;
1759 
1760 	      /* Select a default alignment based on the size.  This may
1761 		 be overridden by the caller.  */
1762 	      power = bfd_log2 (value);
1763 	      if (power > 4)
1764 		power = 4;
1765 	      h->u.c.p->alignment_power = power;
1766 
1767 	      /* Some systems have special treatment for small commons,
1768 		 hence we want to select the section used by the larger
1769 		 symbol.  This makes sure the symbol does not go in a
1770 		 small common section if it is now too large.  */
1771 	      if (section == bfd_com_section_ptr)
1772 		{
1773 		  h->u.c.p->section
1774 		    = bfd_make_section_old_way (abfd, "COMMON");
1775 		  h->u.c.p->section->flags = SEC_ALLOC;
1776 		}
1777 	      else if (section->owner != abfd)
1778 		{
1779 		  h->u.c.p->section
1780 		    = bfd_make_section_old_way (abfd, section->name);
1781 		  h->u.c.p->section->flags = SEC_ALLOC;
1782 		}
1783 	      else
1784 		h->u.c.p->section = section;
1785 	    }
1786 	  break;
1787 
1788 	case CREF:
1789 	  {
1790 	    bfd *obfd;
1791 
1792 	    /* We have found a common definition for a symbol which
1793 	       was already defined.  FIXME: It would nice if we could
1794 	       report the BFD which defined an indirect symbol, but we
1795 	       don't have anywhere to store the information.  */
1796 	    if (h->type == bfd_link_hash_defined
1797 		|| h->type == bfd_link_hash_defweak)
1798 	      obfd = h->u.def.section->owner;
1799 	    else
1800 	      obfd = NULL;
1801 	    if (! ((*info->callbacks->multiple_common)
1802 		   (info, h->root.string, obfd, h->type, 0,
1803 		    abfd, bfd_link_hash_common, value)))
1804 	      return FALSE;
1805 	  }
1806 	  break;
1807 
1808 	case MIND:
1809 	  /* Multiple indirect symbols.  This is OK if they both point
1810 	     to the same symbol.  */
1811 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1812 	    break;
1813 	  /* Fall through.  */
1814 	case MDEF:
1815 	  /* Handle a multiple definition.  */
1816 	  if (!info->allow_multiple_definition)
1817 	    {
1818 	      asection *msec = NULL;
1819 	      bfd_vma mval = 0;
1820 
1821 	      switch (h->type)
1822 		{
1823 		case bfd_link_hash_defined:
1824 		  msec = h->u.def.section;
1825 		  mval = h->u.def.value;
1826 		  break;
1827 	        case bfd_link_hash_indirect:
1828 		  msec = bfd_ind_section_ptr;
1829 		  mval = 0;
1830 		  break;
1831 		default:
1832 		  abort ();
1833 		}
1834 
1835 	      /* Ignore a redefinition of an absolute symbol to the
1836 		 same value; it's harmless.  */
1837 	      if (h->type == bfd_link_hash_defined
1838 		  && bfd_is_abs_section (msec)
1839 		  && bfd_is_abs_section (section)
1840 		  && value == mval)
1841 		break;
1842 
1843 	      if (! ((*info->callbacks->multiple_definition)
1844 		     (info, h->root.string, msec->owner, msec, mval,
1845 		      abfd, section, value)))
1846 		return FALSE;
1847 	    }
1848 	  break;
1849 
1850 	case CIND:
1851 	  /* Create an indirect symbol from an existing common symbol.  */
1852 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1853 	  if (! ((*info->callbacks->multiple_common)
1854 		 (info, h->root.string,
1855 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1856 		  abfd, bfd_link_hash_indirect, 0)))
1857 	    return FALSE;
1858 	  /* Fall through.  */
1859 	case IND:
1860 	  /* Create an indirect symbol.  */
1861 	  {
1862 	    struct bfd_link_hash_entry *inh;
1863 
1864 	    /* STRING is the name of the symbol we want to indirect
1865 	       to.  */
1866 	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1867 						copy, FALSE);
1868 	    if (inh == NULL)
1869 	      return FALSE;
1870 	    if (inh->type == bfd_link_hash_indirect
1871 		&& inh->u.i.link == h)
1872 	      {
1873 		(*_bfd_error_handler)
1874 		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1875 		   abfd, name, string);
1876 		bfd_set_error (bfd_error_invalid_operation);
1877 		return FALSE;
1878 	      }
1879 	    if (inh->type == bfd_link_hash_new)
1880 	      {
1881 		inh->type = bfd_link_hash_undefined;
1882 		inh->u.undef.abfd = abfd;
1883 		bfd_link_add_undef (info->hash, inh);
1884 	      }
1885 
1886 	    /* If the indirect symbol has been referenced, we need to
1887 	       push the reference down to the symbol we are
1888 	       referencing.  */
1889 	    if (h->type != bfd_link_hash_new)
1890 	      {
1891 		row = UNDEF_ROW;
1892 		cycle = TRUE;
1893 	      }
1894 
1895 	    h->type = bfd_link_hash_indirect;
1896 	    h->u.i.link = inh;
1897 	  }
1898 	  break;
1899 
1900 	case SET:
1901 	  /* Add an entry to a set.  */
1902 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1903 						abfd, section, value))
1904 	    return FALSE;
1905 	  break;
1906 
1907 	case WARNC:
1908 	  /* Issue a warning and cycle.  */
1909 	  if (h->u.i.warning != NULL)
1910 	    {
1911 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1912 						 h->root.string, abfd,
1913 						 NULL, 0))
1914 		return FALSE;
1915 	      /* Only issue a warning once.  */
1916 	      h->u.i.warning = NULL;
1917 	    }
1918 	  /* Fall through.  */
1919 	case CYCLE:
1920 	  /* Try again with the referenced symbol.  */
1921 	  h = h->u.i.link;
1922 	  cycle = TRUE;
1923 	  break;
1924 
1925 	case REFC:
1926 	  /* A reference to an indirect symbol.  */
1927 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1928 	    h->u.undef.next = h;
1929 	  h = h->u.i.link;
1930 	  cycle = TRUE;
1931 	  break;
1932 
1933 	case WARN:
1934 	  /* Issue a warning.  */
1935 	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1936 					     hash_entry_bfd (h), NULL, 0))
1937 	    return FALSE;
1938 	  break;
1939 
1940 	case CWARN:
1941 	  /* Warn if this symbol has been referenced already,
1942 	     otherwise add a warning.  A symbol has been referenced if
1943 	     the u.undef.next field is not NULL, or it is the tail of the
1944 	     undefined symbol list.  The REF case above helps to
1945 	     ensure this.  */
1946 	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1947 	    {
1948 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1949 						 hash_entry_bfd (h), NULL, 0))
1950 		return FALSE;
1951 	      break;
1952 	    }
1953 	  /* Fall through.  */
1954 	case MWARN:
1955 	  /* Make a warning symbol.  */
1956 	  {
1957 	    struct bfd_link_hash_entry *sub;
1958 
1959 	    /* STRING is the warning to give.  */
1960 	    sub = ((struct bfd_link_hash_entry *)
1961 		   ((*info->hash->table.newfunc)
1962 		    (NULL, &info->hash->table, h->root.string)));
1963 	    if (sub == NULL)
1964 	      return FALSE;
1965 	    *sub = *h;
1966 	    sub->type = bfd_link_hash_warning;
1967 	    sub->u.i.link = h;
1968 	    if (! copy)
1969 	      sub->u.i.warning = string;
1970 	    else
1971 	      {
1972 		char *w;
1973 		size_t len = strlen (string) + 1;
1974 
1975 		w = bfd_hash_allocate (&info->hash->table, len);
1976 		if (w == NULL)
1977 		  return FALSE;
1978 		memcpy (w, string, len);
1979 		sub->u.i.warning = w;
1980 	      }
1981 
1982 	    bfd_hash_replace (&info->hash->table,
1983 			      (struct bfd_hash_entry *) h,
1984 			      (struct bfd_hash_entry *) sub);
1985 	    if (hashp != NULL)
1986 	      *hashp = sub;
1987 	  }
1988 	  break;
1989 	}
1990     }
1991   while (cycle);
1992 
1993   return TRUE;
1994 }
1995 
1996 /* Generic final link routine.  */
1997 
1998 bfd_boolean
1999 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2000 {
2001   bfd *sub;
2002   asection *o;
2003   struct bfd_link_order *p;
2004   size_t outsymalloc;
2005   struct generic_write_global_symbol_info wginfo;
2006 
2007   bfd_get_outsymbols (abfd) = NULL;
2008   bfd_get_symcount (abfd) = 0;
2009   outsymalloc = 0;
2010 
2011   /* Mark all sections which will be included in the output file.  */
2012   for (o = abfd->sections; o != NULL; o = o->next)
2013     for (p = o->map_head.link_order; p != NULL; p = p->next)
2014       if (p->type == bfd_indirect_link_order)
2015 	p->u.indirect.section->linker_mark = TRUE;
2016 
2017   /* Build the output symbol table.  */
2018   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2019     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2020       return FALSE;
2021 
2022   /* Accumulate the global symbols.  */
2023   wginfo.info = info;
2024   wginfo.output_bfd = abfd;
2025   wginfo.psymalloc = &outsymalloc;
2026   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2027 				   _bfd_generic_link_write_global_symbol,
2028 				   &wginfo);
2029 
2030   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2031      shouldn't really need one, since we have SYMCOUNT, but some old
2032      code still expects one.  */
2033   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2034     return FALSE;
2035 
2036   if (info->relocatable)
2037     {
2038       /* Allocate space for the output relocs for each section.  */
2039       for (o = abfd->sections; o != NULL; o = o->next)
2040 	{
2041 	  o->reloc_count = 0;
2042 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2043 	    {
2044 	      if (p->type == bfd_section_reloc_link_order
2045 		  || p->type == bfd_symbol_reloc_link_order)
2046 		++o->reloc_count;
2047 	      else if (p->type == bfd_indirect_link_order)
2048 		{
2049 		  asection *input_section;
2050 		  bfd *input_bfd;
2051 		  long relsize;
2052 		  arelent **relocs;
2053 		  asymbol **symbols;
2054 		  long reloc_count;
2055 
2056 		  input_section = p->u.indirect.section;
2057 		  input_bfd = input_section->owner;
2058 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2059 						       input_section);
2060 		  if (relsize < 0)
2061 		    return FALSE;
2062 		  relocs = bfd_malloc (relsize);
2063 		  if (!relocs && relsize != 0)
2064 		    return FALSE;
2065 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2066 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2067 							input_section,
2068 							relocs,
2069 							symbols);
2070 		  free (relocs);
2071 		  if (reloc_count < 0)
2072 		    return FALSE;
2073 		  BFD_ASSERT ((unsigned long) reloc_count
2074 			      == input_section->reloc_count);
2075 		  o->reloc_count += reloc_count;
2076 		}
2077 	    }
2078 	  if (o->reloc_count > 0)
2079 	    {
2080 	      bfd_size_type amt;
2081 
2082 	      amt = o->reloc_count;
2083 	      amt *= sizeof (arelent *);
2084 	      o->orelocation = bfd_alloc (abfd, amt);
2085 	      if (!o->orelocation)
2086 		return FALSE;
2087 	      o->flags |= SEC_RELOC;
2088 	      /* Reset the count so that it can be used as an index
2089 		 when putting in the output relocs.  */
2090 	      o->reloc_count = 0;
2091 	    }
2092 	}
2093     }
2094 
2095   /* Handle all the link order information for the sections.  */
2096   for (o = abfd->sections; o != NULL; o = o->next)
2097     {
2098       for (p = o->map_head.link_order; p != NULL; p = p->next)
2099 	{
2100 	  switch (p->type)
2101 	    {
2102 	    case bfd_section_reloc_link_order:
2103 	    case bfd_symbol_reloc_link_order:
2104 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2105 		return FALSE;
2106 	      break;
2107 	    case bfd_indirect_link_order:
2108 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2109 		return FALSE;
2110 	      break;
2111 	    default:
2112 	      if (! _bfd_default_link_order (abfd, info, o, p))
2113 		return FALSE;
2114 	      break;
2115 	    }
2116 	}
2117     }
2118 
2119   return TRUE;
2120 }
2121 
2122 /* Add an output symbol to the output BFD.  */
2123 
2124 static bfd_boolean
2125 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2126 {
2127   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2128     {
2129       asymbol **newsyms;
2130       bfd_size_type amt;
2131 
2132       if (*psymalloc == 0)
2133 	*psymalloc = 124;
2134       else
2135 	*psymalloc *= 2;
2136       amt = *psymalloc;
2137       amt *= sizeof (asymbol *);
2138       newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2139       if (newsyms == NULL)
2140 	return FALSE;
2141       bfd_get_outsymbols (output_bfd) = newsyms;
2142     }
2143 
2144   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2145   if (sym != NULL)
2146     ++ bfd_get_symcount (output_bfd);
2147 
2148   return TRUE;
2149 }
2150 
2151 /* Handle the symbols for an input BFD.  */
2152 
2153 bfd_boolean
2154 _bfd_generic_link_output_symbols (bfd *output_bfd,
2155 				  bfd *input_bfd,
2156 				  struct bfd_link_info *info,
2157 				  size_t *psymalloc)
2158 {
2159   asymbol **sym_ptr;
2160   asymbol **sym_end;
2161 
2162   if (!bfd_generic_link_read_symbols (input_bfd))
2163     return FALSE;
2164 
2165   /* Create a filename symbol if we are supposed to.  */
2166   if (info->create_object_symbols_section != NULL)
2167     {
2168       asection *sec;
2169 
2170       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2171 	{
2172 	  if (sec->output_section == info->create_object_symbols_section)
2173 	    {
2174 	      asymbol *newsym;
2175 
2176 	      newsym = bfd_make_empty_symbol (input_bfd);
2177 	      if (!newsym)
2178 		return FALSE;
2179 	      newsym->name = input_bfd->filename;
2180 	      newsym->value = 0;
2181 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2182 	      newsym->section = sec;
2183 
2184 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2185 					       newsym))
2186 		return FALSE;
2187 
2188 	      break;
2189 	    }
2190 	}
2191     }
2192 
2193   /* Adjust the values of the globally visible symbols, and write out
2194      local symbols.  */
2195   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2196   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2197   for (; sym_ptr < sym_end; sym_ptr++)
2198     {
2199       asymbol *sym;
2200       struct generic_link_hash_entry *h;
2201       bfd_boolean output;
2202 
2203       h = NULL;
2204       sym = *sym_ptr;
2205       if ((sym->flags & (BSF_INDIRECT
2206 			 | BSF_WARNING
2207 			 | BSF_GLOBAL
2208 			 | BSF_CONSTRUCTOR
2209 			 | BSF_WEAK)) != 0
2210 	  || bfd_is_und_section (bfd_get_section (sym))
2211 	  || bfd_is_com_section (bfd_get_section (sym))
2212 	  || bfd_is_ind_section (bfd_get_section (sym)))
2213 	{
2214 	  if (sym->udata.p != NULL)
2215 	    h = sym->udata.p;
2216 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2217 	    {
2218 	      /* This case normally means that the main linker code
2219                  deliberately ignored this constructor symbol.  We
2220                  should just pass it through.  This will screw up if
2221                  the constructor symbol is from a different,
2222                  non-generic, object file format, but the case will
2223                  only arise when linking with -r, which will probably
2224                  fail anyhow, since there will be no way to represent
2225                  the relocs in the output format being used.  */
2226 	      h = NULL;
2227 	    }
2228 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2229 	    h = ((struct generic_link_hash_entry *)
2230 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2231 					       bfd_asymbol_name (sym),
2232 					       FALSE, FALSE, TRUE));
2233 	  else
2234 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2235 					       bfd_asymbol_name (sym),
2236 					       FALSE, FALSE, TRUE);
2237 
2238 	  if (h != NULL)
2239 	    {
2240 	      /* Force all references to this symbol to point to
2241 		 the same area in memory.  It is possible that
2242 		 this routine will be called with a hash table
2243 		 other than a generic hash table, so we double
2244 		 check that.  */
2245 	      if (info->output_bfd->xvec == input_bfd->xvec)
2246 		{
2247 		  if (h->sym != NULL)
2248 		    *sym_ptr = sym = h->sym;
2249 		}
2250 
2251 	      switch (h->root.type)
2252 		{
2253 		default:
2254 		case bfd_link_hash_new:
2255 		  abort ();
2256 		case bfd_link_hash_undefined:
2257 		  break;
2258 		case bfd_link_hash_undefweak:
2259 		  sym->flags |= BSF_WEAK;
2260 		  break;
2261 		case bfd_link_hash_indirect:
2262 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2263 		  /* fall through */
2264 		case bfd_link_hash_defined:
2265 		  sym->flags |= BSF_GLOBAL;
2266 		  sym->flags &=~ BSF_CONSTRUCTOR;
2267 		  sym->value = h->root.u.def.value;
2268 		  sym->section = h->root.u.def.section;
2269 		  break;
2270 		case bfd_link_hash_defweak:
2271 		  sym->flags |= BSF_WEAK;
2272 		  sym->flags &=~ BSF_CONSTRUCTOR;
2273 		  sym->value = h->root.u.def.value;
2274 		  sym->section = h->root.u.def.section;
2275 		  break;
2276 		case bfd_link_hash_common:
2277 		  sym->value = h->root.u.c.size;
2278 		  sym->flags |= BSF_GLOBAL;
2279 		  if (! bfd_is_com_section (sym->section))
2280 		    {
2281 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2282 		      sym->section = bfd_com_section_ptr;
2283 		    }
2284 		  /* We do not set the section of the symbol to
2285 		     h->root.u.c.p->section.  That value was saved so
2286 		     that we would know where to allocate the symbol
2287 		     if it was defined.  In this case the type is
2288 		     still bfd_link_hash_common, so we did not define
2289 		     it, so we do not want to use that section.  */
2290 		  break;
2291 		}
2292 	    }
2293 	}
2294 
2295       /* This switch is straight from the old code in
2296 	 write_file_locals in ldsym.c.  */
2297       if (info->strip == strip_all
2298 	  || (info->strip == strip_some
2299 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2300 				  FALSE, FALSE) == NULL))
2301 	output = FALSE;
2302       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2303 	{
2304 	  /* If this symbol is marked as occurring now, rather
2305 	     than at the end, output it now.  This is used for
2306 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2307 	     better way.  */
2308 	  if (bfd_asymbol_bfd (sym) == input_bfd
2309 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2310 	    output = TRUE;
2311 	  else
2312 	    output = FALSE;
2313 	}
2314       else if (bfd_is_ind_section (sym->section))
2315 	output = FALSE;
2316       else if ((sym->flags & BSF_DEBUGGING) != 0)
2317 	{
2318 	  if (info->strip == strip_none)
2319 	    output = TRUE;
2320 	  else
2321 	    output = FALSE;
2322 	}
2323       else if (bfd_is_und_section (sym->section)
2324 	       || bfd_is_com_section (sym->section))
2325 	output = FALSE;
2326       else if ((sym->flags & BSF_LOCAL) != 0)
2327 	{
2328 	  if ((sym->flags & BSF_WARNING) != 0)
2329 	    output = FALSE;
2330 	  else
2331 	    {
2332 	      switch (info->discard)
2333 		{
2334 		default:
2335 		case discard_all:
2336 		  output = FALSE;
2337 		  break;
2338 		case discard_sec_merge:
2339 		  output = TRUE;
2340 		  if (info->relocatable
2341 		      || ! (sym->section->flags & SEC_MERGE))
2342 		    break;
2343 		  /* FALLTHROUGH */
2344 		case discard_l:
2345 		  if (bfd_is_local_label (input_bfd, sym))
2346 		    output = FALSE;
2347 		  else
2348 		    output = TRUE;
2349 		  break;
2350 		case discard_none:
2351 		  output = TRUE;
2352 		  break;
2353 		}
2354 	    }
2355 	}
2356       else if ((sym->flags & BSF_CONSTRUCTOR))
2357 	{
2358 	  if (info->strip != strip_all)
2359 	    output = TRUE;
2360 	  else
2361 	    output = FALSE;
2362 	}
2363       else
2364 	abort ();
2365 
2366       /* If this symbol is in a section which is not being included
2367 	 in the output file, then we don't want to output the
2368 	 symbol.  */
2369       if (!bfd_is_abs_section (sym->section)
2370 	  && bfd_section_removed_from_list (output_bfd,
2371 					    sym->section->output_section))
2372 	output = FALSE;
2373 
2374       if (output)
2375 	{
2376 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2377 	    return FALSE;
2378 	  if (h != NULL)
2379 	    h->written = TRUE;
2380 	}
2381     }
2382 
2383   return TRUE;
2384 }
2385 
2386 /* Set the section and value of a generic BFD symbol based on a linker
2387    hash table entry.  */
2388 
2389 static void
2390 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2391 {
2392   switch (h->type)
2393     {
2394     default:
2395       abort ();
2396       break;
2397     case bfd_link_hash_new:
2398       /* This can happen when a constructor symbol is seen but we are
2399          not building constructors.  */
2400       if (sym->section != NULL)
2401 	{
2402 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2403 	}
2404       else
2405 	{
2406 	  sym->flags |= BSF_CONSTRUCTOR;
2407 	  sym->section = bfd_abs_section_ptr;
2408 	  sym->value = 0;
2409 	}
2410       break;
2411     case bfd_link_hash_undefined:
2412       sym->section = bfd_und_section_ptr;
2413       sym->value = 0;
2414       break;
2415     case bfd_link_hash_undefweak:
2416       sym->section = bfd_und_section_ptr;
2417       sym->value = 0;
2418       sym->flags |= BSF_WEAK;
2419       break;
2420     case bfd_link_hash_defined:
2421       sym->section = h->u.def.section;
2422       sym->value = h->u.def.value;
2423       break;
2424     case bfd_link_hash_defweak:
2425       sym->flags |= BSF_WEAK;
2426       sym->section = h->u.def.section;
2427       sym->value = h->u.def.value;
2428       break;
2429     case bfd_link_hash_common:
2430       sym->value = h->u.c.size;
2431       if (sym->section == NULL)
2432 	sym->section = bfd_com_section_ptr;
2433       else if (! bfd_is_com_section (sym->section))
2434 	{
2435 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2436 	  sym->section = bfd_com_section_ptr;
2437 	}
2438       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2439       break;
2440     case bfd_link_hash_indirect:
2441     case bfd_link_hash_warning:
2442       /* FIXME: What should we do here?  */
2443       break;
2444     }
2445 }
2446 
2447 /* Write out a global symbol, if it hasn't already been written out.
2448    This is called for each symbol in the hash table.  */
2449 
2450 bfd_boolean
2451 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2452 				       void *data)
2453 {
2454   struct generic_write_global_symbol_info *wginfo = data;
2455   asymbol *sym;
2456 
2457   if (h->root.type == bfd_link_hash_warning)
2458     h = (struct generic_link_hash_entry *) h->root.u.i.link;
2459 
2460   if (h->written)
2461     return TRUE;
2462 
2463   h->written = TRUE;
2464 
2465   if (wginfo->info->strip == strip_all
2466       || (wginfo->info->strip == strip_some
2467 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2468 			      FALSE, FALSE) == NULL))
2469     return TRUE;
2470 
2471   if (h->sym != NULL)
2472     sym = h->sym;
2473   else
2474     {
2475       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2476       if (!sym)
2477 	return FALSE;
2478       sym->name = h->root.root.string;
2479       sym->flags = 0;
2480     }
2481 
2482   set_symbol_from_hash (sym, &h->root);
2483 
2484   sym->flags |= BSF_GLOBAL;
2485 
2486   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2487 				   sym))
2488     {
2489       /* FIXME: No way to return failure.  */
2490       abort ();
2491     }
2492 
2493   return TRUE;
2494 }
2495 
2496 /* Create a relocation.  */
2497 
2498 bfd_boolean
2499 _bfd_generic_reloc_link_order (bfd *abfd,
2500 			       struct bfd_link_info *info,
2501 			       asection *sec,
2502 			       struct bfd_link_order *link_order)
2503 {
2504   arelent *r;
2505 
2506   if (! info->relocatable)
2507     abort ();
2508   if (sec->orelocation == NULL)
2509     abort ();
2510 
2511   r = bfd_alloc (abfd, sizeof (arelent));
2512   if (r == NULL)
2513     return FALSE;
2514 
2515   r->address = link_order->offset;
2516   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2517   if (r->howto == 0)
2518     {
2519       bfd_set_error (bfd_error_bad_value);
2520       return FALSE;
2521     }
2522 
2523   /* Get the symbol to use for the relocation.  */
2524   if (link_order->type == bfd_section_reloc_link_order)
2525     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2526   else
2527     {
2528       struct generic_link_hash_entry *h;
2529 
2530       h = ((struct generic_link_hash_entry *)
2531 	   bfd_wrapped_link_hash_lookup (abfd, info,
2532 					 link_order->u.reloc.p->u.name,
2533 					 FALSE, FALSE, TRUE));
2534       if (h == NULL
2535 	  || ! h->written)
2536 	{
2537 	  if (! ((*info->callbacks->unattached_reloc)
2538 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2539 	    return FALSE;
2540 	  bfd_set_error (bfd_error_bad_value);
2541 	  return FALSE;
2542 	}
2543       r->sym_ptr_ptr = &h->sym;
2544     }
2545 
2546   /* If this is an inplace reloc, write the addend to the object file.
2547      Otherwise, store it in the reloc addend.  */
2548   if (! r->howto->partial_inplace)
2549     r->addend = link_order->u.reloc.p->addend;
2550   else
2551     {
2552       bfd_size_type size;
2553       bfd_reloc_status_type rstat;
2554       bfd_byte *buf;
2555       bfd_boolean ok;
2556       file_ptr loc;
2557 
2558       size = bfd_get_reloc_size (r->howto);
2559       buf = bfd_zmalloc (size);
2560       if (buf == NULL)
2561 	return FALSE;
2562       rstat = _bfd_relocate_contents (r->howto, abfd,
2563 				      (bfd_vma) link_order->u.reloc.p->addend,
2564 				      buf);
2565       switch (rstat)
2566 	{
2567 	case bfd_reloc_ok:
2568 	  break;
2569 	default:
2570 	case bfd_reloc_outofrange:
2571 	  abort ();
2572 	case bfd_reloc_overflow:
2573 	  if (! ((*info->callbacks->reloc_overflow)
2574 		 (info, NULL,
2575 		  (link_order->type == bfd_section_reloc_link_order
2576 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2577 		   : link_order->u.reloc.p->u.name),
2578 		  r->howto->name, link_order->u.reloc.p->addend,
2579 		  NULL, NULL, 0)))
2580 	    {
2581 	      free (buf);
2582 	      return FALSE;
2583 	    }
2584 	  break;
2585 	}
2586       loc = link_order->offset * bfd_octets_per_byte (abfd);
2587       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2588       free (buf);
2589       if (! ok)
2590 	return FALSE;
2591 
2592       r->addend = 0;
2593     }
2594 
2595   sec->orelocation[sec->reloc_count] = r;
2596   ++sec->reloc_count;
2597 
2598   return TRUE;
2599 }
2600 
2601 /* Allocate a new link_order for a section.  */
2602 
2603 struct bfd_link_order *
2604 bfd_new_link_order (bfd *abfd, asection *section)
2605 {
2606   bfd_size_type amt = sizeof (struct bfd_link_order);
2607   struct bfd_link_order *new;
2608 
2609   new = bfd_zalloc (abfd, amt);
2610   if (!new)
2611     return NULL;
2612 
2613   new->type = bfd_undefined_link_order;
2614 
2615   if (section->map_tail.link_order != NULL)
2616     section->map_tail.link_order->next = new;
2617   else
2618     section->map_head.link_order = new;
2619   section->map_tail.link_order = new;
2620 
2621   return new;
2622 }
2623 
2624 /* Default link order processing routine.  Note that we can not handle
2625    the reloc_link_order types here, since they depend upon the details
2626    of how the particular backends generates relocs.  */
2627 
2628 bfd_boolean
2629 _bfd_default_link_order (bfd *abfd,
2630 			 struct bfd_link_info *info,
2631 			 asection *sec,
2632 			 struct bfd_link_order *link_order)
2633 {
2634   switch (link_order->type)
2635     {
2636     case bfd_undefined_link_order:
2637     case bfd_section_reloc_link_order:
2638     case bfd_symbol_reloc_link_order:
2639     default:
2640       abort ();
2641     case bfd_indirect_link_order:
2642       return default_indirect_link_order (abfd, info, sec, link_order,
2643 					  FALSE);
2644     case bfd_data_link_order:
2645       return default_data_link_order (abfd, info, sec, link_order);
2646     }
2647 }
2648 
2649 /* Default routine to handle a bfd_data_link_order.  */
2650 
2651 static bfd_boolean
2652 default_data_link_order (bfd *abfd,
2653 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2654 			 asection *sec,
2655 			 struct bfd_link_order *link_order)
2656 {
2657   bfd_size_type size;
2658   size_t fill_size;
2659   bfd_byte *fill;
2660   file_ptr loc;
2661   bfd_boolean result;
2662 
2663   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2664 
2665   size = link_order->size;
2666   if (size == 0)
2667     return TRUE;
2668 
2669   fill = link_order->u.data.contents;
2670   fill_size = link_order->u.data.size;
2671   if (fill_size != 0 && fill_size < size)
2672     {
2673       bfd_byte *p;
2674       fill = bfd_malloc (size);
2675       if (fill == NULL)
2676 	return FALSE;
2677       p = fill;
2678       if (fill_size == 1)
2679 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2680       else
2681 	{
2682 	  do
2683 	    {
2684 	      memcpy (p, link_order->u.data.contents, fill_size);
2685 	      p += fill_size;
2686 	      size -= fill_size;
2687 	    }
2688 	  while (size >= fill_size);
2689 	  if (size != 0)
2690 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2691 	  size = link_order->size;
2692 	}
2693     }
2694 
2695   loc = link_order->offset * bfd_octets_per_byte (abfd);
2696   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2697 
2698   if (fill != link_order->u.data.contents)
2699     free (fill);
2700   return result;
2701 }
2702 
2703 /* Default routine to handle a bfd_indirect_link_order.  */
2704 
2705 static bfd_boolean
2706 default_indirect_link_order (bfd *output_bfd,
2707 			     struct bfd_link_info *info,
2708 			     asection *output_section,
2709 			     struct bfd_link_order *link_order,
2710 			     bfd_boolean generic_linker)
2711 {
2712   asection *input_section;
2713   bfd *input_bfd;
2714   bfd_byte *contents = NULL;
2715   bfd_byte *new_contents;
2716   bfd_size_type sec_size;
2717   file_ptr loc;
2718 
2719   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2720 
2721   input_section = link_order->u.indirect.section;
2722   input_bfd = input_section->owner;
2723   if (input_section->size == 0)
2724     return TRUE;
2725 
2726   BFD_ASSERT (input_section->output_section == output_section);
2727   BFD_ASSERT (input_section->output_offset == link_order->offset);
2728   BFD_ASSERT (input_section->size == link_order->size);
2729 
2730   if (info->relocatable
2731       && input_section->reloc_count > 0
2732       && output_section->orelocation == NULL)
2733     {
2734       /* Space has not been allocated for the output relocations.
2735 	 This can happen when we are called by a specific backend
2736 	 because somebody is attempting to link together different
2737 	 types of object files.  Handling this case correctly is
2738 	 difficult, and sometimes impossible.  */
2739       (*_bfd_error_handler)
2740 	(_("Attempt to do relocatable link with %s input and %s output"),
2741 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2742       bfd_set_error (bfd_error_wrong_format);
2743       return FALSE;
2744     }
2745 
2746   if (! generic_linker)
2747     {
2748       asymbol **sympp;
2749       asymbol **symppend;
2750 
2751       /* Get the canonical symbols.  The generic linker will always
2752 	 have retrieved them by this point, but we are being called by
2753 	 a specific linker, presumably because we are linking
2754 	 different types of object files together.  */
2755       if (!bfd_generic_link_read_symbols (input_bfd))
2756 	return FALSE;
2757 
2758       /* Since we have been called by a specific linker, rather than
2759 	 the generic linker, the values of the symbols will not be
2760 	 right.  They will be the values as seen in the input file,
2761 	 not the values of the final link.  We need to fix them up
2762 	 before we can relocate the section.  */
2763       sympp = _bfd_generic_link_get_symbols (input_bfd);
2764       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2765       for (; sympp < symppend; sympp++)
2766 	{
2767 	  asymbol *sym;
2768 	  struct bfd_link_hash_entry *h;
2769 
2770 	  sym = *sympp;
2771 
2772 	  if ((sym->flags & (BSF_INDIRECT
2773 			     | BSF_WARNING
2774 			     | BSF_GLOBAL
2775 			     | BSF_CONSTRUCTOR
2776 			     | BSF_WEAK)) != 0
2777 	      || bfd_is_und_section (bfd_get_section (sym))
2778 	      || bfd_is_com_section (bfd_get_section (sym))
2779 	      || bfd_is_ind_section (bfd_get_section (sym)))
2780 	    {
2781 	      /* sym->udata may have been set by
2782 		 generic_link_add_symbol_list.  */
2783 	      if (sym->udata.p != NULL)
2784 		h = sym->udata.p;
2785 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2786 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2787 						  bfd_asymbol_name (sym),
2788 						  FALSE, FALSE, TRUE);
2789 	      else
2790 		h = bfd_link_hash_lookup (info->hash,
2791 					  bfd_asymbol_name (sym),
2792 					  FALSE, FALSE, TRUE);
2793 	      if (h != NULL)
2794 		set_symbol_from_hash (sym, h);
2795 	    }
2796 	}
2797     }
2798 
2799   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2800       && input_section->size != 0)
2801     {
2802       /* Group section contents are set by bfd_elf_set_group_contents.  */
2803       if (!output_bfd->output_has_begun)
2804 	{
2805 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2806 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2807 	    goto error_return;
2808 	}
2809       new_contents = output_section->contents;
2810       BFD_ASSERT (new_contents != NULL);
2811       BFD_ASSERT (input_section->output_offset == 0);
2812     }
2813   else
2814     {
2815       /* Get and relocate the section contents.  */
2816       sec_size = (input_section->rawsize > input_section->size
2817 		  ? input_section->rawsize
2818 		  : input_section->size);
2819       contents = bfd_malloc (sec_size);
2820       if (contents == NULL && sec_size != 0)
2821 	goto error_return;
2822       new_contents = (bfd_get_relocated_section_contents
2823 		      (output_bfd, info, link_order, contents,
2824 		       info->relocatable,
2825 		       _bfd_generic_link_get_symbols (input_bfd)));
2826       if (!new_contents)
2827 	goto error_return;
2828     }
2829 
2830   /* Output the section contents.  */
2831   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2832   if (! bfd_set_section_contents (output_bfd, output_section,
2833 				  new_contents, loc, input_section->size))
2834     goto error_return;
2835 
2836   if (contents != NULL)
2837     free (contents);
2838   return TRUE;
2839 
2840  error_return:
2841   if (contents != NULL)
2842     free (contents);
2843   return FALSE;
2844 }
2845 
2846 /* A little routine to count the number of relocs in a link_order
2847    list.  */
2848 
2849 unsigned int
2850 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2851 {
2852   register unsigned int c;
2853   register struct bfd_link_order *l;
2854 
2855   c = 0;
2856   for (l = link_order; l != NULL; l = l->next)
2857     {
2858       if (l->type == bfd_section_reloc_link_order
2859 	  || l->type == bfd_symbol_reloc_link_order)
2860 	++c;
2861     }
2862 
2863   return c;
2864 }
2865 
2866 /*
2867 FUNCTION
2868 	bfd_link_split_section
2869 
2870 SYNOPSIS
2871         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2872 
2873 DESCRIPTION
2874 	Return nonzero if @var{sec} should be split during a
2875 	reloceatable or final link.
2876 
2877 .#define bfd_link_split_section(abfd, sec) \
2878 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2879 .
2880 
2881 */
2882 
2883 bfd_boolean
2884 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2885 				 asection *sec ATTRIBUTE_UNUSED)
2886 {
2887   return FALSE;
2888 }
2889 
2890 /*
2891 FUNCTION
2892 	bfd_section_already_linked
2893 
2894 SYNOPSIS
2895         void bfd_section_already_linked (bfd *abfd, asection *sec,
2896 					 struct bfd_link_info *info);
2897 
2898 DESCRIPTION
2899 	Check if @var{sec} has been already linked during a reloceatable
2900 	or final link.
2901 
2902 .#define bfd_section_already_linked(abfd, sec, info) \
2903 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2904 .
2905 
2906 */
2907 
2908 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2909    once into the output.  This routine checks each section, and
2910    arrange to discard it if a section of the same name has already
2911    been linked.  This code assumes that all relevant sections have the
2912    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2913    section name.  bfd_section_already_linked is called via
2914    bfd_map_over_sections.  */
2915 
2916 /* The hash table.  */
2917 
2918 static struct bfd_hash_table _bfd_section_already_linked_table;
2919 
2920 /* Support routines for the hash table used by section_already_linked,
2921    initialize the table, traverse, lookup, fill in an entry and remove
2922    the table.  */
2923 
2924 void
2925 bfd_section_already_linked_table_traverse
2926   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2927 			void *), void *info)
2928 {
2929   bfd_hash_traverse (&_bfd_section_already_linked_table,
2930 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2931 				       void *)) func,
2932 		     info);
2933 }
2934 
2935 struct bfd_section_already_linked_hash_entry *
2936 bfd_section_already_linked_table_lookup (const char *name)
2937 {
2938   return ((struct bfd_section_already_linked_hash_entry *)
2939 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2940 			   TRUE, FALSE));
2941 }
2942 
2943 bfd_boolean
2944 bfd_section_already_linked_table_insert
2945   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2946    asection *sec)
2947 {
2948   struct bfd_section_already_linked *l;
2949 
2950   /* Allocate the memory from the same obstack as the hash table is
2951      kept in.  */
2952   l = bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2953   if (l == NULL)
2954     return FALSE;
2955   l->sec = sec;
2956   l->next = already_linked_list->entry;
2957   already_linked_list->entry = l;
2958   return TRUE;
2959 }
2960 
2961 static struct bfd_hash_entry *
2962 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2963 			struct bfd_hash_table *table,
2964 			const char *string ATTRIBUTE_UNUSED)
2965 {
2966   struct bfd_section_already_linked_hash_entry *ret =
2967     bfd_hash_allocate (table, sizeof *ret);
2968 
2969   if (ret == NULL)
2970     return NULL;
2971 
2972   ret->entry = NULL;
2973 
2974   return &ret->root;
2975 }
2976 
2977 bfd_boolean
2978 bfd_section_already_linked_table_init (void)
2979 {
2980   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2981 				already_linked_newfunc,
2982 				sizeof (struct bfd_section_already_linked_hash_entry),
2983 				42);
2984 }
2985 
2986 void
2987 bfd_section_already_linked_table_free (void)
2988 {
2989   bfd_hash_table_free (&_bfd_section_already_linked_table);
2990 }
2991 
2992 /* This is used on non-ELF inputs.  */
2993 
2994 void
2995 _bfd_generic_section_already_linked (bfd *abfd, asection *sec,
2996 				     struct bfd_link_info *info)
2997 {
2998   flagword flags;
2999   const char *name;
3000   struct bfd_section_already_linked *l;
3001   struct bfd_section_already_linked_hash_entry *already_linked_list;
3002 
3003   flags = sec->flags;
3004   if ((flags & SEC_LINK_ONCE) == 0)
3005     return;
3006 
3007   /* FIXME: When doing a relocatable link, we may have trouble
3008      copying relocations in other sections that refer to local symbols
3009      in the section being discarded.  Those relocations will have to
3010      be converted somehow; as of this writing I'm not sure that any of
3011      the backends handle that correctly.
3012 
3013      It is tempting to instead not discard link once sections when
3014      doing a relocatable link (technically, they should be discarded
3015      whenever we are building constructors).  However, that fails,
3016      because the linker winds up combining all the link once sections
3017      into a single large link once section, which defeats the purpose
3018      of having link once sections in the first place.  */
3019 
3020   name = bfd_get_section_name (abfd, sec);
3021 
3022   already_linked_list = bfd_section_already_linked_table_lookup (name);
3023 
3024   for (l = already_linked_list->entry; l != NULL; l = l->next)
3025     {
3026       bfd_boolean skip = FALSE;
3027       struct coff_comdat_info *s_comdat
3028 	= bfd_coff_get_comdat_section (abfd, sec);
3029       struct coff_comdat_info *l_comdat
3030 	= bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3031 
3032       /* We may have 3 different sections on the list: group section,
3033 	 comdat section and linkonce section. SEC may be a linkonce or
3034 	 comdat section. We always ignore group section. For non-COFF
3035 	 inputs, we also ignore comdat section.
3036 
3037 	 FIXME: Is that safe to match a linkonce section with a comdat
3038 	 section for COFF inputs?  */
3039       if ((l->sec->flags & SEC_GROUP) != 0)
3040 	skip = TRUE;
3041       else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3042 	{
3043 	  if (s_comdat != NULL
3044 	      && l_comdat != NULL
3045 	      && strcmp (s_comdat->name, l_comdat->name) != 0)
3046 	    skip = TRUE;
3047 	}
3048       else if (l_comdat != NULL)
3049 	skip = TRUE;
3050 
3051       if (!skip)
3052 	{
3053 	  /* The section has already been linked.  See if we should
3054              issue a warning.  */
3055 	  switch (flags & SEC_LINK_DUPLICATES)
3056 	    {
3057 	    default:
3058 	      abort ();
3059 
3060 	    case SEC_LINK_DUPLICATES_DISCARD:
3061 	      break;
3062 
3063 	    case SEC_LINK_DUPLICATES_ONE_ONLY:
3064 	      (*_bfd_error_handler)
3065 		(_("%B: warning: ignoring duplicate section `%A'\n"),
3066 		 abfd, sec);
3067 	      break;
3068 
3069 	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3070 	      /* FIXME: We should really dig out the contents of both
3071                  sections and memcmp them.  The COFF/PE spec says that
3072                  the Microsoft linker does not implement this
3073                  correctly, so I'm not going to bother doing it
3074                  either.  */
3075 	      /* Fall through.  */
3076 	    case SEC_LINK_DUPLICATES_SAME_SIZE:
3077 	      if (sec->size != l->sec->size)
3078 		(*_bfd_error_handler)
3079 		  (_("%B: warning: duplicate section `%A' has different size\n"),
3080 		   abfd, sec);
3081 	      break;
3082 	    }
3083 
3084 	  /* Set the output_section field so that lang_add_section
3085 	     does not create a lang_input_section structure for this
3086 	     section.  Since there might be a symbol in the section
3087 	     being discarded, we must retain a pointer to the section
3088 	     which we are really going to use.  */
3089 	  sec->output_section = bfd_abs_section_ptr;
3090 	  sec->kept_section = l->sec;
3091 
3092 	  return;
3093 	}
3094     }
3095 
3096   /* This is the first section with this name.  Record it.  */
3097   if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
3098     info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
3099 }
3100 
3101 /* Convert symbols in excluded output sections to use a kept section.  */
3102 
3103 static bfd_boolean
3104 fix_syms (struct bfd_link_hash_entry *h, void *data)
3105 {
3106   bfd *obfd = (bfd *) data;
3107 
3108   if (h->type == bfd_link_hash_warning)
3109     h = h->u.i.link;
3110 
3111   if (h->type == bfd_link_hash_defined
3112       || h->type == bfd_link_hash_defweak)
3113     {
3114       asection *s = h->u.def.section;
3115       if (s != NULL
3116 	  && s->output_section != NULL
3117 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3118 	  && bfd_section_removed_from_list (obfd, s->output_section))
3119 	{
3120 	  asection *op, *op1;
3121 
3122 	  h->u.def.value += s->output_offset + s->output_section->vma;
3123 
3124 	  /* Find preceding kept section.  */
3125 	  for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3126 	    if ((op1->flags & SEC_EXCLUDE) == 0
3127 		&& !bfd_section_removed_from_list (obfd, op1))
3128 	      break;
3129 
3130 	  /* Find following kept section.  Start at prev->next because
3131 	     other sections may have been added after S was removed.  */
3132 	  if (s->output_section->prev != NULL)
3133 	    op = s->output_section->prev->next;
3134 	  else
3135 	    op = s->output_section->owner->sections;
3136 	  for (; op != NULL; op = op->next)
3137 	    if ((op->flags & SEC_EXCLUDE) == 0
3138 		&& !bfd_section_removed_from_list (obfd, op))
3139 	      break;
3140 
3141 	  /* Choose better of two sections, based on flags.  The idea
3142 	     is to choose a section that will be in the same segment
3143 	     as S would have been if it was kept.  */
3144 	  if (op1 == NULL)
3145 	    {
3146 	      if (op == NULL)
3147 		op = bfd_abs_section_ptr;
3148 	    }
3149 	  else if (op == NULL)
3150 	    op = op1;
3151 	  else if (((op1->flags ^ op->flags)
3152 		    & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0)
3153 	    {
3154 	      if (((op->flags ^ s->flags)
3155 		   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0)
3156 		op = op1;
3157 	    }
3158 	  else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3159 	    {
3160 	      if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3161 		op = op1;
3162 	    }
3163 	  else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3164 	    {
3165 	      if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3166 		op = op1;
3167 	    }
3168 	  else
3169 	    {
3170 	      /* Flags we care about are the same.  Prefer the following
3171 		 section if that will result in a positive valued sym.  */
3172 	      if (h->u.def.value < op->vma)
3173 		op = op1;
3174 	    }
3175 
3176 	  h->u.def.value -= op->vma;
3177 	  h->u.def.section = op;
3178 	}
3179     }
3180 
3181   return TRUE;
3182 }
3183 
3184 void
3185 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3186 {
3187   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3188 }
3189