xref: /netbsd/external/gpl3/binutils/dist/bfd/section.c (revision 6550d01e)
1 /* Object file "section" support for the BFD library.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4    Free Software Foundation, Inc.
5    Written by Cygnus Support.
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 /*
25 SECTION
26 	Sections
27 
28 	The raw data contained within a BFD is maintained through the
29 	section abstraction.  A single BFD may have any number of
30 	sections.  It keeps hold of them by pointing to the first;
31 	each one points to the next in the list.
32 
33 	Sections are supported in BFD in <<section.c>>.
34 
35 @menu
36 @* Section Input::
37 @* Section Output::
38 @* typedef asection::
39 @* section prototypes::
40 @end menu
41 
42 INODE
43 Section Input, Section Output, Sections, Sections
44 SUBSECTION
45 	Section input
46 
47 	When a BFD is opened for reading, the section structures are
48 	created and attached to the BFD.
49 
50 	Each section has a name which describes the section in the
51 	outside world---for example, <<a.out>> would contain at least
52 	three sections, called <<.text>>, <<.data>> and <<.bss>>.
53 
54 	Names need not be unique; for example a COFF file may have several
55 	sections named <<.data>>.
56 
57 	Sometimes a BFD will contain more than the ``natural'' number of
58 	sections. A back end may attach other sections containing
59 	constructor data, or an application may add a section (using
60 	<<bfd_make_section>>) to the sections attached to an already open
61 	BFD. For example, the linker creates an extra section
62 	<<COMMON>> for each input file's BFD to hold information about
63 	common storage.
64 
65 	The raw data is not necessarily read in when
66 	the section descriptor is created. Some targets may leave the
67 	data in place until a <<bfd_get_section_contents>> call is
68 	made. Other back ends may read in all the data at once.  For
69 	example, an S-record file has to be read once to determine the
70 	size of the data. An IEEE-695 file doesn't contain raw data in
71 	sections, but data and relocation expressions intermixed, so
72 	the data area has to be parsed to get out the data and
73 	relocations.
74 
75 INODE
76 Section Output, typedef asection, Section Input, Sections
77 
78 SUBSECTION
79 	Section output
80 
81 	To write a new object style BFD, the various sections to be
82 	written have to be created. They are attached to the BFD in
83 	the same way as input sections; data is written to the
84 	sections using <<bfd_set_section_contents>>.
85 
86 	Any program that creates or combines sections (e.g., the assembler
87 	and linker) must use the <<asection>> fields <<output_section>> and
88 	<<output_offset>> to indicate the file sections to which each
89 	section must be written.  (If the section is being created from
90 	scratch, <<output_section>> should probably point to the section
91 	itself and <<output_offset>> should probably be zero.)
92 
93 	The data to be written comes from input sections attached
94 	(via <<output_section>> pointers) to
95 	the output sections.  The output section structure can be
96 	considered a filter for the input section: the output section
97 	determines the vma of the output data and the name, but the
98 	input section determines the offset into the output section of
99 	the data to be written.
100 
101 	E.g., to create a section "O", starting at 0x100, 0x123 long,
102 	containing two subsections, "A" at offset 0x0 (i.e., at vma
103 	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
104 	structures would look like:
105 
106 |   section name          "A"
107 |     output_offset   0x00
108 |     size            0x20
109 |     output_section ----------->  section name    "O"
110 |                             |    vma             0x100
111 |   section name          "B" |    size            0x123
112 |     output_offset   0x20    |
113 |     size            0x103   |
114 |     output_section  --------|
115 
116 SUBSECTION
117 	Link orders
118 
119 	The data within a section is stored in a @dfn{link_order}.
120 	These are much like the fixups in <<gas>>.  The link_order
121 	abstraction allows a section to grow and shrink within itself.
122 
123 	A link_order knows how big it is, and which is the next
124 	link_order and where the raw data for it is; it also points to
125 	a list of relocations which apply to it.
126 
127 	The link_order is used by the linker to perform relaxing on
128 	final code.  The compiler creates code which is as big as
129 	necessary to make it work without relaxing, and the user can
130 	select whether to relax.  Sometimes relaxing takes a lot of
131 	time.  The linker runs around the relocations to see if any
132 	are attached to data which can be shrunk, if so it does it on
133 	a link_order by link_order basis.
134 
135 */
136 
137 #include "sysdep.h"
138 #include "bfd.h"
139 #include "libbfd.h"
140 #include "bfdlink.h"
141 
142 /*
143 DOCDD
144 INODE
145 typedef asection, section prototypes, Section Output, Sections
146 SUBSECTION
147 	typedef asection
148 
149 	Here is the section structure:
150 
151 CODE_FRAGMENT
152 .
153 .typedef struct bfd_section
154 .{
155 .  {* The name of the section; the name isn't a copy, the pointer is
156 .     the same as that passed to bfd_make_section.  *}
157 .  const char *name;
158 .
159 .  {* A unique sequence number.  *}
160 .  int id;
161 .
162 .  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
163 .  int index;
164 .
165 .  {* The next section in the list belonging to the BFD, or NULL.  *}
166 .  struct bfd_section *next;
167 .
168 .  {* The previous section in the list belonging to the BFD, or NULL.  *}
169 .  struct bfd_section *prev;
170 .
171 .  {* The field flags contains attributes of the section. Some
172 .     flags are read in from the object file, and some are
173 .     synthesized from other information.  *}
174 .  flagword flags;
175 .
176 .#define SEC_NO_FLAGS   0x000
177 .
178 .  {* Tells the OS to allocate space for this section when loading.
179 .     This is clear for a section containing debug information only.  *}
180 .#define SEC_ALLOC      0x001
181 .
182 .  {* Tells the OS to load the section from the file when loading.
183 .     This is clear for a .bss section.  *}
184 .#define SEC_LOAD       0x002
185 .
186 .  {* The section contains data still to be relocated, so there is
187 .     some relocation information too.  *}
188 .#define SEC_RELOC      0x004
189 .
190 .  {* A signal to the OS that the section contains read only data.  *}
191 .#define SEC_READONLY   0x008
192 .
193 .  {* The section contains code only.  *}
194 .#define SEC_CODE       0x010
195 .
196 .  {* The section contains data only.  *}
197 .#define SEC_DATA       0x020
198 .
199 .  {* The section will reside in ROM.  *}
200 .#define SEC_ROM        0x040
201 .
202 .  {* The section contains constructor information. This section
203 .     type is used by the linker to create lists of constructors and
204 .     destructors used by <<g++>>. When a back end sees a symbol
205 .     which should be used in a constructor list, it creates a new
206 .     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
207 .     the symbol to it, and builds a relocation. To build the lists
208 .     of constructors, all the linker has to do is catenate all the
209 .     sections called <<__CTOR_LIST__>> and relocate the data
210 .     contained within - exactly the operations it would peform on
211 .     standard data.  *}
212 .#define SEC_CONSTRUCTOR 0x080
213 .
214 .  {* The section has contents - a data section could be
215 .     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
216 .     <<SEC_HAS_CONTENTS>>  *}
217 .#define SEC_HAS_CONTENTS 0x100
218 .
219 .  {* An instruction to the linker to not output the section
220 .     even if it has information which would normally be written.  *}
221 .#define SEC_NEVER_LOAD 0x200
222 .
223 .  {* The section contains thread local data.  *}
224 .#define SEC_THREAD_LOCAL 0x400
225 .
226 .  {* The section has GOT references.  This flag is only for the
227 .     linker, and is currently only used by the elf32-hppa back end.
228 .     It will be set if global offset table references were detected
229 .     in this section, which indicate to the linker that the section
230 .     contains PIC code, and must be handled specially when doing a
231 .     static link.  *}
232 .#define SEC_HAS_GOT_REF 0x800
233 .
234 .  {* The section contains common symbols (symbols may be defined
235 .     multiple times, the value of a symbol is the amount of
236 .     space it requires, and the largest symbol value is the one
237 .     used).  Most targets have exactly one of these (which we
238 .     translate to bfd_com_section_ptr), but ECOFF has two.  *}
239 .#define SEC_IS_COMMON 0x1000
240 .
241 .  {* The section contains only debugging information.  For
242 .     example, this is set for ELF .debug and .stab sections.
243 .     strip tests this flag to see if a section can be
244 .     discarded.  *}
245 .#define SEC_DEBUGGING 0x2000
246 .
247 .  {* The contents of this section are held in memory pointed to
248 .     by the contents field.  This is checked by bfd_get_section_contents,
249 .     and the data is retrieved from memory if appropriate.  *}
250 .#define SEC_IN_MEMORY 0x4000
251 .
252 .  {* The contents of this section are to be excluded by the
253 .     linker for executable and shared objects unless those
254 .     objects are to be further relocated.  *}
255 .#define SEC_EXCLUDE 0x8000
256 .
257 .  {* The contents of this section are to be sorted based on the sum of
258 .     the symbol and addend values specified by the associated relocation
259 .     entries.  Entries without associated relocation entries will be
260 .     appended to the end of the section in an unspecified order.  *}
261 .#define SEC_SORT_ENTRIES 0x10000
262 .
263 .  {* When linking, duplicate sections of the same name should be
264 .     discarded, rather than being combined into a single section as
265 .     is usually done.  This is similar to how common symbols are
266 .     handled.  See SEC_LINK_DUPLICATES below.  *}
267 .#define SEC_LINK_ONCE 0x20000
268 .
269 .  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
270 .     should handle duplicate sections.  *}
271 .#define SEC_LINK_DUPLICATES 0xc0000
272 .
273 .  {* This value for SEC_LINK_DUPLICATES means that duplicate
274 .     sections with the same name should simply be discarded.  *}
275 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
276 .
277 .  {* This value for SEC_LINK_DUPLICATES means that the linker
278 .     should warn if there are any duplicate sections, although
279 .     it should still only link one copy.  *}
280 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
281 .
282 .  {* This value for SEC_LINK_DUPLICATES means that the linker
283 .     should warn if any duplicate sections are a different size.  *}
284 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
285 .
286 .  {* This value for SEC_LINK_DUPLICATES means that the linker
287 .     should warn if any duplicate sections contain different
288 .     contents.  *}
289 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
290 .  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
291 .
292 .  {* This section was created by the linker as part of dynamic
293 .     relocation or other arcane processing.  It is skipped when
294 .     going through the first-pass output, trusting that someone
295 .     else up the line will take care of it later.  *}
296 .#define SEC_LINKER_CREATED 0x100000
297 .
298 .  {* This section should not be subject to garbage collection.
299 .     Also set to inform the linker that this section should not be
300 .     listed in the link map as discarded.  *}
301 .#define SEC_KEEP 0x200000
302 .
303 .  {* This section contains "short" data, and should be placed
304 .     "near" the GP.  *}
305 .#define SEC_SMALL_DATA 0x400000
306 .
307 .  {* Attempt to merge identical entities in the section.
308 .     Entity size is given in the entsize field.  *}
309 .#define SEC_MERGE 0x800000
310 .
311 .  {* If given with SEC_MERGE, entities to merge are zero terminated
312 .     strings where entsize specifies character size instead of fixed
313 .     size entries.  *}
314 .#define SEC_STRINGS 0x1000000
315 .
316 .  {* This section contains data about section groups.  *}
317 .#define SEC_GROUP 0x2000000
318 .
319 .  {* The section is a COFF shared library section.  This flag is
320 .     only for the linker.  If this type of section appears in
321 .     the input file, the linker must copy it to the output file
322 .     without changing the vma or size.  FIXME: Although this
323 .     was originally intended to be general, it really is COFF
324 .     specific (and the flag was renamed to indicate this).  It
325 .     might be cleaner to have some more general mechanism to
326 .     allow the back end to control what the linker does with
327 .     sections.  *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
329 .
330 .  {* This section contains data which may be shared with other
331 .     executables or shared objects. This is for COFF only.  *}
332 .#define SEC_COFF_SHARED 0x8000000
333 .
334 .  {* When a section with this flag is being linked, then if the size of
335 .     the input section is less than a page, it should not cross a page
336 .     boundary.  If the size of the input section is one page or more,
337 .     it should be aligned on a page boundary.  This is for TI
338 .     TMS320C54X only.  *}
339 .#define SEC_TIC54X_BLOCK 0x10000000
340 .
341 .  {* Conditionally link this section; do not link if there are no
342 .     references found to any symbol in the section.  This is for TI
343 .     TMS320C54X only.  *}
344 .#define SEC_TIC54X_CLINK 0x20000000
345 .
346 .  {*  End of section flags.  *}
347 .
348 .  {* Some internal packed boolean fields.  *}
349 .
350 .  {* See the vma field.  *}
351 .  unsigned int user_set_vma : 1;
352 .
353 .  {* A mark flag used by some of the linker backends.  *}
354 .  unsigned int linker_mark : 1;
355 .
356 .  {* Another mark flag used by some of the linker backends.  Set for
357 .     output sections that have an input section.  *}
358 .  unsigned int linker_has_input : 1;
359 .
360 .  {* Mark flag used by some linker backends for garbage collection.  *}
361 .  unsigned int gc_mark : 1;
362 .
363 .  {* The following flags are used by the ELF linker. *}
364 .
365 .  {* Mark sections which have been allocated to segments.  *}
366 .  unsigned int segment_mark : 1;
367 .
368 .  {* Type of sec_info information.  *}
369 .  unsigned int sec_info_type:3;
370 .#define ELF_INFO_TYPE_NONE      0
371 .#define ELF_INFO_TYPE_STABS     1
372 .#define ELF_INFO_TYPE_MERGE     2
373 .#define ELF_INFO_TYPE_EH_FRAME  3
374 .#define ELF_INFO_TYPE_JUST_SYMS 4
375 .
376 .  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
377 .  unsigned int use_rela_p:1;
378 .
379 .  {* Bits used by various backends.  The generic code doesn't touch
380 .     these fields.  *}
381 .
382 .  {* Nonzero if this section has TLS related relocations.  *}
383 .  unsigned int has_tls_reloc:1;
384 .
385 .  {* Nonzero if this section has a gp reloc.  *}
386 .  unsigned int has_gp_reloc:1;
387 .
388 .  {* Nonzero if this section needs the relax finalize pass.  *}
389 .  unsigned int need_finalize_relax:1;
390 .
391 .  {* Whether relocations have been processed.  *}
392 .  unsigned int reloc_done : 1;
393 .
394 .  {* End of internal packed boolean fields.  *}
395 .
396 .  {*  The virtual memory address of the section - where it will be
397 .      at run time.  The symbols are relocated against this.  The
398 .      user_set_vma flag is maintained by bfd; if it's not set, the
399 .      backend can assign addresses (for example, in <<a.out>>, where
400 .      the default address for <<.data>> is dependent on the specific
401 .      target and various flags).  *}
402 .  bfd_vma vma;
403 .
404 .  {*  The load address of the section - where it would be in a
405 .      rom image; really only used for writing section header
406 .      information.  *}
407 .  bfd_vma lma;
408 .
409 .  {* The size of the section in octets, as it will be output.
410 .     Contains a value even if the section has no contents (e.g., the
411 .     size of <<.bss>>).  *}
412 .  bfd_size_type size;
413 .
414 .  {* For input sections, the original size on disk of the section, in
415 .     octets.  This field should be set for any section whose size is
416 .     changed by linker relaxation.  It is required for sections where
417 .     the linker relaxation scheme doesn't cache altered section and
418 .     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
419 .     targets), and thus the original size needs to be kept to read the
420 .     section multiple times.  For output sections, rawsize holds the
421 .     section size calculated on a previous linker relaxation pass.  *}
422 .  bfd_size_type rawsize;
423 .
424 .  {* If this section is going to be output, then this value is the
425 .     offset in *bytes* into the output section of the first byte in the
426 .     input section (byte ==> smallest addressable unit on the
427 .     target).  In most cases, if this was going to start at the
428 .     100th octet (8-bit quantity) in the output section, this value
429 .     would be 100.  However, if the target byte size is 16 bits
430 .     (bfd_octets_per_byte is "2"), this value would be 50.  *}
431 .  bfd_vma output_offset;
432 .
433 .  {* The output section through which to map on output.  *}
434 .  struct bfd_section *output_section;
435 .
436 .  {* The alignment requirement of the section, as an exponent of 2 -
437 .     e.g., 3 aligns to 2^3 (or 8).  *}
438 .  unsigned int alignment_power;
439 .
440 .  {* If an input section, a pointer to a vector of relocation
441 .     records for the data in this section.  *}
442 .  struct reloc_cache_entry *relocation;
443 .
444 .  {* If an output section, a pointer to a vector of pointers to
445 .     relocation records for the data in this section.  *}
446 .  struct reloc_cache_entry **orelocation;
447 .
448 .  {* The number of relocation records in one of the above.  *}
449 .  unsigned reloc_count;
450 .
451 .  {* Information below is back end specific - and not always used
452 .     or updated.  *}
453 .
454 .  {* File position of section data.  *}
455 .  file_ptr filepos;
456 .
457 .  {* File position of relocation info.  *}
458 .  file_ptr rel_filepos;
459 .
460 .  {* File position of line data.  *}
461 .  file_ptr line_filepos;
462 .
463 .  {* Pointer to data for applications.  *}
464 .  void *userdata;
465 .
466 .  {* If the SEC_IN_MEMORY flag is set, this points to the actual
467 .     contents.  *}
468 .  unsigned char *contents;
469 .
470 .  {* Attached line number information.  *}
471 .  alent *lineno;
472 .
473 .  {* Number of line number records.  *}
474 .  unsigned int lineno_count;
475 .
476 .  {* Entity size for merging purposes.  *}
477 .  unsigned int entsize;
478 .
479 .  {* Points to the kept section if this section is a link-once section,
480 .     and is discarded.  *}
481 .  struct bfd_section *kept_section;
482 .
483 .  {* When a section is being output, this value changes as more
484 .     linenumbers are written out.  *}
485 .  file_ptr moving_line_filepos;
486 .
487 .  {* What the section number is in the target world.  *}
488 .  int target_index;
489 .
490 .  void *used_by_bfd;
491 .
492 .  {* If this is a constructor section then here is a list of the
493 .     relocations created to relocate items within it.  *}
494 .  struct relent_chain *constructor_chain;
495 .
496 .  {* The BFD which owns the section.  *}
497 .  bfd *owner;
498 .
499 .  {* A symbol which points at this section only.  *}
500 .  struct bfd_symbol *symbol;
501 .  struct bfd_symbol **symbol_ptr_ptr;
502 .
503 .  {* Early in the link process, map_head and map_tail are used to build
504 .     a list of input sections attached to an output section.  Later,
505 .     output sections use these fields for a list of bfd_link_order
506 .     structs.  *}
507 .  union {
508 .    struct bfd_link_order *link_order;
509 .    struct bfd_section *s;
510 .  } map_head, map_tail;
511 .} asection;
512 .
513 .{* These sections are global, and are managed by BFD.  The application
514 .   and target back end are not permitted to change the values in
515 .   these sections.  New code should use the section_ptr macros rather
516 .   than referring directly to the const sections.  The const sections
517 .   may eventually vanish.  *}
518 .#define BFD_ABS_SECTION_NAME "*ABS*"
519 .#define BFD_UND_SECTION_NAME "*UND*"
520 .#define BFD_COM_SECTION_NAME "*COM*"
521 .#define BFD_IND_SECTION_NAME "*IND*"
522 .
523 .{* The absolute section.  *}
524 .extern asection bfd_abs_section;
525 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
526 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
527 .{* Pointer to the undefined section.  *}
528 .extern asection bfd_und_section;
529 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
530 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
531 .{* Pointer to the common section.  *}
532 .extern asection bfd_com_section;
533 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
534 .{* Pointer to the indirect section.  *}
535 .extern asection bfd_ind_section;
536 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
537 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
538 .
539 .#define bfd_is_const_section(SEC)		\
540 . (   ((SEC) == bfd_abs_section_ptr)		\
541 .  || ((SEC) == bfd_und_section_ptr)		\
542 .  || ((SEC) == bfd_com_section_ptr)		\
543 .  || ((SEC) == bfd_ind_section_ptr))
544 .
545 .{* Macros to handle insertion and deletion of a bfd's sections.  These
546 .   only handle the list pointers, ie. do not adjust section_count,
547 .   target_index etc.  *}
548 .#define bfd_section_list_remove(ABFD, S) \
549 .  do							\
550 .    {							\
551 .      asection *_s = S;				\
552 .      asection *_next = _s->next;			\
553 .      asection *_prev = _s->prev;			\
554 .      if (_prev)					\
555 .        _prev->next = _next;				\
556 .      else						\
557 .        (ABFD)->sections = _next;			\
558 .      if (_next)					\
559 .        _next->prev = _prev;				\
560 .      else						\
561 .        (ABFD)->section_last = _prev;			\
562 .    }							\
563 .  while (0)
564 .#define bfd_section_list_append(ABFD, S) \
565 .  do							\
566 .    {							\
567 .      asection *_s = S;				\
568 .      bfd *_abfd = ABFD;				\
569 .      _s->next = NULL;					\
570 .      if (_abfd->section_last)				\
571 .        {						\
572 .          _s->prev = _abfd->section_last;		\
573 .          _abfd->section_last->next = _s;		\
574 .        }						\
575 .      else						\
576 .        {						\
577 .          _s->prev = NULL;				\
578 .          _abfd->sections = _s;			\
579 .        }						\
580 .      _abfd->section_last = _s;			\
581 .    }							\
582 .  while (0)
583 .#define bfd_section_list_prepend(ABFD, S) \
584 .  do							\
585 .    {							\
586 .      asection *_s = S;				\
587 .      bfd *_abfd = ABFD;				\
588 .      _s->prev = NULL;					\
589 .      if (_abfd->sections)				\
590 .        {						\
591 .          _s->next = _abfd->sections;			\
592 .          _abfd->sections->prev = _s;			\
593 .        }						\
594 .      else						\
595 .        {						\
596 .          _s->next = NULL;				\
597 .          _abfd->section_last = _s;			\
598 .        }						\
599 .      _abfd->sections = _s;				\
600 .    }							\
601 .  while (0)
602 .#define bfd_section_list_insert_after(ABFD, A, S) \
603 .  do							\
604 .    {							\
605 .      asection *_a = A;				\
606 .      asection *_s = S;				\
607 .      asection *_next = _a->next;			\
608 .      _s->next = _next;				\
609 .      _s->prev = _a;					\
610 .      _a->next = _s;					\
611 .      if (_next)					\
612 .        _next->prev = _s;				\
613 .      else						\
614 .        (ABFD)->section_last = _s;			\
615 .    }							\
616 .  while (0)
617 .#define bfd_section_list_insert_before(ABFD, B, S) \
618 .  do							\
619 .    {							\
620 .      asection *_b = B;				\
621 .      asection *_s = S;				\
622 .      asection *_prev = _b->prev;			\
623 .      _s->prev = _prev;				\
624 .      _s->next = _b;					\
625 .      _b->prev = _s;					\
626 .      if (_prev)					\
627 .        _prev->next = _s;				\
628 .      else						\
629 .        (ABFD)->sections = _s;				\
630 .    }							\
631 .  while (0)
632 .#define bfd_section_removed_from_list(ABFD, S) \
633 .  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
634 .
635 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)			\
636 .  {* name, id,  index, next, prev, flags, user_set_vma,            *}	\
637 .  { NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,				\
638 .									\
639 .  {* linker_mark, linker_has_input, gc_mark,                       *}	\
640 .     0,           0,                1,         			\
641 .									\
642 .  {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc,       *}	\
643 .     0,            0,             0,          0,			\
644 .									\
645 .  {* has_gp_reloc, need_finalize_relax, reloc_done,                *}	\
646 .     0,            0,                   0,				\
647 .									\
648 .  {* vma, lma, size, rawsize                                       *}	\
649 .     0,   0,   0,    0,						\
650 .									\
651 .  {* output_offset, output_section,              alignment_power,  *}	\
652 .     0,             (struct bfd_section *) &SEC, 0,			\
653 .									\
654 .  {* relocation, orelocation, reloc_count, filepos, rel_filepos,   *}	\
655 .     NULL,       NULL,        0,           0,       0,			\
656 .									\
657 .  {* line_filepos, userdata, contents, lineno, lineno_count,       *}	\
658 .     0,            NULL,     NULL,     NULL,   0,			\
659 .									\
660 .  {* entsize, kept_section, moving_line_filepos,		     *}	\
661 .     0,       NULL,	      0,					\
662 .									\
663 .  {* target_index, used_by_bfd, constructor_chain, owner,          *}	\
664 .     0,            NULL,        NULL,              NULL,		\
665 .									\
666 .  {* symbol,                    symbol_ptr_ptr,                    *}	\
667 .     (struct bfd_symbol *) SYM, &SEC.symbol,				\
668 .									\
669 .  {* map_head, map_tail                                            *}	\
670 .     { NULL }, { NULL }						\
671 .    }
672 .
673 */
674 
675 /* We use a macro to initialize the static asymbol structures because
676    traditional C does not permit us to initialize a union member while
677    gcc warns if we don't initialize it.  */
678  /* the_bfd, name, value, attr, section [, udata] */
679 #ifdef __STDC__
680 #define GLOBAL_SYM_INIT(NAME, SECTION) \
681   { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
682 #else
683 #define GLOBAL_SYM_INIT(NAME, SECTION) \
684   { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
685 #endif
686 
687 /* These symbols are global, not specific to any BFD.  Therefore, anything
688    that tries to change them is broken, and should be repaired.  */
689 
690 static const asymbol global_syms[] =
691 {
692   GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
693   GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
694   GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
695   GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
696 };
697 
698 #define STD_SECTION(SEC, FLAGS, NAME, IDX)				\
699   asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX],	\
700 				  NAME, IDX)
701 
702 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
703 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
704 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
705 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
706 #undef STD_SECTION
707 
708 /* Initialize an entry in the section hash table.  */
709 
710 struct bfd_hash_entry *
711 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
712 			  struct bfd_hash_table *table,
713 			  const char *string)
714 {
715   /* Allocate the structure if it has not already been allocated by a
716      subclass.  */
717   if (entry == NULL)
718     {
719       entry = (struct bfd_hash_entry *)
720 	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
721       if (entry == NULL)
722 	return entry;
723     }
724 
725   /* Call the allocation method of the superclass.  */
726   entry = bfd_hash_newfunc (entry, table, string);
727   if (entry != NULL)
728     memset (&((struct section_hash_entry *) entry)->section, 0,
729 	    sizeof (asection));
730 
731   return entry;
732 }
733 
734 #define section_hash_lookup(table, string, create, copy) \
735   ((struct section_hash_entry *) \
736    bfd_hash_lookup ((table), (string), (create), (copy)))
737 
738 /* Create a symbol whose only job is to point to this section.  This
739    is useful for things like relocs which are relative to the base
740    of a section.  */
741 
742 bfd_boolean
743 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
744 {
745   newsect->symbol = bfd_make_empty_symbol (abfd);
746   if (newsect->symbol == NULL)
747     return FALSE;
748 
749   newsect->symbol->name = newsect->name;
750   newsect->symbol->value = 0;
751   newsect->symbol->section = newsect;
752   newsect->symbol->flags = BSF_SECTION_SYM;
753 
754   newsect->symbol_ptr_ptr = &newsect->symbol;
755   return TRUE;
756 }
757 
758 /* Initializes a new section.  NEWSECT->NAME is already set.  */
759 
760 static asection *
761 bfd_section_init (bfd *abfd, asection *newsect)
762 {
763   static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
764 
765   newsect->id = section_id;
766   newsect->index = abfd->section_count;
767   newsect->owner = abfd;
768 
769   if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
770     return NULL;
771 
772   section_id++;
773   abfd->section_count++;
774   bfd_section_list_append (abfd, newsect);
775   return newsect;
776 }
777 
778 /*
779 DOCDD
780 INODE
781 section prototypes,  , typedef asection, Sections
782 SUBSECTION
783 	Section prototypes
784 
785 These are the functions exported by the section handling part of BFD.
786 */
787 
788 /*
789 FUNCTION
790 	bfd_section_list_clear
791 
792 SYNOPSIS
793 	void bfd_section_list_clear (bfd *);
794 
795 DESCRIPTION
796 	Clears the section list, and also resets the section count and
797 	hash table entries.
798 */
799 
800 void
801 bfd_section_list_clear (bfd *abfd)
802 {
803   abfd->sections = NULL;
804   abfd->section_last = NULL;
805   abfd->section_count = 0;
806   memset (abfd->section_htab.table, 0,
807 	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
808 }
809 
810 /*
811 FUNCTION
812 	bfd_get_section_by_name
813 
814 SYNOPSIS
815 	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
816 
817 DESCRIPTION
818 	Run through @var{abfd} and return the one of the
819 	<<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
820 	@xref{Sections}, for more information.
821 
822 	This should only be used in special cases; the normal way to process
823 	all sections of a given name is to use <<bfd_map_over_sections>> and
824 	<<strcmp>> on the name (or better yet, base it on the section flags
825 	or something else) for each section.
826 */
827 
828 asection *
829 bfd_get_section_by_name (bfd *abfd, const char *name)
830 {
831   struct section_hash_entry *sh;
832 
833   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
834   if (sh != NULL)
835     return &sh->section;
836 
837   return NULL;
838 }
839 
840 /*
841 FUNCTION
842 	bfd_get_section_by_name_if
843 
844 SYNOPSIS
845 	asection *bfd_get_section_by_name_if
846 	  (bfd *abfd,
847 	   const char *name,
848 	   bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
849 	   void *obj);
850 
851 DESCRIPTION
852 	Call the provided function @var{func} for each section
853 	attached to the BFD @var{abfd} whose name matches @var{name},
854 	passing @var{obj} as an argument. The function will be called
855 	as if by
856 
857 |	func (abfd, the_section, obj);
858 
859 	It returns the first section for which @var{func} returns true,
860 	otherwise <<NULL>>.
861 
862 */
863 
864 asection *
865 bfd_get_section_by_name_if (bfd *abfd, const char *name,
866 			    bfd_boolean (*operation) (bfd *,
867 						      asection *,
868 						      void *),
869 			    void *user_storage)
870 {
871   struct section_hash_entry *sh;
872   unsigned long hash;
873 
874   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
875   if (sh == NULL)
876     return NULL;
877 
878   hash = sh->root.hash;
879   do
880     {
881       if ((*operation) (abfd, &sh->section, user_storage))
882 	return &sh->section;
883       sh = (struct section_hash_entry *) sh->root.next;
884     }
885   while (sh != NULL && sh->root.hash == hash
886 	 && strcmp (sh->root.string, name) == 0);
887 
888   return NULL;
889 }
890 
891 /*
892 FUNCTION
893 	bfd_get_unique_section_name
894 
895 SYNOPSIS
896 	char *bfd_get_unique_section_name
897 	  (bfd *abfd, const char *templat, int *count);
898 
899 DESCRIPTION
900 	Invent a section name that is unique in @var{abfd} by tacking
901 	a dot and a digit suffix onto the original @var{templat}.  If
902 	@var{count} is non-NULL, then it specifies the first number
903 	tried as a suffix to generate a unique name.  The value
904 	pointed to by @var{count} will be incremented in this case.
905 */
906 
907 char *
908 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
909 {
910   int num;
911   unsigned int len;
912   char *sname;
913 
914   len = strlen (templat);
915   sname = bfd_malloc (len + 8);
916   if (sname == NULL)
917     return NULL;
918   memcpy (sname, templat, len);
919   num = 1;
920   if (count != NULL)
921     num = *count;
922 
923   do
924     {
925       /* If we have a million sections, something is badly wrong.  */
926       if (num > 999999)
927 	abort ();
928       sprintf (sname + len, ".%d", num++);
929     }
930   while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
931 
932   if (count != NULL)
933     *count = num;
934   return sname;
935 }
936 
937 /*
938 FUNCTION
939 	bfd_make_section_old_way
940 
941 SYNOPSIS
942 	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
943 
944 DESCRIPTION
945 	Create a new empty section called @var{name}
946 	and attach it to the end of the chain of sections for the
947 	BFD @var{abfd}. An attempt to create a section with a name which
948 	is already in use returns its pointer without changing the
949 	section chain.
950 
951 	It has the funny name since this is the way it used to be
952 	before it was rewritten....
953 
954 	Possible errors are:
955 	o <<bfd_error_invalid_operation>> -
956 	If output has already started for this BFD.
957 	o <<bfd_error_no_memory>> -
958 	If memory allocation fails.
959 
960 */
961 
962 asection *
963 bfd_make_section_old_way (bfd *abfd, const char *name)
964 {
965   asection *newsect;
966 
967   if (abfd->output_has_begun)
968     {
969       bfd_set_error (bfd_error_invalid_operation);
970       return NULL;
971     }
972 
973   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
974     newsect = bfd_abs_section_ptr;
975   else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
976     newsect = bfd_com_section_ptr;
977   else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
978     newsect = bfd_und_section_ptr;
979   else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
980     newsect = bfd_ind_section_ptr;
981   else
982     {
983       struct section_hash_entry *sh;
984 
985       sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
986       if (sh == NULL)
987 	return NULL;
988 
989       newsect = &sh->section;
990       if (newsect->name != NULL)
991 	{
992 	  /* Section already exists.  */
993 	  return newsect;
994 	}
995 
996       newsect->name = name;
997       return bfd_section_init (abfd, newsect);
998     }
999 
1000   /* Call new_section_hook when "creating" the standard abs, com, und
1001      and ind sections to tack on format specific section data.
1002      Also, create a proper section symbol.  */
1003   if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1004     return NULL;
1005   return newsect;
1006 }
1007 
1008 /*
1009 FUNCTION
1010 	bfd_make_section_anyway_with_flags
1011 
1012 SYNOPSIS
1013 	asection *bfd_make_section_anyway_with_flags
1014 	  (bfd *abfd, const char *name, flagword flags);
1015 
1016 DESCRIPTION
1017    Create a new empty section called @var{name} and attach it to the end of
1018    the chain of sections for @var{abfd}.  Create a new section even if there
1019    is already a section with that name.  Also set the attributes of the
1020    new section to the value @var{flags}.
1021 
1022    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1023    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1024    o <<bfd_error_no_memory>> - If memory allocation fails.
1025 */
1026 
1027 sec_ptr
1028 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1029 				    flagword flags)
1030 {
1031   struct section_hash_entry *sh;
1032   asection *newsect;
1033 
1034   if (abfd->output_has_begun)
1035     {
1036       bfd_set_error (bfd_error_invalid_operation);
1037       return NULL;
1038     }
1039 
1040   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1041   if (sh == NULL)
1042     return NULL;
1043 
1044   newsect = &sh->section;
1045   if (newsect->name != NULL)
1046     {
1047       /* We are making a section of the same name.  Put it in the
1048 	 section hash table.  Even though we can't find it directly by a
1049 	 hash lookup, we'll be able to find the section by traversing
1050 	 sh->root.next quicker than looking at all the bfd sections.  */
1051       struct section_hash_entry *new_sh;
1052       new_sh = (struct section_hash_entry *)
1053 	bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1054       if (new_sh == NULL)
1055 	return NULL;
1056 
1057       new_sh->root = sh->root;
1058       sh->root.next = &new_sh->root;
1059       newsect = &new_sh->section;
1060     }
1061 
1062   newsect->flags = flags;
1063   newsect->name = name;
1064   return bfd_section_init (abfd, newsect);
1065 }
1066 
1067 /*
1068 FUNCTION
1069 	bfd_make_section_anyway
1070 
1071 SYNOPSIS
1072 	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1073 
1074 DESCRIPTION
1075    Create a new empty section called @var{name} and attach it to the end of
1076    the chain of sections for @var{abfd}.  Create a new section even if there
1077    is already a section with that name.
1078 
1079    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1080    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1081    o <<bfd_error_no_memory>> - If memory allocation fails.
1082 */
1083 
1084 sec_ptr
1085 bfd_make_section_anyway (bfd *abfd, const char *name)
1086 {
1087   return bfd_make_section_anyway_with_flags (abfd, name, 0);
1088 }
1089 
1090 /*
1091 FUNCTION
1092 	bfd_make_section_with_flags
1093 
1094 SYNOPSIS
1095 	asection *bfd_make_section_with_flags
1096 	  (bfd *, const char *name, flagword flags);
1097 
1098 DESCRIPTION
1099    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1100    bfd_set_error ()) without changing the section chain if there is already a
1101    section named @var{name}.  Also set the attributes of the new section to
1102    the value @var{flags}.  If there is an error, return <<NULL>> and set
1103    <<bfd_error>>.
1104 */
1105 
1106 asection *
1107 bfd_make_section_with_flags (bfd *abfd, const char *name,
1108 			     flagword flags)
1109 {
1110   struct section_hash_entry *sh;
1111   asection *newsect;
1112 
1113   if (abfd->output_has_begun)
1114     {
1115       bfd_set_error (bfd_error_invalid_operation);
1116       return NULL;
1117     }
1118 
1119   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1120       || strcmp (name, BFD_COM_SECTION_NAME) == 0
1121       || strcmp (name, BFD_UND_SECTION_NAME) == 0
1122       || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1123     return NULL;
1124 
1125   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1126   if (sh == NULL)
1127     return NULL;
1128 
1129   newsect = &sh->section;
1130   if (newsect->name != NULL)
1131     {
1132       /* Section already exists.  */
1133       return NULL;
1134     }
1135 
1136   newsect->name = name;
1137   newsect->flags = flags;
1138   return bfd_section_init (abfd, newsect);
1139 }
1140 
1141 /*
1142 FUNCTION
1143 	bfd_make_section
1144 
1145 SYNOPSIS
1146 	asection *bfd_make_section (bfd *, const char *name);
1147 
1148 DESCRIPTION
1149    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1150    bfd_set_error ()) without changing the section chain if there is already a
1151    section named @var{name}.  If there is an error, return <<NULL>> and set
1152    <<bfd_error>>.
1153 */
1154 
1155 asection *
1156 bfd_make_section (bfd *abfd, const char *name)
1157 {
1158   return bfd_make_section_with_flags (abfd, name, 0);
1159 }
1160 
1161 /*
1162 FUNCTION
1163 	bfd_set_section_flags
1164 
1165 SYNOPSIS
1166 	bfd_boolean bfd_set_section_flags
1167 	  (bfd *abfd, asection *sec, flagword flags);
1168 
1169 DESCRIPTION
1170 	Set the attributes of the section @var{sec} in the BFD
1171 	@var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1172 	<<FALSE>> on error. Possible error returns are:
1173 
1174 	o <<bfd_error_invalid_operation>> -
1175 	The section cannot have one or more of the attributes
1176 	requested. For example, a .bss section in <<a.out>> may not
1177 	have the <<SEC_HAS_CONTENTS>> field set.
1178 
1179 */
1180 
1181 bfd_boolean
1182 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1183 		       sec_ptr section,
1184 		       flagword flags)
1185 {
1186   section->flags = flags;
1187   return TRUE;
1188 }
1189 
1190 /*
1191 FUNCTION
1192 	bfd_map_over_sections
1193 
1194 SYNOPSIS
1195 	void bfd_map_over_sections
1196 	  (bfd *abfd,
1197 	   void (*func) (bfd *abfd, asection *sect, void *obj),
1198 	   void *obj);
1199 
1200 DESCRIPTION
1201 	Call the provided function @var{func} for each section
1202 	attached to the BFD @var{abfd}, passing @var{obj} as an
1203 	argument. The function will be called as if by
1204 
1205 |	func (abfd, the_section, obj);
1206 
1207 	This is the preferred method for iterating over sections; an
1208 	alternative would be to use a loop:
1209 
1210 |	   section *p;
1211 |	   for (p = abfd->sections; p != NULL; p = p->next)
1212 |	      func (abfd, p, ...)
1213 
1214 */
1215 
1216 void
1217 bfd_map_over_sections (bfd *abfd,
1218 		       void (*operation) (bfd *, asection *, void *),
1219 		       void *user_storage)
1220 {
1221   asection *sect;
1222   unsigned int i = 0;
1223 
1224   for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1225     (*operation) (abfd, sect, user_storage);
1226 
1227   if (i != abfd->section_count)	/* Debugging */
1228     abort ();
1229 }
1230 
1231 /*
1232 FUNCTION
1233 	bfd_sections_find_if
1234 
1235 SYNOPSIS
1236 	asection *bfd_sections_find_if
1237 	  (bfd *abfd,
1238 	   bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1239 	   void *obj);
1240 
1241 DESCRIPTION
1242 	Call the provided function @var{operation} for each section
1243 	attached to the BFD @var{abfd}, passing @var{obj} as an
1244 	argument. The function will be called as if by
1245 
1246 |	operation (abfd, the_section, obj);
1247 
1248 	It returns the first section for which @var{operation} returns true.
1249 
1250 */
1251 
1252 asection *
1253 bfd_sections_find_if (bfd *abfd,
1254 		      bfd_boolean (*operation) (bfd *, asection *, void *),
1255 		      void *user_storage)
1256 {
1257   asection *sect;
1258 
1259   for (sect = abfd->sections; sect != NULL; sect = sect->next)
1260     if ((*operation) (abfd, sect, user_storage))
1261       break;
1262 
1263   return sect;
1264 }
1265 
1266 /*
1267 FUNCTION
1268 	bfd_set_section_size
1269 
1270 SYNOPSIS
1271 	bfd_boolean bfd_set_section_size
1272 	  (bfd *abfd, asection *sec, bfd_size_type val);
1273 
1274 DESCRIPTION
1275 	Set @var{sec} to the size @var{val}. If the operation is
1276 	ok, then <<TRUE>> is returned, else <<FALSE>>.
1277 
1278 	Possible error returns:
1279 	o <<bfd_error_invalid_operation>> -
1280 	Writing has started to the BFD, so setting the size is invalid.
1281 
1282 */
1283 
1284 bfd_boolean
1285 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1286 {
1287   /* Once you've started writing to any section you cannot create or change
1288      the size of any others.  */
1289 
1290   if (abfd->output_has_begun)
1291     {
1292       bfd_set_error (bfd_error_invalid_operation);
1293       return FALSE;
1294     }
1295 
1296   ptr->size = val;
1297   return TRUE;
1298 }
1299 
1300 /*
1301 FUNCTION
1302 	bfd_set_section_contents
1303 
1304 SYNOPSIS
1305 	bfd_boolean bfd_set_section_contents
1306 	  (bfd *abfd, asection *section, const void *data,
1307 	   file_ptr offset, bfd_size_type count);
1308 
1309 DESCRIPTION
1310 	Sets the contents of the section @var{section} in BFD
1311 	@var{abfd} to the data starting in memory at @var{data}. The
1312 	data is written to the output section starting at offset
1313 	@var{offset} for @var{count} octets.
1314 
1315 	Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1316 	returns are:
1317 	o <<bfd_error_no_contents>> -
1318 	The output section does not have the <<SEC_HAS_CONTENTS>>
1319 	attribute, so nothing can be written to it.
1320 	o and some more too
1321 
1322 	This routine is front end to the back end function
1323 	<<_bfd_set_section_contents>>.
1324 
1325 */
1326 
1327 bfd_boolean
1328 bfd_set_section_contents (bfd *abfd,
1329 			  sec_ptr section,
1330 			  const void *location,
1331 			  file_ptr offset,
1332 			  bfd_size_type count)
1333 {
1334   bfd_size_type sz;
1335 
1336   if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1337     {
1338       bfd_set_error (bfd_error_no_contents);
1339       return FALSE;
1340     }
1341 
1342   sz = section->size;
1343   if ((bfd_size_type) offset > sz
1344       || count > sz
1345       || offset + count > sz
1346       || count != (size_t) count)
1347     {
1348       bfd_set_error (bfd_error_bad_value);
1349       return FALSE;
1350     }
1351 
1352   if (!bfd_write_p (abfd))
1353     {
1354       bfd_set_error (bfd_error_invalid_operation);
1355       return FALSE;
1356     }
1357 
1358   /* Record a copy of the data in memory if desired.  */
1359   if (section->contents
1360       && location != section->contents + offset)
1361     memcpy (section->contents + offset, location, (size_t) count);
1362 
1363   if (BFD_SEND (abfd, _bfd_set_section_contents,
1364 		(abfd, section, location, offset, count)))
1365     {
1366       abfd->output_has_begun = TRUE;
1367       return TRUE;
1368     }
1369 
1370   return FALSE;
1371 }
1372 
1373 /*
1374 FUNCTION
1375 	bfd_get_section_contents
1376 
1377 SYNOPSIS
1378 	bfd_boolean bfd_get_section_contents
1379 	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1380 	   bfd_size_type count);
1381 
1382 DESCRIPTION
1383 	Read data from @var{section} in BFD @var{abfd}
1384 	into memory starting at @var{location}. The data is read at an
1385 	offset of @var{offset} from the start of the input section,
1386 	and is read for @var{count} bytes.
1387 
1388 	If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1389 	flag set are requested or if the section does not have the
1390 	<<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1391 	with zeroes. If no errors occur, <<TRUE>> is returned, else
1392 	<<FALSE>>.
1393 
1394 */
1395 bfd_boolean
1396 bfd_get_section_contents (bfd *abfd,
1397 			  sec_ptr section,
1398 			  void *location,
1399 			  file_ptr offset,
1400 			  bfd_size_type count)
1401 {
1402   bfd_size_type sz;
1403 
1404   if (section->flags & SEC_CONSTRUCTOR)
1405     {
1406       memset (location, 0, (size_t) count);
1407       return TRUE;
1408     }
1409 
1410   sz = section->rawsize ? section->rawsize : section->size;
1411   if ((bfd_size_type) offset > sz
1412       || count > sz
1413       || offset + count > sz
1414       || count != (size_t) count)
1415     {
1416       bfd_set_error (bfd_error_bad_value);
1417       return FALSE;
1418     }
1419 
1420   if (count == 0)
1421     /* Don't bother.  */
1422     return TRUE;
1423 
1424   if ((section->flags & SEC_HAS_CONTENTS) == 0)
1425     {
1426       memset (location, 0, (size_t) count);
1427       return TRUE;
1428     }
1429 
1430   if ((section->flags & SEC_IN_MEMORY) != 0)
1431     {
1432       memcpy (location, section->contents + offset, (size_t) count);
1433       return TRUE;
1434     }
1435 
1436   return BFD_SEND (abfd, _bfd_get_section_contents,
1437 		   (abfd, section, location, offset, count));
1438 }
1439 
1440 /*
1441 FUNCTION
1442 	bfd_malloc_and_get_section
1443 
1444 SYNOPSIS
1445 	bfd_boolean bfd_malloc_and_get_section
1446 	  (bfd *abfd, asection *section, bfd_byte **buf);
1447 
1448 DESCRIPTION
1449 	Read all data from @var{section} in BFD @var{abfd}
1450 	into a buffer, *@var{buf}, malloc'd by this function.
1451 */
1452 
1453 bfd_boolean
1454 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1455 {
1456   bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1457   bfd_byte *p = NULL;
1458 
1459   *buf = p;
1460   if (sz == 0)
1461     return TRUE;
1462 
1463   p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1464   if (p == NULL)
1465     return FALSE;
1466   *buf = p;
1467 
1468   return bfd_get_section_contents (abfd, sec, p, 0, sz);
1469 }
1470 /*
1471 FUNCTION
1472 	bfd_copy_private_section_data
1473 
1474 SYNOPSIS
1475 	bfd_boolean bfd_copy_private_section_data
1476 	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1477 
1478 DESCRIPTION
1479 	Copy private section information from @var{isec} in the BFD
1480 	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1481 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1482 	returns are:
1483 
1484 	o <<bfd_error_no_memory>> -
1485 	Not enough memory exists to create private data for @var{osec}.
1486 
1487 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1488 .     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1489 .		(ibfd, isection, obfd, osection))
1490 */
1491 
1492 /*
1493 FUNCTION
1494 	bfd_generic_is_group_section
1495 
1496 SYNOPSIS
1497 	bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1498 
1499 DESCRIPTION
1500 	Returns TRUE if @var{sec} is a member of a group.
1501 */
1502 
1503 bfd_boolean
1504 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1505 			      const asection *sec ATTRIBUTE_UNUSED)
1506 {
1507   return FALSE;
1508 }
1509 
1510 /*
1511 FUNCTION
1512 	bfd_generic_discard_group
1513 
1514 SYNOPSIS
1515 	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1516 
1517 DESCRIPTION
1518 	Remove all members of @var{group} from the output.
1519 */
1520 
1521 bfd_boolean
1522 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1523 			   asection *group ATTRIBUTE_UNUSED)
1524 {
1525   return TRUE;
1526 }
1527