1 // expression.cc -- expressions in linker scripts for gold
2 
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <string>
26 
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34 
35 namespace gold
36 {
37 
38 // This file holds the code which handles linker expressions.
39 
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment.  The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols.  We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46 
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50 
51 struct Expression::Expression_eval_info
52 {
53   // The symbol table.
54   const Symbol_table* symtab;
55   // The layout--we use this to get section information.
56   const Layout* layout;
57   // Whether to check assertions.
58   bool check_assertions;
59   // Whether expressions can refer to the dot symbol.  The dot symbol
60   // is only available within a SECTIONS clause.
61   bool is_dot_available;
62   // The current value of the dot symbol.
63   uint64_t dot_value;
64   // The section in which the dot symbol is defined; this is NULL if
65   // it is absolute.
66   Output_section* dot_section;
67   // Points to where the section of the result should be stored.
68   Output_section** result_section_pointer;
69 };
70 
71 // Evaluate an expression.
72 
73 uint64_t
74 Expression::eval(const Symbol_table* symtab, const Layout* layout,
75 		 bool check_assertions)
76 {
77   Output_section* dummy;
78   return this->eval_maybe_dot(symtab, layout, check_assertions,
79 			      false, 0, NULL, &dummy);
80 }
81 
82 // Evaluate an expression which may refer to the dot symbol.
83 
84 uint64_t
85 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
86 			  bool check_assertions, uint64_t dot_value,
87 			  Output_section* dot_section,
88 			  Output_section** result_section_pointer)
89 {
90   return this->eval_maybe_dot(symtab, layout, check_assertions, true,
91 			      dot_value, dot_section, result_section_pointer);
92 }
93 
94 // Evaluate an expression which may or may not refer to the dot
95 // symbol.
96 
97 uint64_t
98 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
99 			   bool check_assertions, bool is_dot_available,
100 			   uint64_t dot_value, Output_section* dot_section,
101 			   Output_section** result_section_pointer)
102 {
103   Expression_eval_info eei;
104   eei.symtab = symtab;
105   eei.layout = layout;
106   eei.check_assertions = check_assertions;
107   eei.is_dot_available = is_dot_available;
108   eei.dot_value = dot_value;
109   eei.dot_section = dot_section;
110 
111   // We assume the value is absolute, and only set this to a section
112   // if we find a section relative reference.
113   *result_section_pointer = NULL;
114   eei.result_section_pointer = result_section_pointer;
115 
116   return this->value(&eei);
117 }
118 
119 // A number.
120 
121 class Integer_expression : public Expression
122 {
123  public:
124   Integer_expression(uint64_t val)
125     : val_(val)
126   { }
127 
128   uint64_t
129   value(const Expression_eval_info*)
130   { return this->val_; }
131 
132   void
133   print(FILE* f) const
134   { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
135 
136  private:
137   uint64_t val_;
138 };
139 
140 extern "C" Expression*
141 script_exp_integer(uint64_t val)
142 {
143   return new Integer_expression(val);
144 }
145 
146 // An expression whose value is the value of a symbol.
147 
148 class Symbol_expression : public Expression
149 {
150  public:
151   Symbol_expression(const char* name, size_t length)
152     : name_(name, length)
153   { }
154 
155   uint64_t
156   value(const Expression_eval_info*);
157 
158   void
159   print(FILE* f) const
160   { fprintf(f, "%s", this->name_.c_str()); }
161 
162  private:
163   std::string name_;
164 };
165 
166 uint64_t
167 Symbol_expression::value(const Expression_eval_info* eei)
168 {
169   Symbol* sym = eei->symtab->lookup(this->name_.c_str());
170   if (sym == NULL || !sym->is_defined())
171     {
172       gold_error(_("undefined symbol '%s' referenced in expression"),
173 		 this->name_.c_str());
174       return 0;
175     }
176 
177   *eei->result_section_pointer = sym->output_section();
178 
179   if (parameters->target().get_size() == 32)
180     return eei->symtab->get_sized_symbol<32>(sym)->value();
181   else if (parameters->target().get_size() == 64)
182     return eei->symtab->get_sized_symbol<64>(sym)->value();
183   else
184     gold_unreachable();
185 }
186 
187 // An expression whose value is the value of the special symbol ".".
188 // This is only valid within a SECTIONS clause.
189 
190 class Dot_expression : public Expression
191 {
192  public:
193   Dot_expression()
194   { }
195 
196   uint64_t
197   value(const Expression_eval_info*);
198 
199   void
200   print(FILE* f) const
201   { fprintf(f, "."); }
202 };
203 
204 uint64_t
205 Dot_expression::value(const Expression_eval_info* eei)
206 {
207   if (!eei->is_dot_available)
208     {
209       gold_error(_("invalid reference to dot symbol outside of "
210 		   "SECTIONS clause"));
211       return 0;
212     }
213   *eei->result_section_pointer = eei->dot_section;
214   return eei->dot_value;
215 }
216 
217 // A string.  This is either the name of a symbol, or ".".
218 
219 extern "C" Expression*
220 script_exp_string(const char* name, size_t length)
221 {
222   if (length == 1 && name[0] == '.')
223     return new Dot_expression();
224   else
225     return new Symbol_expression(name, length);
226 }
227 
228 // A unary expression.
229 
230 class Unary_expression : public Expression
231 {
232  public:
233   Unary_expression(Expression* arg)
234     : arg_(arg)
235   { }
236 
237   ~Unary_expression()
238   { delete this->arg_; }
239 
240  protected:
241   uint64_t
242   arg_value(const Expression_eval_info* eei,
243 	    Output_section** arg_section_pointer) const
244   {
245     return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
246 				      eei->check_assertions,
247 				      eei->is_dot_available,
248 				      eei->dot_value,
249 				      eei->dot_section,
250 				      arg_section_pointer);
251   }
252 
253   void
254   arg_print(FILE* f) const
255   { this->arg_->print(f); }
256 
257  private:
258   Expression* arg_;
259 };
260 
261 // Handle unary operators.  We use a preprocessor macro as a hack to
262 // capture the C operator.
263 
264 #define UNARY_EXPRESSION(NAME, OPERATOR)				\
265   class Unary_ ## NAME : public Unary_expression			\
266   {									\
267   public:								\
268     Unary_ ## NAME(Expression* arg)					\
269       : Unary_expression(arg)						\
270     { }									\
271     									\
272     uint64_t								\
273     value(const Expression_eval_info* eei)				\
274     {									\
275       Output_section* arg_section;					\
276       uint64_t ret = OPERATOR this->arg_value(eei, &arg_section);	\
277       if (arg_section != NULL && parameters->options().relocatable())	\
278 	gold_warning(_("unary " #NAME " applied to section "		\
279 		       "relative value"));				\
280       return ret;							\
281     }									\
282 									\
283     void								\
284     print(FILE* f) const						\
285     {									\
286       fprintf(f, "(%s ", #OPERATOR);					\
287       this->arg_print(f);						\
288       fprintf(f, ")");							\
289     }									\
290   };									\
291 									\
292   extern "C" Expression*						\
293   script_exp_unary_ ## NAME(Expression* arg)				\
294   {									\
295       return new Unary_ ## NAME(arg);					\
296   }
297 
298 UNARY_EXPRESSION(minus, -)
299 UNARY_EXPRESSION(logical_not, !)
300 UNARY_EXPRESSION(bitwise_not, ~)
301 
302 // A binary expression.
303 
304 class Binary_expression : public Expression
305 {
306  public:
307   Binary_expression(Expression* left, Expression* right)
308     : left_(left), right_(right)
309   { }
310 
311   ~Binary_expression()
312   {
313     delete this->left_;
314     delete this->right_;
315   }
316 
317  protected:
318   uint64_t
319   left_value(const Expression_eval_info* eei,
320 	     Output_section** section_pointer) const
321   {
322     return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
323 				       eei->check_assertions,
324 				       eei->is_dot_available,
325 				       eei->dot_value,
326 				       eei->dot_section,
327 				       section_pointer);
328   }
329 
330   uint64_t
331   right_value(const Expression_eval_info* eei,
332 	      Output_section** section_pointer) const
333   {
334     return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
335 					eei->check_assertions,
336 					eei->is_dot_available,
337 					eei->dot_value,
338 					eei->dot_section,
339 					section_pointer);
340   }
341 
342   void
343   left_print(FILE* f) const
344   { this->left_->print(f); }
345 
346   void
347   right_print(FILE* f) const
348   { this->right_->print(f); }
349 
350   // This is a call to function FUNCTION_NAME.  Print it.  This is for
351   // debugging.
352   void
353   print_function(FILE* f, const char *function_name) const
354   {
355     fprintf(f, "%s(", function_name);
356     this->left_print(f);
357     fprintf(f, ", ");
358     this->right_print(f);
359     fprintf(f, ")");
360   }
361 
362  private:
363   Expression* left_;
364   Expression* right_;
365 };
366 
367 // Handle binary operators.  We use a preprocessor macro as a hack to
368 // capture the C operator.  KEEP_LEFT means that if the left operand
369 // is section relative and the right operand is not, the result uses
370 // the same section as the left operand.  KEEP_RIGHT is the same with
371 // left and right swapped.  IS_DIV means that we need to give an error
372 // if the right operand is zero.  WARN means that we should warn if
373 // used on section relative values in a relocatable link.  We always
374 // warn if used on values in different sections in a relocatable link.
375 
376 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
377   class Binary_ ## NAME : public Binary_expression			\
378   {									\
379   public:								\
380     Binary_ ## NAME(Expression* left, Expression* right)		\
381       : Binary_expression(left, right)					\
382     { }									\
383 									\
384     uint64_t								\
385     value(const Expression_eval_info* eei)				\
386     {									\
387       Output_section* left_section;					\
388       uint64_t left = this->left_value(eei, &left_section);		\
389       Output_section* right_section;					\
390       uint64_t right = this->right_value(eei, &right_section);		\
391       if (KEEP_RIGHT && left_section == NULL && right_section != NULL)	\
392 	*eei->result_section_pointer = right_section;			\
393       else if (KEEP_LEFT						\
394 	       && left_section != NULL					\
395 	       && right_section == NULL)				\
396 	*eei->result_section_pointer = left_section;			\
397       else if ((WARN || left_section != right_section)			\
398 	       && (left_section != NULL || right_section != NULL)	\
399 	       && parameters->options().relocatable())			\
400 	gold_warning(_("binary " #NAME " applied to section "		\
401 		       "relative value"));				\
402       if (IS_DIV && right == 0)						\
403 	{								\
404 	  gold_error(_(#NAME " by zero"));				\
405 	  return 0;							\
406 	}								\
407       return left OPERATOR right;					\
408     }									\
409 									\
410     void								\
411     print(FILE* f) const						\
412     {									\
413       fprintf(f, "(");							\
414       this->left_print(f);						\
415       fprintf(f, " %s ", #OPERATOR);					\
416       this->right_print(f);						\
417       fprintf(f, ")");							\
418     }									\
419   };									\
420 									\
421   extern "C" Expression*						\
422   script_exp_binary_ ## NAME(Expression* left, Expression* right)	\
423   {									\
424     return new Binary_ ## NAME(left, right);				\
425   }
426 
427 BINARY_EXPRESSION(mult, *, false, false, false, true)
428 BINARY_EXPRESSION(div, /, false, false, true, true)
429 BINARY_EXPRESSION(mod, %, false, false, true, true)
430 BINARY_EXPRESSION(add, +, true, true, false, true)
431 BINARY_EXPRESSION(sub, -, true, false, false, false)
432 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
433 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
434 BINARY_EXPRESSION(eq, ==, false, false, false, false)
435 BINARY_EXPRESSION(ne, !=, false, false, false, false)
436 BINARY_EXPRESSION(le, <=, false, false, false, false)
437 BINARY_EXPRESSION(ge, >=, false, false, false, false)
438 BINARY_EXPRESSION(lt, <, false, false, false, false)
439 BINARY_EXPRESSION(gt, >, false, false, false, false)
440 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
441 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
442 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
443 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
444 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
445 
446 // A trinary expression.
447 
448 class Trinary_expression : public Expression
449 {
450  public:
451   Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
452     : arg1_(arg1), arg2_(arg2), arg3_(arg3)
453   { }
454 
455   ~Trinary_expression()
456   {
457     delete this->arg1_;
458     delete this->arg2_;
459     delete this->arg3_;
460   }
461 
462  protected:
463   uint64_t
464   arg1_value(const Expression_eval_info* eei,
465 	     Output_section** section_pointer) const
466   {
467     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
468 				       eei->check_assertions,
469 				       eei->is_dot_available,
470 				       eei->dot_value,
471 				       eei->dot_section,
472 				       section_pointer);
473   }
474 
475   uint64_t
476   arg2_value(const Expression_eval_info* eei,
477 	     Output_section** section_pointer) const
478   {
479     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
480 				       eei->check_assertions,
481 				       eei->is_dot_available,
482 				       eei->dot_value,
483 				       eei->dot_section,
484 				       section_pointer);
485   }
486 
487   uint64_t
488   arg3_value(const Expression_eval_info* eei,
489 	     Output_section** section_pointer) const
490   {
491     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
492 				       eei->check_assertions,
493 				       eei->is_dot_available,
494 				       eei->dot_value,
495 				       eei->dot_section,
496 				       section_pointer);
497   }
498 
499   void
500   arg1_print(FILE* f) const
501   { this->arg1_->print(f); }
502 
503   void
504   arg2_print(FILE* f) const
505   { this->arg2_->print(f); }
506 
507   void
508   arg3_print(FILE* f) const
509   { this->arg3_->print(f); }
510 
511  private:
512   Expression* arg1_;
513   Expression* arg2_;
514   Expression* arg3_;
515 };
516 
517 // The conditional operator.
518 
519 class Trinary_cond : public Trinary_expression
520 {
521  public:
522   Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
523     : Trinary_expression(arg1, arg2, arg3)
524   { }
525 
526   uint64_t
527   value(const Expression_eval_info* eei)
528   {
529     Output_section* arg1_section;
530     uint64_t arg1 = this->arg1_value(eei, &arg1_section);
531     return (arg1
532 	    ? this->arg2_value(eei, eei->result_section_pointer)
533 	    : this->arg3_value(eei, eei->result_section_pointer));
534   }
535 
536   void
537   print(FILE* f) const
538   {
539     fprintf(f, "(");
540     this->arg1_print(f);
541     fprintf(f, " ? ");
542     this->arg2_print(f);
543     fprintf(f, " : ");
544     this->arg3_print(f);
545     fprintf(f, ")");
546   }
547 };
548 
549 extern "C" Expression*
550 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
551 {
552   return new Trinary_cond(arg1, arg2, arg3);
553 }
554 
555 // Max function.
556 
557 class Max_expression : public Binary_expression
558 {
559  public:
560   Max_expression(Expression* left, Expression* right)
561     : Binary_expression(left, right)
562   { }
563 
564   uint64_t
565   value(const Expression_eval_info* eei)
566   {
567     Output_section* left_section;
568     uint64_t left = this->left_value(eei, &left_section);
569     Output_section* right_section;
570     uint64_t right = this->right_value(eei, &right_section);
571     if (left_section == right_section)
572       *eei->result_section_pointer = left_section;
573     else if ((left_section != NULL || right_section != NULL)
574 	     && parameters->options().relocatable())
575       gold_warning(_("max applied to section relative value"));
576     return std::max(left, right);
577   }
578 
579   void
580   print(FILE* f) const
581   { this->print_function(f, "MAX"); }
582 };
583 
584 extern "C" Expression*
585 script_exp_function_max(Expression* left, Expression* right)
586 {
587   return new Max_expression(left, right);
588 }
589 
590 // Min function.
591 
592 class Min_expression : public Binary_expression
593 {
594  public:
595   Min_expression(Expression* left, Expression* right)
596     : Binary_expression(left, right)
597   { }
598 
599   uint64_t
600   value(const Expression_eval_info* eei)
601   {
602     Output_section* left_section;
603     uint64_t left = this->left_value(eei, &left_section);
604     Output_section* right_section;
605     uint64_t right = this->right_value(eei, &right_section);
606     if (left_section == right_section)
607       *eei->result_section_pointer = left_section;
608     else if ((left_section != NULL || right_section != NULL)
609 	     && parameters->options().relocatable())
610       gold_warning(_("min applied to section relative value"));
611     return std::min(left, right);
612   }
613 
614   void
615   print(FILE* f) const
616   { this->print_function(f, "MIN"); }
617 };
618 
619 extern "C" Expression*
620 script_exp_function_min(Expression* left, Expression* right)
621 {
622   return new Min_expression(left, right);
623 }
624 
625 // Class Section_expression.  This is a parent class used for
626 // functions which take the name of an output section.
627 
628 class Section_expression : public Expression
629 {
630  public:
631   Section_expression(const char* section_name, size_t section_name_len)
632     : section_name_(section_name, section_name_len)
633   { }
634 
635   uint64_t
636   value(const Expression_eval_info*);
637 
638   void
639   print(FILE* f) const
640   { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
641 
642  protected:
643   // The child class must implement this.
644   virtual uint64_t
645   value_from_output_section(const Expression_eval_info*,
646 			    Output_section*) = 0;
647 
648   // The child class must implement this.
649   virtual uint64_t
650   value_from_script_output_section(uint64_t address, uint64_t load_address,
651                                    uint64_t addralign, uint64_t size) = 0;
652 
653   // The child class must implement this.
654   virtual const char*
655   function_name() const = 0;
656 
657  private:
658   std::string section_name_;
659 };
660 
661 uint64_t
662 Section_expression::value(const Expression_eval_info* eei)
663 {
664   const char* section_name = this->section_name_.c_str();
665   Output_section* os = eei->layout->find_output_section(section_name);
666   if (os != NULL)
667     return this->value_from_output_section(eei, os);
668 
669   uint64_t address;
670   uint64_t load_address;
671   uint64_t addralign;
672   uint64_t size;
673   const Script_options* ss = eei->layout->script_options();
674   if (ss->saw_sections_clause())
675     {
676       if (ss->script_sections()->get_output_section_info(section_name,
677                                                          &address,
678                                                          &load_address,
679                                                          &addralign,
680                                                          &size))
681         return this->value_from_script_output_section(address, load_address,
682                                                       addralign, size);
683     }
684 
685   gold_error("%s called on nonexistent output section '%s'",
686              this->function_name(), section_name);
687   return 0;
688 }
689 
690 // ABSOLUTE function.
691 
692 class Absolute_expression : public Unary_expression
693 {
694  public:
695   Absolute_expression(Expression* arg)
696     : Unary_expression(arg)
697   { }
698 
699   uint64_t
700   value(const Expression_eval_info* eei)
701   {
702     Output_section* dummy;
703     uint64_t ret = this->arg_value(eei, &dummy);
704     // Force the value to be absolute.
705     *eei->result_section_pointer = NULL;
706     return ret;
707   }
708 
709   void
710   print(FILE* f) const
711   {
712     fprintf(f, "ABSOLUTE(");
713     this->arg_print(f);
714     fprintf(f, ")");
715   }
716 };
717 
718 extern "C" Expression*
719 script_exp_function_absolute(Expression* arg)
720 {
721   return new Absolute_expression(arg);
722 }
723 
724 // ALIGN function.
725 
726 class Align_expression : public Binary_expression
727 {
728  public:
729   Align_expression(Expression* left, Expression* right)
730     : Binary_expression(left, right)
731   { }
732 
733   uint64_t
734   value(const Expression_eval_info* eei)
735   {
736     Output_section* align_section;
737     uint64_t align = this->right_value(eei, &align_section);
738     if (align_section != NULL
739 	&& parameters->options().relocatable())
740       gold_warning(_("aligning to section relative value"));
741 
742     uint64_t value = this->left_value(eei, eei->result_section_pointer);
743     if (align <= 1)
744       return value;
745     return ((value + align - 1) / align) * align;
746   }
747 
748   void
749   print(FILE* f) const
750   { this->print_function(f, "ALIGN"); }
751 };
752 
753 extern "C" Expression*
754 script_exp_function_align(Expression* left, Expression* right)
755 {
756   return new Align_expression(left, right);
757 }
758 
759 // ASSERT function.
760 
761 class Assert_expression : public Unary_expression
762 {
763  public:
764   Assert_expression(Expression* arg, const char* message, size_t length)
765     : Unary_expression(arg), message_(message, length)
766   { }
767 
768   uint64_t
769   value(const Expression_eval_info* eei)
770   {
771     uint64_t value = this->arg_value(eei, eei->result_section_pointer);
772     if (!value && eei->check_assertions)
773       gold_error("%s", this->message_.c_str());
774     return value;
775   }
776 
777   void
778   print(FILE* f) const
779   {
780     fprintf(f, "ASSERT(");
781     this->arg_print(f);
782     fprintf(f, ", %s)", this->message_.c_str());
783   }
784 
785  private:
786   std::string message_;
787 };
788 
789 extern "C" Expression*
790 script_exp_function_assert(Expression* expr, const char* message,
791 			   size_t length)
792 {
793   return new Assert_expression(expr, message, length);
794 }
795 
796 // ADDR function.
797 
798 class Addr_expression : public Section_expression
799 {
800  public:
801   Addr_expression(const char* section_name, size_t section_name_len)
802     : Section_expression(section_name, section_name_len)
803   { }
804 
805  protected:
806   uint64_t
807   value_from_output_section(const Expression_eval_info* eei,
808 			    Output_section* os)
809   {
810     *eei->result_section_pointer = os;
811     return os->address();
812   }
813 
814   uint64_t
815   value_from_script_output_section(uint64_t address, uint64_t, uint64_t,
816                                    uint64_t)
817   { return address; }
818 
819   const char*
820   function_name() const
821   { return "ADDR"; }
822 };
823 
824 extern "C" Expression*
825 script_exp_function_addr(const char* section_name, size_t section_name_len)
826 {
827   return new Addr_expression(section_name, section_name_len);
828 }
829 
830 // ALIGNOF.
831 
832 class Alignof_expression : public Section_expression
833 {
834  public:
835   Alignof_expression(const char* section_name, size_t section_name_len)
836     : Section_expression(section_name, section_name_len)
837   { }
838 
839  protected:
840   uint64_t
841   value_from_output_section(const Expression_eval_info*,
842 			    Output_section* os)
843   { return os->addralign(); }
844 
845   uint64_t
846   value_from_script_output_section(uint64_t, uint64_t, uint64_t addralign,
847                                    uint64_t)
848   { return addralign; }
849 
850   const char*
851   function_name() const
852   { return "ALIGNOF"; }
853 };
854 
855 extern "C" Expression*
856 script_exp_function_alignof(const char* section_name, size_t section_name_len)
857 {
858   return new Alignof_expression(section_name, section_name_len);
859 }
860 
861 // CONSTANT.  It would be nice if we could simply evaluate this
862 // immediately and return an Integer_expression, but unfortunately we
863 // don't know the target.
864 
865 class Constant_expression : public Expression
866 {
867  public:
868   Constant_expression(const char* name, size_t length);
869 
870   uint64_t
871   value(const Expression_eval_info*);
872 
873   void
874   print(FILE* f) const;
875 
876  private:
877   enum Constant_function
878   {
879     CONSTANT_MAXPAGESIZE,
880     CONSTANT_COMMONPAGESIZE
881   };
882 
883   Constant_function function_;
884 };
885 
886 Constant_expression::Constant_expression(const char* name, size_t length)
887 {
888   if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
889     this->function_ = CONSTANT_MAXPAGESIZE;
890   else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
891     this->function_ = CONSTANT_COMMONPAGESIZE;
892   else
893     {
894       std::string s(name, length);
895       gold_error(_("unknown constant %s"), s.c_str());
896       this->function_ = CONSTANT_MAXPAGESIZE;
897     }
898 }
899 
900 uint64_t
901 Constant_expression::value(const Expression_eval_info*)
902 {
903   switch (this->function_)
904     {
905     case CONSTANT_MAXPAGESIZE:
906       return parameters->target().abi_pagesize();
907     case CONSTANT_COMMONPAGESIZE:
908       return parameters->target().common_pagesize();
909     default:
910       gold_unreachable();
911     }
912 }
913 
914 void
915 Constant_expression::print(FILE* f) const
916 {
917   const char* name;
918   switch (this->function_)
919     {
920     case CONSTANT_MAXPAGESIZE:
921       name = "MAXPAGESIZE";
922       break;
923     case CONSTANT_COMMONPAGESIZE:
924       name = "COMMONPAGESIZE";
925       break;
926     default:
927       gold_unreachable();
928     }
929   fprintf(f, "CONSTANT(%s)", name);
930 }
931 
932 extern "C" Expression*
933 script_exp_function_constant(const char* name, size_t length)
934 {
935   return new Constant_expression(name, length);
936 }
937 
938 // DATA_SEGMENT_ALIGN.  FIXME: we don't implement this; we always fall
939 // back to the general case.
940 
941 extern "C" Expression*
942 script_exp_function_data_segment_align(Expression* left, Expression*)
943 {
944   Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
945   Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
946   Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
947 						 e2);
948   return script_exp_binary_add(e1, e3);
949 }
950 
951 // DATA_SEGMENT_RELRO.  FIXME: This is not implemented.
952 
953 extern "C" Expression*
954 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
955 {
956   return right;
957 }
958 
959 // DATA_SEGMENT_END.  FIXME: This is not implemented.
960 
961 extern "C" Expression*
962 script_exp_function_data_segment_end(Expression* val)
963 {
964   return val;
965 }
966 
967 // DEFINED function.
968 
969 class Defined_expression : public Expression
970 {
971  public:
972   Defined_expression(const char* symbol_name, size_t symbol_name_len)
973     : symbol_name_(symbol_name, symbol_name_len)
974   { }
975 
976   uint64_t
977   value(const Expression_eval_info* eei)
978   {
979     Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
980     return sym != NULL && sym->is_defined();
981   }
982 
983   void
984   print(FILE* f) const
985   { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
986 
987  private:
988   std::string symbol_name_;
989 };
990 
991 extern "C" Expression*
992 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
993 {
994   return new Defined_expression(symbol_name, symbol_name_len);
995 }
996 
997 // LOADADDR function
998 
999 class Loadaddr_expression : public Section_expression
1000 {
1001  public:
1002   Loadaddr_expression(const char* section_name, size_t section_name_len)
1003     : Section_expression(section_name, section_name_len)
1004   { }
1005 
1006  protected:
1007   uint64_t
1008   value_from_output_section(const Expression_eval_info* eei,
1009 			    Output_section* os)
1010   {
1011     if (os->has_load_address())
1012       return os->load_address();
1013     else
1014       {
1015 	*eei->result_section_pointer = os;
1016 	return os->address();
1017       }
1018   }
1019 
1020   uint64_t
1021   value_from_script_output_section(uint64_t, uint64_t load_address, uint64_t,
1022                                    uint64_t)
1023   { return load_address; }
1024 
1025   const char*
1026   function_name() const
1027   { return "LOADADDR"; }
1028 };
1029 
1030 extern "C" Expression*
1031 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
1032 {
1033   return new Loadaddr_expression(section_name, section_name_len);
1034 }
1035 
1036 // SIZEOF function
1037 
1038 class Sizeof_expression : public Section_expression
1039 {
1040  public:
1041   Sizeof_expression(const char* section_name, size_t section_name_len)
1042     : Section_expression(section_name, section_name_len)
1043   { }
1044 
1045  protected:
1046   uint64_t
1047   value_from_output_section(const Expression_eval_info*,
1048 			    Output_section* os)
1049   {
1050     // We can not use data_size here, as the size of the section may
1051     // not have been finalized.  Instead we get whatever the current
1052     // size is.  This will work correctly for backward references in
1053     // linker scripts.
1054     return os->current_data_size();
1055   }
1056 
1057   uint64_t
1058   value_from_script_output_section(uint64_t, uint64_t, uint64_t,
1059                                    uint64_t size)
1060   { return size; }
1061 
1062   const char*
1063   function_name() const
1064   { return "SIZEOF"; }
1065 };
1066 
1067 extern "C" Expression*
1068 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
1069 {
1070   return new Sizeof_expression(section_name, section_name_len);
1071 }
1072 
1073 // SIZEOF_HEADERS.
1074 
1075 class Sizeof_headers_expression : public Expression
1076 {
1077  public:
1078   Sizeof_headers_expression()
1079   { }
1080 
1081   uint64_t
1082   value(const Expression_eval_info*);
1083 
1084   void
1085   print(FILE* f) const
1086   { fprintf(f, "SIZEOF_HEADERS"); }
1087 };
1088 
1089 uint64_t
1090 Sizeof_headers_expression::value(const Expression_eval_info* eei)
1091 {
1092   unsigned int ehdr_size;
1093   unsigned int phdr_size;
1094   if (parameters->target().get_size() == 32)
1095     {
1096       ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
1097       phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
1098     }
1099   else if (parameters->target().get_size() == 64)
1100     {
1101       ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
1102       phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
1103     }
1104   else
1105     gold_unreachable();
1106 
1107   return ehdr_size + phdr_size * eei->layout->expected_segment_count();
1108 }
1109 
1110 extern "C" Expression*
1111 script_exp_function_sizeof_headers()
1112 {
1113   return new Sizeof_headers_expression();
1114 }
1115 
1116 // In the GNU linker SEGMENT_START basically returns the value for
1117 // -Ttext, -Tdata, or -Tbss.  We could implement this by copying the
1118 // values from General_options to Parameters.  But I doubt that
1119 // anybody actually uses it.  The point of it for the GNU linker was
1120 // because -Ttext set the address of the .text section rather than the
1121 // text segment.  In gold -Ttext sets the text segment address anyhow.
1122 
1123 extern "C" Expression*
1124 script_exp_function_segment_start(const char*, size_t, Expression*)
1125 {
1126   gold_fatal(_("SEGMENT_START not implemented"));
1127 }
1128 
1129 // Functions for memory regions.  These can not be implemented unless
1130 // and until we implement memory regions.
1131 
1132 extern "C" Expression*
1133 script_exp_function_origin(const char*, size_t)
1134 {
1135   gold_fatal(_("ORIGIN not implemented"));
1136 }
1137 
1138 extern "C" Expression*
1139 script_exp_function_length(const char*, size_t)
1140 {
1141   gold_fatal(_("LENGTH not implemented"));
1142 }
1143 
1144 } // End namespace gold.
1145