1 // output.cc -- manage the output file for gold
2 
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36 
37 #include "libiberty.h"
38 
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48 
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72 
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76 
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83 
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90 
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97 
98 #endif
99 
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104 
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109 
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113 
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118 
119 namespace gold
120 {
121 
122 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly.  If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126 
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131   if (parameters->options().posix_fallocate())
132     return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135   if (::fallocate(o, 0, offset, len) == 0)
136     return 0;
137 #endif // defined(HAVE_FALLOCATE)
138   if (::ftruncate(o, offset + len) < 0)
139     return errno;
140   return 0;
141 }
142 
143 // Output_data variables.
144 
145 bool Output_data::allocated_sizes_are_fixed;
146 
147 // Output_data methods.
148 
149 Output_data::~Output_data()
150 {
151 }
152 
153 // Return the default alignment for the target size.
154 
155 uint64_t
156 Output_data::default_alignment()
157 {
158   return Output_data::default_alignment_for_size(
159       parameters->target().get_size());
160 }
161 
162 // Return the default alignment for a size--32 or 64.
163 
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167   if (size == 32)
168     return 4;
169   else if (size == 64)
170     return 8;
171   else
172     gold_unreachable();
173 }
174 
175 // Output_section_header methods.  This currently assumes that the
176 // segment and section lists are complete at construction time.
177 
178 Output_section_headers::Output_section_headers(
179     const Layout* layout,
180     const Layout::Segment_list* segment_list,
181     const Layout::Section_list* section_list,
182     const Layout::Section_list* unattached_section_list,
183     const Stringpool* secnamepool,
184     const Output_section* shstrtab_section)
185   : layout_(layout),
186     segment_list_(segment_list),
187     section_list_(section_list),
188     unattached_section_list_(unattached_section_list),
189     secnamepool_(secnamepool),
190     shstrtab_section_(shstrtab_section)
191 {
192 }
193 
194 // Compute the current data size.
195 
196 off_t
197 Output_section_headers::do_size() const
198 {
199   // Count all the sections.  Start with 1 for the null section.
200   off_t count = 1;
201   if (!parameters->options().relocatable())
202     {
203       for (Layout::Segment_list::const_iterator p =
204 	     this->segment_list_->begin();
205 	   p != this->segment_list_->end();
206 	   ++p)
207 	if ((*p)->type() == elfcpp::PT_LOAD)
208 	  count += (*p)->output_section_count();
209     }
210   else
211     {
212       for (Layout::Section_list::const_iterator p =
213 	     this->section_list_->begin();
214 	   p != this->section_list_->end();
215 	   ++p)
216 	if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 	  ++count;
218     }
219   count += this->unattached_section_list_->size();
220 
221   const int size = parameters->target().get_size();
222   int shdr_size;
223   if (size == 32)
224     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225   else if (size == 64)
226     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227   else
228     gold_unreachable();
229 
230   return count * shdr_size;
231 }
232 
233 // Write out the section headers.
234 
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238   switch (parameters->size_and_endianness())
239     {
240 #ifdef HAVE_TARGET_32_LITTLE
241     case Parameters::TARGET_32_LITTLE:
242       this->do_sized_write<32, false>(of);
243       break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246     case Parameters::TARGET_32_BIG:
247       this->do_sized_write<32, true>(of);
248       break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251     case Parameters::TARGET_64_LITTLE:
252       this->do_sized_write<64, false>(of);
253       break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256     case Parameters::TARGET_64_BIG:
257       this->do_sized_write<64, true>(of);
258       break;
259 #endif
260     default:
261       gold_unreachable();
262     }
263 }
264 
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269   off_t all_shdrs_size = this->data_size();
270   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271 
272   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273   unsigned char* v = view;
274 
275   {
276     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277     oshdr.put_sh_name(0);
278     oshdr.put_sh_type(elfcpp::SHT_NULL);
279     oshdr.put_sh_flags(0);
280     oshdr.put_sh_addr(0);
281     oshdr.put_sh_offset(0);
282 
283     size_t section_count = (this->data_size()
284 			    / elfcpp::Elf_sizes<size>::shdr_size);
285     if (section_count < elfcpp::SHN_LORESERVE)
286       oshdr.put_sh_size(0);
287     else
288       oshdr.put_sh_size(section_count);
289 
290     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291     if (shstrndx < elfcpp::SHN_LORESERVE)
292       oshdr.put_sh_link(0);
293     else
294       oshdr.put_sh_link(shstrndx);
295 
296     size_t segment_count = this->segment_list_->size();
297     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298 
299     oshdr.put_sh_addralign(0);
300     oshdr.put_sh_entsize(0);
301   }
302 
303   v += shdr_size;
304 
305   unsigned int shndx = 1;
306   if (!parameters->options().relocatable())
307     {
308       for (Layout::Segment_list::const_iterator p =
309 	     this->segment_list_->begin();
310 	   p != this->segment_list_->end();
311 	   ++p)
312 	v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 							  this->secnamepool_,
314 							  v,
315 							  &shndx);
316     }
317   else
318     {
319       for (Layout::Section_list::const_iterator p =
320 	     this->section_list_->begin();
321 	   p != this->section_list_->end();
322 	   ++p)
323 	{
324 	  // We do unallocated sections below, except that group
325 	  // sections have to come first.
326 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 	      && (*p)->type() != elfcpp::SHT_GROUP)
328 	    continue;
329 	  gold_assert(shndx == (*p)->out_shndx());
330 	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 	  (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 	  v += shdr_size;
333 	  ++shndx;
334 	}
335     }
336 
337   for (Layout::Section_list::const_iterator p =
338 	 this->unattached_section_list_->begin();
339        p != this->unattached_section_list_->end();
340        ++p)
341     {
342       // For a relocatable link, we did unallocated group sections
343       // above, since they have to come first.
344       if ((*p)->type() == elfcpp::SHT_GROUP
345 	  && parameters->options().relocatable())
346 	continue;
347       gold_assert(shndx == (*p)->out_shndx());
348       elfcpp::Shdr_write<size, big_endian> oshdr(v);
349       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350       v += shdr_size;
351       ++shndx;
352     }
353 
354   of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356 
357 // Output_segment_header methods.
358 
359 Output_segment_headers::Output_segment_headers(
360     const Layout::Segment_list& segment_list)
361   : segment_list_(segment_list)
362 {
363   this->set_current_data_size_for_child(this->do_size());
364 }
365 
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369   switch (parameters->size_and_endianness())
370     {
371 #ifdef HAVE_TARGET_32_LITTLE
372     case Parameters::TARGET_32_LITTLE:
373       this->do_sized_write<32, false>(of);
374       break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377     case Parameters::TARGET_32_BIG:
378       this->do_sized_write<32, true>(of);
379       break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382     case Parameters::TARGET_64_LITTLE:
383       this->do_sized_write<64, false>(of);
384       break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387     case Parameters::TARGET_64_BIG:
388       this->do_sized_write<64, true>(of);
389       break;
390 #endif
391     default:
392       gold_unreachable();
393     }
394 }
395 
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402   gold_assert(all_phdrs_size == this->data_size());
403   unsigned char* view = of->get_output_view(this->offset(),
404 					    all_phdrs_size);
405   unsigned char* v = view;
406   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407        p != this->segment_list_.end();
408        ++p)
409     {
410       elfcpp::Phdr_write<size, big_endian> ophdr(v);
411       (*p)->write_header(&ophdr);
412       v += phdr_size;
413     }
414 
415   gold_assert(v - view == all_phdrs_size);
416 
417   of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419 
420 off_t
421 Output_segment_headers::do_size() const
422 {
423   const int size = parameters->target().get_size();
424   int phdr_size;
425   if (size == 32)
426     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427   else if (size == 64)
428     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429   else
430     gold_unreachable();
431 
432   return this->segment_list_.size() * phdr_size;
433 }
434 
435 // Output_file_header methods.
436 
437 Output_file_header::Output_file_header(Target* target,
438 				       const Symbol_table* symtab,
439 				       const Output_segment_headers* osh)
440   : target_(target),
441     symtab_(symtab),
442     segment_header_(osh),
443     section_header_(NULL),
444     shstrtab_(NULL)
445 {
446   this->set_data_size(this->do_size());
447 }
448 
449 // Set the section table information for a file header.
450 
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 				     const Output_section* shstrtab)
454 {
455   this->section_header_ = shdrs;
456   this->shstrtab_ = shstrtab;
457 }
458 
459 // Write out the file header.
460 
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464   gold_assert(this->offset() == 0);
465 
466   switch (parameters->size_and_endianness())
467     {
468 #ifdef HAVE_TARGET_32_LITTLE
469     case Parameters::TARGET_32_LITTLE:
470       this->do_sized_write<32, false>(of);
471       break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474     case Parameters::TARGET_32_BIG:
475       this->do_sized_write<32, true>(of);
476       break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479     case Parameters::TARGET_64_LITTLE:
480       this->do_sized_write<64, false>(of);
481       break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484     case Parameters::TARGET_64_BIG:
485       this->do_sized_write<64, true>(of);
486       break;
487 #endif
488     default:
489       gold_unreachable();
490     }
491 }
492 
493 // Write out the file header with appropriate size and endianness.
494 
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499   gold_assert(this->offset() == 0);
500 
501   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502   unsigned char* view = of->get_output_view(0, ehdr_size);
503   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504 
505   unsigned char e_ident[elfcpp::EI_NIDENT];
506   memset(e_ident, 0, elfcpp::EI_NIDENT);
507   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511   if (size == 32)
512     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513   else if (size == 64)
514     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515   else
516     gold_unreachable();
517   e_ident[elfcpp::EI_DATA] = (big_endian
518 			      ? elfcpp::ELFDATA2MSB
519 			      : elfcpp::ELFDATA2LSB);
520   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521   oehdr.put_e_ident(e_ident);
522 
523   elfcpp::ET e_type;
524   if (parameters->options().relocatable())
525     e_type = elfcpp::ET_REL;
526   else if (parameters->options().output_is_position_independent())
527     e_type = elfcpp::ET_DYN;
528   else
529     e_type = elfcpp::ET_EXEC;
530   oehdr.put_e_type(e_type);
531 
532   oehdr.put_e_machine(this->target_->machine_code());
533   oehdr.put_e_version(elfcpp::EV_CURRENT);
534 
535   oehdr.put_e_entry(this->entry<size>());
536 
537   if (this->segment_header_ == NULL)
538     oehdr.put_e_phoff(0);
539   else
540     oehdr.put_e_phoff(this->segment_header_->offset());
541 
542   oehdr.put_e_shoff(this->section_header_->offset());
543   oehdr.put_e_flags(this->target_->processor_specific_flags());
544   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545 
546   if (this->segment_header_ == NULL)
547     {
548       oehdr.put_e_phentsize(0);
549       oehdr.put_e_phnum(0);
550     }
551   else
552     {
553       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554       size_t phnum = (this->segment_header_->data_size()
555 		      / elfcpp::Elf_sizes<size>::phdr_size);
556       if (phnum > elfcpp::PN_XNUM)
557 	phnum = elfcpp::PN_XNUM;
558       oehdr.put_e_phnum(phnum);
559     }
560 
561   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562   size_t section_count = (this->section_header_->data_size()
563 			  / elfcpp::Elf_sizes<size>::shdr_size);
564 
565   if (section_count < elfcpp::SHN_LORESERVE)
566     oehdr.put_e_shnum(this->section_header_->data_size()
567 		      / elfcpp::Elf_sizes<size>::shdr_size);
568   else
569     oehdr.put_e_shnum(0);
570 
571   unsigned int shstrndx = this->shstrtab_->out_shndx();
572   if (shstrndx < elfcpp::SHN_LORESERVE)
573     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574   else
575     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576 
577   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578   // the e_ident field.
579   this->target_->adjust_elf_header(view, ehdr_size);
580 
581   of->write_output_view(0, ehdr_size, view);
582 }
583 
584 // Return the value to use for the entry address.
585 
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590   const bool should_issue_warning = (parameters->options().entry() != NULL
591 				     && !parameters->options().relocatable()
592 				     && !parameters->options().shared());
593   const char* entry = parameters->entry();
594   Symbol* sym = this->symtab_->lookup(entry);
595 
596   typename Sized_symbol<size>::Value_type v;
597   if (sym != NULL)
598     {
599       Sized_symbol<size>* ssym;
600       ssym = this->symtab_->get_sized_symbol<size>(sym);
601       if (!ssym->is_defined() && should_issue_warning)
602 	gold_warning("entry symbol '%s' exists but is not defined", entry);
603       v = ssym->value();
604     }
605   else
606     {
607       // We couldn't find the entry symbol.  See if we can parse it as
608       // a number.  This supports, e.g., -e 0x1000.
609       char* endptr;
610       v = strtoull(entry, &endptr, 0);
611       if (*endptr != '\0')
612 	{
613 	  if (should_issue_warning)
614 	    gold_warning("cannot find entry symbol '%s'", entry);
615 	  v = 0;
616 	}
617     }
618 
619   return v;
620 }
621 
622 // Compute the current data size.
623 
624 off_t
625 Output_file_header::do_size() const
626 {
627   const int size = parameters->target().get_size();
628   if (size == 32)
629     return elfcpp::Elf_sizes<32>::ehdr_size;
630   else if (size == 64)
631     return elfcpp::Elf_sizes<64>::ehdr_size;
632   else
633     gold_unreachable();
634 }
635 
636 // Output_data_const methods.
637 
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641   of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643 
644 // Output_data_const_buffer methods.
645 
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649   of->write(this->offset(), this->p_, this->data_size());
650 }
651 
652 // Output_section_data methods.
653 
654 // Record the output section, and set the entry size and such.
655 
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659   gold_assert(this->output_section_ == NULL);
660   this->output_section_ = os;
661   this->do_adjust_output_section(os);
662 }
663 
664 // Return the section index of the output section.
665 
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669   gold_assert(this->output_section_ != NULL);
670   return this->output_section_->out_shndx();
671 }
672 
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675 
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679   this->addralign_ = addralign;
680   if (this->output_section_ != NULL
681       && this->output_section_->addralign() < addralign)
682     this->output_section_->set_addralign(addralign);
683 }
684 
685 // Output_data_strtab methods.
686 
687 // Set the final data size.
688 
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692   this->strtab_->set_string_offsets();
693   this->set_data_size(this->strtab_->get_strtab_size());
694 }
695 
696 // Write out a string table.
697 
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701   this->strtab_->write(of, this->offset());
702 }
703 
704 // Output_reloc methods.
705 
706 // A reloc against a global symbol.
707 
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710     Symbol* gsym,
711     unsigned int type,
712     Output_data* od,
713     Address address,
714     bool is_relative,
715     bool is_symbolless,
716     bool use_plt_offset)
717   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718     is_relative_(is_relative), is_symbolless_(is_symbolless),
719     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721   // this->type_ is a bitfield; make sure TYPE fits.
722   gold_assert(this->type_ == type);
723   this->u1_.gsym = gsym;
724   this->u2_.od = od;
725   if (dynamic)
726     this->set_needs_dynsym_index();
727 }
728 
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731     Symbol* gsym,
732     unsigned int type,
733     Sized_relobj<size, big_endian>* relobj,
734     unsigned int shndx,
735     Address address,
736     bool is_relative,
737     bool is_symbolless,
738     bool use_plt_offset)
739   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740     is_relative_(is_relative), is_symbolless_(is_symbolless),
741     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743   gold_assert(shndx != INVALID_CODE);
744   // this->type_ is a bitfield; make sure TYPE fits.
745   gold_assert(this->type_ == type);
746   this->u1_.gsym = gsym;
747   this->u2_.relobj = relobj;
748   if (dynamic)
749     this->set_needs_dynsym_index();
750 }
751 
752 // A reloc against a local symbol.
753 
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756     Sized_relobj<size, big_endian>* relobj,
757     unsigned int local_sym_index,
758     unsigned int type,
759     Output_data* od,
760     Address address,
761     bool is_relative,
762     bool is_symbolless,
763     bool is_section_symbol,
764     bool use_plt_offset)
765   : address_(address), local_sym_index_(local_sym_index), type_(type),
766     is_relative_(is_relative), is_symbolless_(is_symbolless),
767     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768     shndx_(INVALID_CODE)
769 {
770   gold_assert(local_sym_index != GSYM_CODE
771 	      && local_sym_index != INVALID_CODE);
772   // this->type_ is a bitfield; make sure TYPE fits.
773   gold_assert(this->type_ == type);
774   this->u1_.relobj = relobj;
775   this->u2_.od = od;
776   if (dynamic)
777     this->set_needs_dynsym_index();
778 }
779 
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782     Sized_relobj<size, big_endian>* relobj,
783     unsigned int local_sym_index,
784     unsigned int type,
785     unsigned int shndx,
786     Address address,
787     bool is_relative,
788     bool is_symbolless,
789     bool is_section_symbol,
790     bool use_plt_offset)
791   : address_(address), local_sym_index_(local_sym_index), type_(type),
792     is_relative_(is_relative), is_symbolless_(is_symbolless),
793     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794     shndx_(shndx)
795 {
796   gold_assert(local_sym_index != GSYM_CODE
797 	      && local_sym_index != INVALID_CODE);
798   gold_assert(shndx != INVALID_CODE);
799   // this->type_ is a bitfield; make sure TYPE fits.
800   gold_assert(this->type_ == type);
801   this->u1_.relobj = relobj;
802   this->u2_.relobj = relobj;
803   if (dynamic)
804     this->set_needs_dynsym_index();
805 }
806 
807 // A reloc against the STT_SECTION symbol of an output section.
808 
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811     Output_section* os,
812     unsigned int type,
813     Output_data* od,
814     Address address,
815     bool is_relative)
816   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817     is_relative_(is_relative), is_symbolless_(is_relative),
818     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820   // this->type_ is a bitfield; make sure TYPE fits.
821   gold_assert(this->type_ == type);
822   this->u1_.os = os;
823   this->u2_.od = od;
824   if (dynamic)
825     this->set_needs_dynsym_index();
826   else
827     os->set_needs_symtab_index();
828 }
829 
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832     Output_section* os,
833     unsigned int type,
834     Sized_relobj<size, big_endian>* relobj,
835     unsigned int shndx,
836     Address address,
837     bool is_relative)
838   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839     is_relative_(is_relative), is_symbolless_(is_relative),
840     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842   gold_assert(shndx != INVALID_CODE);
843   // this->type_ is a bitfield; make sure TYPE fits.
844   gold_assert(this->type_ == type);
845   this->u1_.os = os;
846   this->u2_.relobj = relobj;
847   if (dynamic)
848     this->set_needs_dynsym_index();
849   else
850     os->set_needs_symtab_index();
851 }
852 
853 // An absolute or relative relocation.
854 
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857     unsigned int type,
858     Output_data* od,
859     Address address,
860     bool is_relative)
861   : address_(address), local_sym_index_(0), type_(type),
862     is_relative_(is_relative), is_symbolless_(false),
863     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865   // this->type_ is a bitfield; make sure TYPE fits.
866   gold_assert(this->type_ == type);
867   this->u1_.relobj = NULL;
868   this->u2_.od = od;
869 }
870 
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873     unsigned int type,
874     Sized_relobj<size, big_endian>* relobj,
875     unsigned int shndx,
876     Address address,
877     bool is_relative)
878   : address_(address), local_sym_index_(0), type_(type),
879     is_relative_(is_relative), is_symbolless_(false),
880     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881 {
882   gold_assert(shndx != INVALID_CODE);
883   // this->type_ is a bitfield; make sure TYPE fits.
884   gold_assert(this->type_ == type);
885   this->u1_.relobj = NULL;
886   this->u2_.relobj = relobj;
887 }
888 
889 // A target specific relocation.
890 
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893     unsigned int type,
894     void* arg,
895     Output_data* od,
896     Address address)
897   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898     is_relative_(false), is_symbolless_(false),
899     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900 {
901   // this->type_ is a bitfield; make sure TYPE fits.
902   gold_assert(this->type_ == type);
903   this->u1_.arg = arg;
904   this->u2_.od = od;
905 }
906 
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909     unsigned int type,
910     void* arg,
911     Sized_relobj<size, big_endian>* relobj,
912     unsigned int shndx,
913     Address address)
914   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915     is_relative_(false), is_symbolless_(false),
916     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917 {
918   gold_assert(shndx != INVALID_CODE);
919   // this->type_ is a bitfield; make sure TYPE fits.
920   gold_assert(this->type_ == type);
921   this->u1_.arg = arg;
922   this->u2_.relobj = relobj;
923 }
924 
925 // Record that we need a dynamic symbol index for this relocation.
926 
927 template<bool dynamic, int size, bool big_endian>
928 void
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
931 {
932   if (this->is_symbolless_)
933     return;
934   switch (this->local_sym_index_)
935     {
936     case INVALID_CODE:
937       gold_unreachable();
938 
939     case GSYM_CODE:
940       this->u1_.gsym->set_needs_dynsym_entry();
941       break;
942 
943     case SECTION_CODE:
944       this->u1_.os->set_needs_dynsym_index();
945       break;
946 
947     case TARGET_CODE:
948       // The target must take care of this if necessary.
949       break;
950 
951     case 0:
952       break;
953 
954     default:
955       {
956 	const unsigned int lsi = this->local_sym_index_;
957 	Sized_relobj_file<size, big_endian>* relobj =
958 	    this->u1_.relobj->sized_relobj();
959 	gold_assert(relobj != NULL);
960 	if (!this->is_section_symbol_)
961 	  relobj->set_needs_output_dynsym_entry(lsi);
962 	else
963 	  relobj->output_section(lsi)->set_needs_dynsym_index();
964       }
965       break;
966     }
967 }
968 
969 // Get the symbol index of a relocation.
970 
971 template<bool dynamic, int size, bool big_endian>
972 unsigned int
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974   const
975 {
976   unsigned int index;
977   if (this->is_symbolless_)
978     return 0;
979   switch (this->local_sym_index_)
980     {
981     case INVALID_CODE:
982       gold_unreachable();
983 
984     case GSYM_CODE:
985       if (this->u1_.gsym == NULL)
986 	index = 0;
987       else if (dynamic)
988 	index = this->u1_.gsym->dynsym_index();
989       else
990 	index = this->u1_.gsym->symtab_index();
991       break;
992 
993     case SECTION_CODE:
994       if (dynamic)
995 	index = this->u1_.os->dynsym_index();
996       else
997 	index = this->u1_.os->symtab_index();
998       break;
999 
1000     case TARGET_CODE:
1001       index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 						      this->type_);
1003       break;
1004 
1005     case 0:
1006       // Relocations without symbols use a symbol index of 0.
1007       index = 0;
1008       break;
1009 
1010     default:
1011       {
1012 	const unsigned int lsi = this->local_sym_index_;
1013 	Sized_relobj_file<size, big_endian>* relobj =
1014 	    this->u1_.relobj->sized_relobj();
1015 	gold_assert(relobj != NULL);
1016 	if (!this->is_section_symbol_)
1017 	  {
1018 	    if (dynamic)
1019 	      index = relobj->dynsym_index(lsi);
1020 	    else
1021 	      index = relobj->symtab_index(lsi);
1022 	  }
1023 	else
1024 	  {
1025 	    Output_section* os = relobj->output_section(lsi);
1026 	    gold_assert(os != NULL);
1027 	    if (dynamic)
1028 	      index = os->dynsym_index();
1029 	    else
1030 	      index = os->symtab_index();
1031 	  }
1032       }
1033       break;
1034     }
1035   gold_assert(index != -1U);
1036   return index;
1037 }
1038 
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1041 
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045   local_section_offset(Addend addend) const
1046 {
1047   gold_assert(this->local_sym_index_ != GSYM_CODE
1048 	      && this->local_sym_index_ != SECTION_CODE
1049 	      && this->local_sym_index_ != TARGET_CODE
1050 	      && this->local_sym_index_ != INVALID_CODE
1051 	      && this->local_sym_index_ != 0
1052 	      && this->is_section_symbol_);
1053   const unsigned int lsi = this->local_sym_index_;
1054   Output_section* os = this->u1_.relobj->output_section(lsi);
1055   gold_assert(os != NULL);
1056   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057   if (offset != invalid_address)
1058     return offset + addend;
1059   // This is a merge section.
1060   Sized_relobj_file<size, big_endian>* relobj =
1061       this->u1_.relobj->sized_relobj();
1062   gold_assert(relobj != NULL);
1063   offset = os->output_address(relobj, lsi, addend);
1064   gold_assert(offset != invalid_address);
1065   return offset;
1066 }
1067 
1068 // Get the output address of a relocation.
1069 
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073 {
1074   Address address = this->address_;
1075   if (this->shndx_ != INVALID_CODE)
1076     {
1077       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078       gold_assert(os != NULL);
1079       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080       if (off != invalid_address)
1081 	address += os->address() + off;
1082       else
1083 	{
1084 	  Sized_relobj_file<size, big_endian>* relobj =
1085 	      this->u2_.relobj->sized_relobj();
1086 	  gold_assert(relobj != NULL);
1087 	  address = os->output_address(relobj, this->shndx_, address);
1088 	  gold_assert(address != invalid_address);
1089 	}
1090     }
1091   else if (this->u2_.od != NULL)
1092     address += this->u2_.od->address();
1093   return address;
1094 }
1095 
1096 // Write out the offset and info fields of a Rel or Rela relocation
1097 // entry.
1098 
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1101 void
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103     Write_rel* wr) const
1104 {
1105   wr->put_r_offset(this->get_address());
1106   unsigned int sym_index = this->get_symbol_index();
1107   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108 }
1109 
1110 // Write out a Rel relocation.
1111 
1112 template<bool dynamic, int size, bool big_endian>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115     unsigned char* pov) const
1116 {
1117   elfcpp::Rel_write<size, big_endian> orel(pov);
1118   this->write_rel(&orel);
1119 }
1120 
1121 // Get the value of the symbol referred to by a Rel relocation.
1122 
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126     Addend addend) const
1127 {
1128   if (this->local_sym_index_ == GSYM_CODE)
1129     {
1130       const Sized_symbol<size>* sym;
1131       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132       if (this->use_plt_offset_ && sym->has_plt_offset())
1133 	return parameters->target().plt_address_for_global(sym);
1134       else
1135 	return sym->value() + addend;
1136     }
1137   if (this->local_sym_index_ == SECTION_CODE)
1138     {
1139       gold_assert(!this->use_plt_offset_);
1140       return this->u1_.os->address() + addend;
1141     }
1142   gold_assert(this->local_sym_index_ != TARGET_CODE
1143 	      && this->local_sym_index_ != INVALID_CODE
1144 	      && this->local_sym_index_ != 0
1145 	      && !this->is_section_symbol_);
1146   const unsigned int lsi = this->local_sym_index_;
1147   Sized_relobj_file<size, big_endian>* relobj =
1148       this->u1_.relobj->sized_relobj();
1149   gold_assert(relobj != NULL);
1150   if (this->use_plt_offset_)
1151     return parameters->target().plt_address_for_local(relobj, lsi);
1152   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153   return symval->value(relobj, addend);
1154 }
1155 
1156 // Reloc comparison.  This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker.  First we sort all relative relocs
1158 // to the front.  Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161 
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166     const
1167 {
1168   if (this->is_relative_)
1169     {
1170       if (!r2.is_relative_)
1171 	return -1;
1172       // Otherwise sort by reloc address below.
1173     }
1174   else if (r2.is_relative_)
1175     return 1;
1176   else
1177     {
1178       unsigned int sym1 = this->get_symbol_index();
1179       unsigned int sym2 = r2.get_symbol_index();
1180       if (sym1 < sym2)
1181 	return -1;
1182       else if (sym1 > sym2)
1183 	return 1;
1184       // Otherwise sort by reloc address.
1185     }
1186 
1187   section_offset_type addr1 = this->get_address();
1188   section_offset_type addr2 = r2.get_address();
1189   if (addr1 < addr2)
1190     return -1;
1191   else if (addr1 > addr2)
1192     return 1;
1193 
1194   // Final tie breaker, in order to generate the same output on any
1195   // host: reloc type.
1196   unsigned int type1 = this->type_;
1197   unsigned int type2 = r2.type_;
1198   if (type1 < type2)
1199     return -1;
1200   else if (type1 > type2)
1201     return 1;
1202 
1203   // These relocs appear to be exactly the same.
1204   return 0;
1205 }
1206 
1207 // Write out a Rela relocation.
1208 
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212     unsigned char* pov) const
1213 {
1214   elfcpp::Rela_write<size, big_endian> orel(pov);
1215   this->rel_.write_rel(&orel);
1216   Addend addend = this->addend_;
1217   if (this->rel_.is_target_specific())
1218     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 					       this->rel_.type(), addend);
1220   else if (this->rel_.is_symbolless())
1221     addend = this->rel_.symbol_value(addend);
1222   else if (this->rel_.is_local_section_symbol())
1223     addend = this->rel_.local_section_offset(addend);
1224   orel.put_r_addend(addend);
1225 }
1226 
1227 // Output_data_reloc_base methods.
1228 
1229 // Adjust the output section.
1230 
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234     ::do_adjust_output_section(Output_section* os)
1235 {
1236   if (sh_type == elfcpp::SHT_REL)
1237     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238   else if (sh_type == elfcpp::SHT_RELA)
1239     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240   else
1241     gold_unreachable();
1242 
1243   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244   // static link.  The backends will generate a dynamic reloc section
1245   // to hold this.  In that case we don't want to link to the dynsym
1246   // section, because there isn't one.
1247   if (!dynamic)
1248     os->set_should_link_to_symtab();
1249   else if (parameters->doing_static_link())
1250     ;
1251   else
1252     os->set_should_link_to_dynsym();
1253 }
1254 
1255 // Standard relocation writer, which just calls Output_reloc::write().
1256 
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 struct Output_reloc_writer
1259 {
1260   typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1261   typedef std::vector<Output_reloc_type> Relocs;
1262 
1263   static void
1264   write(typename Relocs::const_iterator p, unsigned char* pov)
1265   { p->write(pov); }
1266 };
1267 
1268 // Write out relocation data.
1269 
1270 template<int sh_type, bool dynamic, int size, bool big_endian>
1271 void
1272 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1273     Output_file* of)
1274 {
1275   typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1276   this->do_write_generic<Writer>(of);
1277 }
1278 
1279 // Class Output_relocatable_relocs.
1280 
1281 template<int sh_type, int size, bool big_endian>
1282 void
1283 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1284 {
1285   this->set_data_size(this->rr_->output_reloc_count()
1286 		      * Reloc_types<sh_type, size, big_endian>::reloc_size);
1287 }
1288 
1289 // class Output_data_group.
1290 
1291 template<int size, bool big_endian>
1292 Output_data_group<size, big_endian>::Output_data_group(
1293     Sized_relobj_file<size, big_endian>* relobj,
1294     section_size_type entry_count,
1295     elfcpp::Elf_Word flags,
1296     std::vector<unsigned int>* input_shndxes)
1297   : Output_section_data(entry_count * 4, 4, false),
1298     relobj_(relobj),
1299     flags_(flags)
1300 {
1301   this->input_shndxes_.swap(*input_shndxes);
1302 }
1303 
1304 // Write out the section group, which means translating the section
1305 // indexes to apply to the output file.
1306 
1307 template<int size, bool big_endian>
1308 void
1309 Output_data_group<size, big_endian>::do_write(Output_file* of)
1310 {
1311   const off_t off = this->offset();
1312   const section_size_type oview_size =
1313     convert_to_section_size_type(this->data_size());
1314   unsigned char* const oview = of->get_output_view(off, oview_size);
1315 
1316   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1317   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1318   ++contents;
1319 
1320   for (std::vector<unsigned int>::const_iterator p =
1321 	 this->input_shndxes_.begin();
1322        p != this->input_shndxes_.end();
1323        ++p, ++contents)
1324     {
1325       Output_section* os = this->relobj_->output_section(*p);
1326 
1327       unsigned int output_shndx;
1328       if (os != NULL)
1329 	output_shndx = os->out_shndx();
1330       else
1331 	{
1332 	  this->relobj_->error(_("section group retained but "
1333 				 "group element discarded"));
1334 	  output_shndx = 0;
1335 	}
1336 
1337       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1338     }
1339 
1340   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1341   gold_assert(wrote == oview_size);
1342 
1343   of->write_output_view(off, oview_size, oview);
1344 
1345   // We no longer need this information.
1346   this->input_shndxes_.clear();
1347 }
1348 
1349 // Output_data_got::Got_entry methods.
1350 
1351 // Write out the entry.
1352 
1353 template<int got_size, bool big_endian>
1354 void
1355 Output_data_got<got_size, big_endian>::Got_entry::write(
1356     unsigned int got_indx,
1357     unsigned char* pov) const
1358 {
1359   Valtype val = 0;
1360 
1361   switch (this->local_sym_index_)
1362     {
1363     case GSYM_CODE:
1364       {
1365 	// If the symbol is resolved locally, we need to write out the
1366 	// link-time value, which will be relocated dynamically by a
1367 	// RELATIVE relocation.
1368 	Symbol* gsym = this->u_.gsym;
1369 	if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1370 	  val = parameters->target().plt_address_for_global(gsym);
1371 	else
1372 	  {
1373 	    switch (parameters->size_and_endianness())
1374 	      {
1375 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1376 	      case Parameters::TARGET_32_LITTLE:
1377 	      case Parameters::TARGET_32_BIG:
1378 		{
1379 		  // This cast is ugly.  We don't want to put a
1380 		  // virtual method in Symbol, because we want Symbol
1381 		  // to be as small as possible.
1382 		  Sized_symbol<32>::Value_type v;
1383 		  v = static_cast<Sized_symbol<32>*>(gsym)->value();
1384 		  val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1385 		}
1386 		break;
1387 #endif
1388 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1389 	      case Parameters::TARGET_64_LITTLE:
1390 	      case Parameters::TARGET_64_BIG:
1391 		{
1392 		  Sized_symbol<64>::Value_type v;
1393 		  v = static_cast<Sized_symbol<64>*>(gsym)->value();
1394 		  val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1395 		}
1396 		break;
1397 #endif
1398 	      default:
1399 		gold_unreachable();
1400 	      }
1401 	    if (this->use_plt_or_tls_offset_
1402 		&& gsym->type() == elfcpp::STT_TLS)
1403 	      val += parameters->target().tls_offset_for_global(gsym,
1404 								got_indx);
1405 	  }
1406       }
1407       break;
1408 
1409     case CONSTANT_CODE:
1410       val = this->u_.constant;
1411       break;
1412 
1413     case RESERVED_CODE:
1414       // If we're doing an incremental update, don't touch this GOT entry.
1415       if (parameters->incremental_update())
1416 	return;
1417       val = this->u_.constant;
1418       break;
1419 
1420     default:
1421       {
1422 	const Relobj* object = this->u_.object;
1423 	const unsigned int lsi = this->local_sym_index_;
1424 	bool is_tls = object->local_is_tls(lsi);
1425 	if (this->use_plt_or_tls_offset_ && !is_tls)
1426 	  val = parameters->target().plt_address_for_local(object, lsi);
1427 	else
1428 	  {
1429 	    uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1430 	    val = convert_types<Valtype, uint64_t>(lval);
1431 	    if (this->use_plt_or_tls_offset_ && is_tls)
1432 	      val += parameters->target().tls_offset_for_local(object, lsi,
1433 							       got_indx);
1434 	  }
1435       }
1436       break;
1437     }
1438 
1439   elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1440 }
1441 
1442 // Output_data_got methods.
1443 
1444 // Add an entry for a global symbol to the GOT.  This returns true if
1445 // this is a new GOT entry, false if the symbol already had a GOT
1446 // entry.
1447 
1448 template<int got_size, bool big_endian>
1449 bool
1450 Output_data_got<got_size, big_endian>::add_global(
1451     Symbol* gsym,
1452     unsigned int got_type)
1453 {
1454   if (gsym->has_got_offset(got_type))
1455     return false;
1456 
1457   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1458   gsym->set_got_offset(got_type, got_offset);
1459   return true;
1460 }
1461 
1462 // Like add_global, but use the PLT offset.
1463 
1464 template<int got_size, bool big_endian>
1465 bool
1466 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1467 						      unsigned int got_type)
1468 {
1469   if (gsym->has_got_offset(got_type))
1470     return false;
1471 
1472   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1473   gsym->set_got_offset(got_type, got_offset);
1474   return true;
1475 }
1476 
1477 // Add an entry for a global symbol to the GOT, and add a dynamic
1478 // relocation of type R_TYPE for the GOT entry.
1479 
1480 template<int got_size, bool big_endian>
1481 void
1482 Output_data_got<got_size, big_endian>::add_global_with_rel(
1483     Symbol* gsym,
1484     unsigned int got_type,
1485     Output_data_reloc_generic* rel_dyn,
1486     unsigned int r_type)
1487 {
1488   if (gsym->has_got_offset(got_type))
1489     return;
1490 
1491   unsigned int got_offset = this->add_got_entry(Got_entry());
1492   gsym->set_got_offset(got_type, got_offset);
1493   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1494 }
1495 
1496 // Add a pair of entries for a global symbol to the GOT, and add
1497 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1498 // If R_TYPE_2 == 0, add the second entry with no relocation.
1499 template<int got_size, bool big_endian>
1500 void
1501 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1502     Symbol* gsym,
1503     unsigned int got_type,
1504     Output_data_reloc_generic* rel_dyn,
1505     unsigned int r_type_1,
1506     unsigned int r_type_2)
1507 {
1508   if (gsym->has_got_offset(got_type))
1509     return;
1510 
1511   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1512   gsym->set_got_offset(got_type, got_offset);
1513   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1514 
1515   if (r_type_2 != 0)
1516     rel_dyn->add_global_generic(gsym, r_type_2, this,
1517 				got_offset + got_size / 8, 0);
1518 }
1519 
1520 // Add an entry for a local symbol to the GOT.  This returns true if
1521 // this is a new GOT entry, false if the symbol already has a GOT
1522 // entry.
1523 
1524 template<int got_size, bool big_endian>
1525 bool
1526 Output_data_got<got_size, big_endian>::add_local(
1527     Relobj* object,
1528     unsigned int symndx,
1529     unsigned int got_type)
1530 {
1531   if (object->local_has_got_offset(symndx, got_type))
1532     return false;
1533 
1534   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1535 							  false));
1536   object->set_local_got_offset(symndx, got_type, got_offset);
1537   return true;
1538 }
1539 
1540 // Add an entry for a local symbol plus ADDEND to the GOT.  This returns
1541 // true if this is a new GOT entry, false if the symbol already has a GOT
1542 // entry.
1543 
1544 template<int got_size, bool big_endian>
1545 bool
1546 Output_data_got<got_size, big_endian>::add_local(
1547     Relobj* object,
1548     unsigned int symndx,
1549     unsigned int got_type,
1550     uint64_t addend)
1551 {
1552   if (object->local_has_got_offset(symndx, got_type, addend))
1553     return false;
1554 
1555   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1556 							  false, addend));
1557   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1558   return true;
1559 }
1560 
1561 // Like add_local, but use the PLT offset.
1562 
1563 template<int got_size, bool big_endian>
1564 bool
1565 Output_data_got<got_size, big_endian>::add_local_plt(
1566     Relobj* object,
1567     unsigned int symndx,
1568     unsigned int got_type)
1569 {
1570   if (object->local_has_got_offset(symndx, got_type))
1571     return false;
1572 
1573   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1574 							  true));
1575   object->set_local_got_offset(symndx, got_type, got_offset);
1576   return true;
1577 }
1578 
1579 // Add an entry for a local symbol to the GOT, and add a dynamic
1580 // relocation of type R_TYPE for the GOT entry.
1581 
1582 template<int got_size, bool big_endian>
1583 void
1584 Output_data_got<got_size, big_endian>::add_local_with_rel(
1585     Relobj* object,
1586     unsigned int symndx,
1587     unsigned int got_type,
1588     Output_data_reloc_generic* rel_dyn,
1589     unsigned int r_type)
1590 {
1591   if (object->local_has_got_offset(symndx, got_type))
1592     return;
1593 
1594   unsigned int got_offset = this->add_got_entry(Got_entry());
1595   object->set_local_got_offset(symndx, got_type, got_offset);
1596   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1597 }
1598 
1599 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1600 // relocation of type R_TYPE for the GOT entry.
1601 
1602 template<int got_size, bool big_endian>
1603 void
1604 Output_data_got<got_size, big_endian>::add_local_with_rel(
1605     Relobj* object,
1606     unsigned int symndx,
1607     unsigned int got_type,
1608     Output_data_reloc_generic* rel_dyn,
1609     unsigned int r_type, uint64_t addend)
1610 {
1611   if (object->local_has_got_offset(symndx, got_type, addend))
1612     return;
1613 
1614   unsigned int got_offset = this->add_got_entry(Got_entry());
1615   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1616   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1617                              addend);
1618 }
1619 
1620 // Add a pair of entries for a local symbol to the GOT, and add
1621 // a dynamic relocation of type R_TYPE using the section symbol of
1622 // the output section to which input section SHNDX maps, on the first.
1623 // The first got entry will have a value of zero, the second the
1624 // value of the local symbol.
1625 template<int got_size, bool big_endian>
1626 void
1627 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1628     Relobj* object,
1629     unsigned int symndx,
1630     unsigned int shndx,
1631     unsigned int got_type,
1632     Output_data_reloc_generic* rel_dyn,
1633     unsigned int r_type)
1634 {
1635   if (object->local_has_got_offset(symndx, got_type))
1636     return;
1637 
1638   unsigned int got_offset =
1639       this->add_got_entry_pair(Got_entry(),
1640 			       Got_entry(object, symndx, false));
1641   object->set_local_got_offset(symndx, got_type, got_offset);
1642   Output_section* os = object->output_section(shndx);
1643   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1644 }
1645 
1646 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1647 // a dynamic relocation of type R_TYPE using the section symbol of
1648 // the output section to which input section SHNDX maps, on the first.
1649 // The first got entry will have a value of zero, the second the
1650 // value of the local symbol.
1651 template<int got_size, bool big_endian>
1652 void
1653 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1654     Relobj* object,
1655     unsigned int symndx,
1656     unsigned int shndx,
1657     unsigned int got_type,
1658     Output_data_reloc_generic* rel_dyn,
1659     unsigned int r_type, uint64_t addend)
1660 {
1661   if (object->local_has_got_offset(symndx, got_type, addend))
1662     return;
1663 
1664   unsigned int got_offset =
1665       this->add_got_entry_pair(Got_entry(),
1666 			       Got_entry(object, symndx, false, addend));
1667   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1668   Output_section* os = object->output_section(shndx);
1669   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1670 }
1671 
1672 // Add a pair of entries for a local symbol to the GOT, and add
1673 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1674 // The first got entry will have a value of zero, the second the
1675 // value of the local symbol offset by Target::tls_offset_for_local.
1676 template<int got_size, bool big_endian>
1677 void
1678 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1679     Relobj* object,
1680     unsigned int symndx,
1681     unsigned int got_type,
1682     Output_data_reloc_generic* rel_dyn,
1683     unsigned int r_type)
1684 {
1685   if (object->local_has_got_offset(symndx, got_type))
1686     return;
1687 
1688   unsigned int got_offset
1689     = this->add_got_entry_pair(Got_entry(),
1690 			       Got_entry(object, symndx, true));
1691   object->set_local_got_offset(symndx, got_type, got_offset);
1692   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1693 }
1694 
1695 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1696 
1697 template<int got_size, bool big_endian>
1698 void
1699 Output_data_got<got_size, big_endian>::reserve_local(
1700     unsigned int i,
1701     Relobj* object,
1702     unsigned int sym_index,
1703     unsigned int got_type)
1704 {
1705   this->do_reserve_slot(i);
1706   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1707 }
1708 
1709 // Reserve a slot in the GOT for a global symbol.
1710 
1711 template<int got_size, bool big_endian>
1712 void
1713 Output_data_got<got_size, big_endian>::reserve_global(
1714     unsigned int i,
1715     Symbol* gsym,
1716     unsigned int got_type)
1717 {
1718   this->do_reserve_slot(i);
1719   gsym->set_got_offset(got_type, this->got_offset(i));
1720 }
1721 
1722 // Write out the GOT.
1723 
1724 template<int got_size, bool big_endian>
1725 void
1726 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1727 {
1728   const int add = got_size / 8;
1729 
1730   const off_t off = this->offset();
1731   const off_t oview_size = this->data_size();
1732   unsigned char* const oview = of->get_output_view(off, oview_size);
1733 
1734   unsigned char* pov = oview;
1735   for (unsigned int i = 0; i < this->entries_.size(); ++i)
1736     {
1737       this->entries_[i].write(i, pov);
1738       pov += add;
1739     }
1740 
1741   gold_assert(pov - oview == oview_size);
1742 
1743   of->write_output_view(off, oview_size, oview);
1744 
1745   // We no longer need the GOT entries.
1746   this->entries_.clear();
1747 }
1748 
1749 // Create a new GOT entry and return its offset.
1750 
1751 template<int got_size, bool big_endian>
1752 unsigned int
1753 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1754 {
1755   if (!this->is_data_size_valid())
1756     {
1757       this->entries_.push_back(got_entry);
1758       this->set_got_size();
1759       return this->last_got_offset();
1760     }
1761   else
1762     {
1763       // For an incremental update, find an available slot.
1764       off_t got_offset = this->free_list_.allocate(got_size / 8,
1765 						   got_size / 8, 0);
1766       if (got_offset == -1)
1767 	gold_fallback(_("out of patch space (GOT);"
1768 			" relink with --incremental-full"));
1769       unsigned int got_index = got_offset / (got_size / 8);
1770       gold_assert(got_index < this->entries_.size());
1771       this->entries_[got_index] = got_entry;
1772       return static_cast<unsigned int>(got_offset);
1773     }
1774 }
1775 
1776 // Create a pair of new GOT entries and return the offset of the first.
1777 
1778 template<int got_size, bool big_endian>
1779 unsigned int
1780 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1781     Got_entry got_entry_1,
1782     Got_entry got_entry_2)
1783 {
1784   if (!this->is_data_size_valid())
1785     {
1786       unsigned int got_offset;
1787       this->entries_.push_back(got_entry_1);
1788       got_offset = this->last_got_offset();
1789       this->entries_.push_back(got_entry_2);
1790       this->set_got_size();
1791       return got_offset;
1792     }
1793   else
1794     {
1795       // For an incremental update, find an available pair of slots.
1796       off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1797 						   got_size / 8, 0);
1798       if (got_offset == -1)
1799 	gold_fallback(_("out of patch space (GOT);"
1800 			" relink with --incremental-full"));
1801       unsigned int got_index = got_offset / (got_size / 8);
1802       gold_assert(got_index < this->entries_.size());
1803       this->entries_[got_index] = got_entry_1;
1804       this->entries_[got_index + 1] = got_entry_2;
1805       return static_cast<unsigned int>(got_offset);
1806     }
1807 }
1808 
1809 // Replace GOT entry I with a new value.
1810 
1811 template<int got_size, bool big_endian>
1812 void
1813 Output_data_got<got_size, big_endian>::replace_got_entry(
1814     unsigned int i,
1815     Got_entry got_entry)
1816 {
1817   gold_assert(i < this->entries_.size());
1818   this->entries_[i] = got_entry;
1819 }
1820 
1821 // Output_data_dynamic::Dynamic_entry methods.
1822 
1823 // Write out the entry.
1824 
1825 template<int size, bool big_endian>
1826 void
1827 Output_data_dynamic::Dynamic_entry::write(
1828     unsigned char* pov,
1829     const Stringpool* pool) const
1830 {
1831   typename elfcpp::Elf_types<size>::Elf_WXword val;
1832   switch (this->offset_)
1833     {
1834     case DYNAMIC_NUMBER:
1835       val = this->u_.val;
1836       break;
1837 
1838     case DYNAMIC_SECTION_SIZE:
1839       val = this->u_.od->data_size();
1840       if (this->od2 != NULL)
1841 	val += this->od2->data_size();
1842       break;
1843 
1844     case DYNAMIC_SYMBOL:
1845       {
1846 	const Sized_symbol<size>* s =
1847 	  static_cast<const Sized_symbol<size>*>(this->u_.sym);
1848 	val = s->value();
1849       }
1850       break;
1851 
1852     case DYNAMIC_STRING:
1853       val = pool->get_offset(this->u_.str);
1854       break;
1855 
1856     case DYNAMIC_CUSTOM:
1857       val = parameters->target().dynamic_tag_custom_value(this->tag_);
1858       break;
1859 
1860     default:
1861       val = this->u_.od->address() + this->offset_;
1862       break;
1863     }
1864 
1865   elfcpp::Dyn_write<size, big_endian> dw(pov);
1866   dw.put_d_tag(this->tag_);
1867   dw.put_d_val(val);
1868 }
1869 
1870 // Output_data_dynamic methods.
1871 
1872 // Adjust the output section to set the entry size.
1873 
1874 void
1875 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1876 {
1877   if (parameters->target().get_size() == 32)
1878     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1879   else if (parameters->target().get_size() == 64)
1880     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1881   else
1882     gold_unreachable();
1883 }
1884 
1885 // Get a dynamic entry offset.
1886 
1887 unsigned int
1888 Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
1889 {
1890   int dyn_size;
1891 
1892   if (parameters->target().get_size() == 32)
1893     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1894   else if (parameters->target().get_size() == 64)
1895     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1896   else
1897     gold_unreachable();
1898 
1899   for (size_t i = 0; i < entries_.size(); ++i)
1900     if (entries_[i].tag() == tag)
1901       return i * dyn_size;
1902 
1903   return -1U;
1904 }
1905 
1906 // Set the final data size.
1907 
1908 void
1909 Output_data_dynamic::set_final_data_size()
1910 {
1911   // Add the terminating entry if it hasn't been added.
1912   // Because of relaxation, we can run this multiple times.
1913   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1914     {
1915       int extra = parameters->options().spare_dynamic_tags();
1916       for (int i = 0; i < extra; ++i)
1917 	this->add_constant(elfcpp::DT_NULL, 0);
1918       this->add_constant(elfcpp::DT_NULL, 0);
1919     }
1920 
1921   int dyn_size;
1922   if (parameters->target().get_size() == 32)
1923     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1924   else if (parameters->target().get_size() == 64)
1925     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1926   else
1927     gold_unreachable();
1928   this->set_data_size(this->entries_.size() * dyn_size);
1929 }
1930 
1931 // Write out the dynamic entries.
1932 
1933 void
1934 Output_data_dynamic::do_write(Output_file* of)
1935 {
1936   switch (parameters->size_and_endianness())
1937     {
1938 #ifdef HAVE_TARGET_32_LITTLE
1939     case Parameters::TARGET_32_LITTLE:
1940       this->sized_write<32, false>(of);
1941       break;
1942 #endif
1943 #ifdef HAVE_TARGET_32_BIG
1944     case Parameters::TARGET_32_BIG:
1945       this->sized_write<32, true>(of);
1946       break;
1947 #endif
1948 #ifdef HAVE_TARGET_64_LITTLE
1949     case Parameters::TARGET_64_LITTLE:
1950       this->sized_write<64, false>(of);
1951       break;
1952 #endif
1953 #ifdef HAVE_TARGET_64_BIG
1954     case Parameters::TARGET_64_BIG:
1955       this->sized_write<64, true>(of);
1956       break;
1957 #endif
1958     default:
1959       gold_unreachable();
1960     }
1961 }
1962 
1963 template<int size, bool big_endian>
1964 void
1965 Output_data_dynamic::sized_write(Output_file* of)
1966 {
1967   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1968 
1969   const off_t offset = this->offset();
1970   const off_t oview_size = this->data_size();
1971   unsigned char* const oview = of->get_output_view(offset, oview_size);
1972 
1973   unsigned char* pov = oview;
1974   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1975        p != this->entries_.end();
1976        ++p)
1977     {
1978       p->write<size, big_endian>(pov, this->pool_);
1979       pov += dyn_size;
1980     }
1981 
1982   gold_assert(pov - oview == oview_size);
1983 
1984   of->write_output_view(offset, oview_size, oview);
1985 
1986   // We no longer need the dynamic entries.
1987   this->entries_.clear();
1988 }
1989 
1990 // Class Output_symtab_xindex.
1991 
1992 void
1993 Output_symtab_xindex::do_write(Output_file* of)
1994 {
1995   const off_t offset = this->offset();
1996   const off_t oview_size = this->data_size();
1997   unsigned char* const oview = of->get_output_view(offset, oview_size);
1998 
1999   memset(oview, 0, oview_size);
2000 
2001   if (parameters->target().is_big_endian())
2002     this->endian_do_write<true>(oview);
2003   else
2004     this->endian_do_write<false>(oview);
2005 
2006   of->write_output_view(offset, oview_size, oview);
2007 
2008   // We no longer need the data.
2009   this->entries_.clear();
2010 }
2011 
2012 template<bool big_endian>
2013 void
2014 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2015 {
2016   for (Xindex_entries::const_iterator p = this->entries_.begin();
2017        p != this->entries_.end();
2018        ++p)
2019     {
2020       unsigned int symndx = p->first;
2021       gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2022       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2023     }
2024 }
2025 
2026 // Output_fill_debug_info methods.
2027 
2028 // Return the minimum size needed for a dummy compilation unit header.
2029 
2030 size_t
2031 Output_fill_debug_info::do_minimum_hole_size() const
2032 {
2033   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2034   // address_size.
2035   const size_t len = 4 + 2 + 4 + 1;
2036   // For type units, add type_signature, type_offset.
2037   if (this->is_debug_types_)
2038     return len + 8 + 4;
2039   return len;
2040 }
2041 
2042 // Write a dummy compilation unit header to fill a hole in the
2043 // .debug_info or .debug_types section.
2044 
2045 void
2046 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2047 {
2048   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2049 	     static_cast<long>(off), static_cast<long>(len));
2050 
2051   gold_assert(len >= this->do_minimum_hole_size());
2052 
2053   unsigned char* const oview = of->get_output_view(off, len);
2054   unsigned char* pov = oview;
2055 
2056   // Write header fields: unit_length, version, debug_abbrev_offset,
2057   // address_size.
2058   if (this->is_big_endian())
2059     {
2060       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2061       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2062       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2063     }
2064   else
2065     {
2066       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2067       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2068       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2069     }
2070   pov += 4 + 2 + 4;
2071   *pov++ = 4;
2072 
2073   // For type units, the additional header fields -- type_signature,
2074   // type_offset -- can be filled with zeroes.
2075 
2076   // Fill the remainder of the free space with zeroes.  The first
2077   // zero should tell the consumer there are no DIEs to read in this
2078   // compilation unit.
2079   if (pov < oview + len)
2080     memset(pov, 0, oview + len - pov);
2081 
2082   of->write_output_view(off, len, oview);
2083 }
2084 
2085 // Output_fill_debug_line methods.
2086 
2087 // Return the minimum size needed for a dummy line number program header.
2088 
2089 size_t
2090 Output_fill_debug_line::do_minimum_hole_size() const
2091 {
2092   // Line number program header fields: unit_length, version, header_length,
2093   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2094   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2095   const size_t len = 4 + 2 + 4 + this->header_length;
2096   return len;
2097 }
2098 
2099 // Write a dummy line number program header to fill a hole in the
2100 // .debug_line section.
2101 
2102 void
2103 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2104 {
2105   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2106 	     static_cast<long>(off), static_cast<long>(len));
2107 
2108   gold_assert(len >= this->do_minimum_hole_size());
2109 
2110   unsigned char* const oview = of->get_output_view(off, len);
2111   unsigned char* pov = oview;
2112 
2113   // Write header fields: unit_length, version, header_length,
2114   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2115   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2116   // We set the header_length field to cover the entire hole, so the
2117   // line number program is empty.
2118   if (this->is_big_endian())
2119     {
2120       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2121       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2122       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2123     }
2124   else
2125     {
2126       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2127       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2128       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2129     }
2130   pov += 4 + 2 + 4;
2131   *pov++ = 1;	// minimum_instruction_length
2132   *pov++ = 0;	// default_is_stmt
2133   *pov++ = 0;	// line_base
2134   *pov++ = 5;	// line_range
2135   *pov++ = 13;	// opcode_base
2136   *pov++ = 0;	// standard_opcode_lengths[1]
2137   *pov++ = 1;	// standard_opcode_lengths[2]
2138   *pov++ = 1;	// standard_opcode_lengths[3]
2139   *pov++ = 1;	// standard_opcode_lengths[4]
2140   *pov++ = 1;	// standard_opcode_lengths[5]
2141   *pov++ = 0;	// standard_opcode_lengths[6]
2142   *pov++ = 0;	// standard_opcode_lengths[7]
2143   *pov++ = 0;	// standard_opcode_lengths[8]
2144   *pov++ = 1;	// standard_opcode_lengths[9]
2145   *pov++ = 0;	// standard_opcode_lengths[10]
2146   *pov++ = 0;	// standard_opcode_lengths[11]
2147   *pov++ = 1;	// standard_opcode_lengths[12]
2148   *pov++ = 0;	// include_directories (empty)
2149   *pov++ = 0;	// filenames (empty)
2150 
2151   // Some consumers don't check the header_length field, and simply
2152   // start reading the line number program immediately following the
2153   // header.  For those consumers, we fill the remainder of the free
2154   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2155   // no-ops: the resulting line table program will not create any rows.
2156   if (pov < oview + len)
2157     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2158 
2159   of->write_output_view(off, len, oview);
2160 }
2161 
2162 // Output_section::Input_section methods.
2163 
2164 // Return the current data size.  For an input section we store the size here.
2165 // For an Output_section_data, we have to ask it for the size.
2166 
2167 off_t
2168 Output_section::Input_section::current_data_size() const
2169 {
2170   if (this->is_input_section())
2171     return this->u1_.data_size;
2172   else
2173     {
2174       this->u2_.posd->pre_finalize_data_size();
2175       return this->u2_.posd->current_data_size();
2176     }
2177 }
2178 
2179 // Return the data size.  For an input section we store the size here.
2180 // For an Output_section_data, we have to ask it for the size.
2181 
2182 off_t
2183 Output_section::Input_section::data_size() const
2184 {
2185   if (this->is_input_section())
2186     return this->u1_.data_size;
2187   else
2188     return this->u2_.posd->data_size();
2189 }
2190 
2191 // Return the object for an input section.
2192 
2193 Relobj*
2194 Output_section::Input_section::relobj() const
2195 {
2196   if (this->is_input_section())
2197     return this->u2_.object;
2198   else if (this->is_merge_section())
2199     {
2200       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2201       return this->u2_.pomb->first_relobj();
2202     }
2203   else if (this->is_relaxed_input_section())
2204     return this->u2_.poris->relobj();
2205   else
2206     gold_unreachable();
2207 }
2208 
2209 // Return the input section index for an input section.
2210 
2211 unsigned int
2212 Output_section::Input_section::shndx() const
2213 {
2214   if (this->is_input_section())
2215     return this->shndx_;
2216   else if (this->is_merge_section())
2217     {
2218       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2219       return this->u2_.pomb->first_shndx();
2220     }
2221   else if (this->is_relaxed_input_section())
2222     return this->u2_.poris->shndx();
2223   else
2224     gold_unreachable();
2225 }
2226 
2227 // Set the address and file offset.
2228 
2229 void
2230 Output_section::Input_section::set_address_and_file_offset(
2231     uint64_t address,
2232     off_t file_offset,
2233     off_t section_file_offset)
2234 {
2235   if (this->is_input_section())
2236     this->u2_.object->set_section_offset(this->shndx_,
2237 					 file_offset - section_file_offset);
2238   else
2239     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2240 }
2241 
2242 // Reset the address and file offset.
2243 
2244 void
2245 Output_section::Input_section::reset_address_and_file_offset()
2246 {
2247   if (!this->is_input_section())
2248     this->u2_.posd->reset_address_and_file_offset();
2249 }
2250 
2251 // Finalize the data size.
2252 
2253 void
2254 Output_section::Input_section::finalize_data_size()
2255 {
2256   if (!this->is_input_section())
2257     this->u2_.posd->finalize_data_size();
2258 }
2259 
2260 // Try to turn an input offset into an output offset.  We want to
2261 // return the output offset relative to the start of this
2262 // Input_section in the output section.
2263 
2264 inline bool
2265 Output_section::Input_section::output_offset(
2266     const Relobj* object,
2267     unsigned int shndx,
2268     section_offset_type offset,
2269     section_offset_type* poutput) const
2270 {
2271   if (!this->is_input_section())
2272     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2273   else
2274     {
2275       if (this->shndx_ != shndx || this->u2_.object != object)
2276 	return false;
2277       *poutput = offset;
2278       return true;
2279     }
2280 }
2281 
2282 // Write out the data.  We don't have to do anything for an input
2283 // section--they are handled via Object::relocate--but this is where
2284 // we write out the data for an Output_section_data.
2285 
2286 void
2287 Output_section::Input_section::write(Output_file* of)
2288 {
2289   if (!this->is_input_section())
2290     this->u2_.posd->write(of);
2291 }
2292 
2293 // Write the data to a buffer.  As for write(), we don't have to do
2294 // anything for an input section.
2295 
2296 void
2297 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2298 {
2299   if (!this->is_input_section())
2300     this->u2_.posd->write_to_buffer(buffer);
2301 }
2302 
2303 // Print to a map file.
2304 
2305 void
2306 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2307 {
2308   switch (this->shndx_)
2309     {
2310     case OUTPUT_SECTION_CODE:
2311     case MERGE_DATA_SECTION_CODE:
2312     case MERGE_STRING_SECTION_CODE:
2313       this->u2_.posd->print_to_mapfile(mapfile);
2314       break;
2315 
2316     case RELAXED_INPUT_SECTION_CODE:
2317       {
2318 	Output_relaxed_input_section* relaxed_section =
2319 	  this->relaxed_input_section();
2320 	mapfile->print_input_section(relaxed_section->relobj(),
2321 				     relaxed_section->shndx());
2322       }
2323       break;
2324     default:
2325       mapfile->print_input_section(this->u2_.object, this->shndx_);
2326       break;
2327     }
2328 }
2329 
2330 // Output_section methods.
2331 
2332 // Construct an Output_section.  NAME will point into a Stringpool.
2333 
2334 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2335 			       elfcpp::Elf_Xword flags)
2336   : name_(name),
2337     addralign_(0),
2338     entsize_(0),
2339     load_address_(0),
2340     link_section_(NULL),
2341     link_(0),
2342     info_section_(NULL),
2343     info_symndx_(NULL),
2344     info_(0),
2345     type_(type),
2346     flags_(flags),
2347     order_(ORDER_INVALID),
2348     out_shndx_(-1U),
2349     symtab_index_(0),
2350     dynsym_index_(0),
2351     input_sections_(),
2352     first_input_offset_(0),
2353     fills_(),
2354     postprocessing_buffer_(NULL),
2355     needs_symtab_index_(false),
2356     needs_dynsym_index_(false),
2357     should_link_to_symtab_(false),
2358     should_link_to_dynsym_(false),
2359     after_input_sections_(false),
2360     requires_postprocessing_(false),
2361     found_in_sections_clause_(false),
2362     has_load_address_(false),
2363     info_uses_section_index_(false),
2364     input_section_order_specified_(false),
2365     may_sort_attached_input_sections_(false),
2366     must_sort_attached_input_sections_(false),
2367     attached_input_sections_are_sorted_(false),
2368     is_relro_(false),
2369     is_small_section_(false),
2370     is_large_section_(false),
2371     generate_code_fills_at_write_(false),
2372     is_entsize_zero_(false),
2373     section_offsets_need_adjustment_(false),
2374     is_noload_(false),
2375     always_keeps_input_sections_(false),
2376     has_fixed_layout_(false),
2377     is_patch_space_allowed_(false),
2378     is_unique_segment_(false),
2379     tls_offset_(0),
2380     extra_segment_flags_(0),
2381     segment_alignment_(0),
2382     checkpoint_(NULL),
2383     lookup_maps_(new Output_section_lookup_maps),
2384     free_list_(),
2385     free_space_fill_(NULL),
2386     patch_space_(0)
2387 {
2388   // An unallocated section has no address.  Forcing this means that
2389   // we don't need special treatment for symbols defined in debug
2390   // sections.
2391   if ((flags & elfcpp::SHF_ALLOC) == 0)
2392     this->set_address(0);
2393 }
2394 
2395 Output_section::~Output_section()
2396 {
2397   delete this->checkpoint_;
2398 }
2399 
2400 // Set the entry size.
2401 
2402 void
2403 Output_section::set_entsize(uint64_t v)
2404 {
2405   if (this->is_entsize_zero_)
2406     ;
2407   else if (this->entsize_ == 0)
2408     this->entsize_ = v;
2409   else if (this->entsize_ != v)
2410     {
2411       this->entsize_ = 0;
2412       this->is_entsize_zero_ = 1;
2413     }
2414 }
2415 
2416 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2417 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2418 // relocation section which applies to this section, or 0 if none, or
2419 // -1U if more than one.  Return the offset of the input section
2420 // within the output section.  Return -1 if the input section will
2421 // receive special handling.  In the normal case we don't always keep
2422 // track of input sections for an Output_section.  Instead, each
2423 // Object keeps track of the Output_section for each of its input
2424 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2425 // track of input sections here; this is used when SECTIONS appears in
2426 // a linker script.
2427 
2428 template<int size, bool big_endian>
2429 off_t
2430 Output_section::add_input_section(Layout* layout,
2431 				  Sized_relobj_file<size, big_endian>* object,
2432 				  unsigned int shndx,
2433 				  const char* secname,
2434 				  const elfcpp::Shdr<size, big_endian>& shdr,
2435 				  unsigned int reloc_shndx,
2436 				  bool have_sections_script)
2437 {
2438   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2439   if ((addralign & (addralign - 1)) != 0)
2440     {
2441       object->error(_("invalid alignment %lu for section \"%s\""),
2442 		    static_cast<unsigned long>(addralign), secname);
2443       addralign = 1;
2444     }
2445 
2446   if (addralign > this->addralign_)
2447     this->addralign_ = addralign;
2448 
2449   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2450   uint64_t entsize = shdr.get_sh_entsize();
2451 
2452   // .debug_str is a mergeable string section, but is not always so
2453   // marked by compilers.  Mark manually here so we can optimize.
2454   if (strcmp(secname, ".debug_str") == 0)
2455     {
2456       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2457       entsize = 1;
2458     }
2459 
2460   this->update_flags_for_input_section(sh_flags);
2461   this->set_entsize(entsize);
2462 
2463   // If this is a SHF_MERGE section, we pass all the input sections to
2464   // a Output_data_merge.  We don't try to handle relocations for such
2465   // a section.  We don't try to handle empty merge sections--they
2466   // mess up the mappings, and are useless anyhow.
2467   // FIXME: Need to handle merge sections during incremental update.
2468   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2469       && reloc_shndx == 0
2470       && shdr.get_sh_size() > 0
2471       && !parameters->incremental())
2472     {
2473       // Keep information about merged input sections for rebuilding fast
2474       // lookup maps if we have sections-script or we do relaxation.
2475       bool keeps_input_sections = (this->always_keeps_input_sections_
2476 				   || have_sections_script
2477 				   || parameters->target().may_relax());
2478 
2479       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2480 					addralign, keeps_input_sections))
2481 	{
2482 	  // Tell the relocation routines that they need to call the
2483 	  // output_offset method to determine the final address.
2484 	  return -1;
2485 	}
2486     }
2487 
2488   section_size_type input_section_size = shdr.get_sh_size();
2489   section_size_type uncompressed_size;
2490   if (object->section_is_compressed(shndx, &uncompressed_size))
2491     input_section_size = uncompressed_size;
2492 
2493   off_t offset_in_section;
2494 
2495   if (this->has_fixed_layout())
2496     {
2497       // For incremental updates, find a chunk of unused space in the section.
2498       offset_in_section = this->free_list_.allocate(input_section_size,
2499 						    addralign, 0);
2500       if (offset_in_section == -1)
2501 	gold_fallback(_("out of patch space in section %s; "
2502 			"relink with --incremental-full"),
2503 		      this->name());
2504       return offset_in_section;
2505     }
2506 
2507   offset_in_section = this->current_data_size_for_child();
2508   off_t aligned_offset_in_section = align_address(offset_in_section,
2509 						  addralign);
2510   this->set_current_data_size_for_child(aligned_offset_in_section
2511 					+ input_section_size);
2512 
2513   // Determine if we want to delay code-fill generation until the output
2514   // section is written.  When the target is relaxing, we want to delay fill
2515   // generating to avoid adjusting them during relaxation.  Also, if we are
2516   // sorting input sections we must delay fill generation.
2517   if (!this->generate_code_fills_at_write_
2518       && !have_sections_script
2519       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2520       && parameters->target().has_code_fill()
2521       && (parameters->target().may_relax()
2522 	  || layout->is_section_ordering_specified()))
2523     {
2524       gold_assert(this->fills_.empty());
2525       this->generate_code_fills_at_write_ = true;
2526     }
2527 
2528   if (aligned_offset_in_section > offset_in_section
2529       && !this->generate_code_fills_at_write_
2530       && !have_sections_script
2531       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2532       && parameters->target().has_code_fill())
2533     {
2534       // We need to add some fill data.  Using fill_list_ when
2535       // possible is an optimization, since we will often have fill
2536       // sections without input sections.
2537       off_t fill_len = aligned_offset_in_section - offset_in_section;
2538       if (this->input_sections_.empty())
2539 	this->fills_.push_back(Fill(offset_in_section, fill_len));
2540       else
2541 	{
2542 	  std::string fill_data(parameters->target().code_fill(fill_len));
2543 	  Output_data_const* odc = new Output_data_const(fill_data, 1);
2544 	  this->input_sections_.push_back(Input_section(odc));
2545 	}
2546     }
2547 
2548   // We need to keep track of this section if we are already keeping
2549   // track of sections, or if we are relaxing.  Also, if this is a
2550   // section which requires sorting, or which may require sorting in
2551   // the future, we keep track of the sections.  If the
2552   // --section-ordering-file option is used to specify the order of
2553   // sections, we need to keep track of sections.
2554   if (this->always_keeps_input_sections_
2555       || have_sections_script
2556       || !this->input_sections_.empty()
2557       || this->may_sort_attached_input_sections()
2558       || this->must_sort_attached_input_sections()
2559       || parameters->options().user_set_Map()
2560       || parameters->target().may_relax()
2561       || layout->is_section_ordering_specified())
2562     {
2563       Input_section isecn(object, shndx, input_section_size, addralign);
2564       /* If section ordering is requested by specifying a ordering file,
2565 	 using --section-ordering-file, match the section name with
2566 	 a pattern.  */
2567       if (parameters->options().section_ordering_file())
2568 	{
2569 	  unsigned int section_order_index =
2570 	    layout->find_section_order_index(std::string(secname));
2571 	  if (section_order_index != 0)
2572 	    {
2573 	      isecn.set_section_order_index(section_order_index);
2574 	      this->set_input_section_order_specified();
2575 	    }
2576 	}
2577       this->input_sections_.push_back(isecn);
2578     }
2579 
2580   return aligned_offset_in_section;
2581 }
2582 
2583 // Add arbitrary data to an output section.
2584 
2585 void
2586 Output_section::add_output_section_data(Output_section_data* posd)
2587 {
2588   Input_section inp(posd);
2589   this->add_output_section_data(&inp);
2590 
2591   if (posd->is_data_size_valid())
2592     {
2593       off_t offset_in_section;
2594       if (this->has_fixed_layout())
2595 	{
2596 	  // For incremental updates, find a chunk of unused space.
2597 	  offset_in_section = this->free_list_.allocate(posd->data_size(),
2598 							posd->addralign(), 0);
2599 	  if (offset_in_section == -1)
2600 	    gold_fallback(_("out of patch space in section %s; "
2601 			    "relink with --incremental-full"),
2602 			  this->name());
2603 	  // Finalize the address and offset now.
2604 	  uint64_t addr = this->address();
2605 	  off_t offset = this->offset();
2606 	  posd->set_address_and_file_offset(addr + offset_in_section,
2607 					    offset + offset_in_section);
2608 	}
2609       else
2610 	{
2611 	  offset_in_section = this->current_data_size_for_child();
2612 	  off_t aligned_offset_in_section = align_address(offset_in_section,
2613 							  posd->addralign());
2614 	  this->set_current_data_size_for_child(aligned_offset_in_section
2615 						+ posd->data_size());
2616 	}
2617     }
2618   else if (this->has_fixed_layout())
2619     {
2620       // For incremental updates, arrange for the data to have a fixed layout.
2621       // This will mean that additions to the data must be allocated from
2622       // free space within the containing output section.
2623       uint64_t addr = this->address();
2624       posd->set_address(addr);
2625       posd->set_file_offset(0);
2626       // FIXME: This should eventually be unreachable.
2627       // gold_unreachable();
2628     }
2629 }
2630 
2631 // Add a relaxed input section.
2632 
2633 void
2634 Output_section::add_relaxed_input_section(Layout* layout,
2635 					  Output_relaxed_input_section* poris,
2636 					  const std::string& name)
2637 {
2638   Input_section inp(poris);
2639 
2640   // If the --section-ordering-file option is used to specify the order of
2641   // sections, we need to keep track of sections.
2642   if (layout->is_section_ordering_specified())
2643     {
2644       unsigned int section_order_index =
2645 	layout->find_section_order_index(name);
2646       if (section_order_index != 0)
2647 	{
2648 	  inp.set_section_order_index(section_order_index);
2649 	  this->set_input_section_order_specified();
2650 	}
2651     }
2652 
2653   this->add_output_section_data(&inp);
2654   if (this->lookup_maps_->is_valid())
2655     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2656 						  poris->shndx(), poris);
2657 
2658   // For a relaxed section, we use the current data size.  Linker scripts
2659   // get all the input sections, including relaxed one from an output
2660   // section and add them back to the same output section to compute the
2661   // output section size.  If we do not account for sizes of relaxed input
2662   // sections, an output section would be incorrectly sized.
2663   off_t offset_in_section = this->current_data_size_for_child();
2664   off_t aligned_offset_in_section = align_address(offset_in_section,
2665 						  poris->addralign());
2666   this->set_current_data_size_for_child(aligned_offset_in_section
2667 					+ poris->current_data_size());
2668 }
2669 
2670 // Add arbitrary data to an output section by Input_section.
2671 
2672 void
2673 Output_section::add_output_section_data(Input_section* inp)
2674 {
2675   if (this->input_sections_.empty())
2676     this->first_input_offset_ = this->current_data_size_for_child();
2677 
2678   this->input_sections_.push_back(*inp);
2679 
2680   uint64_t addralign = inp->addralign();
2681   if (addralign > this->addralign_)
2682     this->addralign_ = addralign;
2683 
2684   inp->set_output_section(this);
2685 }
2686 
2687 // Add a merge section to an output section.
2688 
2689 void
2690 Output_section::add_output_merge_section(Output_section_data* posd,
2691 					 bool is_string, uint64_t entsize)
2692 {
2693   Input_section inp(posd, is_string, entsize);
2694   this->add_output_section_data(&inp);
2695 }
2696 
2697 // Add an input section to a SHF_MERGE section.
2698 
2699 bool
2700 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2701 					uint64_t flags, uint64_t entsize,
2702 					uint64_t addralign,
2703 					bool keeps_input_sections)
2704 {
2705   // We cannot merge sections with entsize == 0.
2706   if (entsize == 0)
2707     return false;
2708 
2709   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2710 
2711   // We cannot restore merged input section states.
2712   gold_assert(this->checkpoint_ == NULL);
2713 
2714   // Look up merge sections by required properties.
2715   // Currently, we only invalidate the lookup maps in script processing
2716   // and relaxation.  We should not have done either when we reach here.
2717   // So we assume that the lookup maps are valid to simply code.
2718   gold_assert(this->lookup_maps_->is_valid());
2719   Merge_section_properties msp(is_string, entsize, addralign);
2720   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2721   bool is_new = false;
2722   if (pomb != NULL)
2723     {
2724       gold_assert(pomb->is_string() == is_string
2725 		  && pomb->entsize() == entsize
2726 		  && pomb->addralign() == addralign);
2727     }
2728   else
2729     {
2730       // Create a new Output_merge_data or Output_merge_string_data.
2731       if (!is_string)
2732 	pomb = new Output_merge_data(entsize, addralign);
2733       else
2734 	{
2735 	  switch (entsize)
2736 	    {
2737 	    case 1:
2738 	      pomb = new Output_merge_string<char>(addralign);
2739 	      break;
2740 	    case 2:
2741 	      pomb = new Output_merge_string<uint16_t>(addralign);
2742 	      break;
2743 	    case 4:
2744 	      pomb = new Output_merge_string<uint32_t>(addralign);
2745 	      break;
2746 	    default:
2747 	      return false;
2748 	    }
2749 	}
2750       // If we need to do script processing or relaxation, we need to keep
2751       // the original input sections to rebuild the fast lookup maps.
2752       if (keeps_input_sections)
2753 	pomb->set_keeps_input_sections();
2754       is_new = true;
2755     }
2756 
2757   if (pomb->add_input_section(object, shndx))
2758     {
2759       // Add new merge section to this output section and link merge
2760       // section properties to new merge section in map.
2761       if (is_new)
2762 	{
2763 	  this->add_output_merge_section(pomb, is_string, entsize);
2764 	  this->lookup_maps_->add_merge_section(msp, pomb);
2765 	}
2766 
2767       return true;
2768     }
2769   else
2770     {
2771       // If add_input_section failed, delete new merge section to avoid
2772       // exporting empty merge sections in Output_section::get_input_section.
2773       if (is_new)
2774 	delete pomb;
2775       return false;
2776     }
2777 }
2778 
2779 // Build a relaxation map to speed up relaxation of existing input sections.
2780 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2781 
2782 void
2783 Output_section::build_relaxation_map(
2784   const Input_section_list& input_sections,
2785   size_t limit,
2786   Relaxation_map* relaxation_map) const
2787 {
2788   for (size_t i = 0; i < limit; ++i)
2789     {
2790       const Input_section& is(input_sections[i]);
2791       if (is.is_input_section() || is.is_relaxed_input_section())
2792 	{
2793 	  Section_id sid(is.relobj(), is.shndx());
2794 	  (*relaxation_map)[sid] = i;
2795 	}
2796     }
2797 }
2798 
2799 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2800 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2801 // indices of INPUT_SECTIONS.
2802 
2803 void
2804 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2805   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2806   const Relaxation_map& map,
2807   Input_section_list* input_sections)
2808 {
2809   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2810     {
2811       Output_relaxed_input_section* poris = relaxed_sections[i];
2812       Section_id sid(poris->relobj(), poris->shndx());
2813       Relaxation_map::const_iterator p = map.find(sid);
2814       gold_assert(p != map.end());
2815       gold_assert((*input_sections)[p->second].is_input_section());
2816 
2817       // Remember section order index of original input section
2818       // if it is set.  Copy it to the relaxed input section.
2819       unsigned int soi =
2820 	(*input_sections)[p->second].section_order_index();
2821       (*input_sections)[p->second] = Input_section(poris);
2822       (*input_sections)[p->second].set_section_order_index(soi);
2823     }
2824 }
2825 
2826 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2827 // is a vector of pointers to Output_relaxed_input_section or its derived
2828 // classes.  The relaxed sections must correspond to existing input sections.
2829 
2830 void
2831 Output_section::convert_input_sections_to_relaxed_sections(
2832   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2833 {
2834   gold_assert(parameters->target().may_relax());
2835 
2836   // We want to make sure that restore_states does not undo the effect of
2837   // this.  If there is no checkpoint active, just search the current
2838   // input section list and replace the sections there.  If there is
2839   // a checkpoint, also replace the sections there.
2840 
2841   // By default, we look at the whole list.
2842   size_t limit = this->input_sections_.size();
2843 
2844   if (this->checkpoint_ != NULL)
2845     {
2846       // Replace input sections with relaxed input section in the saved
2847       // copy of the input section list.
2848       if (this->checkpoint_->input_sections_saved())
2849 	{
2850 	  Relaxation_map map;
2851 	  this->build_relaxation_map(
2852 		    *(this->checkpoint_->input_sections()),
2853 		    this->checkpoint_->input_sections()->size(),
2854 		    &map);
2855 	  this->convert_input_sections_in_list_to_relaxed_sections(
2856 		    relaxed_sections,
2857 		    map,
2858 		    this->checkpoint_->input_sections());
2859 	}
2860       else
2861 	{
2862 	  // We have not copied the input section list yet.  Instead, just
2863 	  // look at the portion that would be saved.
2864 	  limit = this->checkpoint_->input_sections_size();
2865 	}
2866     }
2867 
2868   // Convert input sections in input_section_list.
2869   Relaxation_map map;
2870   this->build_relaxation_map(this->input_sections_, limit, &map);
2871   this->convert_input_sections_in_list_to_relaxed_sections(
2872 	    relaxed_sections,
2873 	    map,
2874 	    &this->input_sections_);
2875 
2876   // Update fast look-up map.
2877   if (this->lookup_maps_->is_valid())
2878     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2879       {
2880 	Output_relaxed_input_section* poris = relaxed_sections[i];
2881 	this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2882 						      poris->shndx(), poris);
2883       }
2884 }
2885 
2886 // Update the output section flags based on input section flags.
2887 
2888 void
2889 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2890 {
2891   // If we created the section with SHF_ALLOC clear, we set the
2892   // address.  If we are now setting the SHF_ALLOC flag, we need to
2893   // undo that.
2894   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2895       && (flags & elfcpp::SHF_ALLOC) != 0)
2896     this->mark_address_invalid();
2897 
2898   this->flags_ |= (flags
2899 		   & (elfcpp::SHF_WRITE
2900 		      | elfcpp::SHF_ALLOC
2901 		      | elfcpp::SHF_EXECINSTR));
2902 
2903   if ((flags & elfcpp::SHF_MERGE) == 0)
2904     this->flags_ &=~ elfcpp::SHF_MERGE;
2905   else
2906     {
2907       if (this->current_data_size_for_child() == 0)
2908 	this->flags_ |= elfcpp::SHF_MERGE;
2909     }
2910 
2911   if ((flags & elfcpp::SHF_STRINGS) == 0)
2912     this->flags_ &=~ elfcpp::SHF_STRINGS;
2913   else
2914     {
2915       if (this->current_data_size_for_child() == 0)
2916 	this->flags_ |= elfcpp::SHF_STRINGS;
2917     }
2918 }
2919 
2920 // Find the merge section into which an input section with index SHNDX in
2921 // OBJECT has been added.  Return NULL if none found.
2922 
2923 const Output_section_data*
2924 Output_section::find_merge_section(const Relobj* object,
2925 				   unsigned int shndx) const
2926 {
2927   return object->find_merge_section(shndx);
2928 }
2929 
2930 // Build the lookup maps for relaxed sections.  This needs
2931 // to be declared as a const method so that it is callable with a const
2932 // Output_section pointer.  The method only updates states of the maps.
2933 
2934 void
2935 Output_section::build_lookup_maps() const
2936 {
2937   this->lookup_maps_->clear();
2938   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2939        p != this->input_sections_.end();
2940        ++p)
2941     {
2942       if (p->is_relaxed_input_section())
2943 	{
2944 	  Output_relaxed_input_section* poris = p->relaxed_input_section();
2945 	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2946 							poris->shndx(), poris);
2947 	}
2948     }
2949 }
2950 
2951 // Find an relaxed input section corresponding to an input section
2952 // in OBJECT with index SHNDX.
2953 
2954 const Output_relaxed_input_section*
2955 Output_section::find_relaxed_input_section(const Relobj* object,
2956 					   unsigned int shndx) const
2957 {
2958   if (!this->lookup_maps_->is_valid())
2959     this->build_lookup_maps();
2960   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2961 }
2962 
2963 // Given an address OFFSET relative to the start of input section
2964 // SHNDX in OBJECT, return whether this address is being included in
2965 // the final link.  This should only be called if SHNDX in OBJECT has
2966 // a special mapping.
2967 
2968 bool
2969 Output_section::is_input_address_mapped(const Relobj* object,
2970 					unsigned int shndx,
2971 					off_t offset) const
2972 {
2973   // Look at the Output_section_data_maps first.
2974   const Output_section_data* posd = this->find_merge_section(object, shndx);
2975   if (posd == NULL)
2976     posd = this->find_relaxed_input_section(object, shndx);
2977 
2978   if (posd != NULL)
2979     {
2980       section_offset_type output_offset;
2981       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2982       // By default we assume that the address is mapped. See comment at the
2983       // end.
2984       if (!found)
2985         return true;
2986       return output_offset != -1;
2987     }
2988 
2989   // Fall back to the slow look-up.
2990   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2991        p != this->input_sections_.end();
2992        ++p)
2993     {
2994       section_offset_type output_offset;
2995       if (p->output_offset(object, shndx, offset, &output_offset))
2996 	return output_offset != -1;
2997     }
2998 
2999   // By default we assume that the address is mapped.  This should
3000   // only be called after we have passed all sections to Layout.  At
3001   // that point we should know what we are discarding.
3002   return true;
3003 }
3004 
3005 // Given an address OFFSET relative to the start of input section
3006 // SHNDX in object OBJECT, return the output offset relative to the
3007 // start of the input section in the output section.  This should only
3008 // be called if SHNDX in OBJECT has a special mapping.
3009 
3010 section_offset_type
3011 Output_section::output_offset(const Relobj* object, unsigned int shndx,
3012 			      section_offset_type offset) const
3013 {
3014   // This can only be called meaningfully when we know the data size
3015   // of this.
3016   gold_assert(this->is_data_size_valid());
3017 
3018   // Look at the Output_section_data_maps first.
3019   const Output_section_data* posd = this->find_merge_section(object, shndx);
3020   if (posd == NULL)
3021     posd = this->find_relaxed_input_section(object, shndx);
3022   if (posd != NULL)
3023     {
3024       section_offset_type output_offset;
3025       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3026       gold_assert(found);
3027       return output_offset;
3028     }
3029 
3030   // Fall back to the slow look-up.
3031   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3032        p != this->input_sections_.end();
3033        ++p)
3034     {
3035       section_offset_type output_offset;
3036       if (p->output_offset(object, shndx, offset, &output_offset))
3037 	return output_offset;
3038     }
3039   gold_unreachable();
3040 }
3041 
3042 // Return the output virtual address of OFFSET relative to the start
3043 // of input section SHNDX in object OBJECT.
3044 
3045 uint64_t
3046 Output_section::output_address(const Relobj* object, unsigned int shndx,
3047 			       off_t offset) const
3048 {
3049   uint64_t addr = this->address() + this->first_input_offset_;
3050 
3051   // Look at the Output_section_data_maps first.
3052   const Output_section_data* posd = this->find_merge_section(object, shndx);
3053   if (posd == NULL)
3054     posd = this->find_relaxed_input_section(object, shndx);
3055   if (posd != NULL && posd->is_address_valid())
3056     {
3057       section_offset_type output_offset;
3058       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3059       gold_assert(found);
3060       return posd->address() + output_offset;
3061     }
3062 
3063   // Fall back to the slow look-up.
3064   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3065        p != this->input_sections_.end();
3066        ++p)
3067     {
3068       addr = align_address(addr, p->addralign());
3069       section_offset_type output_offset;
3070       if (p->output_offset(object, shndx, offset, &output_offset))
3071 	{
3072 	  if (output_offset == -1)
3073 	    return -1ULL;
3074 	  return addr + output_offset;
3075 	}
3076       addr += p->data_size();
3077     }
3078 
3079   // If we get here, it means that we don't know the mapping for this
3080   // input section.  This might happen in principle if
3081   // add_input_section were called before add_output_section_data.
3082   // But it should never actually happen.
3083 
3084   gold_unreachable();
3085 }
3086 
3087 // Find the output address of the start of the merged section for
3088 // input section SHNDX in object OBJECT.
3089 
3090 bool
3091 Output_section::find_starting_output_address(const Relobj* object,
3092 					     unsigned int shndx,
3093 					     uint64_t* paddr) const
3094 {
3095   const Output_section_data* data = this->find_merge_section(object, shndx);
3096   if (data == NULL)
3097     return false;
3098 
3099   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3100   // Looking up the merge section map does not always work as we sometimes
3101   // find a merge section without its address set.
3102   uint64_t addr = this->address() + this->first_input_offset_;
3103   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3104        p != this->input_sections_.end();
3105        ++p)
3106     {
3107       addr = align_address(addr, p->addralign());
3108 
3109       // It would be nice if we could use the existing output_offset
3110       // method to get the output offset of input offset 0.
3111       // Unfortunately we don't know for sure that input offset 0 is
3112       // mapped at all.
3113       if (!p->is_input_section() && p->output_section_data() == data)
3114 	{
3115 	  *paddr = addr;
3116 	  return true;
3117 	}
3118 
3119       addr += p->data_size();
3120     }
3121 
3122   // We couldn't find a merge output section for this input section.
3123   return false;
3124 }
3125 
3126 // Update the data size of an Output_section.
3127 
3128 void
3129 Output_section::update_data_size()
3130 {
3131   if (this->input_sections_.empty())
3132       return;
3133 
3134   if (this->must_sort_attached_input_sections()
3135       || this->input_section_order_specified())
3136     this->sort_attached_input_sections();
3137 
3138   off_t off = this->first_input_offset_;
3139   for (Input_section_list::iterator p = this->input_sections_.begin();
3140        p != this->input_sections_.end();
3141        ++p)
3142     {
3143       off = align_address(off, p->addralign());
3144       off += p->current_data_size();
3145     }
3146 
3147   this->set_current_data_size_for_child(off);
3148 }
3149 
3150 // Set the data size of an Output_section.  This is where we handle
3151 // setting the addresses of any Output_section_data objects.
3152 
3153 void
3154 Output_section::set_final_data_size()
3155 {
3156   off_t data_size;
3157 
3158   if (this->input_sections_.empty())
3159     data_size = this->current_data_size_for_child();
3160   else
3161     {
3162       if (this->must_sort_attached_input_sections()
3163 	  || this->input_section_order_specified())
3164 	this->sort_attached_input_sections();
3165 
3166       uint64_t address = this->address();
3167       off_t startoff = this->offset();
3168       off_t off = startoff + this->first_input_offset_;
3169       for (Input_section_list::iterator p = this->input_sections_.begin();
3170 	   p != this->input_sections_.end();
3171 	   ++p)
3172 	{
3173 	  off = align_address(off, p->addralign());
3174 	  p->set_address_and_file_offset(address + (off - startoff), off,
3175 					 startoff);
3176 	  off += p->data_size();
3177 	}
3178       data_size = off - startoff;
3179     }
3180 
3181   // For full incremental links, we want to allocate some patch space
3182   // in most sections for subsequent incremental updates.
3183   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3184     {
3185       double pct = parameters->options().incremental_patch();
3186       size_t extra = static_cast<size_t>(data_size * pct);
3187       if (this->free_space_fill_ != NULL
3188 	  && this->free_space_fill_->minimum_hole_size() > extra)
3189 	extra = this->free_space_fill_->minimum_hole_size();
3190       off_t new_size = align_address(data_size + extra, this->addralign());
3191       this->patch_space_ = new_size - data_size;
3192       gold_debug(DEBUG_INCREMENTAL,
3193 		 "set_final_data_size: %08lx + %08lx: section %s",
3194 		 static_cast<long>(data_size),
3195 		 static_cast<long>(this->patch_space_),
3196 		 this->name());
3197       data_size = new_size;
3198     }
3199 
3200   this->set_data_size(data_size);
3201 }
3202 
3203 // Reset the address and file offset.
3204 
3205 void
3206 Output_section::do_reset_address_and_file_offset()
3207 {
3208   // An unallocated section has no address.  Forcing this means that
3209   // we don't need special treatment for symbols defined in debug
3210   // sections.  We do the same in the constructor.  This does not
3211   // apply to NOLOAD sections though.
3212   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3213      this->set_address(0);
3214 
3215   for (Input_section_list::iterator p = this->input_sections_.begin();
3216        p != this->input_sections_.end();
3217        ++p)
3218     p->reset_address_and_file_offset();
3219 
3220   // Remove any patch space that was added in set_final_data_size.
3221   if (this->patch_space_ > 0)
3222     {
3223       this->set_current_data_size_for_child(this->current_data_size_for_child()
3224 					    - this->patch_space_);
3225       this->patch_space_ = 0;
3226     }
3227 }
3228 
3229 // Return true if address and file offset have the values after reset.
3230 
3231 bool
3232 Output_section::do_address_and_file_offset_have_reset_values() const
3233 {
3234   if (this->is_offset_valid())
3235     return false;
3236 
3237   // An unallocated section has address 0 after its construction or a reset.
3238   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3239     return this->is_address_valid() && this->address() == 0;
3240   else
3241     return !this->is_address_valid();
3242 }
3243 
3244 // Set the TLS offset.  Called only for SHT_TLS sections.
3245 
3246 void
3247 Output_section::do_set_tls_offset(uint64_t tls_base)
3248 {
3249   this->tls_offset_ = this->address() - tls_base;
3250 }
3251 
3252 // In a few cases we need to sort the input sections attached to an
3253 // output section.  This is used to implement the type of constructor
3254 // priority ordering implemented by the GNU linker, in which the
3255 // priority becomes part of the section name and the sections are
3256 // sorted by name.  We only do this for an output section if we see an
3257 // attached input section matching ".ctors.*", ".dtors.*",
3258 // ".init_array.*" or ".fini_array.*".
3259 
3260 class Output_section::Input_section_sort_entry
3261 {
3262  public:
3263   Input_section_sort_entry()
3264     : input_section_(), index_(-1U), section_name_()
3265   { }
3266 
3267   Input_section_sort_entry(const Input_section& input_section,
3268 			   unsigned int index,
3269 			   bool must_sort_attached_input_sections,
3270 			   const char* output_section_name)
3271     : input_section_(input_section), index_(index), section_name_()
3272   {
3273     if ((input_section.is_input_section()
3274 	 || input_section.is_relaxed_input_section())
3275 	&& must_sort_attached_input_sections)
3276       {
3277 	// This is only called single-threaded from Layout::finalize,
3278 	// so it is OK to lock.  Unfortunately we have no way to pass
3279 	// in a Task token.
3280 	const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3281 	Object* obj = (input_section.is_input_section()
3282 		       ? input_section.relobj()
3283 		       : input_section.relaxed_input_section()->relobj());
3284 	Task_lock_obj<Object> tl(dummy_task, obj);
3285 
3286 	// This is a slow operation, which should be cached in
3287 	// Layout::layout if this becomes a speed problem.
3288 	this->section_name_ = obj->section_name(input_section.shndx());
3289       }
3290     else if (input_section.is_output_section_data()
3291     	     && must_sort_attached_input_sections)
3292       {
3293 	// For linker-generated sections, use the output section name.
3294 	this->section_name_.assign(output_section_name);
3295       }
3296   }
3297 
3298   // Return the Input_section.
3299   const Input_section&
3300   input_section() const
3301   {
3302     gold_assert(this->index_ != -1U);
3303     return this->input_section_;
3304   }
3305 
3306   // The index of this entry in the original list.  This is used to
3307   // make the sort stable.
3308   unsigned int
3309   index() const
3310   {
3311     gold_assert(this->index_ != -1U);
3312     return this->index_;
3313   }
3314 
3315   // The section name.
3316   const std::string&
3317   section_name() const
3318   {
3319     return this->section_name_;
3320   }
3321 
3322   // Return true if the section name has a priority.  This is assumed
3323   // to be true if it has a dot after the initial dot.
3324   bool
3325   has_priority() const
3326   {
3327     return this->section_name_.find('.', 1) != std::string::npos;
3328   }
3329 
3330   // Return the priority.  Believe it or not, gcc encodes the priority
3331   // differently for .ctors/.dtors and .init_array/.fini_array
3332   // sections.
3333   unsigned int
3334   get_priority() const
3335   {
3336     bool is_ctors;
3337     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3338 	|| is_prefix_of(".dtors.", this->section_name_.c_str()))
3339       is_ctors = true;
3340     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3341 	     || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3342       is_ctors = false;
3343     else
3344       return 0;
3345     char* end;
3346     unsigned long prio = strtoul((this->section_name_.c_str()
3347 				  + (is_ctors ? 7 : 12)),
3348 				 &end, 10);
3349     if (*end != '\0')
3350       return 0;
3351     else if (is_ctors)
3352       return 65535 - prio;
3353     else
3354       return prio;
3355   }
3356 
3357   // Return true if this an input file whose base name matches
3358   // FILE_NAME.  The base name must have an extension of ".o", and
3359   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3360   // This is to match crtbegin.o as well as crtbeginS.o without
3361   // getting confused by other possibilities.  Overall matching the
3362   // file name this way is a dreadful hack, but the GNU linker does it
3363   // in order to better support gcc, and we need to be compatible.
3364   bool
3365   match_file_name(const char* file_name) const
3366   {
3367     if (this->input_section_.is_output_section_data())
3368       return false;
3369     return Layout::match_file_name(this->input_section_.relobj(), file_name);
3370   }
3371 
3372   // Returns 1 if THIS should appear before S in section order, -1 if S
3373   // appears before THIS and 0 if they are not comparable.
3374   int
3375   compare_section_ordering(const Input_section_sort_entry& s) const
3376   {
3377     unsigned int this_secn_index = this->input_section_.section_order_index();
3378     unsigned int s_secn_index = s.input_section().section_order_index();
3379     if (this_secn_index > 0 && s_secn_index > 0)
3380       {
3381 	if (this_secn_index < s_secn_index)
3382 	  return 1;
3383 	else if (this_secn_index > s_secn_index)
3384 	  return -1;
3385       }
3386     return 0;
3387   }
3388 
3389  private:
3390   // The Input_section we are sorting.
3391   Input_section input_section_;
3392   // The index of this Input_section in the original list.
3393   unsigned int index_;
3394   // The section name if there is one.
3395   std::string section_name_;
3396 };
3397 
3398 // Return true if S1 should come before S2 in the output section.
3399 
3400 bool
3401 Output_section::Input_section_sort_compare::operator()(
3402     const Output_section::Input_section_sort_entry& s1,
3403     const Output_section::Input_section_sort_entry& s2) const
3404 {
3405   // crtbegin.o must come first.
3406   bool s1_begin = s1.match_file_name("crtbegin");
3407   bool s2_begin = s2.match_file_name("crtbegin");
3408   if (s1_begin || s2_begin)
3409     {
3410       if (!s1_begin)
3411 	return false;
3412       if (!s2_begin)
3413 	return true;
3414       return s1.index() < s2.index();
3415     }
3416 
3417   // crtend.o must come last.
3418   bool s1_end = s1.match_file_name("crtend");
3419   bool s2_end = s2.match_file_name("crtend");
3420   if (s1_end || s2_end)
3421     {
3422       if (!s1_end)
3423 	return true;
3424       if (!s2_end)
3425 	return false;
3426       return s1.index() < s2.index();
3427     }
3428 
3429   // A section with a priority follows a section without a priority.
3430   bool s1_has_priority = s1.has_priority();
3431   bool s2_has_priority = s2.has_priority();
3432   if (s1_has_priority && !s2_has_priority)
3433     return false;
3434   if (!s1_has_priority && s2_has_priority)
3435     return true;
3436 
3437   // Check if a section order exists for these sections through a section
3438   // ordering file.  If sequence_num is 0, an order does not exist.
3439   int sequence_num = s1.compare_section_ordering(s2);
3440   if (sequence_num != 0)
3441     return sequence_num == 1;
3442 
3443   // Otherwise we sort by name.
3444   int compare = s1.section_name().compare(s2.section_name());
3445   if (compare != 0)
3446     return compare < 0;
3447 
3448   // Otherwise we keep the input order.
3449   return s1.index() < s2.index();
3450 }
3451 
3452 // Return true if S1 should come before S2 in an .init_array or .fini_array
3453 // output section.
3454 
3455 bool
3456 Output_section::Input_section_sort_init_fini_compare::operator()(
3457     const Output_section::Input_section_sort_entry& s1,
3458     const Output_section::Input_section_sort_entry& s2) const
3459 {
3460   // A section without a priority follows a section with a priority.
3461   // This is the reverse of .ctors and .dtors sections.
3462   bool s1_has_priority = s1.has_priority();
3463   bool s2_has_priority = s2.has_priority();
3464   if (s1_has_priority && !s2_has_priority)
3465     return true;
3466   if (!s1_has_priority && s2_has_priority)
3467     return false;
3468 
3469   // .ctors and .dtors sections without priority come after
3470   // .init_array and .fini_array sections without priority.
3471   if (!s1_has_priority
3472       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3473       && s1.section_name() != s2.section_name())
3474     return false;
3475   if (!s2_has_priority
3476       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3477       && s2.section_name() != s1.section_name())
3478     return true;
3479 
3480   // Sort by priority if we can.
3481   if (s1_has_priority)
3482     {
3483       unsigned int s1_prio = s1.get_priority();
3484       unsigned int s2_prio = s2.get_priority();
3485       if (s1_prio < s2_prio)
3486 	return true;
3487       else if (s1_prio > s2_prio)
3488 	return false;
3489     }
3490 
3491   // Check if a section order exists for these sections through a section
3492   // ordering file.  If sequence_num is 0, an order does not exist.
3493   int sequence_num = s1.compare_section_ordering(s2);
3494   if (sequence_num != 0)
3495     return sequence_num == 1;
3496 
3497   // Otherwise we sort by name.
3498   int compare = s1.section_name().compare(s2.section_name());
3499   if (compare != 0)
3500     return compare < 0;
3501 
3502   // Otherwise we keep the input order.
3503   return s1.index() < s2.index();
3504 }
3505 
3506 // Return true if S1 should come before S2.  Sections that do not match
3507 // any pattern in the section ordering file are placed ahead of the sections
3508 // that match some pattern.
3509 
3510 bool
3511 Output_section::Input_section_sort_section_order_index_compare::operator()(
3512     const Output_section::Input_section_sort_entry& s1,
3513     const Output_section::Input_section_sort_entry& s2) const
3514 {
3515   unsigned int s1_secn_index = s1.input_section().section_order_index();
3516   unsigned int s2_secn_index = s2.input_section().section_order_index();
3517 
3518   // Keep input order if section ordering cannot determine order.
3519   if (s1_secn_index == s2_secn_index)
3520     return s1.index() < s2.index();
3521 
3522   return s1_secn_index < s2_secn_index;
3523 }
3524 
3525 // Return true if S1 should come before S2.  This is the sort comparison
3526 // function for .text to sort sections with prefixes
3527 // .text.{unlikely,exit,startup,hot} before other sections.
3528 
3529 bool
3530 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3531   ::operator()(
3532     const Output_section::Input_section_sort_entry& s1,
3533     const Output_section::Input_section_sort_entry& s2) const
3534 {
3535   // Some input section names have special ordering requirements.
3536   int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3537   int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3538   if (o1 != o2)
3539     {
3540       if (o1 < 0)
3541 	return false;
3542       else if (o2 < 0)
3543 	return true;
3544       else
3545 	return o1 < o2;
3546     }
3547 
3548   // Keep input order otherwise.
3549   return s1.index() < s2.index();
3550 }
3551 
3552 // Return true if S1 should come before S2.  This is the sort comparison
3553 // function for sections to sort them by name.
3554 
3555 bool
3556 Output_section::Input_section_sort_section_name_compare
3557   ::operator()(
3558     const Output_section::Input_section_sort_entry& s1,
3559     const Output_section::Input_section_sort_entry& s2) const
3560 {
3561   // We sort by name.
3562   int compare = s1.section_name().compare(s2.section_name());
3563   if (compare != 0)
3564     return compare < 0;
3565 
3566   // Keep input order otherwise.
3567   return s1.index() < s2.index();
3568 }
3569 
3570 // This updates the section order index of input sections according to the
3571 // the order specified in the mapping from Section id to order index.
3572 
3573 void
3574 Output_section::update_section_layout(
3575   const Section_layout_order* order_map)
3576 {
3577   for (Input_section_list::iterator p = this->input_sections_.begin();
3578        p != this->input_sections_.end();
3579        ++p)
3580     {
3581       if (p->is_input_section()
3582 	  || p->is_relaxed_input_section())
3583 	{
3584 	  Relobj* obj = (p->is_input_section()
3585 			 ? p->relobj()
3586 			 : p->relaxed_input_section()->relobj());
3587 	  unsigned int shndx = p->shndx();
3588 	  Section_layout_order::const_iterator it
3589 	    = order_map->find(Section_id(obj, shndx));
3590 	  if (it == order_map->end())
3591 	    continue;
3592 	  unsigned int section_order_index = it->second;
3593 	  if (section_order_index != 0)
3594 	    {
3595 	      p->set_section_order_index(section_order_index);
3596 	      this->set_input_section_order_specified();
3597 	    }
3598 	}
3599     }
3600 }
3601 
3602 // Sort the input sections attached to an output section.
3603 
3604 void
3605 Output_section::sort_attached_input_sections()
3606 {
3607   if (this->attached_input_sections_are_sorted_)
3608     return;
3609 
3610   if (this->checkpoint_ != NULL
3611       && !this->checkpoint_->input_sections_saved())
3612     this->checkpoint_->save_input_sections();
3613 
3614   // The only thing we know about an input section is the object and
3615   // the section index.  We need the section name.  Recomputing this
3616   // is slow but this is an unusual case.  If this becomes a speed
3617   // problem we can cache the names as required in Layout::layout.
3618 
3619   // We start by building a larger vector holding a copy of each
3620   // Input_section, plus its current index in the list and its name.
3621   std::vector<Input_section_sort_entry> sort_list;
3622 
3623   unsigned int i = 0;
3624   for (Input_section_list::iterator p = this->input_sections_.begin();
3625        p != this->input_sections_.end();
3626        ++p, ++i)
3627       sort_list.push_back(Input_section_sort_entry(*p, i,
3628 			    this->must_sort_attached_input_sections(),
3629 			    this->name()));
3630 
3631   // Sort the input sections.
3632   if (this->must_sort_attached_input_sections())
3633     {
3634       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3635 	  || this->type() == elfcpp::SHT_INIT_ARRAY
3636 	  || this->type() == elfcpp::SHT_FINI_ARRAY)
3637 	std::sort(sort_list.begin(), sort_list.end(),
3638 		  Input_section_sort_init_fini_compare());
3639       else if (strcmp(parameters->options().sort_section(), "name") == 0)
3640 	std::sort(sort_list.begin(), sort_list.end(),
3641 		  Input_section_sort_section_name_compare());
3642       else if (strcmp(this->name(), ".text") == 0)
3643 	std::sort(sort_list.begin(), sort_list.end(),
3644 		  Input_section_sort_section_prefix_special_ordering_compare());
3645       else
3646 	std::sort(sort_list.begin(), sort_list.end(),
3647 		  Input_section_sort_compare());
3648     }
3649   else
3650     {
3651       gold_assert(this->input_section_order_specified());
3652       std::sort(sort_list.begin(), sort_list.end(),
3653 		Input_section_sort_section_order_index_compare());
3654     }
3655 
3656   // Copy the sorted input sections back to our list.
3657   this->input_sections_.clear();
3658   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3659        p != sort_list.end();
3660        ++p)
3661     this->input_sections_.push_back(p->input_section());
3662   sort_list.clear();
3663 
3664   // Remember that we sorted the input sections, since we might get
3665   // called again.
3666   this->attached_input_sections_are_sorted_ = true;
3667 }
3668 
3669 // Write the section header to *OSHDR.
3670 
3671 template<int size, bool big_endian>
3672 void
3673 Output_section::write_header(const Layout* layout,
3674 			     const Stringpool* secnamepool,
3675 			     elfcpp::Shdr_write<size, big_endian>* oshdr) const
3676 {
3677   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3678   oshdr->put_sh_type(this->type_);
3679 
3680   elfcpp::Elf_Xword flags = this->flags_;
3681   if (this->info_section_ != NULL && this->info_uses_section_index_)
3682     flags |= elfcpp::SHF_INFO_LINK;
3683   oshdr->put_sh_flags(flags);
3684 
3685   oshdr->put_sh_addr(this->address());
3686   oshdr->put_sh_offset(this->offset());
3687   oshdr->put_sh_size(this->data_size());
3688   if (this->link_section_ != NULL)
3689     oshdr->put_sh_link(this->link_section_->out_shndx());
3690   else if (this->should_link_to_symtab_)
3691     oshdr->put_sh_link(layout->symtab_section_shndx());
3692   else if (this->should_link_to_dynsym_)
3693     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3694   else
3695     oshdr->put_sh_link(this->link_);
3696 
3697   elfcpp::Elf_Word info;
3698   if (this->info_section_ != NULL)
3699     {
3700       if (this->info_uses_section_index_)
3701 	info = this->info_section_->out_shndx();
3702       else
3703 	info = this->info_section_->symtab_index();
3704     }
3705   else if (this->info_symndx_ != NULL)
3706     info = this->info_symndx_->symtab_index();
3707   else
3708     info = this->info_;
3709   oshdr->put_sh_info(info);
3710 
3711   oshdr->put_sh_addralign(this->addralign_);
3712   oshdr->put_sh_entsize(this->entsize_);
3713 }
3714 
3715 // Write out the data.  For input sections the data is written out by
3716 // Object::relocate, but we have to handle Output_section_data objects
3717 // here.
3718 
3719 void
3720 Output_section::do_write(Output_file* of)
3721 {
3722   gold_assert(!this->requires_postprocessing());
3723 
3724   // If the target performs relaxation, we delay filler generation until now.
3725   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3726 
3727   off_t output_section_file_offset = this->offset();
3728   for (Fill_list::iterator p = this->fills_.begin();
3729        p != this->fills_.end();
3730        ++p)
3731     {
3732       std::string fill_data(parameters->target().code_fill(p->length()));
3733       of->write(output_section_file_offset + p->section_offset(),
3734 		fill_data.data(), fill_data.size());
3735     }
3736 
3737   off_t off = this->offset() + this->first_input_offset_;
3738   for (Input_section_list::iterator p = this->input_sections_.begin();
3739        p != this->input_sections_.end();
3740        ++p)
3741     {
3742       off_t aligned_off = align_address(off, p->addralign());
3743       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3744 	{
3745 	  size_t fill_len = aligned_off - off;
3746 	  std::string fill_data(parameters->target().code_fill(fill_len));
3747 	  of->write(off, fill_data.data(), fill_data.size());
3748 	}
3749 
3750       p->write(of);
3751       off = aligned_off + p->data_size();
3752     }
3753 
3754   // For incremental links, fill in unused chunks in debug sections
3755   // with dummy compilation unit headers.
3756   if (this->free_space_fill_ != NULL)
3757     {
3758       for (Free_list::Const_iterator p = this->free_list_.begin();
3759 	   p != this->free_list_.end();
3760 	   ++p)
3761 	{
3762 	  off_t off = p->start_;
3763 	  size_t len = p->end_ - off;
3764 	  this->free_space_fill_->write(of, this->offset() + off, len);
3765 	}
3766       if (this->patch_space_ > 0)
3767 	{
3768 	  off_t off = this->current_data_size_for_child() - this->patch_space_;
3769 	  this->free_space_fill_->write(of, this->offset() + off,
3770 					this->patch_space_);
3771 	}
3772     }
3773 }
3774 
3775 // If a section requires postprocessing, create the buffer to use.
3776 
3777 void
3778 Output_section::create_postprocessing_buffer()
3779 {
3780   gold_assert(this->requires_postprocessing());
3781 
3782   if (this->postprocessing_buffer_ != NULL)
3783     return;
3784 
3785   if (!this->input_sections_.empty())
3786     {
3787       off_t off = this->first_input_offset_;
3788       for (Input_section_list::iterator p = this->input_sections_.begin();
3789 	   p != this->input_sections_.end();
3790 	   ++p)
3791 	{
3792 	  off = align_address(off, p->addralign());
3793 	  p->finalize_data_size();
3794 	  off += p->data_size();
3795 	}
3796       this->set_current_data_size_for_child(off);
3797     }
3798 
3799   off_t buffer_size = this->current_data_size_for_child();
3800   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3801 }
3802 
3803 // Write all the data of an Output_section into the postprocessing
3804 // buffer.  This is used for sections which require postprocessing,
3805 // such as compression.  Input sections are handled by
3806 // Object::Relocate.
3807 
3808 void
3809 Output_section::write_to_postprocessing_buffer()
3810 {
3811   gold_assert(this->requires_postprocessing());
3812 
3813   // If the target performs relaxation, we delay filler generation until now.
3814   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3815 
3816   unsigned char* buffer = this->postprocessing_buffer();
3817   for (Fill_list::iterator p = this->fills_.begin();
3818        p != this->fills_.end();
3819        ++p)
3820     {
3821       std::string fill_data(parameters->target().code_fill(p->length()));
3822       memcpy(buffer + p->section_offset(), fill_data.data(),
3823 	     fill_data.size());
3824     }
3825 
3826   off_t off = this->first_input_offset_;
3827   for (Input_section_list::iterator p = this->input_sections_.begin();
3828        p != this->input_sections_.end();
3829        ++p)
3830     {
3831       off_t aligned_off = align_address(off, p->addralign());
3832       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3833 	{
3834 	  size_t fill_len = aligned_off - off;
3835 	  std::string fill_data(parameters->target().code_fill(fill_len));
3836 	  memcpy(buffer + off, fill_data.data(), fill_data.size());
3837 	}
3838 
3839       p->write_to_buffer(buffer + aligned_off);
3840       off = aligned_off + p->data_size();
3841     }
3842 }
3843 
3844 // Get the input sections for linker script processing.  We leave
3845 // behind the Output_section_data entries.  Note that this may be
3846 // slightly incorrect for merge sections.  We will leave them behind,
3847 // but it is possible that the script says that they should follow
3848 // some other input sections, as in:
3849 //    .rodata { *(.rodata) *(.rodata.cst*) }
3850 // For that matter, we don't handle this correctly:
3851 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3852 // With luck this will never matter.
3853 
3854 uint64_t
3855 Output_section::get_input_sections(
3856     uint64_t address,
3857     const std::string& fill,
3858     std::list<Input_section>* input_sections)
3859 {
3860   if (this->checkpoint_ != NULL
3861       && !this->checkpoint_->input_sections_saved())
3862     this->checkpoint_->save_input_sections();
3863 
3864   // Invalidate fast look-up maps.
3865   this->lookup_maps_->invalidate();
3866 
3867   uint64_t orig_address = address;
3868 
3869   address = align_address(address, this->addralign());
3870 
3871   Input_section_list remaining;
3872   for (Input_section_list::iterator p = this->input_sections_.begin();
3873        p != this->input_sections_.end();
3874        ++p)
3875     {
3876       if (p->is_input_section()
3877 	  || p->is_relaxed_input_section()
3878 	  || p->is_merge_section())
3879 	input_sections->push_back(*p);
3880       else
3881 	{
3882 	  uint64_t aligned_address = align_address(address, p->addralign());
3883 	  if (aligned_address != address && !fill.empty())
3884 	    {
3885 	      section_size_type length =
3886 		convert_to_section_size_type(aligned_address - address);
3887 	      std::string this_fill;
3888 	      this_fill.reserve(length);
3889 	      while (this_fill.length() + fill.length() <= length)
3890 		this_fill += fill;
3891 	      if (this_fill.length() < length)
3892 		this_fill.append(fill, 0, length - this_fill.length());
3893 
3894 	      Output_section_data* posd = new Output_data_const(this_fill, 0);
3895 	      remaining.push_back(Input_section(posd));
3896 	    }
3897 	  address = aligned_address;
3898 
3899 	  remaining.push_back(*p);
3900 
3901 	  p->finalize_data_size();
3902 	  address += p->data_size();
3903 	}
3904     }
3905 
3906   this->input_sections_.swap(remaining);
3907   this->first_input_offset_ = 0;
3908 
3909   uint64_t data_size = address - orig_address;
3910   this->set_current_data_size_for_child(data_size);
3911   return data_size;
3912 }
3913 
3914 // Add a script input section.  SIS is an Output_section::Input_section,
3915 // which can be either a plain input section or a special input section like
3916 // a relaxed input section.  For a special input section, its size must be
3917 // finalized.
3918 
3919 void
3920 Output_section::add_script_input_section(const Input_section& sis)
3921 {
3922   uint64_t data_size = sis.data_size();
3923   uint64_t addralign = sis.addralign();
3924   if (addralign > this->addralign_)
3925     this->addralign_ = addralign;
3926 
3927   off_t offset_in_section = this->current_data_size_for_child();
3928   off_t aligned_offset_in_section = align_address(offset_in_section,
3929 						  addralign);
3930 
3931   this->set_current_data_size_for_child(aligned_offset_in_section
3932 					+ data_size);
3933 
3934   this->input_sections_.push_back(sis);
3935 
3936   // Update fast lookup maps if necessary.
3937   if (this->lookup_maps_->is_valid())
3938     {
3939       if (sis.is_relaxed_input_section())
3940 	{
3941 	  Output_relaxed_input_section* poris = sis.relaxed_input_section();
3942 	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3943 							poris->shndx(), poris);
3944 	}
3945     }
3946 }
3947 
3948 // Save states for relaxation.
3949 
3950 void
3951 Output_section::save_states()
3952 {
3953   gold_assert(this->checkpoint_ == NULL);
3954   Checkpoint_output_section* checkpoint =
3955     new Checkpoint_output_section(this->addralign_, this->flags_,
3956 				  this->input_sections_,
3957 				  this->first_input_offset_,
3958 				  this->attached_input_sections_are_sorted_);
3959   this->checkpoint_ = checkpoint;
3960   gold_assert(this->fills_.empty());
3961 }
3962 
3963 void
3964 Output_section::discard_states()
3965 {
3966   gold_assert(this->checkpoint_ != NULL);
3967   delete this->checkpoint_;
3968   this->checkpoint_ = NULL;
3969   gold_assert(this->fills_.empty());
3970 
3971   // Simply invalidate the fast lookup maps since we do not keep
3972   // track of them.
3973   this->lookup_maps_->invalidate();
3974 }
3975 
3976 void
3977 Output_section::restore_states()
3978 {
3979   gold_assert(this->checkpoint_ != NULL);
3980   Checkpoint_output_section* checkpoint = this->checkpoint_;
3981 
3982   this->addralign_ = checkpoint->addralign();
3983   this->flags_ = checkpoint->flags();
3984   this->first_input_offset_ = checkpoint->first_input_offset();
3985 
3986   if (!checkpoint->input_sections_saved())
3987     {
3988       // If we have not copied the input sections, just resize it.
3989       size_t old_size = checkpoint->input_sections_size();
3990       gold_assert(this->input_sections_.size() >= old_size);
3991       this->input_sections_.resize(old_size);
3992     }
3993   else
3994     {
3995       // We need to copy the whole list.  This is not efficient for
3996       // extremely large output with hundreads of thousands of input
3997       // objects.  We may need to re-think how we should pass sections
3998       // to scripts.
3999       this->input_sections_ = *checkpoint->input_sections();
4000     }
4001 
4002   this->attached_input_sections_are_sorted_ =
4003     checkpoint->attached_input_sections_are_sorted();
4004 
4005   // Simply invalidate the fast lookup maps since we do not keep
4006   // track of them.
4007   this->lookup_maps_->invalidate();
4008 }
4009 
4010 // Update the section offsets of input sections in this.  This is required if
4011 // relaxation causes some input sections to change sizes.
4012 
4013 void
4014 Output_section::adjust_section_offsets()
4015 {
4016   if (!this->section_offsets_need_adjustment_)
4017     return;
4018 
4019   off_t off = 0;
4020   for (Input_section_list::iterator p = this->input_sections_.begin();
4021        p != this->input_sections_.end();
4022        ++p)
4023     {
4024       off = align_address(off, p->addralign());
4025       if (p->is_input_section())
4026 	p->relobj()->set_section_offset(p->shndx(), off);
4027       off += p->data_size();
4028     }
4029 
4030   this->section_offsets_need_adjustment_ = false;
4031 }
4032 
4033 // Print to the map file.
4034 
4035 void
4036 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4037 {
4038   mapfile->print_output_section(this);
4039 
4040   for (Input_section_list::const_iterator p = this->input_sections_.begin();
4041        p != this->input_sections_.end();
4042        ++p)
4043     p->print_to_mapfile(mapfile);
4044 }
4045 
4046 // Print stats for merge sections to stderr.
4047 
4048 void
4049 Output_section::print_merge_stats()
4050 {
4051   Input_section_list::iterator p;
4052   for (p = this->input_sections_.begin();
4053        p != this->input_sections_.end();
4054        ++p)
4055     p->print_merge_stats(this->name_);
4056 }
4057 
4058 // Set a fixed layout for the section.  Used for incremental update links.
4059 
4060 void
4061 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4062 				 off_t sh_size, uint64_t sh_addralign)
4063 {
4064   this->addralign_ = sh_addralign;
4065   this->set_current_data_size(sh_size);
4066   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4067     this->set_address(sh_addr);
4068   this->set_file_offset(sh_offset);
4069   this->finalize_data_size();
4070   this->free_list_.init(sh_size, false);
4071   this->has_fixed_layout_ = true;
4072 }
4073 
4074 // Reserve space within the fixed layout for the section.  Used for
4075 // incremental update links.
4076 
4077 void
4078 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4079 {
4080   this->free_list_.remove(sh_offset, sh_offset + sh_size);
4081 }
4082 
4083 // Allocate space from the free list for the section.  Used for
4084 // incremental update links.
4085 
4086 off_t
4087 Output_section::allocate(off_t len, uint64_t addralign)
4088 {
4089   return this->free_list_.allocate(len, addralign, 0);
4090 }
4091 
4092 // Output segment methods.
4093 
4094 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4095   : vaddr_(0),
4096     paddr_(0),
4097     memsz_(0),
4098     max_align_(0),
4099     min_p_align_(0),
4100     offset_(0),
4101     filesz_(0),
4102     type_(type),
4103     flags_(flags),
4104     is_max_align_known_(false),
4105     are_addresses_set_(false),
4106     is_large_data_segment_(false),
4107     is_unique_segment_(false)
4108 {
4109   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4110   // the flags.
4111   if (type == elfcpp::PT_TLS)
4112     this->flags_ = elfcpp::PF_R;
4113 }
4114 
4115 // Add an Output_section to a PT_LOAD Output_segment.
4116 
4117 void
4118 Output_segment::add_output_section_to_load(Layout* layout,
4119 					   Output_section* os,
4120 					   elfcpp::Elf_Word seg_flags)
4121 {
4122   gold_assert(this->type() == elfcpp::PT_LOAD);
4123   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4124   gold_assert(!this->is_max_align_known_);
4125   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4126 
4127   this->update_flags_for_output_section(seg_flags);
4128 
4129   // We don't want to change the ordering if we have a linker script
4130   // with a SECTIONS clause.
4131   Output_section_order order = os->order();
4132   if (layout->script_options()->saw_sections_clause())
4133     order = static_cast<Output_section_order>(0);
4134   else
4135     gold_assert(order != ORDER_INVALID);
4136 
4137   this->output_lists_[order].push_back(os);
4138 }
4139 
4140 // Add an Output_section to a non-PT_LOAD Output_segment.
4141 
4142 void
4143 Output_segment::add_output_section_to_nonload(Output_section* os,
4144 					      elfcpp::Elf_Word seg_flags)
4145 {
4146   gold_assert(this->type() != elfcpp::PT_LOAD);
4147   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4148   gold_assert(!this->is_max_align_known_);
4149 
4150   this->update_flags_for_output_section(seg_flags);
4151 
4152   this->output_lists_[0].push_back(os);
4153 }
4154 
4155 // Remove an Output_section from this segment.  It is an error if it
4156 // is not present.
4157 
4158 void
4159 Output_segment::remove_output_section(Output_section* os)
4160 {
4161   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4162     {
4163       Output_data_list* pdl = &this->output_lists_[i];
4164       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4165 	{
4166 	  if (*p == os)
4167 	    {
4168 	      pdl->erase(p);
4169 	      return;
4170 	    }
4171 	}
4172     }
4173   gold_unreachable();
4174 }
4175 
4176 // Add an Output_data (which need not be an Output_section) to the
4177 // start of a segment.
4178 
4179 void
4180 Output_segment::add_initial_output_data(Output_data* od)
4181 {
4182   gold_assert(!this->is_max_align_known_);
4183   Output_data_list::iterator p = this->output_lists_[0].begin();
4184   this->output_lists_[0].insert(p, od);
4185 }
4186 
4187 // Return true if this segment has any sections which hold actual
4188 // data, rather than being a BSS section.
4189 
4190 bool
4191 Output_segment::has_any_data_sections() const
4192 {
4193   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4194     {
4195       const Output_data_list* pdl = &this->output_lists_[i];
4196       for (Output_data_list::const_iterator p = pdl->begin();
4197 	   p != pdl->end();
4198 	   ++p)
4199 	{
4200 	  if (!(*p)->is_section())
4201 	    return true;
4202 	  if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4203 	    return true;
4204 	}
4205     }
4206   return false;
4207 }
4208 
4209 // Return whether the first data section (not counting TLS sections)
4210 // is a relro section.
4211 
4212 bool
4213 Output_segment::is_first_section_relro() const
4214 {
4215   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4216     {
4217       if (i == static_cast<int>(ORDER_TLS_BSS))
4218 	continue;
4219       const Output_data_list* pdl = &this->output_lists_[i];
4220       if (!pdl->empty())
4221 	{
4222 	  Output_data* p = pdl->front();
4223 	  return p->is_section() && p->output_section()->is_relro();
4224 	}
4225     }
4226   return false;
4227 }
4228 
4229 // Return the maximum alignment of the Output_data in Output_segment.
4230 
4231 uint64_t
4232 Output_segment::maximum_alignment()
4233 {
4234   if (!this->is_max_align_known_)
4235     {
4236       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4237 	{
4238 	  const Output_data_list* pdl = &this->output_lists_[i];
4239 	  uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4240 	  if (addralign > this->max_align_)
4241 	    this->max_align_ = addralign;
4242 	}
4243       this->is_max_align_known_ = true;
4244     }
4245 
4246   return this->max_align_;
4247 }
4248 
4249 // Return the maximum alignment of a list of Output_data.
4250 
4251 uint64_t
4252 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4253 {
4254   uint64_t ret = 0;
4255   for (Output_data_list::const_iterator p = pdl->begin();
4256        p != pdl->end();
4257        ++p)
4258     {
4259       uint64_t addralign = (*p)->addralign();
4260       if (addralign > ret)
4261 	ret = addralign;
4262     }
4263   return ret;
4264 }
4265 
4266 // Return whether this segment has any dynamic relocs.
4267 
4268 bool
4269 Output_segment::has_dynamic_reloc() const
4270 {
4271   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4272     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4273       return true;
4274   return false;
4275 }
4276 
4277 // Return whether this Output_data_list has any dynamic relocs.
4278 
4279 bool
4280 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4281 {
4282   for (Output_data_list::const_iterator p = pdl->begin();
4283        p != pdl->end();
4284        ++p)
4285     if ((*p)->has_dynamic_reloc())
4286       return true;
4287   return false;
4288 }
4289 
4290 // Set the section addresses for an Output_segment.  If RESET is true,
4291 // reset the addresses first.  ADDR is the address and *POFF is the
4292 // file offset.  Set the section indexes starting with *PSHNDX.
4293 // INCREASE_RELRO is the size of the portion of the first non-relro
4294 // section that should be included in the PT_GNU_RELRO segment.
4295 // If this segment has relro sections, and has been aligned for
4296 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4297 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4298 // and *PSHNDX.
4299 
4300 uint64_t
4301 Output_segment::set_section_addresses(const Target* target,
4302 				      Layout* layout, bool reset,
4303 				      uint64_t addr,
4304 				      unsigned int* increase_relro,
4305 				      bool* has_relro,
4306 				      off_t* poff,
4307 				      unsigned int* pshndx)
4308 {
4309   gold_assert(this->type_ == elfcpp::PT_LOAD);
4310 
4311   uint64_t last_relro_pad = 0;
4312   off_t orig_off = *poff;
4313 
4314   bool in_tls = false;
4315 
4316   // If we have relro sections, we need to pad forward now so that the
4317   // relro sections plus INCREASE_RELRO end on an abi page boundary.
4318   if (parameters->options().relro()
4319       && this->is_first_section_relro()
4320       && (!this->are_addresses_set_ || reset))
4321     {
4322       uint64_t relro_size = 0;
4323       off_t off = *poff;
4324       uint64_t max_align = 0;
4325       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4326 	{
4327 	  Output_data_list* pdl = &this->output_lists_[i];
4328 	  Output_data_list::iterator p;
4329 	  for (p = pdl->begin(); p != pdl->end(); ++p)
4330 	    {
4331 	      if (!(*p)->is_section())
4332 		break;
4333 	      uint64_t align = (*p)->addralign();
4334 	      if (align > max_align)
4335 		max_align = align;
4336 	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4337 		in_tls = true;
4338 	      else if (in_tls)
4339 		{
4340 		  // Align the first non-TLS section to the alignment
4341 		  // of the TLS segment.
4342 		  align = max_align;
4343 		  in_tls = false;
4344 		}
4345 	      // Ignore the size of the .tbss section.
4346 	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4347 		  && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4348 		continue;
4349 	      relro_size = align_address(relro_size, align);
4350 	      if ((*p)->is_address_valid())
4351 		relro_size += (*p)->data_size();
4352 	      else
4353 		{
4354 		  // FIXME: This could be faster.
4355 		  (*p)->set_address_and_file_offset(relro_size,
4356 						    relro_size);
4357 		  relro_size += (*p)->data_size();
4358 		  (*p)->reset_address_and_file_offset();
4359 		}
4360 	    }
4361 	  if (p != pdl->end())
4362 	    break;
4363 	}
4364       relro_size += *increase_relro;
4365       // Pad the total relro size to a multiple of the maximum
4366       // section alignment seen.
4367       uint64_t aligned_size = align_address(relro_size, max_align);
4368       // Note the amount of padding added after the last relro section.
4369       last_relro_pad = aligned_size - relro_size;
4370       *has_relro = true;
4371 
4372       uint64_t page_align = parameters->target().abi_pagesize();
4373 
4374       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4375       uint64_t desired_align = page_align - (aligned_size % page_align);
4376       if (desired_align < off % page_align)
4377 	off += page_align;
4378       off += desired_align - off % page_align;
4379       addr += off - orig_off;
4380       orig_off = off;
4381       *poff = off;
4382     }
4383 
4384   if (!reset && this->are_addresses_set_)
4385     {
4386       gold_assert(this->paddr_ == addr);
4387       addr = this->vaddr_;
4388     }
4389   else
4390     {
4391       this->vaddr_ = addr;
4392       this->paddr_ = addr;
4393       this->are_addresses_set_ = true;
4394     }
4395 
4396   in_tls = false;
4397 
4398   this->offset_ = orig_off;
4399 
4400   off_t off = 0;
4401   uint64_t ret;
4402   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4403     {
4404       if (i == static_cast<int>(ORDER_RELRO_LAST))
4405 	{
4406 	  *poff += last_relro_pad;
4407 	  addr += last_relro_pad;
4408 	  if (this->output_lists_[i].empty())
4409 	    {
4410 	      // If there is nothing in the ORDER_RELRO_LAST list,
4411 	      // the padding will occur at the end of the relro
4412 	      // segment, and we need to add it to *INCREASE_RELRO.
4413 	      *increase_relro += last_relro_pad;
4414 	    }
4415 	}
4416       addr = this->set_section_list_addresses(layout, reset,
4417 					      &this->output_lists_[i],
4418 					      addr, poff, pshndx, &in_tls);
4419       if (i < static_cast<int>(ORDER_SMALL_BSS))
4420 	{
4421 	  this->filesz_ = *poff - orig_off;
4422 	  off = *poff;
4423 	}
4424 
4425       ret = addr;
4426     }
4427 
4428   // If the last section was a TLS section, align upward to the
4429   // alignment of the TLS segment, so that the overall size of the TLS
4430   // segment is aligned.
4431   if (in_tls)
4432     {
4433       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4434       *poff = align_address(*poff, segment_align);
4435     }
4436 
4437   this->memsz_ = *poff - orig_off;
4438 
4439   // Ignore the file offset adjustments made by the BSS Output_data
4440   // objects.
4441   *poff = off;
4442 
4443   // If code segments must contain only code, and this code segment is
4444   // page-aligned in the file, then fill it out to a whole page with
4445   // code fill (the tail of the segment will not be within any section).
4446   // Thus the entire code segment can be mapped from the file as whole
4447   // pages and that mapping will contain only valid instructions.
4448   if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4449     {
4450       uint64_t abi_pagesize = target->abi_pagesize();
4451       if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4452 	{
4453 	  size_t fill_size = abi_pagesize - (off % abi_pagesize);
4454 
4455 	  std::string fill_data;
4456 	  if (target->has_code_fill())
4457 	    fill_data = target->code_fill(fill_size);
4458 	  else
4459 	    fill_data.resize(fill_size); // Zero fill.
4460 
4461 	  Output_data_const* fill = new Output_data_const(fill_data, 0);
4462 	  fill->set_address(this->vaddr_ + this->memsz_);
4463 	  fill->set_file_offset(off);
4464 	  layout->add_relax_output(fill);
4465 
4466 	  off += fill_size;
4467 	  gold_assert(off % abi_pagesize == 0);
4468 	  ret += fill_size;
4469 	  gold_assert(ret % abi_pagesize == 0);
4470 
4471 	  gold_assert((uint64_t) this->filesz_ == this->memsz_);
4472 	  this->memsz_ = this->filesz_ += fill_size;
4473 
4474 	  *poff = off;
4475 	}
4476     }
4477 
4478   return ret;
4479 }
4480 
4481 // Set the addresses and file offsets in a list of Output_data
4482 // structures.
4483 
4484 uint64_t
4485 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4486 					   Output_data_list* pdl,
4487 					   uint64_t addr, off_t* poff,
4488 					   unsigned int* pshndx,
4489 					   bool* in_tls)
4490 {
4491   off_t startoff = *poff;
4492   // For incremental updates, we may allocate non-fixed sections from
4493   // free space in the file.  This keeps track of the high-water mark.
4494   off_t maxoff = startoff;
4495 
4496   off_t off = startoff;
4497   for (Output_data_list::iterator p = pdl->begin();
4498        p != pdl->end();
4499        ++p)
4500     {
4501       if (reset)
4502 	(*p)->reset_address_and_file_offset();
4503 
4504       // When doing an incremental update or when using a linker script,
4505       // the section will most likely already have an address.
4506       if (!(*p)->is_address_valid())
4507 	{
4508 	  uint64_t align = (*p)->addralign();
4509 
4510 	  if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4511 	    {
4512 	      // Give the first TLS section the alignment of the
4513 	      // entire TLS segment.  Otherwise the TLS segment as a
4514 	      // whole may be misaligned.
4515 	      if (!*in_tls)
4516 		{
4517 		  Output_segment* tls_segment = layout->tls_segment();
4518 		  gold_assert(tls_segment != NULL);
4519 		  uint64_t segment_align = tls_segment->maximum_alignment();
4520 		  gold_assert(segment_align >= align);
4521 		  align = segment_align;
4522 
4523 		  *in_tls = true;
4524 		}
4525 	    }
4526 	  else
4527 	    {
4528 	      // If this is the first section after the TLS segment,
4529 	      // align it to at least the alignment of the TLS
4530 	      // segment, so that the size of the overall TLS segment
4531 	      // is aligned.
4532 	      if (*in_tls)
4533 		{
4534 		  uint64_t segment_align =
4535 		      layout->tls_segment()->maximum_alignment();
4536 		  if (segment_align > align)
4537 		    align = segment_align;
4538 
4539 		  *in_tls = false;
4540 		}
4541 	    }
4542 
4543 	  if (!parameters->incremental_update())
4544 	    {
4545 	      off = align_address(off, align);
4546 	      (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4547 	    }
4548 	  else
4549 	    {
4550 	      // Incremental update: allocate file space from free list.
4551 	      (*p)->pre_finalize_data_size();
4552 	      off_t current_size = (*p)->current_data_size();
4553 	      off = layout->allocate(current_size, align, startoff);
4554 	      if (off == -1)
4555 		{
4556 		  gold_assert((*p)->output_section() != NULL);
4557 		  gold_fallback(_("out of patch space for section %s; "
4558 				  "relink with --incremental-full"),
4559 				(*p)->output_section()->name());
4560 		}
4561 	      (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4562 	      if ((*p)->data_size() > current_size)
4563 		{
4564 		  gold_assert((*p)->output_section() != NULL);
4565 		  gold_fallback(_("%s: section changed size; "
4566 				  "relink with --incremental-full"),
4567 				(*p)->output_section()->name());
4568 		}
4569 	    }
4570 	}
4571       else if (parameters->incremental_update())
4572 	{
4573 	  // For incremental updates, use the fixed offset for the
4574 	  // high-water mark computation.
4575 	  off = (*p)->offset();
4576 	}
4577       else
4578 	{
4579 	  // The script may have inserted a skip forward, but it
4580 	  // better not have moved backward.
4581 	  if ((*p)->address() >= addr + (off - startoff))
4582 	    off += (*p)->address() - (addr + (off - startoff));
4583 	  else
4584 	    {
4585 	      if (!layout->script_options()->saw_sections_clause())
4586 		gold_unreachable();
4587 	      else
4588 		{
4589 		  Output_section* os = (*p)->output_section();
4590 
4591 		  // Cast to unsigned long long to avoid format warnings.
4592 		  unsigned long long previous_dot =
4593 		    static_cast<unsigned long long>(addr + (off - startoff));
4594 		  unsigned long long dot =
4595 		    static_cast<unsigned long long>((*p)->address());
4596 
4597 		  if (os == NULL)
4598 		    gold_error(_("dot moves backward in linker script "
4599 				 "from 0x%llx to 0x%llx"), previous_dot, dot);
4600 		  else
4601 		    gold_error(_("address of section '%s' moves backward "
4602 				 "from 0x%llx to 0x%llx"),
4603 			       os->name(), previous_dot, dot);
4604 		}
4605 	    }
4606 	  (*p)->set_file_offset(off);
4607 	  (*p)->finalize_data_size();
4608 	}
4609 
4610       if (parameters->incremental_update())
4611 	gold_debug(DEBUG_INCREMENTAL,
4612 		   "set_section_list_addresses: %08lx %08lx %s",
4613 		   static_cast<long>(off),
4614 		   static_cast<long>((*p)->data_size()),
4615 		   ((*p)->output_section() != NULL
4616 		    ? (*p)->output_section()->name() : "(special)"));
4617 
4618       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4619       // section.  Such a section does not affect the size of a
4620       // PT_LOAD segment.
4621       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4622 	  || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4623 	off += (*p)->data_size();
4624 
4625       if (off > maxoff)
4626 	maxoff = off;
4627 
4628       if ((*p)->is_section())
4629 	{
4630 	  (*p)->set_out_shndx(*pshndx);
4631 	  ++*pshndx;
4632 	}
4633     }
4634 
4635   *poff = maxoff;
4636   return addr + (maxoff - startoff);
4637 }
4638 
4639 // For a non-PT_LOAD segment, set the offset from the sections, if
4640 // any.  Add INCREASE to the file size and the memory size.
4641 
4642 void
4643 Output_segment::set_offset(unsigned int increase)
4644 {
4645   gold_assert(this->type_ != elfcpp::PT_LOAD);
4646 
4647   gold_assert(!this->are_addresses_set_);
4648 
4649   // A non-load section only uses output_lists_[0].
4650 
4651   Output_data_list* pdl = &this->output_lists_[0];
4652 
4653   if (pdl->empty())
4654     {
4655       gold_assert(increase == 0);
4656       this->vaddr_ = 0;
4657       this->paddr_ = 0;
4658       this->are_addresses_set_ = true;
4659       this->memsz_ = 0;
4660       this->min_p_align_ = 0;
4661       this->offset_ = 0;
4662       this->filesz_ = 0;
4663       return;
4664     }
4665 
4666   // Find the first and last section by address.
4667   const Output_data* first = NULL;
4668   const Output_data* last_data = NULL;
4669   const Output_data* last_bss = NULL;
4670   for (Output_data_list::const_iterator p = pdl->begin();
4671        p != pdl->end();
4672        ++p)
4673     {
4674       if (first == NULL
4675 	  || (*p)->address() < first->address()
4676 	  || ((*p)->address() == first->address()
4677 	      && (*p)->data_size() < first->data_size()))
4678 	first = *p;
4679       const Output_data** plast;
4680       if ((*p)->is_section()
4681 	  && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4682 	plast = &last_bss;
4683       else
4684 	plast = &last_data;
4685       if (*plast == NULL
4686 	  || (*p)->address() > (*plast)->address()
4687 	  || ((*p)->address() == (*plast)->address()
4688 	      && (*p)->data_size() > (*plast)->data_size()))
4689 	*plast = *p;
4690     }
4691 
4692   this->vaddr_ = first->address();
4693   this->paddr_ = (first->has_load_address()
4694 		  ? first->load_address()
4695 		  : this->vaddr_);
4696   this->are_addresses_set_ = true;
4697   this->offset_ = first->offset();
4698 
4699   if (last_data == NULL)
4700     this->filesz_ = 0;
4701   else
4702     this->filesz_ = (last_data->address()
4703 		     + last_data->data_size()
4704 		     - this->vaddr_);
4705 
4706   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4707   this->memsz_ = (last->address()
4708 		  + last->data_size()
4709 		  - this->vaddr_);
4710 
4711   this->filesz_ += increase;
4712   this->memsz_ += increase;
4713 
4714   // If this is a RELRO segment, verify that the segment ends at a
4715   // page boundary.
4716   if (this->type_ == elfcpp::PT_GNU_RELRO)
4717     {
4718       uint64_t page_align = parameters->target().abi_pagesize();
4719       uint64_t segment_end = this->vaddr_ + this->memsz_;
4720       if (parameters->incremental_update())
4721 	{
4722 	  // The INCREASE_RELRO calculation is bypassed for an incremental
4723 	  // update, so we need to adjust the segment size manually here.
4724 	  segment_end = align_address(segment_end, page_align);
4725 	  this->memsz_ = segment_end - this->vaddr_;
4726 	}
4727       else
4728 	gold_assert(segment_end == align_address(segment_end, page_align));
4729     }
4730 
4731   // If this is a TLS segment, align the memory size.  The code in
4732   // set_section_list ensures that the section after the TLS segment
4733   // is aligned to give us room.
4734   if (this->type_ == elfcpp::PT_TLS)
4735     {
4736       uint64_t segment_align = this->maximum_alignment();
4737       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4738       this->memsz_ = align_address(this->memsz_, segment_align);
4739     }
4740 }
4741 
4742 // Set the TLS offsets of the sections in the PT_TLS segment.
4743 
4744 void
4745 Output_segment::set_tls_offsets()
4746 {
4747   gold_assert(this->type_ == elfcpp::PT_TLS);
4748 
4749   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4750        p != this->output_lists_[0].end();
4751        ++p)
4752     (*p)->set_tls_offset(this->vaddr_);
4753 }
4754 
4755 // Return the first section.
4756 
4757 Output_section*
4758 Output_segment::first_section() const
4759 {
4760   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4761     {
4762       const Output_data_list* pdl = &this->output_lists_[i];
4763       for (Output_data_list::const_iterator p = pdl->begin();
4764 	   p != pdl->end();
4765 	   ++p)
4766 	{
4767 	  if ((*p)->is_section())
4768 	    return (*p)->output_section();
4769 	}
4770     }
4771   gold_unreachable();
4772 }
4773 
4774 // Return the number of Output_sections in an Output_segment.
4775 
4776 unsigned int
4777 Output_segment::output_section_count() const
4778 {
4779   unsigned int ret = 0;
4780   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4781     ret += this->output_section_count_list(&this->output_lists_[i]);
4782   return ret;
4783 }
4784 
4785 // Return the number of Output_sections in an Output_data_list.
4786 
4787 unsigned int
4788 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4789 {
4790   unsigned int count = 0;
4791   for (Output_data_list::const_iterator p = pdl->begin();
4792        p != pdl->end();
4793        ++p)
4794     {
4795       if ((*p)->is_section())
4796 	++count;
4797     }
4798   return count;
4799 }
4800 
4801 // Return the section attached to the list segment with the lowest
4802 // load address.  This is used when handling a PHDRS clause in a
4803 // linker script.
4804 
4805 Output_section*
4806 Output_segment::section_with_lowest_load_address() const
4807 {
4808   Output_section* found = NULL;
4809   uint64_t found_lma = 0;
4810   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4811     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4812 				      &found_lma);
4813   return found;
4814 }
4815 
4816 // Look through a list for a section with a lower load address.
4817 
4818 void
4819 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4820 					    Output_section** found,
4821 					    uint64_t* found_lma) const
4822 {
4823   for (Output_data_list::const_iterator p = pdl->begin();
4824        p != pdl->end();
4825        ++p)
4826     {
4827       if (!(*p)->is_section())
4828 	continue;
4829       Output_section* os = static_cast<Output_section*>(*p);
4830       uint64_t lma = (os->has_load_address()
4831 		      ? os->load_address()
4832 		      : os->address());
4833       if (*found == NULL || lma < *found_lma)
4834 	{
4835 	  *found = os;
4836 	  *found_lma = lma;
4837 	}
4838     }
4839 }
4840 
4841 // Write the segment data into *OPHDR.
4842 
4843 template<int size, bool big_endian>
4844 void
4845 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4846 {
4847   ophdr->put_p_type(this->type_);
4848   ophdr->put_p_offset(this->offset_);
4849   ophdr->put_p_vaddr(this->vaddr_);
4850   ophdr->put_p_paddr(this->paddr_);
4851   ophdr->put_p_filesz(this->filesz_);
4852   ophdr->put_p_memsz(this->memsz_);
4853   ophdr->put_p_flags(this->flags_);
4854   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4855 }
4856 
4857 // Write the section headers into V.
4858 
4859 template<int size, bool big_endian>
4860 unsigned char*
4861 Output_segment::write_section_headers(const Layout* layout,
4862 				      const Stringpool* secnamepool,
4863 				      unsigned char* v,
4864 				      unsigned int* pshndx) const
4865 {
4866   // Every section that is attached to a segment must be attached to a
4867   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4868   // segments.
4869   if (this->type_ != elfcpp::PT_LOAD)
4870     return v;
4871 
4872   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4873     {
4874       const Output_data_list* pdl = &this->output_lists_[i];
4875       v = this->write_section_headers_list<size, big_endian>(layout,
4876 							     secnamepool,
4877 							     pdl,
4878 							     v, pshndx);
4879     }
4880 
4881   return v;
4882 }
4883 
4884 template<int size, bool big_endian>
4885 unsigned char*
4886 Output_segment::write_section_headers_list(const Layout* layout,
4887 					   const Stringpool* secnamepool,
4888 					   const Output_data_list* pdl,
4889 					   unsigned char* v,
4890 					   unsigned int* pshndx) const
4891 {
4892   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4893   for (Output_data_list::const_iterator p = pdl->begin();
4894        p != pdl->end();
4895        ++p)
4896     {
4897       if ((*p)->is_section())
4898 	{
4899 	  const Output_section* ps = static_cast<const Output_section*>(*p);
4900 	  gold_assert(*pshndx == ps->out_shndx());
4901 	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
4902 	  ps->write_header(layout, secnamepool, &oshdr);
4903 	  v += shdr_size;
4904 	  ++*pshndx;
4905 	}
4906     }
4907   return v;
4908 }
4909 
4910 // Print the output sections to the map file.
4911 
4912 void
4913 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4914 {
4915   if (this->type() != elfcpp::PT_LOAD)
4916     return;
4917   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4918     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4919 }
4920 
4921 // Print an output section list to the map file.
4922 
4923 void
4924 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4925 					      const Output_data_list* pdl) const
4926 {
4927   for (Output_data_list::const_iterator p = pdl->begin();
4928        p != pdl->end();
4929        ++p)
4930     (*p)->print_to_mapfile(mapfile);
4931 }
4932 
4933 // Output_file methods.
4934 
4935 Output_file::Output_file(const char* name)
4936   : name_(name),
4937     o_(-1),
4938     file_size_(0),
4939     base_(NULL),
4940     map_is_anonymous_(false),
4941     map_is_allocated_(false),
4942     is_temporary_(false)
4943 {
4944 }
4945 
4946 // Try to open an existing file.  Returns false if the file doesn't
4947 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4948 // NULL, open that file as the base for incremental linking, and
4949 // copy its contents to the new output file.  This routine can
4950 // be called for incremental updates, in which case WRITABLE should
4951 // be true, or by the incremental-dump utility, in which case
4952 // WRITABLE should be false.
4953 
4954 bool
4955 Output_file::open_base_file(const char* base_name, bool writable)
4956 {
4957   // The name "-" means "stdout".
4958   if (strcmp(this->name_, "-") == 0)
4959     return false;
4960 
4961   bool use_base_file = base_name != NULL;
4962   if (!use_base_file)
4963     base_name = this->name_;
4964   else if (strcmp(base_name, this->name_) == 0)
4965     gold_fatal(_("%s: incremental base and output file name are the same"),
4966 	       base_name);
4967 
4968   // Don't bother opening files with a size of zero.
4969   struct stat s;
4970   if (::stat(base_name, &s) != 0)
4971     {
4972       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4973       return false;
4974     }
4975   if (s.st_size == 0)
4976     {
4977       gold_info(_("%s: incremental base file is empty"), base_name);
4978       return false;
4979     }
4980 
4981   // If we're using a base file, we want to open it read-only.
4982   if (use_base_file)
4983     writable = false;
4984 
4985   int oflags = writable ? O_RDWR : O_RDONLY;
4986   int o = open_descriptor(-1, base_name, oflags, 0);
4987   if (o < 0)
4988     {
4989       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4990       return false;
4991     }
4992 
4993   // If the base file and the output file are different, open a
4994   // new output file and read the contents from the base file into
4995   // the newly-mapped region.
4996   if (use_base_file)
4997     {
4998       this->open(s.st_size);
4999       ssize_t bytes_to_read = s.st_size;
5000       unsigned char* p = this->base_;
5001       while (bytes_to_read > 0)
5002 	{
5003 	  ssize_t len = ::read(o, p, bytes_to_read);
5004 	  if (len < 0)
5005 	    {
5006 	      gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5007 	      return false;
5008 	    }
5009 	  if (len == 0)
5010 	    {
5011 	      gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5012 			base_name,
5013 			static_cast<long long>(s.st_size - bytes_to_read),
5014 			static_cast<long long>(s.st_size));
5015 	      return false;
5016 	    }
5017 	  p += len;
5018 	  bytes_to_read -= len;
5019 	}
5020       ::close(o);
5021       return true;
5022     }
5023 
5024   this->o_ = o;
5025   this->file_size_ = s.st_size;
5026 
5027   if (!this->map_no_anonymous(writable))
5028     {
5029       release_descriptor(o, true);
5030       this->o_ = -1;
5031       this->file_size_ = 0;
5032       return false;
5033     }
5034 
5035   return true;
5036 }
5037 
5038 // Open the output file.
5039 
5040 void
5041 Output_file::open(off_t file_size)
5042 {
5043   this->file_size_ = file_size;
5044 
5045   // Unlink the file first; otherwise the open() may fail if the file
5046   // is busy (e.g. it's an executable that's currently being executed).
5047   //
5048   // However, the linker may be part of a system where a zero-length
5049   // file is created for it to write to, with tight permissions (gcc
5050   // 2.95 did something like this).  Unlinking the file would work
5051   // around those permission controls, so we only unlink if the file
5052   // has a non-zero size.  We also unlink only regular files to avoid
5053   // trouble with directories/etc.
5054   //
5055   // If we fail, continue; this command is merely a best-effort attempt
5056   // to improve the odds for open().
5057 
5058   // We let the name "-" mean "stdout"
5059   if (!this->is_temporary_)
5060     {
5061       if (strcmp(this->name_, "-") == 0)
5062 	this->o_ = STDOUT_FILENO;
5063       else
5064 	{
5065 	  struct stat s;
5066 	  if (::stat(this->name_, &s) == 0
5067 	      && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5068 	    {
5069 	      if (s.st_size != 0)
5070 		::unlink(this->name_);
5071 	      else if (!parameters->options().relocatable())
5072 		{
5073 		  // If we don't unlink the existing file, add execute
5074 		  // permission where read permissions already exist
5075 		  // and where the umask permits.
5076 		  int mask = ::umask(0);
5077 		  ::umask(mask);
5078 		  s.st_mode |= (s.st_mode & 0444) >> 2;
5079 		  ::chmod(this->name_, s.st_mode & ~mask);
5080 		}
5081 	    }
5082 
5083 	  int mode = parameters->options().relocatable() ? 0666 : 0777;
5084 	  int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5085 				  mode);
5086 	  if (o < 0)
5087 	    gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5088 	  this->o_ = o;
5089 	}
5090     }
5091 
5092   this->map();
5093 }
5094 
5095 // Resize the output file.
5096 
5097 void
5098 Output_file::resize(off_t file_size)
5099 {
5100   // If the mmap is mapping an anonymous memory buffer, this is easy:
5101   // just mremap to the new size.  If it's mapping to a file, we want
5102   // to unmap to flush to the file, then remap after growing the file.
5103   if (this->map_is_anonymous_)
5104     {
5105       void* base;
5106       if (!this->map_is_allocated_)
5107 	{
5108 	  base = ::mremap(this->base_, this->file_size_, file_size,
5109 			  MREMAP_MAYMOVE);
5110 	  if (base == MAP_FAILED)
5111 	    gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5112 	}
5113       else
5114 	{
5115 	  base = realloc(this->base_, file_size);
5116 	  if (base == NULL)
5117 	    gold_nomem();
5118 	  if (file_size > this->file_size_)
5119 	    memset(static_cast<char*>(base) + this->file_size_, 0,
5120 		   file_size - this->file_size_);
5121 	}
5122       this->base_ = static_cast<unsigned char*>(base);
5123       this->file_size_ = file_size;
5124     }
5125   else
5126     {
5127       this->unmap();
5128       this->file_size_ = file_size;
5129       if (!this->map_no_anonymous(true))
5130 	gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5131     }
5132 }
5133 
5134 // Map an anonymous block of memory which will later be written to the
5135 // file.  Return whether the map succeeded.
5136 
5137 bool
5138 Output_file::map_anonymous()
5139 {
5140   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5141 		      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5142   if (base == MAP_FAILED)
5143     {
5144       base = malloc(this->file_size_);
5145       if (base == NULL)
5146 	return false;
5147       memset(base, 0, this->file_size_);
5148       this->map_is_allocated_ = true;
5149     }
5150   this->base_ = static_cast<unsigned char*>(base);
5151   this->map_is_anonymous_ = true;
5152   return true;
5153 }
5154 
5155 // Map the file into memory.  Return whether the mapping succeeded.
5156 // If WRITABLE is true, map with write access.
5157 
5158 bool
5159 Output_file::map_no_anonymous(bool writable)
5160 {
5161   const int o = this->o_;
5162 
5163   // If the output file is not a regular file, don't try to mmap it;
5164   // instead, we'll mmap a block of memory (an anonymous buffer), and
5165   // then later write the buffer to the file.
5166   void* base;
5167   struct stat statbuf;
5168   if (o == STDOUT_FILENO || o == STDERR_FILENO
5169       || ::fstat(o, &statbuf) != 0
5170       || !S_ISREG(statbuf.st_mode)
5171       || this->is_temporary_)
5172     return false;
5173 
5174   // Ensure that we have disk space available for the file.  If we
5175   // don't do this, it is possible that we will call munmap, close,
5176   // and exit with dirty buffers still in the cache with no assigned
5177   // disk blocks.  If the disk is out of space at that point, the
5178   // output file will wind up incomplete, but we will have already
5179   // exited.  The alternative to fallocate would be to use fdatasync,
5180   // but that would be a more significant performance hit.
5181   if (writable)
5182     {
5183       int err = gold_fallocate(o, 0, this->file_size_);
5184       if (err != 0)
5185        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5186     }
5187 
5188   // Map the file into memory.
5189   int prot = PROT_READ;
5190   if (writable)
5191     prot |= PROT_WRITE;
5192   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5193 
5194   // The mmap call might fail because of file system issues: the file
5195   // system might not support mmap at all, or it might not support
5196   // mmap with PROT_WRITE.
5197   if (base == MAP_FAILED)
5198     return false;
5199 
5200   this->map_is_anonymous_ = false;
5201   this->base_ = static_cast<unsigned char*>(base);
5202   return true;
5203 }
5204 
5205 // Map the file into memory.
5206 
5207 void
5208 Output_file::map()
5209 {
5210   if (parameters->options().mmap_output_file()
5211       && this->map_no_anonymous(true))
5212     return;
5213 
5214   // The mmap call might fail because of file system issues: the file
5215   // system might not support mmap at all, or it might not support
5216   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5217   // see in all cases, so if the mmap fails for any reason and we
5218   // don't care about file contents, try for an anonymous map.
5219   if (this->map_anonymous())
5220     return;
5221 
5222   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5223 	     this->name_, static_cast<unsigned long>(this->file_size_),
5224 	     strerror(errno));
5225 }
5226 
5227 // Unmap the file from memory.
5228 
5229 void
5230 Output_file::unmap()
5231 {
5232   if (this->map_is_anonymous_)
5233     {
5234       // We've already written out the data, so there is no reason to
5235       // waste time unmapping or freeing the memory.
5236     }
5237   else
5238     {
5239       if (::munmap(this->base_, this->file_size_) < 0)
5240 	gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5241     }
5242   this->base_ = NULL;
5243 }
5244 
5245 // Close the output file.
5246 
5247 void
5248 Output_file::close()
5249 {
5250   // If the map isn't file-backed, we need to write it now.
5251   if (this->map_is_anonymous_ && !this->is_temporary_)
5252     {
5253       size_t bytes_to_write = this->file_size_;
5254       size_t offset = 0;
5255       while (bytes_to_write > 0)
5256 	{
5257 	  ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5258 					  bytes_to_write);
5259 	  if (bytes_written == 0)
5260 	    gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5261 	  else if (bytes_written < 0)
5262 	    gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5263 	  else
5264 	    {
5265 	      bytes_to_write -= bytes_written;
5266 	      offset += bytes_written;
5267 	    }
5268 	}
5269     }
5270   this->unmap();
5271 
5272   // We don't close stdout or stderr
5273   if (this->o_ != STDOUT_FILENO
5274       && this->o_ != STDERR_FILENO
5275       && !this->is_temporary_)
5276     if (::close(this->o_) < 0)
5277       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5278   this->o_ = -1;
5279 }
5280 
5281 // Instantiate the templates we need.  We could use the configure
5282 // script to restrict this to only the ones for implemented targets.
5283 
5284 #ifdef HAVE_TARGET_32_LITTLE
5285 template
5286 off_t
5287 Output_section::add_input_section<32, false>(
5288     Layout* layout,
5289     Sized_relobj_file<32, false>* object,
5290     unsigned int shndx,
5291     const char* secname,
5292     const elfcpp::Shdr<32, false>& shdr,
5293     unsigned int reloc_shndx,
5294     bool have_sections_script);
5295 #endif
5296 
5297 #ifdef HAVE_TARGET_32_BIG
5298 template
5299 off_t
5300 Output_section::add_input_section<32, true>(
5301     Layout* layout,
5302     Sized_relobj_file<32, true>* object,
5303     unsigned int shndx,
5304     const char* secname,
5305     const elfcpp::Shdr<32, true>& shdr,
5306     unsigned int reloc_shndx,
5307     bool have_sections_script);
5308 #endif
5309 
5310 #ifdef HAVE_TARGET_64_LITTLE
5311 template
5312 off_t
5313 Output_section::add_input_section<64, false>(
5314     Layout* layout,
5315     Sized_relobj_file<64, false>* object,
5316     unsigned int shndx,
5317     const char* secname,
5318     const elfcpp::Shdr<64, false>& shdr,
5319     unsigned int reloc_shndx,
5320     bool have_sections_script);
5321 #endif
5322 
5323 #ifdef HAVE_TARGET_64_BIG
5324 template
5325 off_t
5326 Output_section::add_input_section<64, true>(
5327     Layout* layout,
5328     Sized_relobj_file<64, true>* object,
5329     unsigned int shndx,
5330     const char* secname,
5331     const elfcpp::Shdr<64, true>& shdr,
5332     unsigned int reloc_shndx,
5333     bool have_sections_script);
5334 #endif
5335 
5336 #ifdef HAVE_TARGET_32_LITTLE
5337 template
5338 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5339 #endif
5340 
5341 #ifdef HAVE_TARGET_32_BIG
5342 template
5343 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5344 #endif
5345 
5346 #ifdef HAVE_TARGET_64_LITTLE
5347 template
5348 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5349 #endif
5350 
5351 #ifdef HAVE_TARGET_64_BIG
5352 template
5353 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5354 #endif
5355 
5356 #ifdef HAVE_TARGET_32_LITTLE
5357 template
5358 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5359 #endif
5360 
5361 #ifdef HAVE_TARGET_32_BIG
5362 template
5363 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5364 #endif
5365 
5366 #ifdef HAVE_TARGET_64_LITTLE
5367 template
5368 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5369 #endif
5370 
5371 #ifdef HAVE_TARGET_64_BIG
5372 template
5373 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5374 #endif
5375 
5376 #ifdef HAVE_TARGET_32_LITTLE
5377 template
5378 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5379 #endif
5380 
5381 #ifdef HAVE_TARGET_32_BIG
5382 template
5383 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5384 #endif
5385 
5386 #ifdef HAVE_TARGET_64_LITTLE
5387 template
5388 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5389 #endif
5390 
5391 #ifdef HAVE_TARGET_64_BIG
5392 template
5393 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5394 #endif
5395 
5396 #ifdef HAVE_TARGET_32_LITTLE
5397 template
5398 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5399 #endif
5400 
5401 #ifdef HAVE_TARGET_32_BIG
5402 template
5403 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5404 #endif
5405 
5406 #ifdef HAVE_TARGET_64_LITTLE
5407 template
5408 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5409 #endif
5410 
5411 #ifdef HAVE_TARGET_64_BIG
5412 template
5413 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5414 #endif
5415 
5416 #ifdef HAVE_TARGET_32_LITTLE
5417 template
5418 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5419 #endif
5420 
5421 #ifdef HAVE_TARGET_32_BIG
5422 template
5423 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5424 #endif
5425 
5426 #ifdef HAVE_TARGET_64_LITTLE
5427 template
5428 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5429 #endif
5430 
5431 #ifdef HAVE_TARGET_64_BIG
5432 template
5433 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5434 #endif
5435 
5436 #ifdef HAVE_TARGET_32_LITTLE
5437 template
5438 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5439 #endif
5440 
5441 #ifdef HAVE_TARGET_32_BIG
5442 template
5443 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5444 #endif
5445 
5446 #ifdef HAVE_TARGET_64_LITTLE
5447 template
5448 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5449 #endif
5450 
5451 #ifdef HAVE_TARGET_64_BIG
5452 template
5453 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5454 #endif
5455 
5456 #ifdef HAVE_TARGET_32_LITTLE
5457 template
5458 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5459 #endif
5460 
5461 #ifdef HAVE_TARGET_32_BIG
5462 template
5463 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5464 #endif
5465 
5466 #ifdef HAVE_TARGET_64_LITTLE
5467 template
5468 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5469 #endif
5470 
5471 #ifdef HAVE_TARGET_64_BIG
5472 template
5473 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5474 #endif
5475 
5476 #ifdef HAVE_TARGET_32_LITTLE
5477 template
5478 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5479 #endif
5480 
5481 #ifdef HAVE_TARGET_32_BIG
5482 template
5483 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5484 #endif
5485 
5486 #ifdef HAVE_TARGET_64_LITTLE
5487 template
5488 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5489 #endif
5490 
5491 #ifdef HAVE_TARGET_64_BIG
5492 template
5493 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5494 #endif
5495 
5496 #ifdef HAVE_TARGET_32_LITTLE
5497 template
5498 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5499 #endif
5500 
5501 #ifdef HAVE_TARGET_32_BIG
5502 template
5503 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5504 #endif
5505 
5506 #ifdef HAVE_TARGET_64_LITTLE
5507 template
5508 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5509 #endif
5510 
5511 #ifdef HAVE_TARGET_64_BIG
5512 template
5513 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5514 #endif
5515 
5516 #ifdef HAVE_TARGET_32_LITTLE
5517 template
5518 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5519 #endif
5520 
5521 #ifdef HAVE_TARGET_32_BIG
5522 template
5523 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5524 #endif
5525 
5526 #ifdef HAVE_TARGET_64_LITTLE
5527 template
5528 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5529 #endif
5530 
5531 #ifdef HAVE_TARGET_64_BIG
5532 template
5533 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5534 #endif
5535 
5536 #ifdef HAVE_TARGET_32_LITTLE
5537 template
5538 class Output_data_group<32, false>;
5539 #endif
5540 
5541 #ifdef HAVE_TARGET_32_BIG
5542 template
5543 class Output_data_group<32, true>;
5544 #endif
5545 
5546 #ifdef HAVE_TARGET_64_LITTLE
5547 template
5548 class Output_data_group<64, false>;
5549 #endif
5550 
5551 #ifdef HAVE_TARGET_64_BIG
5552 template
5553 class Output_data_group<64, true>;
5554 #endif
5555 
5556 template
5557 class Output_data_got<32, false>;
5558 
5559 template
5560 class Output_data_got<32, true>;
5561 
5562 template
5563 class Output_data_got<64, false>;
5564 
5565 template
5566 class Output_data_got<64, true>;
5567 
5568 } // End namespace gold.
5569