1 /* Emit RTL for the GCC expander. 2 Copyright (C) 1987-2018 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 21 /* Middle-to-low level generation of rtx code and insns. 22 23 This file contains support functions for creating rtl expressions 24 and manipulating them in the doubly-linked chain of insns. 25 26 The patterns of the insns are created by machine-dependent 27 routines in insn-emit.c, which is generated automatically from 28 the machine description. These routines make the individual rtx's 29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch], 30 which are automatically generated from rtl.def; what is machine 31 dependent is the kind of rtx's they make and what arguments they 32 use. */ 33 34 #include "config.h" 35 #include "system.h" 36 #include "coretypes.h" 37 #include "memmodel.h" 38 #include "backend.h" 39 #include "target.h" 40 #include "rtl.h" 41 #include "tree.h" 42 #include "df.h" 43 #include "tm_p.h" 44 #include "stringpool.h" 45 #include "insn-config.h" 46 #include "regs.h" 47 #include "emit-rtl.h" 48 #include "recog.h" 49 #include "diagnostic-core.h" 50 #include "alias.h" 51 #include "fold-const.h" 52 #include "varasm.h" 53 #include "cfgrtl.h" 54 #include "tree-eh.h" 55 #include "explow.h" 56 #include "expr.h" 57 #include "params.h" 58 #include "builtins.h" 59 #include "rtl-iter.h" 60 #include "stor-layout.h" 61 #include "opts.h" 62 #include "predict.h" 63 #include "rtx-vector-builder.h" 64 65 struct target_rtl default_target_rtl; 66 #if SWITCHABLE_TARGET 67 struct target_rtl *this_target_rtl = &default_target_rtl; 68 #endif 69 70 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx) 71 72 /* Commonly used modes. */ 73 74 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */ 75 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */ 76 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */ 77 78 /* Datastructures maintained for currently processed function in RTL form. */ 79 80 struct rtl_data x_rtl; 81 82 /* Indexed by pseudo register number, gives the rtx for that pseudo. 83 Allocated in parallel with regno_pointer_align. 84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal 85 with length attribute nested in top level structures. */ 86 87 rtx * regno_reg_rtx; 88 89 /* This is *not* reset after each function. It gives each CODE_LABEL 90 in the entire compilation a unique label number. */ 91 92 static GTY(()) int label_num = 1; 93 94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for 95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we 96 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX 97 is set only for MODE_INT and MODE_VECTOR_INT modes. */ 98 99 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE]; 100 101 rtx const_true_rtx; 102 103 REAL_VALUE_TYPE dconst0; 104 REAL_VALUE_TYPE dconst1; 105 REAL_VALUE_TYPE dconst2; 106 REAL_VALUE_TYPE dconstm1; 107 REAL_VALUE_TYPE dconsthalf; 108 109 /* Record fixed-point constant 0 and 1. */ 110 FIXED_VALUE_TYPE fconst0[MAX_FCONST0]; 111 FIXED_VALUE_TYPE fconst1[MAX_FCONST1]; 112 113 /* We make one copy of (const_int C) where C is in 114 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT] 115 to save space during the compilation and simplify comparisons of 116 integers. */ 117 118 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1]; 119 120 /* Standard pieces of rtx, to be substituted directly into things. */ 121 rtx pc_rtx; 122 rtx ret_rtx; 123 rtx simple_return_rtx; 124 rtx cc0_rtx; 125 126 /* Marker used for denoting an INSN, which should never be accessed (i.e., 127 this pointer should normally never be dereferenced), but is required to be 128 distinct from NULL_RTX. Currently used by peephole2 pass. */ 129 rtx_insn *invalid_insn_rtx; 130 131 /* A hash table storing CONST_INTs whose absolute value is greater 132 than MAX_SAVED_CONST_INT. */ 133 134 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def> 135 { 136 typedef HOST_WIDE_INT compare_type; 137 138 static hashval_t hash (rtx i); 139 static bool equal (rtx i, HOST_WIDE_INT h); 140 }; 141 142 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab; 143 144 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def> 145 { 146 static hashval_t hash (rtx x); 147 static bool equal (rtx x, rtx y); 148 }; 149 150 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab; 151 152 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def> 153 { 154 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type; 155 156 static hashval_t hash (rtx x); 157 static bool equal (rtx x, const compare_type &y); 158 }; 159 160 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab; 161 162 /* A hash table storing register attribute structures. */ 163 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs> 164 { 165 static hashval_t hash (reg_attrs *x); 166 static bool equal (reg_attrs *a, reg_attrs *b); 167 }; 168 169 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab; 170 171 /* A hash table storing all CONST_DOUBLEs. */ 172 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def> 173 { 174 static hashval_t hash (rtx x); 175 static bool equal (rtx x, rtx y); 176 }; 177 178 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab; 179 180 /* A hash table storing all CONST_FIXEDs. */ 181 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def> 182 { 183 static hashval_t hash (rtx x); 184 static bool equal (rtx x, rtx y); 185 }; 186 187 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab; 188 189 #define cur_insn_uid (crtl->emit.x_cur_insn_uid) 190 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid) 191 #define first_label_num (crtl->emit.x_first_label_num) 192 193 static void set_used_decls (tree); 194 static void mark_label_nuses (rtx); 195 #if TARGET_SUPPORTS_WIDE_INT 196 static rtx lookup_const_wide_int (rtx); 197 #endif 198 static rtx lookup_const_double (rtx); 199 static rtx lookup_const_fixed (rtx); 200 static rtx gen_const_vector (machine_mode, int); 201 static void copy_rtx_if_shared_1 (rtx *orig); 202 203 /* Probability of the conditional branch currently proceeded by try_split. */ 204 profile_probability split_branch_probability; 205 206 /* Returns a hash code for X (which is a really a CONST_INT). */ 207 208 hashval_t 209 const_int_hasher::hash (rtx x) 210 { 211 return (hashval_t) INTVAL (x); 212 } 213 214 /* Returns nonzero if the value represented by X (which is really a 215 CONST_INT) is the same as that given by Y (which is really a 216 HOST_WIDE_INT *). */ 217 218 bool 219 const_int_hasher::equal (rtx x, HOST_WIDE_INT y) 220 { 221 return (INTVAL (x) == y); 222 } 223 224 #if TARGET_SUPPORTS_WIDE_INT 225 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */ 226 227 hashval_t 228 const_wide_int_hasher::hash (rtx x) 229 { 230 int i; 231 unsigned HOST_WIDE_INT hash = 0; 232 const_rtx xr = x; 233 234 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++) 235 hash += CONST_WIDE_INT_ELT (xr, i); 236 237 return (hashval_t) hash; 238 } 239 240 /* Returns nonzero if the value represented by X (which is really a 241 CONST_WIDE_INT) is the same as that given by Y (which is really a 242 CONST_WIDE_INT). */ 243 244 bool 245 const_wide_int_hasher::equal (rtx x, rtx y) 246 { 247 int i; 248 const_rtx xr = x; 249 const_rtx yr = y; 250 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr)) 251 return false; 252 253 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++) 254 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i)) 255 return false; 256 257 return true; 258 } 259 #endif 260 261 /* Returns a hash code for CONST_POLY_INT X. */ 262 263 hashval_t 264 const_poly_int_hasher::hash (rtx x) 265 { 266 inchash::hash h; 267 h.add_int (GET_MODE (x)); 268 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 269 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]); 270 return h.end (); 271 } 272 273 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */ 274 275 bool 276 const_poly_int_hasher::equal (rtx x, const compare_type &y) 277 { 278 if (GET_MODE (x) != y.first) 279 return false; 280 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 281 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i]) 282 return false; 283 return true; 284 } 285 286 /* Returns a hash code for X (which is really a CONST_DOUBLE). */ 287 hashval_t 288 const_double_hasher::hash (rtx x) 289 { 290 const_rtx const value = x; 291 hashval_t h; 292 293 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode) 294 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value); 295 else 296 { 297 h = real_hash (CONST_DOUBLE_REAL_VALUE (value)); 298 /* MODE is used in the comparison, so it should be in the hash. */ 299 h ^= GET_MODE (value); 300 } 301 return h; 302 } 303 304 /* Returns nonzero if the value represented by X (really a ...) 305 is the same as that represented by Y (really a ...) */ 306 bool 307 const_double_hasher::equal (rtx x, rtx y) 308 { 309 const_rtx const a = x, b = y; 310 311 if (GET_MODE (a) != GET_MODE (b)) 312 return 0; 313 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode) 314 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b) 315 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b)); 316 else 317 return real_identical (CONST_DOUBLE_REAL_VALUE (a), 318 CONST_DOUBLE_REAL_VALUE (b)); 319 } 320 321 /* Returns a hash code for X (which is really a CONST_FIXED). */ 322 323 hashval_t 324 const_fixed_hasher::hash (rtx x) 325 { 326 const_rtx const value = x; 327 hashval_t h; 328 329 h = fixed_hash (CONST_FIXED_VALUE (value)); 330 /* MODE is used in the comparison, so it should be in the hash. */ 331 h ^= GET_MODE (value); 332 return h; 333 } 334 335 /* Returns nonzero if the value represented by X is the same as that 336 represented by Y. */ 337 338 bool 339 const_fixed_hasher::equal (rtx x, rtx y) 340 { 341 const_rtx const a = x, b = y; 342 343 if (GET_MODE (a) != GET_MODE (b)) 344 return 0; 345 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b)); 346 } 347 348 /* Return true if the given memory attributes are equal. */ 349 350 bool 351 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q) 352 { 353 if (p == q) 354 return true; 355 if (!p || !q) 356 return false; 357 return (p->alias == q->alias 358 && p->offset_known_p == q->offset_known_p 359 && (!p->offset_known_p || known_eq (p->offset, q->offset)) 360 && p->size_known_p == q->size_known_p 361 && (!p->size_known_p || known_eq (p->size, q->size)) 362 && p->align == q->align 363 && p->addrspace == q->addrspace 364 && (p->expr == q->expr 365 || (p->expr != NULL_TREE && q->expr != NULL_TREE 366 && operand_equal_p (p->expr, q->expr, 0)))); 367 } 368 369 /* Set MEM's memory attributes so that they are the same as ATTRS. */ 370 371 static void 372 set_mem_attrs (rtx mem, mem_attrs *attrs) 373 { 374 /* If everything is the default, we can just clear the attributes. */ 375 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)])) 376 { 377 MEM_ATTRS (mem) = 0; 378 return; 379 } 380 381 if (!MEM_ATTRS (mem) 382 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem))) 383 { 384 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> (); 385 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs)); 386 } 387 } 388 389 /* Returns a hash code for X (which is a really a reg_attrs *). */ 390 391 hashval_t 392 reg_attr_hasher::hash (reg_attrs *x) 393 { 394 const reg_attrs *const p = x; 395 396 inchash::hash h; 397 h.add_ptr (p->decl); 398 h.add_poly_hwi (p->offset); 399 return h.end (); 400 } 401 402 /* Returns nonzero if the value represented by X is the same as that given by 403 Y. */ 404 405 bool 406 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y) 407 { 408 const reg_attrs *const p = x; 409 const reg_attrs *const q = y; 410 411 return (p->decl == q->decl && known_eq (p->offset, q->offset)); 412 } 413 /* Allocate a new reg_attrs structure and insert it into the hash table if 414 one identical to it is not already in the table. We are doing this for 415 MEM of mode MODE. */ 416 417 static reg_attrs * 418 get_reg_attrs (tree decl, poly_int64 offset) 419 { 420 reg_attrs attrs; 421 422 /* If everything is the default, we can just return zero. */ 423 if (decl == 0 && known_eq (offset, 0)) 424 return 0; 425 426 attrs.decl = decl; 427 attrs.offset = offset; 428 429 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT); 430 if (*slot == 0) 431 { 432 *slot = ggc_alloc<reg_attrs> (); 433 memcpy (*slot, &attrs, sizeof (reg_attrs)); 434 } 435 436 return *slot; 437 } 438 439 440 #if !HAVE_blockage 441 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule, 442 and to block register equivalences to be seen across this insn. */ 443 444 rtx 445 gen_blockage (void) 446 { 447 rtx x = gen_rtx_ASM_INPUT (VOIDmode, ""); 448 MEM_VOLATILE_P (x) = true; 449 return x; 450 } 451 #endif 452 453 454 /* Set the mode and register number of X to MODE and REGNO. */ 455 456 void 457 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno) 458 { 459 unsigned int nregs = (HARD_REGISTER_NUM_P (regno) 460 ? hard_regno_nregs (regno, mode) 461 : 1); 462 PUT_MODE_RAW (x, mode); 463 set_regno_raw (x, regno, nregs); 464 } 465 466 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and 467 don't attempt to share with the various global pieces of rtl (such as 468 frame_pointer_rtx). */ 469 470 rtx 471 gen_raw_REG (machine_mode mode, unsigned int regno) 472 { 473 rtx x = rtx_alloc (REG MEM_STAT_INFO); 474 set_mode_and_regno (x, mode, regno); 475 REG_ATTRS (x) = NULL; 476 ORIGINAL_REGNO (x) = regno; 477 return x; 478 } 479 480 /* There are some RTL codes that require special attention; the generation 481 functions do the raw handling. If you add to this list, modify 482 special_rtx in gengenrtl.c as well. */ 483 484 rtx_expr_list * 485 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list) 486 { 487 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr, 488 expr_list)); 489 } 490 491 rtx_insn_list * 492 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list) 493 { 494 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn, 495 insn_list)); 496 } 497 498 rtx_insn * 499 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn, 500 basic_block bb, rtx pattern, int location, int code, 501 rtx reg_notes) 502 { 503 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode, 504 prev_insn, next_insn, 505 bb, pattern, location, code, 506 reg_notes)); 507 } 508 509 rtx 510 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg) 511 { 512 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT) 513 return const_int_rtx[arg + MAX_SAVED_CONST_INT]; 514 515 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1 516 if (const_true_rtx && arg == STORE_FLAG_VALUE) 517 return const_true_rtx; 518 #endif 519 520 /* Look up the CONST_INT in the hash table. */ 521 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg, 522 INSERT); 523 if (*slot == 0) 524 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg); 525 526 return *slot; 527 } 528 529 rtx 530 gen_int_mode (poly_int64 c, machine_mode mode) 531 { 532 c = trunc_int_for_mode (c, mode); 533 if (c.is_constant ()) 534 return GEN_INT (c.coeffs[0]); 535 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode)); 536 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode); 537 } 538 539 /* CONST_DOUBLEs might be created from pairs of integers, or from 540 REAL_VALUE_TYPEs. Also, their length is known only at run time, 541 so we cannot use gen_rtx_raw_CONST_DOUBLE. */ 542 543 /* Determine whether REAL, a CONST_DOUBLE, already exists in the 544 hash table. If so, return its counterpart; otherwise add it 545 to the hash table and return it. */ 546 static rtx 547 lookup_const_double (rtx real) 548 { 549 rtx *slot = const_double_htab->find_slot (real, INSERT); 550 if (*slot == 0) 551 *slot = real; 552 553 return *slot; 554 } 555 556 /* Return a CONST_DOUBLE rtx for a floating-point value specified by 557 VALUE in mode MODE. */ 558 rtx 559 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode) 560 { 561 rtx real = rtx_alloc (CONST_DOUBLE); 562 PUT_MODE (real, mode); 563 564 real->u.rv = value; 565 566 return lookup_const_double (real); 567 } 568 569 /* Determine whether FIXED, a CONST_FIXED, already exists in the 570 hash table. If so, return its counterpart; otherwise add it 571 to the hash table and return it. */ 572 573 static rtx 574 lookup_const_fixed (rtx fixed) 575 { 576 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT); 577 if (*slot == 0) 578 *slot = fixed; 579 580 return *slot; 581 } 582 583 /* Return a CONST_FIXED rtx for a fixed-point value specified by 584 VALUE in mode MODE. */ 585 586 rtx 587 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode) 588 { 589 rtx fixed = rtx_alloc (CONST_FIXED); 590 PUT_MODE (fixed, mode); 591 592 fixed->u.fv = value; 593 594 return lookup_const_fixed (fixed); 595 } 596 597 #if TARGET_SUPPORTS_WIDE_INT == 0 598 /* Constructs double_int from rtx CST. */ 599 600 double_int 601 rtx_to_double_int (const_rtx cst) 602 { 603 double_int r; 604 605 if (CONST_INT_P (cst)) 606 r = double_int::from_shwi (INTVAL (cst)); 607 else if (CONST_DOUBLE_AS_INT_P (cst)) 608 { 609 r.low = CONST_DOUBLE_LOW (cst); 610 r.high = CONST_DOUBLE_HIGH (cst); 611 } 612 else 613 gcc_unreachable (); 614 615 return r; 616 } 617 #endif 618 619 #if TARGET_SUPPORTS_WIDE_INT 620 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table. 621 If so, return its counterpart; otherwise add it to the hash table and 622 return it. */ 623 624 static rtx 625 lookup_const_wide_int (rtx wint) 626 { 627 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT); 628 if (*slot == 0) 629 *slot = wint; 630 631 return *slot; 632 } 633 #endif 634 635 /* Return an rtx constant for V, given that the constant has mode MODE. 636 The returned rtx will be a CONST_INT if V fits, otherwise it will be 637 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT 638 (if TARGET_SUPPORTS_WIDE_INT). */ 639 640 static rtx 641 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode) 642 { 643 unsigned int len = v.get_len (); 644 /* Not scalar_int_mode because we also allow pointer bound modes. */ 645 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode)); 646 647 /* Allow truncation but not extension since we do not know if the 648 number is signed or unsigned. */ 649 gcc_assert (prec <= v.get_precision ()); 650 651 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT) 652 return gen_int_mode (v.elt (0), mode); 653 654 #if TARGET_SUPPORTS_WIDE_INT 655 { 656 unsigned int i; 657 rtx value; 658 unsigned int blocks_needed 659 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT; 660 661 if (len > blocks_needed) 662 len = blocks_needed; 663 664 value = const_wide_int_alloc (len); 665 666 /* It is so tempting to just put the mode in here. Must control 667 myself ... */ 668 PUT_MODE (value, VOIDmode); 669 CWI_PUT_NUM_ELEM (value, len); 670 671 for (i = 0; i < len; i++) 672 CONST_WIDE_INT_ELT (value, i) = v.elt (i); 673 674 return lookup_const_wide_int (value); 675 } 676 #else 677 return immed_double_const (v.elt (0), v.elt (1), mode); 678 #endif 679 } 680 681 #if TARGET_SUPPORTS_WIDE_INT == 0 682 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair 683 of ints: I0 is the low-order word and I1 is the high-order word. 684 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the 685 implied upper bits are copies of the high bit of i1. The value 686 itself is neither signed nor unsigned. Do not use this routine for 687 non-integer modes; convert to REAL_VALUE_TYPE and use 688 const_double_from_real_value. */ 689 690 rtx 691 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode) 692 { 693 rtx value; 694 unsigned int i; 695 696 /* There are the following cases (note that there are no modes with 697 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT): 698 699 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use 700 gen_int_mode. 701 2) If the value of the integer fits into HOST_WIDE_INT anyway 702 (i.e., i1 consists only from copies of the sign bit, and sign 703 of i0 and i1 are the same), then we return a CONST_INT for i0. 704 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */ 705 scalar_mode smode; 706 if (is_a <scalar_mode> (mode, &smode) 707 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT) 708 return gen_int_mode (i0, mode); 709 710 /* If this integer fits in one word, return a CONST_INT. */ 711 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0)) 712 return GEN_INT (i0); 713 714 /* We use VOIDmode for integers. */ 715 value = rtx_alloc (CONST_DOUBLE); 716 PUT_MODE (value, VOIDmode); 717 718 CONST_DOUBLE_LOW (value) = i0; 719 CONST_DOUBLE_HIGH (value) = i1; 720 721 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++) 722 XWINT (value, i) = 0; 723 724 return lookup_const_double (value); 725 } 726 #endif 727 728 /* Return an rtx representation of C in mode MODE. */ 729 730 rtx 731 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode) 732 { 733 if (c.is_constant ()) 734 return immed_wide_int_const_1 (c.coeffs[0], mode); 735 736 /* Not scalar_int_mode because we also allow pointer bound modes. */ 737 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode)); 738 739 /* Allow truncation but not extension since we do not know if the 740 number is signed or unsigned. */ 741 gcc_assert (prec <= c.coeffs[0].get_precision ()); 742 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED); 743 744 /* See whether we already have an rtx for this constant. */ 745 inchash::hash h; 746 h.add_int (mode); 747 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 748 h.add_wide_int (newc.coeffs[i]); 749 const_poly_int_hasher::compare_type typed_value (mode, newc); 750 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value, 751 h.end (), INSERT); 752 rtx x = *slot; 753 if (x) 754 return x; 755 756 /* Create a new rtx. There's a choice to be made here between installing 757 the actual mode of the rtx or leaving it as VOIDmode (for consistency 758 with CONST_INT). In practice the handling of the codes is different 759 enough that we get no benefit from using VOIDmode, and various places 760 assume that VOIDmode implies CONST_INT. Using the real mode seems like 761 the right long-term direction anyway. */ 762 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi; 763 size_t extra_size = twi::extra_size (prec); 764 x = rtx_alloc_v (CONST_POLY_INT, 765 sizeof (struct const_poly_int_def) + extra_size); 766 PUT_MODE (x, mode); 767 CONST_POLY_INT_COEFFS (x).set_precision (prec); 768 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 769 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i]; 770 771 *slot = x; 772 return x; 773 } 774 775 rtx 776 gen_rtx_REG (machine_mode mode, unsigned int regno) 777 { 778 /* In case the MD file explicitly references the frame pointer, have 779 all such references point to the same frame pointer. This is 780 used during frame pointer elimination to distinguish the explicit 781 references to these registers from pseudos that happened to be 782 assigned to them. 783 784 If we have eliminated the frame pointer or arg pointer, we will 785 be using it as a normal register, for example as a spill 786 register. In such cases, we might be accessing it in a mode that 787 is not Pmode and therefore cannot use the pre-allocated rtx. 788 789 Also don't do this when we are making new REGs in reload, since 790 we don't want to get confused with the real pointers. */ 791 792 if (mode == Pmode && !reload_in_progress && !lra_in_progress) 793 { 794 if (regno == FRAME_POINTER_REGNUM 795 && (!reload_completed || frame_pointer_needed)) 796 return frame_pointer_rtx; 797 798 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER 799 && regno == HARD_FRAME_POINTER_REGNUM 800 && (!reload_completed || frame_pointer_needed)) 801 return hard_frame_pointer_rtx; 802 #if !HARD_FRAME_POINTER_IS_ARG_POINTER 803 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM 804 && regno == ARG_POINTER_REGNUM) 805 return arg_pointer_rtx; 806 #endif 807 #ifdef RETURN_ADDRESS_POINTER_REGNUM 808 if (regno == RETURN_ADDRESS_POINTER_REGNUM) 809 return return_address_pointer_rtx; 810 #endif 811 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM 812 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM 813 && fixed_regs[PIC_OFFSET_TABLE_REGNUM]) 814 return pic_offset_table_rtx; 815 if (regno == STACK_POINTER_REGNUM) 816 return stack_pointer_rtx; 817 } 818 819 #if 0 820 /* If the per-function register table has been set up, try to re-use 821 an existing entry in that table to avoid useless generation of RTL. 822 823 This code is disabled for now until we can fix the various backends 824 which depend on having non-shared hard registers in some cases. Long 825 term we want to re-enable this code as it can significantly cut down 826 on the amount of useless RTL that gets generated. 827 828 We'll also need to fix some code that runs after reload that wants to 829 set ORIGINAL_REGNO. */ 830 831 if (cfun 832 && cfun->emit 833 && regno_reg_rtx 834 && regno < FIRST_PSEUDO_REGISTER 835 && reg_raw_mode[regno] == mode) 836 return regno_reg_rtx[regno]; 837 #endif 838 839 return gen_raw_REG (mode, regno); 840 } 841 842 rtx 843 gen_rtx_MEM (machine_mode mode, rtx addr) 844 { 845 rtx rt = gen_rtx_raw_MEM (mode, addr); 846 847 /* This field is not cleared by the mere allocation of the rtx, so 848 we clear it here. */ 849 MEM_ATTRS (rt) = 0; 850 851 return rt; 852 } 853 854 /* Generate a memory referring to non-trapping constant memory. */ 855 856 rtx 857 gen_const_mem (machine_mode mode, rtx addr) 858 { 859 rtx mem = gen_rtx_MEM (mode, addr); 860 MEM_READONLY_P (mem) = 1; 861 MEM_NOTRAP_P (mem) = 1; 862 return mem; 863 } 864 865 /* Generate a MEM referring to fixed portions of the frame, e.g., register 866 save areas. */ 867 868 rtx 869 gen_frame_mem (machine_mode mode, rtx addr) 870 { 871 rtx mem = gen_rtx_MEM (mode, addr); 872 MEM_NOTRAP_P (mem) = 1; 873 set_mem_alias_set (mem, get_frame_alias_set ()); 874 return mem; 875 } 876 877 /* Generate a MEM referring to a temporary use of the stack, not part 878 of the fixed stack frame. For example, something which is pushed 879 by a target splitter. */ 880 rtx 881 gen_tmp_stack_mem (machine_mode mode, rtx addr) 882 { 883 rtx mem = gen_rtx_MEM (mode, addr); 884 MEM_NOTRAP_P (mem) = 1; 885 if (!cfun->calls_alloca) 886 set_mem_alias_set (mem, get_frame_alias_set ()); 887 return mem; 888 } 889 890 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if 891 this construct would be valid, and false otherwise. */ 892 893 bool 894 validate_subreg (machine_mode omode, machine_mode imode, 895 const_rtx reg, poly_uint64 offset) 896 { 897 poly_uint64 isize = GET_MODE_SIZE (imode); 898 poly_uint64 osize = GET_MODE_SIZE (omode); 899 900 /* The sizes must be ordered, so that we know whether the subreg 901 is partial, paradoxical or complete. */ 902 if (!ordered_p (isize, osize)) 903 return false; 904 905 /* All subregs must be aligned. */ 906 if (!multiple_p (offset, osize)) 907 return false; 908 909 /* The subreg offset cannot be outside the inner object. */ 910 if (maybe_ge (offset, isize)) 911 return false; 912 913 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode); 914 915 /* ??? This should not be here. Temporarily continue to allow word_mode 916 subregs of anything. The most common offender is (subreg:SI (reg:DF)). 917 Generally, backends are doing something sketchy but it'll take time to 918 fix them all. */ 919 if (omode == word_mode) 920 ; 921 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field 922 is the culprit here, and not the backends. */ 923 else if (known_ge (osize, regsize) && known_ge (isize, osize)) 924 ; 925 /* Allow component subregs of complex and vector. Though given the below 926 extraction rules, it's not always clear what that means. */ 927 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode)) 928 && GET_MODE_INNER (imode) == omode) 929 ; 930 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs, 931 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to 932 represent this. It's questionable if this ought to be represented at 933 all -- why can't this all be hidden in post-reload splitters that make 934 arbitrarily mode changes to the registers themselves. */ 935 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode) 936 ; 937 /* Subregs involving floating point modes are not allowed to 938 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but 939 (subreg:SI (reg:DF) 0) isn't. */ 940 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode)) 941 { 942 if (! (known_eq (isize, osize) 943 /* LRA can use subreg to store a floating point value in 944 an integer mode. Although the floating point and the 945 integer modes need the same number of hard registers, 946 the size of floating point mode can be less than the 947 integer mode. LRA also uses subregs for a register 948 should be used in different mode in on insn. */ 949 || lra_in_progress)) 950 return false; 951 } 952 953 /* Paradoxical subregs must have offset zero. */ 954 if (maybe_gt (osize, isize)) 955 return known_eq (offset, 0U); 956 957 /* This is a normal subreg. Verify that the offset is representable. */ 958 959 /* For hard registers, we already have most of these rules collected in 960 subreg_offset_representable_p. */ 961 if (reg && REG_P (reg) && HARD_REGISTER_P (reg)) 962 { 963 unsigned int regno = REGNO (reg); 964 965 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode)) 966 && GET_MODE_INNER (imode) == omode) 967 ; 968 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode)) 969 return false; 970 971 return subreg_offset_representable_p (regno, imode, offset, omode); 972 } 973 974 /* The outer size must be ordered wrt the register size, otherwise 975 we wouldn't know at compile time how many registers the outer 976 mode occupies. */ 977 if (!ordered_p (osize, regsize)) 978 return false; 979 980 /* For pseudo registers, we want most of the same checks. Namely: 981 982 Assume that the pseudo register will be allocated to hard registers 983 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE, 984 the remainder must correspond to the lowpart of the containing hard 985 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset, 986 otherwise it is at the lowest offset. 987 988 Given that we've already checked the mode and offset alignment, 989 we only have to check subblock subregs here. */ 990 if (maybe_lt (osize, regsize) 991 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode)))) 992 { 993 /* It is invalid for the target to pick a register size for a mode 994 that isn't ordered wrt to the size of that mode. */ 995 poly_uint64 block_size = ordered_min (isize, regsize); 996 unsigned int start_reg; 997 poly_uint64 offset_within_reg; 998 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg) 999 || (BYTES_BIG_ENDIAN 1000 ? maybe_ne (offset_within_reg, block_size - osize) 1001 : maybe_ne (offset_within_reg, 0U))) 1002 return false; 1003 } 1004 return true; 1005 } 1006 1007 rtx 1008 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset) 1009 { 1010 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset)); 1011 return gen_rtx_raw_SUBREG (mode, reg, offset); 1012 } 1013 1014 /* Generate a SUBREG representing the least-significant part of REG if MODE 1015 is smaller than mode of REG, otherwise paradoxical SUBREG. */ 1016 1017 rtx 1018 gen_lowpart_SUBREG (machine_mode mode, rtx reg) 1019 { 1020 machine_mode inmode; 1021 1022 inmode = GET_MODE (reg); 1023 if (inmode == VOIDmode) 1024 inmode = mode; 1025 return gen_rtx_SUBREG (mode, reg, 1026 subreg_lowpart_offset (mode, inmode)); 1027 } 1028 1029 rtx 1030 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc, 1031 enum var_init_status status) 1032 { 1033 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc); 1034 PAT_VAR_LOCATION_STATUS (x) = status; 1035 return x; 1036 } 1037 1038 1039 /* Create an rtvec and stores within it the RTXen passed in the arguments. */ 1040 1041 rtvec 1042 gen_rtvec (int n, ...) 1043 { 1044 int i; 1045 rtvec rt_val; 1046 va_list p; 1047 1048 va_start (p, n); 1049 1050 /* Don't allocate an empty rtvec... */ 1051 if (n == 0) 1052 { 1053 va_end (p); 1054 return NULL_RTVEC; 1055 } 1056 1057 rt_val = rtvec_alloc (n); 1058 1059 for (i = 0; i < n; i++) 1060 rt_val->elem[i] = va_arg (p, rtx); 1061 1062 va_end (p); 1063 return rt_val; 1064 } 1065 1066 rtvec 1067 gen_rtvec_v (int n, rtx *argp) 1068 { 1069 int i; 1070 rtvec rt_val; 1071 1072 /* Don't allocate an empty rtvec... */ 1073 if (n == 0) 1074 return NULL_RTVEC; 1075 1076 rt_val = rtvec_alloc (n); 1077 1078 for (i = 0; i < n; i++) 1079 rt_val->elem[i] = *argp++; 1080 1081 return rt_val; 1082 } 1083 1084 rtvec 1085 gen_rtvec_v (int n, rtx_insn **argp) 1086 { 1087 int i; 1088 rtvec rt_val; 1089 1090 /* Don't allocate an empty rtvec... */ 1091 if (n == 0) 1092 return NULL_RTVEC; 1093 1094 rt_val = rtvec_alloc (n); 1095 1096 for (i = 0; i < n; i++) 1097 rt_val->elem[i] = *argp++; 1098 1099 return rt_val; 1100 } 1101 1102 1103 /* Return the number of bytes between the start of an OUTER_MODE 1104 in-memory value and the start of an INNER_MODE in-memory value, 1105 given that the former is a lowpart of the latter. It may be a 1106 paradoxical lowpart, in which case the offset will be negative 1107 on big-endian targets. */ 1108 1109 poly_int64 1110 byte_lowpart_offset (machine_mode outer_mode, 1111 machine_mode inner_mode) 1112 { 1113 if (paradoxical_subreg_p (outer_mode, inner_mode)) 1114 return -subreg_lowpart_offset (inner_mode, outer_mode); 1115 else 1116 return subreg_lowpart_offset (outer_mode, inner_mode); 1117 } 1118 1119 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET) 1120 from address X. For paradoxical big-endian subregs this is a 1121 negative value, otherwise it's the same as OFFSET. */ 1122 1123 poly_int64 1124 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode, 1125 poly_uint64 offset) 1126 { 1127 if (paradoxical_subreg_p (outer_mode, inner_mode)) 1128 { 1129 gcc_assert (known_eq (offset, 0U)); 1130 return -subreg_lowpart_offset (inner_mode, outer_mode); 1131 } 1132 return offset; 1133 } 1134 1135 /* As above, but return the offset that existing subreg X would have 1136 if SUBREG_REG (X) were stored in memory. The only significant thing 1137 about the current SUBREG_REG is its mode. */ 1138 1139 poly_int64 1140 subreg_memory_offset (const_rtx x) 1141 { 1142 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)), 1143 SUBREG_BYTE (x)); 1144 } 1145 1146 /* Generate a REG rtx for a new pseudo register of mode MODE. 1147 This pseudo is assigned the next sequential register number. */ 1148 1149 rtx 1150 gen_reg_rtx (machine_mode mode) 1151 { 1152 rtx val; 1153 unsigned int align = GET_MODE_ALIGNMENT (mode); 1154 1155 gcc_assert (can_create_pseudo_p ()); 1156 1157 /* If a virtual register with bigger mode alignment is generated, 1158 increase stack alignment estimation because it might be spilled 1159 to stack later. */ 1160 if (SUPPORTS_STACK_ALIGNMENT 1161 && crtl->stack_alignment_estimated < align 1162 && !crtl->stack_realign_processed) 1163 { 1164 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align); 1165 if (crtl->stack_alignment_estimated < min_align) 1166 crtl->stack_alignment_estimated = min_align; 1167 } 1168 1169 if (generating_concat_p 1170 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT 1171 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)) 1172 { 1173 /* For complex modes, don't make a single pseudo. 1174 Instead, make a CONCAT of two pseudos. 1175 This allows noncontiguous allocation of the real and imaginary parts, 1176 which makes much better code. Besides, allocating DCmode 1177 pseudos overstrains reload on some machines like the 386. */ 1178 rtx realpart, imagpart; 1179 machine_mode partmode = GET_MODE_INNER (mode); 1180 1181 realpart = gen_reg_rtx (partmode); 1182 imagpart = gen_reg_rtx (partmode); 1183 return gen_rtx_CONCAT (mode, realpart, imagpart); 1184 } 1185 1186 /* Do not call gen_reg_rtx with uninitialized crtl. */ 1187 gcc_assert (crtl->emit.regno_pointer_align_length); 1188 1189 crtl->emit.ensure_regno_capacity (); 1190 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length); 1191 1192 val = gen_raw_REG (mode, reg_rtx_no); 1193 regno_reg_rtx[reg_rtx_no++] = val; 1194 return val; 1195 } 1196 1197 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large 1198 enough to have elements in the range 0 <= idx <= reg_rtx_no. */ 1199 1200 void 1201 emit_status::ensure_regno_capacity () 1202 { 1203 int old_size = regno_pointer_align_length; 1204 1205 if (reg_rtx_no < old_size) 1206 return; 1207 1208 int new_size = old_size * 2; 1209 while (reg_rtx_no >= new_size) 1210 new_size *= 2; 1211 1212 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size); 1213 memset (tmp + old_size, 0, new_size - old_size); 1214 regno_pointer_align = (unsigned char *) tmp; 1215 1216 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size); 1217 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx)); 1218 regno_reg_rtx = new1; 1219 1220 crtl->emit.regno_pointer_align_length = new_size; 1221 } 1222 1223 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */ 1224 1225 bool 1226 reg_is_parm_p (rtx reg) 1227 { 1228 tree decl; 1229 1230 gcc_assert (REG_P (reg)); 1231 decl = REG_EXPR (reg); 1232 return (decl && TREE_CODE (decl) == PARM_DECL); 1233 } 1234 1235 /* Update NEW with the same attributes as REG, but with OFFSET added 1236 to the REG_OFFSET. */ 1237 1238 static void 1239 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset) 1240 { 1241 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg), 1242 REG_OFFSET (reg) + offset); 1243 } 1244 1245 /* Generate a register with same attributes as REG, but with OFFSET 1246 added to the REG_OFFSET. */ 1247 1248 rtx 1249 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno, 1250 poly_int64 offset) 1251 { 1252 rtx new_rtx = gen_rtx_REG (mode, regno); 1253 1254 update_reg_offset (new_rtx, reg, offset); 1255 return new_rtx; 1256 } 1257 1258 /* Generate a new pseudo-register with the same attributes as REG, but 1259 with OFFSET added to the REG_OFFSET. */ 1260 1261 rtx 1262 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset) 1263 { 1264 rtx new_rtx = gen_reg_rtx (mode); 1265 1266 update_reg_offset (new_rtx, reg, offset); 1267 return new_rtx; 1268 } 1269 1270 /* Adjust REG in-place so that it has mode MODE. It is assumed that the 1271 new register is a (possibly paradoxical) lowpart of the old one. */ 1272 1273 void 1274 adjust_reg_mode (rtx reg, machine_mode mode) 1275 { 1276 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg))); 1277 PUT_MODE (reg, mode); 1278 } 1279 1280 /* Copy REG's attributes from X, if X has any attributes. If REG and X 1281 have different modes, REG is a (possibly paradoxical) lowpart of X. */ 1282 1283 void 1284 set_reg_attrs_from_value (rtx reg, rtx x) 1285 { 1286 poly_int64 offset; 1287 bool can_be_reg_pointer = true; 1288 1289 /* Don't call mark_reg_pointer for incompatible pointer sign 1290 extension. */ 1291 while (GET_CODE (x) == SIGN_EXTEND 1292 || GET_CODE (x) == ZERO_EXTEND 1293 || GET_CODE (x) == TRUNCATE 1294 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x))) 1295 { 1296 #if defined(POINTERS_EXTEND_UNSIGNED) 1297 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED) 1298 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED) 1299 || (paradoxical_subreg_p (x) 1300 && ! (SUBREG_PROMOTED_VAR_P (x) 1301 && SUBREG_CHECK_PROMOTED_SIGN (x, 1302 POINTERS_EXTEND_UNSIGNED)))) 1303 && !targetm.have_ptr_extend ()) 1304 can_be_reg_pointer = false; 1305 #endif 1306 x = XEXP (x, 0); 1307 } 1308 1309 /* Hard registers can be reused for multiple purposes within the same 1310 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN 1311 on them is wrong. */ 1312 if (HARD_REGISTER_P (reg)) 1313 return; 1314 1315 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x)); 1316 if (MEM_P (x)) 1317 { 1318 if (MEM_OFFSET_KNOWN_P (x)) 1319 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x), 1320 MEM_OFFSET (x) + offset); 1321 if (can_be_reg_pointer && MEM_POINTER (x)) 1322 mark_reg_pointer (reg, 0); 1323 } 1324 else if (REG_P (x)) 1325 { 1326 if (REG_ATTRS (x)) 1327 update_reg_offset (reg, x, offset); 1328 if (can_be_reg_pointer && REG_POINTER (x)) 1329 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x))); 1330 } 1331 } 1332 1333 /* Generate a REG rtx for a new pseudo register, copying the mode 1334 and attributes from X. */ 1335 1336 rtx 1337 gen_reg_rtx_and_attrs (rtx x) 1338 { 1339 rtx reg = gen_reg_rtx (GET_MODE (x)); 1340 set_reg_attrs_from_value (reg, x); 1341 return reg; 1342 } 1343 1344 /* Set the register attributes for registers contained in PARM_RTX. 1345 Use needed values from memory attributes of MEM. */ 1346 1347 void 1348 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem) 1349 { 1350 if (REG_P (parm_rtx)) 1351 set_reg_attrs_from_value (parm_rtx, mem); 1352 else if (GET_CODE (parm_rtx) == PARALLEL) 1353 { 1354 /* Check for a NULL entry in the first slot, used to indicate that the 1355 parameter goes both on the stack and in registers. */ 1356 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1; 1357 for (; i < XVECLEN (parm_rtx, 0); i++) 1358 { 1359 rtx x = XVECEXP (parm_rtx, 0, i); 1360 if (REG_P (XEXP (x, 0))) 1361 REG_ATTRS (XEXP (x, 0)) 1362 = get_reg_attrs (MEM_EXPR (mem), 1363 INTVAL (XEXP (x, 1))); 1364 } 1365 } 1366 } 1367 1368 /* Set the REG_ATTRS for registers in value X, given that X represents 1369 decl T. */ 1370 1371 void 1372 set_reg_attrs_for_decl_rtl (tree t, rtx x) 1373 { 1374 if (!t) 1375 return; 1376 tree tdecl = t; 1377 if (GET_CODE (x) == SUBREG) 1378 { 1379 gcc_assert (subreg_lowpart_p (x)); 1380 x = SUBREG_REG (x); 1381 } 1382 if (REG_P (x)) 1383 REG_ATTRS (x) 1384 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x), 1385 DECL_P (tdecl) 1386 ? DECL_MODE (tdecl) 1387 : TYPE_MODE (TREE_TYPE (tdecl)))); 1388 if (GET_CODE (x) == CONCAT) 1389 { 1390 if (REG_P (XEXP (x, 0))) 1391 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0); 1392 if (REG_P (XEXP (x, 1))) 1393 REG_ATTRS (XEXP (x, 1)) 1394 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0)))); 1395 } 1396 if (GET_CODE (x) == PARALLEL) 1397 { 1398 int i, start; 1399 1400 /* Check for a NULL entry, used to indicate that the parameter goes 1401 both on the stack and in registers. */ 1402 if (XEXP (XVECEXP (x, 0, 0), 0)) 1403 start = 0; 1404 else 1405 start = 1; 1406 1407 for (i = start; i < XVECLEN (x, 0); i++) 1408 { 1409 rtx y = XVECEXP (x, 0, i); 1410 if (REG_P (XEXP (y, 0))) 1411 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1))); 1412 } 1413 } 1414 } 1415 1416 /* Assign the RTX X to declaration T. */ 1417 1418 void 1419 set_decl_rtl (tree t, rtx x) 1420 { 1421 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x; 1422 if (x) 1423 set_reg_attrs_for_decl_rtl (t, x); 1424 } 1425 1426 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true 1427 if the ABI requires the parameter to be passed by reference. */ 1428 1429 void 1430 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p) 1431 { 1432 DECL_INCOMING_RTL (t) = x; 1433 if (x && !by_reference_p) 1434 set_reg_attrs_for_decl_rtl (t, x); 1435 } 1436 1437 /* Identify REG (which may be a CONCAT) as a user register. */ 1438 1439 void 1440 mark_user_reg (rtx reg) 1441 { 1442 if (GET_CODE (reg) == CONCAT) 1443 { 1444 REG_USERVAR_P (XEXP (reg, 0)) = 1; 1445 REG_USERVAR_P (XEXP (reg, 1)) = 1; 1446 } 1447 else 1448 { 1449 gcc_assert (REG_P (reg)); 1450 REG_USERVAR_P (reg) = 1; 1451 } 1452 } 1453 1454 /* Identify REG as a probable pointer register and show its alignment 1455 as ALIGN, if nonzero. */ 1456 1457 void 1458 mark_reg_pointer (rtx reg, int align) 1459 { 1460 if (! REG_POINTER (reg)) 1461 { 1462 REG_POINTER (reg) = 1; 1463 1464 if (align) 1465 REGNO_POINTER_ALIGN (REGNO (reg)) = align; 1466 } 1467 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg))) 1468 /* We can no-longer be sure just how aligned this pointer is. */ 1469 REGNO_POINTER_ALIGN (REGNO (reg)) = align; 1470 } 1471 1472 /* Return 1 plus largest pseudo reg number used in the current function. */ 1473 1474 int 1475 max_reg_num (void) 1476 { 1477 return reg_rtx_no; 1478 } 1479 1480 /* Return 1 + the largest label number used so far in the current function. */ 1481 1482 int 1483 max_label_num (void) 1484 { 1485 return label_num; 1486 } 1487 1488 /* Return first label number used in this function (if any were used). */ 1489 1490 int 1491 get_first_label_num (void) 1492 { 1493 return first_label_num; 1494 } 1495 1496 /* If the rtx for label was created during the expansion of a nested 1497 function, then first_label_num won't include this label number. 1498 Fix this now so that array indices work later. */ 1499 1500 void 1501 maybe_set_first_label_num (rtx_code_label *x) 1502 { 1503 if (CODE_LABEL_NUMBER (x) < first_label_num) 1504 first_label_num = CODE_LABEL_NUMBER (x); 1505 } 1506 1507 /* For use by the RTL function loader, when mingling with normal 1508 functions. 1509 Ensure that label_num is greater than the label num of X, to avoid 1510 duplicate labels in the generated assembler. */ 1511 1512 void 1513 maybe_set_max_label_num (rtx_code_label *x) 1514 { 1515 if (CODE_LABEL_NUMBER (x) >= label_num) 1516 label_num = CODE_LABEL_NUMBER (x) + 1; 1517 } 1518 1519 1520 /* Return a value representing some low-order bits of X, where the number 1521 of low-order bits is given by MODE. Note that no conversion is done 1522 between floating-point and fixed-point values, rather, the bit 1523 representation is returned. 1524 1525 This function handles the cases in common between gen_lowpart, below, 1526 and two variants in cse.c and combine.c. These are the cases that can 1527 be safely handled at all points in the compilation. 1528 1529 If this is not a case we can handle, return 0. */ 1530 1531 rtx 1532 gen_lowpart_common (machine_mode mode, rtx x) 1533 { 1534 poly_uint64 msize = GET_MODE_SIZE (mode); 1535 machine_mode innermode; 1536 1537 /* Unfortunately, this routine doesn't take a parameter for the mode of X, 1538 so we have to make one up. Yuk. */ 1539 innermode = GET_MODE (x); 1540 if (CONST_INT_P (x) 1541 && known_le (msize * BITS_PER_UNIT, 1542 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT)) 1543 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require (); 1544 else if (innermode == VOIDmode) 1545 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require (); 1546 1547 gcc_assert (innermode != VOIDmode && innermode != BLKmode); 1548 1549 if (innermode == mode) 1550 return x; 1551 1552 /* The size of the outer and inner modes must be ordered. */ 1553 poly_uint64 xsize = GET_MODE_SIZE (innermode); 1554 if (!ordered_p (msize, xsize)) 1555 return 0; 1556 1557 if (SCALAR_FLOAT_MODE_P (mode)) 1558 { 1559 /* Don't allow paradoxical FLOAT_MODE subregs. */ 1560 if (maybe_gt (msize, xsize)) 1561 return 0; 1562 } 1563 else 1564 { 1565 /* MODE must occupy no more of the underlying registers than X. */ 1566 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode); 1567 unsigned int mregs, xregs; 1568 if (!can_div_away_from_zero_p (msize, regsize, &mregs) 1569 || !can_div_away_from_zero_p (xsize, regsize, &xregs) 1570 || mregs > xregs) 1571 return 0; 1572 } 1573 1574 scalar_int_mode int_mode, int_innermode, from_mode; 1575 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND) 1576 && is_a <scalar_int_mode> (mode, &int_mode) 1577 && is_a <scalar_int_mode> (innermode, &int_innermode) 1578 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode)) 1579 { 1580 /* If we are getting the low-order part of something that has been 1581 sign- or zero-extended, we can either just use the object being 1582 extended or make a narrower extension. If we want an even smaller 1583 piece than the size of the object being extended, call ourselves 1584 recursively. 1585 1586 This case is used mostly by combine and cse. */ 1587 1588 if (from_mode == int_mode) 1589 return XEXP (x, 0); 1590 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode)) 1591 return gen_lowpart_common (int_mode, XEXP (x, 0)); 1592 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode)) 1593 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0)); 1594 } 1595 else if (GET_CODE (x) == SUBREG || REG_P (x) 1596 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR 1597 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x) 1598 || CONST_POLY_INT_P (x)) 1599 return lowpart_subreg (mode, x, innermode); 1600 1601 /* Otherwise, we can't do this. */ 1602 return 0; 1603 } 1604 1605 rtx 1606 gen_highpart (machine_mode mode, rtx x) 1607 { 1608 poly_uint64 msize = GET_MODE_SIZE (mode); 1609 rtx result; 1610 1611 /* This case loses if X is a subreg. To catch bugs early, 1612 complain if an invalid MODE is used even in other cases. */ 1613 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD) 1614 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x)))); 1615 1616 result = simplify_gen_subreg (mode, x, GET_MODE (x), 1617 subreg_highpart_offset (mode, GET_MODE (x))); 1618 gcc_assert (result); 1619 1620 /* simplify_gen_subreg is not guaranteed to return a valid operand for 1621 the target if we have a MEM. gen_highpart must return a valid operand, 1622 emitting code if necessary to do so. */ 1623 if (MEM_P (result)) 1624 { 1625 result = validize_mem (result); 1626 gcc_assert (result); 1627 } 1628 1629 return result; 1630 } 1631 1632 /* Like gen_highpart, but accept mode of EXP operand in case EXP can 1633 be VOIDmode constant. */ 1634 rtx 1635 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp) 1636 { 1637 if (GET_MODE (exp) != VOIDmode) 1638 { 1639 gcc_assert (GET_MODE (exp) == innermode); 1640 return gen_highpart (outermode, exp); 1641 } 1642 return simplify_gen_subreg (outermode, exp, innermode, 1643 subreg_highpart_offset (outermode, innermode)); 1644 } 1645 1646 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has 1647 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */ 1648 1649 poly_uint64 1650 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes) 1651 { 1652 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes)); 1653 if (maybe_gt (outer_bytes, inner_bytes)) 1654 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */ 1655 return 0; 1656 1657 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN) 1658 return inner_bytes - outer_bytes; 1659 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN) 1660 return 0; 1661 else 1662 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0); 1663 } 1664 1665 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has 1666 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */ 1667 1668 poly_uint64 1669 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes) 1670 { 1671 gcc_assert (known_ge (inner_bytes, outer_bytes)); 1672 1673 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN) 1674 return 0; 1675 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN) 1676 return inner_bytes - outer_bytes; 1677 else 1678 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 1679 (inner_bytes - outer_bytes) 1680 * BITS_PER_UNIT); 1681 } 1682 1683 /* Return 1 iff X, assumed to be a SUBREG, 1684 refers to the least significant part of its containing reg. 1685 If X is not a SUBREG, always return 1 (it is its own low part!). */ 1686 1687 int 1688 subreg_lowpart_p (const_rtx x) 1689 { 1690 if (GET_CODE (x) != SUBREG) 1691 return 1; 1692 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode) 1693 return 0; 1694 1695 return known_eq (subreg_lowpart_offset (GET_MODE (x), 1696 GET_MODE (SUBREG_REG (x))), 1697 SUBREG_BYTE (x)); 1698 } 1699 1700 /* Return subword OFFSET of operand OP. 1701 The word number, OFFSET, is interpreted as the word number starting 1702 at the low-order address. OFFSET 0 is the low-order word if not 1703 WORDS_BIG_ENDIAN, otherwise it is the high-order word. 1704 1705 If we cannot extract the required word, we return zero. Otherwise, 1706 an rtx corresponding to the requested word will be returned. 1707 1708 VALIDATE_ADDRESS is nonzero if the address should be validated. Before 1709 reload has completed, a valid address will always be returned. After 1710 reload, if a valid address cannot be returned, we return zero. 1711 1712 If VALIDATE_ADDRESS is zero, we simply form the required address; validating 1713 it is the responsibility of the caller. 1714 1715 MODE is the mode of OP in case it is a CONST_INT. 1716 1717 ??? This is still rather broken for some cases. The problem for the 1718 moment is that all callers of this thing provide no 'goal mode' to 1719 tell us to work with. This exists because all callers were written 1720 in a word based SUBREG world. 1721 Now use of this function can be deprecated by simplify_subreg in most 1722 cases. 1723 */ 1724 1725 rtx 1726 operand_subword (rtx op, poly_uint64 offset, int validate_address, 1727 machine_mode mode) 1728 { 1729 if (mode == VOIDmode) 1730 mode = GET_MODE (op); 1731 1732 gcc_assert (mode != VOIDmode); 1733 1734 /* If OP is narrower than a word, fail. */ 1735 if (mode != BLKmode 1736 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)) 1737 return 0; 1738 1739 /* If we want a word outside OP, return zero. */ 1740 if (mode != BLKmode 1741 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode))) 1742 return const0_rtx; 1743 1744 /* Form a new MEM at the requested address. */ 1745 if (MEM_P (op)) 1746 { 1747 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD); 1748 1749 if (! validate_address) 1750 return new_rtx; 1751 1752 else if (reload_completed) 1753 { 1754 if (! strict_memory_address_addr_space_p (word_mode, 1755 XEXP (new_rtx, 0), 1756 MEM_ADDR_SPACE (op))) 1757 return 0; 1758 } 1759 else 1760 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0)); 1761 } 1762 1763 /* Rest can be handled by simplify_subreg. */ 1764 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD)); 1765 } 1766 1767 /* Similar to `operand_subword', but never return 0. If we can't 1768 extract the required subword, put OP into a register and try again. 1769 The second attempt must succeed. We always validate the address in 1770 this case. 1771 1772 MODE is the mode of OP, in case it is CONST_INT. */ 1773 1774 rtx 1775 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode) 1776 { 1777 rtx result = operand_subword (op, offset, 1, mode); 1778 1779 if (result) 1780 return result; 1781 1782 if (mode != BLKmode && mode != VOIDmode) 1783 { 1784 /* If this is a register which can not be accessed by words, copy it 1785 to a pseudo register. */ 1786 if (REG_P (op)) 1787 op = copy_to_reg (op); 1788 else 1789 op = force_reg (mode, op); 1790 } 1791 1792 result = operand_subword (op, offset, 1, mode); 1793 gcc_assert (result); 1794 1795 return result; 1796 } 1797 1798 mem_attrs::mem_attrs () 1799 : expr (NULL_TREE), 1800 offset (0), 1801 size (0), 1802 alias (0), 1803 align (0), 1804 addrspace (ADDR_SPACE_GENERIC), 1805 offset_known_p (false), 1806 size_known_p (false) 1807 {} 1808 1809 /* Returns 1 if both MEM_EXPR can be considered equal 1810 and 0 otherwise. */ 1811 1812 int 1813 mem_expr_equal_p (const_tree expr1, const_tree expr2) 1814 { 1815 if (expr1 == expr2) 1816 return 1; 1817 1818 if (! expr1 || ! expr2) 1819 return 0; 1820 1821 if (TREE_CODE (expr1) != TREE_CODE (expr2)) 1822 return 0; 1823 1824 return operand_equal_p (expr1, expr2, 0); 1825 } 1826 1827 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN 1828 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or 1829 -1 if not known. */ 1830 1831 int 1832 get_mem_align_offset (rtx mem, unsigned int align) 1833 { 1834 tree expr; 1835 poly_uint64 offset; 1836 1837 /* This function can't use 1838 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem) 1839 || (MAX (MEM_ALIGN (mem), 1840 MAX (align, get_object_alignment (MEM_EXPR (mem)))) 1841 < align)) 1842 return -1; 1843 else 1844 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1); 1845 for two reasons: 1846 - COMPONENT_REFs in MEM_EXPR can have NULL first operand, 1847 for <variable>. get_inner_reference doesn't handle it and 1848 even if it did, the alignment in that case needs to be determined 1849 from DECL_FIELD_CONTEXT's TYPE_ALIGN. 1850 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR 1851 isn't sufficiently aligned, the object it is in might be. */ 1852 gcc_assert (MEM_P (mem)); 1853 expr = MEM_EXPR (mem); 1854 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem)) 1855 return -1; 1856 1857 offset = MEM_OFFSET (mem); 1858 if (DECL_P (expr)) 1859 { 1860 if (DECL_ALIGN (expr) < align) 1861 return -1; 1862 } 1863 else if (INDIRECT_REF_P (expr)) 1864 { 1865 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align) 1866 return -1; 1867 } 1868 else if (TREE_CODE (expr) == COMPONENT_REF) 1869 { 1870 while (1) 1871 { 1872 tree inner = TREE_OPERAND (expr, 0); 1873 tree field = TREE_OPERAND (expr, 1); 1874 tree byte_offset = component_ref_field_offset (expr); 1875 tree bit_offset = DECL_FIELD_BIT_OFFSET (field); 1876 1877 poly_uint64 suboffset; 1878 if (!byte_offset 1879 || !poly_int_tree_p (byte_offset, &suboffset) 1880 || !tree_fits_uhwi_p (bit_offset)) 1881 return -1; 1882 1883 offset += suboffset; 1884 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT; 1885 1886 if (inner == NULL_TREE) 1887 { 1888 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field)) 1889 < (unsigned int) align) 1890 return -1; 1891 break; 1892 } 1893 else if (DECL_P (inner)) 1894 { 1895 if (DECL_ALIGN (inner) < align) 1896 return -1; 1897 break; 1898 } 1899 else if (TREE_CODE (inner) != COMPONENT_REF) 1900 return -1; 1901 expr = inner; 1902 } 1903 } 1904 else 1905 return -1; 1906 1907 HOST_WIDE_INT misalign; 1908 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign)) 1909 return -1; 1910 return misalign; 1911 } 1912 1913 /* Given REF (a MEM) and T, either the type of X or the expression 1914 corresponding to REF, set the memory attributes. OBJECTP is nonzero 1915 if we are making a new object of this type. BITPOS is nonzero if 1916 there is an offset outstanding on T that will be applied later. */ 1917 1918 void 1919 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp, 1920 poly_int64 bitpos) 1921 { 1922 poly_int64 apply_bitpos = 0; 1923 tree type; 1924 struct mem_attrs attrs, *defattrs, *refattrs; 1925 addr_space_t as; 1926 1927 /* It can happen that type_for_mode was given a mode for which there 1928 is no language-level type. In which case it returns NULL, which 1929 we can see here. */ 1930 if (t == NULL_TREE) 1931 return; 1932 1933 type = TYPE_P (t) ? t : TREE_TYPE (t); 1934 if (type == error_mark_node) 1935 return; 1936 1937 /* If we have already set DECL_RTL = ref, get_alias_set will get the 1938 wrong answer, as it assumes that DECL_RTL already has the right alias 1939 info. Callers should not set DECL_RTL until after the call to 1940 set_mem_attributes. */ 1941 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t)); 1942 1943 /* Get the alias set from the expression or type (perhaps using a 1944 front-end routine) and use it. */ 1945 attrs.alias = get_alias_set (t); 1946 1947 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type); 1948 MEM_POINTER (ref) = POINTER_TYPE_P (type); 1949 1950 /* Default values from pre-existing memory attributes if present. */ 1951 refattrs = MEM_ATTRS (ref); 1952 if (refattrs) 1953 { 1954 /* ??? Can this ever happen? Calling this routine on a MEM that 1955 already carries memory attributes should probably be invalid. */ 1956 attrs.expr = refattrs->expr; 1957 attrs.offset_known_p = refattrs->offset_known_p; 1958 attrs.offset = refattrs->offset; 1959 attrs.size_known_p = refattrs->size_known_p; 1960 attrs.size = refattrs->size; 1961 attrs.align = refattrs->align; 1962 } 1963 1964 /* Otherwise, default values from the mode of the MEM reference. */ 1965 else 1966 { 1967 defattrs = mode_mem_attrs[(int) GET_MODE (ref)]; 1968 gcc_assert (!defattrs->expr); 1969 gcc_assert (!defattrs->offset_known_p); 1970 1971 /* Respect mode size. */ 1972 attrs.size_known_p = defattrs->size_known_p; 1973 attrs.size = defattrs->size; 1974 /* ??? Is this really necessary? We probably should always get 1975 the size from the type below. */ 1976 1977 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type; 1978 if T is an object, always compute the object alignment below. */ 1979 if (TYPE_P (t)) 1980 attrs.align = defattrs->align; 1981 else 1982 attrs.align = BITS_PER_UNIT; 1983 /* ??? If T is a type, respecting mode alignment may *also* be wrong 1984 e.g. if the type carries an alignment attribute. Should we be 1985 able to simply always use TYPE_ALIGN? */ 1986 } 1987 1988 /* We can set the alignment from the type if we are making an object or if 1989 this is an INDIRECT_REF. */ 1990 if (objectp || TREE_CODE (t) == INDIRECT_REF) 1991 attrs.align = MAX (attrs.align, TYPE_ALIGN (type)); 1992 1993 /* If the size is known, we can set that. */ 1994 tree new_size = TYPE_SIZE_UNIT (type); 1995 1996 /* The address-space is that of the type. */ 1997 as = TYPE_ADDR_SPACE (type); 1998 1999 /* If T is not a type, we may be able to deduce some more information about 2000 the expression. */ 2001 if (! TYPE_P (t)) 2002 { 2003 tree base; 2004 2005 if (TREE_THIS_VOLATILE (t)) 2006 MEM_VOLATILE_P (ref) = 1; 2007 2008 /* Now remove any conversions: they don't change what the underlying 2009 object is. Likewise for SAVE_EXPR. */ 2010 while (CONVERT_EXPR_P (t) 2011 || TREE_CODE (t) == VIEW_CONVERT_EXPR 2012 || TREE_CODE (t) == SAVE_EXPR) 2013 t = TREE_OPERAND (t, 0); 2014 2015 /* Note whether this expression can trap. */ 2016 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t); 2017 2018 base = get_base_address (t); 2019 if (base) 2020 { 2021 if (DECL_P (base) 2022 && TREE_READONLY (base) 2023 && (TREE_STATIC (base) || DECL_EXTERNAL (base)) 2024 && !TREE_THIS_VOLATILE (base)) 2025 MEM_READONLY_P (ref) = 1; 2026 2027 /* Mark static const strings readonly as well. */ 2028 if (TREE_CODE (base) == STRING_CST 2029 && TREE_READONLY (base) 2030 && TREE_STATIC (base)) 2031 MEM_READONLY_P (ref) = 1; 2032 2033 /* Address-space information is on the base object. */ 2034 if (TREE_CODE (base) == MEM_REF 2035 || TREE_CODE (base) == TARGET_MEM_REF) 2036 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base, 2037 0)))); 2038 else 2039 as = TYPE_ADDR_SPACE (TREE_TYPE (base)); 2040 } 2041 2042 /* If this expression uses it's parent's alias set, mark it such 2043 that we won't change it. */ 2044 if (component_uses_parent_alias_set_from (t) != NULL_TREE) 2045 MEM_KEEP_ALIAS_SET_P (ref) = 1; 2046 2047 /* If this is a decl, set the attributes of the MEM from it. */ 2048 if (DECL_P (t)) 2049 { 2050 attrs.expr = t; 2051 attrs.offset_known_p = true; 2052 attrs.offset = 0; 2053 apply_bitpos = bitpos; 2054 new_size = DECL_SIZE_UNIT (t); 2055 } 2056 2057 /* ??? If we end up with a constant here do record a MEM_EXPR. */ 2058 else if (CONSTANT_CLASS_P (t)) 2059 ; 2060 2061 /* If this is a field reference, record it. */ 2062 else if (TREE_CODE (t) == COMPONENT_REF) 2063 { 2064 attrs.expr = t; 2065 attrs.offset_known_p = true; 2066 attrs.offset = 0; 2067 apply_bitpos = bitpos; 2068 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1))) 2069 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1)); 2070 } 2071 2072 /* If this is an array reference, look for an outer field reference. */ 2073 else if (TREE_CODE (t) == ARRAY_REF) 2074 { 2075 tree off_tree = size_zero_node; 2076 /* We can't modify t, because we use it at the end of the 2077 function. */ 2078 tree t2 = t; 2079 2080 do 2081 { 2082 tree index = TREE_OPERAND (t2, 1); 2083 tree low_bound = array_ref_low_bound (t2); 2084 tree unit_size = array_ref_element_size (t2); 2085 2086 /* We assume all arrays have sizes that are a multiple of a byte. 2087 First subtract the lower bound, if any, in the type of the 2088 index, then convert to sizetype and multiply by the size of 2089 the array element. */ 2090 if (! integer_zerop (low_bound)) 2091 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index), 2092 index, low_bound); 2093 2094 off_tree = size_binop (PLUS_EXPR, 2095 size_binop (MULT_EXPR, 2096 fold_convert (sizetype, 2097 index), 2098 unit_size), 2099 off_tree); 2100 t2 = TREE_OPERAND (t2, 0); 2101 } 2102 while (TREE_CODE (t2) == ARRAY_REF); 2103 2104 if (DECL_P (t2) 2105 || (TREE_CODE (t2) == COMPONENT_REF 2106 /* For trailing arrays t2 doesn't have a size that 2107 covers all valid accesses. */ 2108 && ! array_at_struct_end_p (t))) 2109 { 2110 attrs.expr = t2; 2111 attrs.offset_known_p = false; 2112 if (poly_int_tree_p (off_tree, &attrs.offset)) 2113 { 2114 attrs.offset_known_p = true; 2115 apply_bitpos = bitpos; 2116 } 2117 } 2118 /* Else do not record a MEM_EXPR. */ 2119 } 2120 2121 /* If this is an indirect reference, record it. */ 2122 else if (TREE_CODE (t) == MEM_REF 2123 || TREE_CODE (t) == TARGET_MEM_REF) 2124 { 2125 attrs.expr = t; 2126 attrs.offset_known_p = true; 2127 attrs.offset = 0; 2128 apply_bitpos = bitpos; 2129 } 2130 2131 /* Compute the alignment. */ 2132 unsigned int obj_align; 2133 unsigned HOST_WIDE_INT obj_bitpos; 2134 get_object_alignment_1 (t, &obj_align, &obj_bitpos); 2135 unsigned int diff_align = known_alignment (obj_bitpos - bitpos); 2136 if (diff_align != 0) 2137 obj_align = MIN (obj_align, diff_align); 2138 attrs.align = MAX (attrs.align, obj_align); 2139 } 2140 2141 poly_uint64 const_size; 2142 if (poly_int_tree_p (new_size, &const_size)) 2143 { 2144 attrs.size_known_p = true; 2145 attrs.size = const_size; 2146 } 2147 2148 /* If we modified OFFSET based on T, then subtract the outstanding 2149 bit position offset. Similarly, increase the size of the accessed 2150 object to contain the negative offset. */ 2151 if (maybe_ne (apply_bitpos, 0)) 2152 { 2153 gcc_assert (attrs.offset_known_p); 2154 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos); 2155 attrs.offset -= bytepos; 2156 if (attrs.size_known_p) 2157 attrs.size += bytepos; 2158 } 2159 2160 /* Now set the attributes we computed above. */ 2161 attrs.addrspace = as; 2162 set_mem_attrs (ref, &attrs); 2163 } 2164 2165 void 2166 set_mem_attributes (rtx ref, tree t, int objectp) 2167 { 2168 set_mem_attributes_minus_bitpos (ref, t, objectp, 0); 2169 } 2170 2171 /* Set the alias set of MEM to SET. */ 2172 2173 void 2174 set_mem_alias_set (rtx mem, alias_set_type set) 2175 { 2176 /* If the new and old alias sets don't conflict, something is wrong. */ 2177 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem))); 2178 mem_attrs attrs (*get_mem_attrs (mem)); 2179 attrs.alias = set; 2180 set_mem_attrs (mem, &attrs); 2181 } 2182 2183 /* Set the address space of MEM to ADDRSPACE (target-defined). */ 2184 2185 void 2186 set_mem_addr_space (rtx mem, addr_space_t addrspace) 2187 { 2188 mem_attrs attrs (*get_mem_attrs (mem)); 2189 attrs.addrspace = addrspace; 2190 set_mem_attrs (mem, &attrs); 2191 } 2192 2193 /* Set the alignment of MEM to ALIGN bits. */ 2194 2195 void 2196 set_mem_align (rtx mem, unsigned int align) 2197 { 2198 mem_attrs attrs (*get_mem_attrs (mem)); 2199 attrs.align = align; 2200 set_mem_attrs (mem, &attrs); 2201 } 2202 2203 /* Set the expr for MEM to EXPR. */ 2204 2205 void 2206 set_mem_expr (rtx mem, tree expr) 2207 { 2208 mem_attrs attrs (*get_mem_attrs (mem)); 2209 attrs.expr = expr; 2210 set_mem_attrs (mem, &attrs); 2211 } 2212 2213 /* Set the offset of MEM to OFFSET. */ 2214 2215 void 2216 set_mem_offset (rtx mem, poly_int64 offset) 2217 { 2218 mem_attrs attrs (*get_mem_attrs (mem)); 2219 attrs.offset_known_p = true; 2220 attrs.offset = offset; 2221 set_mem_attrs (mem, &attrs); 2222 } 2223 2224 /* Clear the offset of MEM. */ 2225 2226 void 2227 clear_mem_offset (rtx mem) 2228 { 2229 mem_attrs attrs (*get_mem_attrs (mem)); 2230 attrs.offset_known_p = false; 2231 set_mem_attrs (mem, &attrs); 2232 } 2233 2234 /* Set the size of MEM to SIZE. */ 2235 2236 void 2237 set_mem_size (rtx mem, poly_int64 size) 2238 { 2239 mem_attrs attrs (*get_mem_attrs (mem)); 2240 attrs.size_known_p = true; 2241 attrs.size = size; 2242 set_mem_attrs (mem, &attrs); 2243 } 2244 2245 /* Clear the size of MEM. */ 2246 2247 void 2248 clear_mem_size (rtx mem) 2249 { 2250 mem_attrs attrs (*get_mem_attrs (mem)); 2251 attrs.size_known_p = false; 2252 set_mem_attrs (mem, &attrs); 2253 } 2254 2255 /* Return a memory reference like MEMREF, but with its mode changed to MODE 2256 and its address changed to ADDR. (VOIDmode means don't change the mode. 2257 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the 2258 returned memory location is required to be valid. INPLACE is true if any 2259 changes can be made directly to MEMREF or false if MEMREF must be treated 2260 as immutable. 2261 2262 The memory attributes are not changed. */ 2263 2264 static rtx 2265 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate, 2266 bool inplace) 2267 { 2268 addr_space_t as; 2269 rtx new_rtx; 2270 2271 gcc_assert (MEM_P (memref)); 2272 as = MEM_ADDR_SPACE (memref); 2273 if (mode == VOIDmode) 2274 mode = GET_MODE (memref); 2275 if (addr == 0) 2276 addr = XEXP (memref, 0); 2277 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0) 2278 && (!validate || memory_address_addr_space_p (mode, addr, as))) 2279 return memref; 2280 2281 /* Don't validate address for LRA. LRA can make the address valid 2282 by itself in most efficient way. */ 2283 if (validate && !lra_in_progress) 2284 { 2285 if (reload_in_progress || reload_completed) 2286 gcc_assert (memory_address_addr_space_p (mode, addr, as)); 2287 else 2288 addr = memory_address_addr_space (mode, addr, as); 2289 } 2290 2291 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref)) 2292 return memref; 2293 2294 if (inplace) 2295 { 2296 XEXP (memref, 0) = addr; 2297 return memref; 2298 } 2299 2300 new_rtx = gen_rtx_MEM (mode, addr); 2301 MEM_COPY_ATTRIBUTES (new_rtx, memref); 2302 return new_rtx; 2303 } 2304 2305 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what 2306 way we are changing MEMREF, so we only preserve the alias set. */ 2307 2308 rtx 2309 change_address (rtx memref, machine_mode mode, rtx addr) 2310 { 2311 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false); 2312 machine_mode mmode = GET_MODE (new_rtx); 2313 struct mem_attrs *defattrs; 2314 2315 mem_attrs attrs (*get_mem_attrs (memref)); 2316 defattrs = mode_mem_attrs[(int) mmode]; 2317 attrs.expr = NULL_TREE; 2318 attrs.offset_known_p = false; 2319 attrs.size_known_p = defattrs->size_known_p; 2320 attrs.size = defattrs->size; 2321 attrs.align = defattrs->align; 2322 2323 /* If there are no changes, just return the original memory reference. */ 2324 if (new_rtx == memref) 2325 { 2326 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs)) 2327 return new_rtx; 2328 2329 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0)); 2330 MEM_COPY_ATTRIBUTES (new_rtx, memref); 2331 } 2332 2333 set_mem_attrs (new_rtx, &attrs); 2334 return new_rtx; 2335 } 2336 2337 /* Return a memory reference like MEMREF, but with its mode changed 2338 to MODE and its address offset by OFFSET bytes. If VALIDATE is 2339 nonzero, the memory address is forced to be valid. 2340 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS 2341 and the caller is responsible for adjusting MEMREF base register. 2342 If ADJUST_OBJECT is zero, the underlying object associated with the 2343 memory reference is left unchanged and the caller is responsible for 2344 dealing with it. Otherwise, if the new memory reference is outside 2345 the underlying object, even partially, then the object is dropped. 2346 SIZE, if nonzero, is the size of an access in cases where MODE 2347 has no inherent size. */ 2348 2349 rtx 2350 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset, 2351 int validate, int adjust_address, int adjust_object, 2352 poly_int64 size) 2353 { 2354 rtx addr = XEXP (memref, 0); 2355 rtx new_rtx; 2356 scalar_int_mode address_mode; 2357 struct mem_attrs attrs (*get_mem_attrs (memref)), *defattrs; 2358 unsigned HOST_WIDE_INT max_align; 2359 #ifdef POINTERS_EXTEND_UNSIGNED 2360 scalar_int_mode pointer_mode 2361 = targetm.addr_space.pointer_mode (attrs.addrspace); 2362 #endif 2363 2364 /* VOIDmode means no mode change for change_address_1. */ 2365 if (mode == VOIDmode) 2366 mode = GET_MODE (memref); 2367 2368 /* Take the size of non-BLKmode accesses from the mode. */ 2369 defattrs = mode_mem_attrs[(int) mode]; 2370 if (defattrs->size_known_p) 2371 size = defattrs->size; 2372 2373 /* If there are no changes, just return the original memory reference. */ 2374 if (mode == GET_MODE (memref) 2375 && known_eq (offset, 0) 2376 && (known_eq (size, 0) 2377 || (attrs.size_known_p && known_eq (attrs.size, size))) 2378 && (!validate || memory_address_addr_space_p (mode, addr, 2379 attrs.addrspace))) 2380 return memref; 2381 2382 /* ??? Prefer to create garbage instead of creating shared rtl. 2383 This may happen even if offset is nonzero -- consider 2384 (plus (plus reg reg) const_int) -- so do this always. */ 2385 addr = copy_rtx (addr); 2386 2387 /* Convert a possibly large offset to a signed value within the 2388 range of the target address space. */ 2389 address_mode = get_address_mode (memref); 2390 offset = trunc_int_for_mode (offset, address_mode); 2391 2392 if (adjust_address) 2393 { 2394 /* If MEMREF is a LO_SUM and the offset is within the alignment of the 2395 object, we can merge it into the LO_SUM. */ 2396 if (GET_MODE (memref) != BLKmode 2397 && GET_CODE (addr) == LO_SUM 2398 && known_in_range_p (offset, 2399 0, (GET_MODE_ALIGNMENT (GET_MODE (memref)) 2400 / BITS_PER_UNIT))) 2401 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0), 2402 plus_constant (address_mode, 2403 XEXP (addr, 1), offset)); 2404 #ifdef POINTERS_EXTEND_UNSIGNED 2405 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid 2406 in that mode, we merge it into the ZERO_EXTEND. We take advantage of 2407 the fact that pointers are not allowed to overflow. */ 2408 else if (POINTERS_EXTEND_UNSIGNED > 0 2409 && GET_CODE (addr) == ZERO_EXTEND 2410 && GET_MODE (XEXP (addr, 0)) == pointer_mode 2411 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset)) 2412 addr = gen_rtx_ZERO_EXTEND (address_mode, 2413 plus_constant (pointer_mode, 2414 XEXP (addr, 0), offset)); 2415 #endif 2416 else 2417 addr = plus_constant (address_mode, addr, offset); 2418 } 2419 2420 new_rtx = change_address_1 (memref, mode, addr, validate, false); 2421 2422 /* If the address is a REG, change_address_1 rightfully returns memref, 2423 but this would destroy memref's MEM_ATTRS. */ 2424 if (new_rtx == memref && maybe_ne (offset, 0)) 2425 new_rtx = copy_rtx (new_rtx); 2426 2427 /* Conservatively drop the object if we don't know where we start from. */ 2428 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p)) 2429 { 2430 attrs.expr = NULL_TREE; 2431 attrs.alias = 0; 2432 } 2433 2434 /* Compute the new values of the memory attributes due to this adjustment. 2435 We add the offsets and update the alignment. */ 2436 if (attrs.offset_known_p) 2437 { 2438 attrs.offset += offset; 2439 2440 /* Drop the object if the new left end is not within its bounds. */ 2441 if (adjust_object && maybe_lt (attrs.offset, 0)) 2442 { 2443 attrs.expr = NULL_TREE; 2444 attrs.alias = 0; 2445 } 2446 } 2447 2448 /* Compute the new alignment by taking the MIN of the alignment and the 2449 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET 2450 if zero. */ 2451 if (maybe_ne (offset, 0)) 2452 { 2453 max_align = known_alignment (offset) * BITS_PER_UNIT; 2454 attrs.align = MIN (attrs.align, max_align); 2455 } 2456 2457 if (maybe_ne (size, 0)) 2458 { 2459 /* Drop the object if the new right end is not within its bounds. */ 2460 if (adjust_object && maybe_gt (offset + size, attrs.size)) 2461 { 2462 attrs.expr = NULL_TREE; 2463 attrs.alias = 0; 2464 } 2465 attrs.size_known_p = true; 2466 attrs.size = size; 2467 } 2468 else if (attrs.size_known_p) 2469 { 2470 gcc_assert (!adjust_object); 2471 attrs.size -= offset; 2472 /* ??? The store_by_pieces machinery generates negative sizes, 2473 so don't assert for that here. */ 2474 } 2475 2476 set_mem_attrs (new_rtx, &attrs); 2477 2478 return new_rtx; 2479 } 2480 2481 /* Return a memory reference like MEMREF, but with its mode changed 2482 to MODE and its address changed to ADDR, which is assumed to be 2483 MEMREF offset by OFFSET bytes. If VALIDATE is 2484 nonzero, the memory address is forced to be valid. */ 2485 2486 rtx 2487 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr, 2488 poly_int64 offset, int validate) 2489 { 2490 memref = change_address_1 (memref, VOIDmode, addr, validate, false); 2491 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0); 2492 } 2493 2494 /* Return a memory reference like MEMREF, but whose address is changed by 2495 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor 2496 known to be in OFFSET (possibly 1). */ 2497 2498 rtx 2499 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2) 2500 { 2501 rtx new_rtx, addr = XEXP (memref, 0); 2502 machine_mode address_mode; 2503 struct mem_attrs *defattrs; 2504 2505 mem_attrs attrs (*get_mem_attrs (memref)); 2506 address_mode = get_address_mode (memref); 2507 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset); 2508 2509 /* At this point we don't know _why_ the address is invalid. It 2510 could have secondary memory references, multiplies or anything. 2511 2512 However, if we did go and rearrange things, we can wind up not 2513 being able to recognize the magic around pic_offset_table_rtx. 2514 This stuff is fragile, and is yet another example of why it is 2515 bad to expose PIC machinery too early. */ 2516 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, 2517 attrs.addrspace) 2518 && GET_CODE (addr) == PLUS 2519 && XEXP (addr, 0) == pic_offset_table_rtx) 2520 { 2521 addr = force_reg (GET_MODE (addr), addr); 2522 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset); 2523 } 2524 2525 update_temp_slot_address (XEXP (memref, 0), new_rtx); 2526 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false); 2527 2528 /* If there are no changes, just return the original memory reference. */ 2529 if (new_rtx == memref) 2530 return new_rtx; 2531 2532 /* Update the alignment to reflect the offset. Reset the offset, which 2533 we don't know. */ 2534 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)]; 2535 attrs.offset_known_p = false; 2536 attrs.size_known_p = defattrs->size_known_p; 2537 attrs.size = defattrs->size; 2538 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT); 2539 set_mem_attrs (new_rtx, &attrs); 2540 return new_rtx; 2541 } 2542 2543 /* Return a memory reference like MEMREF, but with its address changed to 2544 ADDR. The caller is asserting that the actual piece of memory pointed 2545 to is the same, just the form of the address is being changed, such as 2546 by putting something into a register. INPLACE is true if any changes 2547 can be made directly to MEMREF or false if MEMREF must be treated as 2548 immutable. */ 2549 2550 rtx 2551 replace_equiv_address (rtx memref, rtx addr, bool inplace) 2552 { 2553 /* change_address_1 copies the memory attribute structure without change 2554 and that's exactly what we want here. */ 2555 update_temp_slot_address (XEXP (memref, 0), addr); 2556 return change_address_1 (memref, VOIDmode, addr, 1, inplace); 2557 } 2558 2559 /* Likewise, but the reference is not required to be valid. */ 2560 2561 rtx 2562 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace) 2563 { 2564 return change_address_1 (memref, VOIDmode, addr, 0, inplace); 2565 } 2566 2567 /* Return a memory reference like MEMREF, but with its mode widened to 2568 MODE and offset by OFFSET. This would be used by targets that e.g. 2569 cannot issue QImode memory operations and have to use SImode memory 2570 operations plus masking logic. */ 2571 2572 rtx 2573 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset) 2574 { 2575 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0); 2576 poly_uint64 size = GET_MODE_SIZE (mode); 2577 2578 /* If there are no changes, just return the original memory reference. */ 2579 if (new_rtx == memref) 2580 return new_rtx; 2581 2582 mem_attrs attrs (*get_mem_attrs (new_rtx)); 2583 2584 /* If we don't know what offset we were at within the expression, then 2585 we can't know if we've overstepped the bounds. */ 2586 if (! attrs.offset_known_p) 2587 attrs.expr = NULL_TREE; 2588 2589 while (attrs.expr) 2590 { 2591 if (TREE_CODE (attrs.expr) == COMPONENT_REF) 2592 { 2593 tree field = TREE_OPERAND (attrs.expr, 1); 2594 tree offset = component_ref_field_offset (attrs.expr); 2595 2596 if (! DECL_SIZE_UNIT (field)) 2597 { 2598 attrs.expr = NULL_TREE; 2599 break; 2600 } 2601 2602 /* Is the field at least as large as the access? If so, ok, 2603 otherwise strip back to the containing structure. */ 2604 if (poly_int_tree_p (DECL_SIZE_UNIT (field)) 2605 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size) 2606 && known_ge (attrs.offset, 0)) 2607 break; 2608 2609 poly_uint64 suboffset; 2610 if (!poly_int_tree_p (offset, &suboffset)) 2611 { 2612 attrs.expr = NULL_TREE; 2613 break; 2614 } 2615 2616 attrs.expr = TREE_OPERAND (attrs.expr, 0); 2617 attrs.offset += suboffset; 2618 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) 2619 / BITS_PER_UNIT); 2620 } 2621 /* Similarly for the decl. */ 2622 else if (DECL_P (attrs.expr) 2623 && DECL_SIZE_UNIT (attrs.expr) 2624 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr)) 2625 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)), 2626 size) 2627 && known_ge (attrs.offset, 0)) 2628 break; 2629 else 2630 { 2631 /* The widened memory access overflows the expression, which means 2632 that it could alias another expression. Zap it. */ 2633 attrs.expr = NULL_TREE; 2634 break; 2635 } 2636 } 2637 2638 if (! attrs.expr) 2639 attrs.offset_known_p = false; 2640 2641 /* The widened memory may alias other stuff, so zap the alias set. */ 2642 /* ??? Maybe use get_alias_set on any remaining expression. */ 2643 attrs.alias = 0; 2644 attrs.size_known_p = true; 2645 attrs.size = size; 2646 set_mem_attrs (new_rtx, &attrs); 2647 return new_rtx; 2648 } 2649 2650 /* A fake decl that is used as the MEM_EXPR of spill slots. */ 2651 static GTY(()) tree spill_slot_decl; 2652 2653 tree 2654 get_spill_slot_decl (bool force_build_p) 2655 { 2656 tree d = spill_slot_decl; 2657 rtx rd; 2658 2659 if (d || !force_build_p) 2660 return d; 2661 2662 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl), 2663 VAR_DECL, get_identifier ("%sfp"), void_type_node); 2664 DECL_ARTIFICIAL (d) = 1; 2665 DECL_IGNORED_P (d) = 1; 2666 TREE_USED (d) = 1; 2667 spill_slot_decl = d; 2668 2669 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx); 2670 MEM_NOTRAP_P (rd) = 1; 2671 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]); 2672 attrs.alias = new_alias_set (); 2673 attrs.expr = d; 2674 set_mem_attrs (rd, &attrs); 2675 SET_DECL_RTL (d, rd); 2676 2677 return d; 2678 } 2679 2680 /* Given MEM, a result from assign_stack_local, fill in the memory 2681 attributes as appropriate for a register allocator spill slot. 2682 These slots are not aliasable by other memory. We arrange for 2683 them all to use a single MEM_EXPR, so that the aliasing code can 2684 work properly in the case of shared spill slots. */ 2685 2686 void 2687 set_mem_attrs_for_spill (rtx mem) 2688 { 2689 rtx addr; 2690 2691 mem_attrs attrs (*get_mem_attrs (mem)); 2692 attrs.expr = get_spill_slot_decl (true); 2693 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr)); 2694 attrs.addrspace = ADDR_SPACE_GENERIC; 2695 2696 /* We expect the incoming memory to be of the form: 2697 (mem:MODE (plus (reg sfp) (const_int offset))) 2698 with perhaps the plus missing for offset = 0. */ 2699 addr = XEXP (mem, 0); 2700 attrs.offset_known_p = true; 2701 strip_offset (addr, &attrs.offset); 2702 2703 set_mem_attrs (mem, &attrs); 2704 MEM_NOTRAP_P (mem) = 1; 2705 } 2706 2707 /* Return a newly created CODE_LABEL rtx with a unique label number. */ 2708 2709 rtx_code_label * 2710 gen_label_rtx (void) 2711 { 2712 return as_a <rtx_code_label *> ( 2713 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX, 2714 NULL, label_num++, NULL)); 2715 } 2716 2717 /* For procedure integration. */ 2718 2719 /* Install new pointers to the first and last insns in the chain. 2720 Also, set cur_insn_uid to one higher than the last in use. 2721 Used for an inline-procedure after copying the insn chain. */ 2722 2723 void 2724 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last) 2725 { 2726 rtx_insn *insn; 2727 2728 set_first_insn (first); 2729 set_last_insn (last); 2730 cur_insn_uid = 0; 2731 2732 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS) 2733 { 2734 int debug_count = 0; 2735 2736 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1; 2737 cur_debug_insn_uid = 0; 2738 2739 for (insn = first; insn; insn = NEXT_INSN (insn)) 2740 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID) 2741 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn)); 2742 else 2743 { 2744 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn)); 2745 if (DEBUG_INSN_P (insn)) 2746 debug_count++; 2747 } 2748 2749 if (debug_count) 2750 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count; 2751 else 2752 cur_debug_insn_uid++; 2753 } 2754 else 2755 for (insn = first; insn; insn = NEXT_INSN (insn)) 2756 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn)); 2757 2758 cur_insn_uid++; 2759 } 2760 2761 /* Go through all the RTL insn bodies and copy any invalid shared 2762 structure. This routine should only be called once. */ 2763 2764 static void 2765 unshare_all_rtl_1 (rtx_insn *insn) 2766 { 2767 /* Unshare just about everything else. */ 2768 unshare_all_rtl_in_chain (insn); 2769 2770 /* Make sure the addresses of stack slots found outside the insn chain 2771 (such as, in DECL_RTL of a variable) are not shared 2772 with the insn chain. 2773 2774 This special care is necessary when the stack slot MEM does not 2775 actually appear in the insn chain. If it does appear, its address 2776 is unshared from all else at that point. */ 2777 unsigned int i; 2778 rtx temp; 2779 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp) 2780 (*stack_slot_list)[i] = copy_rtx_if_shared (temp); 2781 } 2782 2783 /* Go through all the RTL insn bodies and copy any invalid shared 2784 structure, again. This is a fairly expensive thing to do so it 2785 should be done sparingly. */ 2786 2787 void 2788 unshare_all_rtl_again (rtx_insn *insn) 2789 { 2790 rtx_insn *p; 2791 tree decl; 2792 2793 for (p = insn; p; p = NEXT_INSN (p)) 2794 if (INSN_P (p)) 2795 { 2796 reset_used_flags (PATTERN (p)); 2797 reset_used_flags (REG_NOTES (p)); 2798 if (CALL_P (p)) 2799 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p)); 2800 } 2801 2802 /* Make sure that virtual stack slots are not shared. */ 2803 set_used_decls (DECL_INITIAL (cfun->decl)); 2804 2805 /* Make sure that virtual parameters are not shared. */ 2806 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl)) 2807 set_used_flags (DECL_RTL (decl)); 2808 2809 rtx temp; 2810 unsigned int i; 2811 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp) 2812 reset_used_flags (temp); 2813 2814 unshare_all_rtl_1 (insn); 2815 } 2816 2817 unsigned int 2818 unshare_all_rtl (void) 2819 { 2820 unshare_all_rtl_1 (get_insns ()); 2821 2822 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl)) 2823 { 2824 if (DECL_RTL_SET_P (decl)) 2825 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl))); 2826 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl)); 2827 } 2828 2829 return 0; 2830 } 2831 2832 2833 /* Check that ORIG is not marked when it should not be and mark ORIG as in use, 2834 Recursively does the same for subexpressions. */ 2835 2836 static void 2837 verify_rtx_sharing (rtx orig, rtx insn) 2838 { 2839 rtx x = orig; 2840 int i; 2841 enum rtx_code code; 2842 const char *format_ptr; 2843 2844 if (x == 0) 2845 return; 2846 2847 code = GET_CODE (x); 2848 2849 /* These types may be freely shared. */ 2850 2851 switch (code) 2852 { 2853 case REG: 2854 case DEBUG_EXPR: 2855 case VALUE: 2856 CASE_CONST_ANY: 2857 case SYMBOL_REF: 2858 case LABEL_REF: 2859 case CODE_LABEL: 2860 case PC: 2861 case CC0: 2862 case RETURN: 2863 case SIMPLE_RETURN: 2864 case SCRATCH: 2865 /* SCRATCH must be shared because they represent distinct values. */ 2866 return; 2867 case CLOBBER: 2868 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 2869 clobbers or clobbers of hard registers that originated as pseudos. 2870 This is needed to allow safe register renaming. */ 2871 if (REG_P (XEXP (x, 0)) 2872 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0))) 2873 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0)))) 2874 return; 2875 break; 2876 2877 case CONST: 2878 if (shared_const_p (orig)) 2879 return; 2880 break; 2881 2882 case MEM: 2883 /* A MEM is allowed to be shared if its address is constant. */ 2884 if (CONSTANT_ADDRESS_P (XEXP (x, 0)) 2885 || reload_completed || reload_in_progress) 2886 return; 2887 2888 break; 2889 2890 default: 2891 break; 2892 } 2893 2894 /* This rtx may not be shared. If it has already been seen, 2895 replace it with a copy of itself. */ 2896 if (flag_checking && RTX_FLAG (x, used)) 2897 { 2898 error ("invalid rtl sharing found in the insn"); 2899 debug_rtx (insn); 2900 error ("shared rtx"); 2901 debug_rtx (x); 2902 internal_error ("internal consistency failure"); 2903 } 2904 gcc_assert (!RTX_FLAG (x, used)); 2905 2906 RTX_FLAG (x, used) = 1; 2907 2908 /* Now scan the subexpressions recursively. */ 2909 2910 format_ptr = GET_RTX_FORMAT (code); 2911 2912 for (i = 0; i < GET_RTX_LENGTH (code); i++) 2913 { 2914 switch (*format_ptr++) 2915 { 2916 case 'e': 2917 verify_rtx_sharing (XEXP (x, i), insn); 2918 break; 2919 2920 case 'E': 2921 if (XVEC (x, i) != NULL) 2922 { 2923 int j; 2924 int len = XVECLEN (x, i); 2925 2926 for (j = 0; j < len; j++) 2927 { 2928 /* We allow sharing of ASM_OPERANDS inside single 2929 instruction. */ 2930 if (j && GET_CODE (XVECEXP (x, i, j)) == SET 2931 && (GET_CODE (SET_SRC (XVECEXP (x, i, j))) 2932 == ASM_OPERANDS)) 2933 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn); 2934 else 2935 verify_rtx_sharing (XVECEXP (x, i, j), insn); 2936 } 2937 } 2938 break; 2939 } 2940 } 2941 return; 2942 } 2943 2944 /* Reset used-flags for INSN. */ 2945 2946 static void 2947 reset_insn_used_flags (rtx insn) 2948 { 2949 gcc_assert (INSN_P (insn)); 2950 reset_used_flags (PATTERN (insn)); 2951 reset_used_flags (REG_NOTES (insn)); 2952 if (CALL_P (insn)) 2953 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn)); 2954 } 2955 2956 /* Go through all the RTL insn bodies and clear all the USED bits. */ 2957 2958 static void 2959 reset_all_used_flags (void) 2960 { 2961 rtx_insn *p; 2962 2963 for (p = get_insns (); p; p = NEXT_INSN (p)) 2964 if (INSN_P (p)) 2965 { 2966 rtx pat = PATTERN (p); 2967 if (GET_CODE (pat) != SEQUENCE) 2968 reset_insn_used_flags (p); 2969 else 2970 { 2971 gcc_assert (REG_NOTES (p) == NULL); 2972 for (int i = 0; i < XVECLEN (pat, 0); i++) 2973 { 2974 rtx insn = XVECEXP (pat, 0, i); 2975 if (INSN_P (insn)) 2976 reset_insn_used_flags (insn); 2977 } 2978 } 2979 } 2980 } 2981 2982 /* Verify sharing in INSN. */ 2983 2984 static void 2985 verify_insn_sharing (rtx insn) 2986 { 2987 gcc_assert (INSN_P (insn)); 2988 verify_rtx_sharing (PATTERN (insn), insn); 2989 verify_rtx_sharing (REG_NOTES (insn), insn); 2990 if (CALL_P (insn)) 2991 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn); 2992 } 2993 2994 /* Go through all the RTL insn bodies and check that there is no unexpected 2995 sharing in between the subexpressions. */ 2996 2997 DEBUG_FUNCTION void 2998 verify_rtl_sharing (void) 2999 { 3000 rtx_insn *p; 3001 3002 timevar_push (TV_VERIFY_RTL_SHARING); 3003 3004 reset_all_used_flags (); 3005 3006 for (p = get_insns (); p; p = NEXT_INSN (p)) 3007 if (INSN_P (p)) 3008 { 3009 rtx pat = PATTERN (p); 3010 if (GET_CODE (pat) != SEQUENCE) 3011 verify_insn_sharing (p); 3012 else 3013 for (int i = 0; i < XVECLEN (pat, 0); i++) 3014 { 3015 rtx insn = XVECEXP (pat, 0, i); 3016 if (INSN_P (insn)) 3017 verify_insn_sharing (insn); 3018 } 3019 } 3020 3021 reset_all_used_flags (); 3022 3023 timevar_pop (TV_VERIFY_RTL_SHARING); 3024 } 3025 3026 /* Go through all the RTL insn bodies and copy any invalid shared structure. 3027 Assumes the mark bits are cleared at entry. */ 3028 3029 void 3030 unshare_all_rtl_in_chain (rtx_insn *insn) 3031 { 3032 for (; insn; insn = NEXT_INSN (insn)) 3033 if (INSN_P (insn)) 3034 { 3035 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn)); 3036 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn)); 3037 if (CALL_P (insn)) 3038 CALL_INSN_FUNCTION_USAGE (insn) 3039 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn)); 3040 } 3041 } 3042 3043 /* Go through all virtual stack slots of a function and mark them as 3044 shared. We never replace the DECL_RTLs themselves with a copy, 3045 but expressions mentioned into a DECL_RTL cannot be shared with 3046 expressions in the instruction stream. 3047 3048 Note that reload may convert pseudo registers into memories in-place. 3049 Pseudo registers are always shared, but MEMs never are. Thus if we 3050 reset the used flags on MEMs in the instruction stream, we must set 3051 them again on MEMs that appear in DECL_RTLs. */ 3052 3053 static void 3054 set_used_decls (tree blk) 3055 { 3056 tree t; 3057 3058 /* Mark decls. */ 3059 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t)) 3060 if (DECL_RTL_SET_P (t)) 3061 set_used_flags (DECL_RTL (t)); 3062 3063 /* Now process sub-blocks. */ 3064 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t)) 3065 set_used_decls (t); 3066 } 3067 3068 /* Mark ORIG as in use, and return a copy of it if it was already in use. 3069 Recursively does the same for subexpressions. Uses 3070 copy_rtx_if_shared_1 to reduce stack space. */ 3071 3072 rtx 3073 copy_rtx_if_shared (rtx orig) 3074 { 3075 copy_rtx_if_shared_1 (&orig); 3076 return orig; 3077 } 3078 3079 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in 3080 use. Recursively does the same for subexpressions. */ 3081 3082 static void 3083 copy_rtx_if_shared_1 (rtx *orig1) 3084 { 3085 rtx x; 3086 int i; 3087 enum rtx_code code; 3088 rtx *last_ptr; 3089 const char *format_ptr; 3090 int copied = 0; 3091 int length; 3092 3093 /* Repeat is used to turn tail-recursion into iteration. */ 3094 repeat: 3095 x = *orig1; 3096 3097 if (x == 0) 3098 return; 3099 3100 code = GET_CODE (x); 3101 3102 /* These types may be freely shared. */ 3103 3104 switch (code) 3105 { 3106 case REG: 3107 case DEBUG_EXPR: 3108 case VALUE: 3109 CASE_CONST_ANY: 3110 case SYMBOL_REF: 3111 case LABEL_REF: 3112 case CODE_LABEL: 3113 case PC: 3114 case CC0: 3115 case RETURN: 3116 case SIMPLE_RETURN: 3117 case SCRATCH: 3118 /* SCRATCH must be shared because they represent distinct values. */ 3119 return; 3120 case CLOBBER: 3121 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 3122 clobbers or clobbers of hard registers that originated as pseudos. 3123 This is needed to allow safe register renaming. */ 3124 if (REG_P (XEXP (x, 0)) 3125 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0))) 3126 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0)))) 3127 return; 3128 break; 3129 3130 case CONST: 3131 if (shared_const_p (x)) 3132 return; 3133 break; 3134 3135 case DEBUG_INSN: 3136 case INSN: 3137 case JUMP_INSN: 3138 case CALL_INSN: 3139 case NOTE: 3140 case BARRIER: 3141 /* The chain of insns is not being copied. */ 3142 return; 3143 3144 default: 3145 break; 3146 } 3147 3148 /* This rtx may not be shared. If it has already been seen, 3149 replace it with a copy of itself. */ 3150 3151 if (RTX_FLAG (x, used)) 3152 { 3153 x = shallow_copy_rtx (x); 3154 copied = 1; 3155 } 3156 RTX_FLAG (x, used) = 1; 3157 3158 /* Now scan the subexpressions recursively. 3159 We can store any replaced subexpressions directly into X 3160 since we know X is not shared! Any vectors in X 3161 must be copied if X was copied. */ 3162 3163 format_ptr = GET_RTX_FORMAT (code); 3164 length = GET_RTX_LENGTH (code); 3165 last_ptr = NULL; 3166 3167 for (i = 0; i < length; i++) 3168 { 3169 switch (*format_ptr++) 3170 { 3171 case 'e': 3172 if (last_ptr) 3173 copy_rtx_if_shared_1 (last_ptr); 3174 last_ptr = &XEXP (x, i); 3175 break; 3176 3177 case 'E': 3178 if (XVEC (x, i) != NULL) 3179 { 3180 int j; 3181 int len = XVECLEN (x, i); 3182 3183 /* Copy the vector iff I copied the rtx and the length 3184 is nonzero. */ 3185 if (copied && len > 0) 3186 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem); 3187 3188 /* Call recursively on all inside the vector. */ 3189 for (j = 0; j < len; j++) 3190 { 3191 if (last_ptr) 3192 copy_rtx_if_shared_1 (last_ptr); 3193 last_ptr = &XVECEXP (x, i, j); 3194 } 3195 } 3196 break; 3197 } 3198 } 3199 *orig1 = x; 3200 if (last_ptr) 3201 { 3202 orig1 = last_ptr; 3203 goto repeat; 3204 } 3205 return; 3206 } 3207 3208 /* Set the USED bit in X and its non-shareable subparts to FLAG. */ 3209 3210 static void 3211 mark_used_flags (rtx x, int flag) 3212 { 3213 int i, j; 3214 enum rtx_code code; 3215 const char *format_ptr; 3216 int length; 3217 3218 /* Repeat is used to turn tail-recursion into iteration. */ 3219 repeat: 3220 if (x == 0) 3221 return; 3222 3223 code = GET_CODE (x); 3224 3225 /* These types may be freely shared so we needn't do any resetting 3226 for them. */ 3227 3228 switch (code) 3229 { 3230 case REG: 3231 case DEBUG_EXPR: 3232 case VALUE: 3233 CASE_CONST_ANY: 3234 case SYMBOL_REF: 3235 case CODE_LABEL: 3236 case PC: 3237 case CC0: 3238 case RETURN: 3239 case SIMPLE_RETURN: 3240 return; 3241 3242 case DEBUG_INSN: 3243 case INSN: 3244 case JUMP_INSN: 3245 case CALL_INSN: 3246 case NOTE: 3247 case LABEL_REF: 3248 case BARRIER: 3249 /* The chain of insns is not being copied. */ 3250 return; 3251 3252 default: 3253 break; 3254 } 3255 3256 RTX_FLAG (x, used) = flag; 3257 3258 format_ptr = GET_RTX_FORMAT (code); 3259 length = GET_RTX_LENGTH (code); 3260 3261 for (i = 0; i < length; i++) 3262 { 3263 switch (*format_ptr++) 3264 { 3265 case 'e': 3266 if (i == length-1) 3267 { 3268 x = XEXP (x, i); 3269 goto repeat; 3270 } 3271 mark_used_flags (XEXP (x, i), flag); 3272 break; 3273 3274 case 'E': 3275 for (j = 0; j < XVECLEN (x, i); j++) 3276 mark_used_flags (XVECEXP (x, i, j), flag); 3277 break; 3278 } 3279 } 3280 } 3281 3282 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used 3283 to look for shared sub-parts. */ 3284 3285 void 3286 reset_used_flags (rtx x) 3287 { 3288 mark_used_flags (x, 0); 3289 } 3290 3291 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used 3292 to look for shared sub-parts. */ 3293 3294 void 3295 set_used_flags (rtx x) 3296 { 3297 mark_used_flags (x, 1); 3298 } 3299 3300 /* Copy X if necessary so that it won't be altered by changes in OTHER. 3301 Return X or the rtx for the pseudo reg the value of X was copied into. 3302 OTHER must be valid as a SET_DEST. */ 3303 3304 rtx 3305 make_safe_from (rtx x, rtx other) 3306 { 3307 while (1) 3308 switch (GET_CODE (other)) 3309 { 3310 case SUBREG: 3311 other = SUBREG_REG (other); 3312 break; 3313 case STRICT_LOW_PART: 3314 case SIGN_EXTEND: 3315 case ZERO_EXTEND: 3316 other = XEXP (other, 0); 3317 break; 3318 default: 3319 goto done; 3320 } 3321 done: 3322 if ((MEM_P (other) 3323 && ! CONSTANT_P (x) 3324 && !REG_P (x) 3325 && GET_CODE (x) != SUBREG) 3326 || (REG_P (other) 3327 && (REGNO (other) < FIRST_PSEUDO_REGISTER 3328 || reg_mentioned_p (other, x)))) 3329 { 3330 rtx temp = gen_reg_rtx (GET_MODE (x)); 3331 emit_move_insn (temp, x); 3332 return temp; 3333 } 3334 return x; 3335 } 3336 3337 /* Emission of insns (adding them to the doubly-linked list). */ 3338 3339 /* Return the last insn emitted, even if it is in a sequence now pushed. */ 3340 3341 rtx_insn * 3342 get_last_insn_anywhere (void) 3343 { 3344 struct sequence_stack *seq; 3345 for (seq = get_current_sequence (); seq; seq = seq->next) 3346 if (seq->last != 0) 3347 return seq->last; 3348 return 0; 3349 } 3350 3351 /* Return the first nonnote insn emitted in current sequence or current 3352 function. This routine looks inside SEQUENCEs. */ 3353 3354 rtx_insn * 3355 get_first_nonnote_insn (void) 3356 { 3357 rtx_insn *insn = get_insns (); 3358 3359 if (insn) 3360 { 3361 if (NOTE_P (insn)) 3362 for (insn = next_insn (insn); 3363 insn && NOTE_P (insn); 3364 insn = next_insn (insn)) 3365 continue; 3366 else 3367 { 3368 if (NONJUMP_INSN_P (insn) 3369 && GET_CODE (PATTERN (insn)) == SEQUENCE) 3370 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 3371 } 3372 } 3373 3374 return insn; 3375 } 3376 3377 /* Return the last nonnote insn emitted in current sequence or current 3378 function. This routine looks inside SEQUENCEs. */ 3379 3380 rtx_insn * 3381 get_last_nonnote_insn (void) 3382 { 3383 rtx_insn *insn = get_last_insn (); 3384 3385 if (insn) 3386 { 3387 if (NOTE_P (insn)) 3388 for (insn = previous_insn (insn); 3389 insn && NOTE_P (insn); 3390 insn = previous_insn (insn)) 3391 continue; 3392 else 3393 { 3394 if (NONJUMP_INSN_P (insn)) 3395 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn))) 3396 insn = seq->insn (seq->len () - 1); 3397 } 3398 } 3399 3400 return insn; 3401 } 3402 3403 /* Return the number of actual (non-debug) insns emitted in this 3404 function. */ 3405 3406 int 3407 get_max_insn_count (void) 3408 { 3409 int n = cur_insn_uid; 3410 3411 /* The table size must be stable across -g, to avoid codegen 3412 differences due to debug insns, and not be affected by 3413 -fmin-insn-uid, to avoid excessive table size and to simplify 3414 debugging of -fcompare-debug failures. */ 3415 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID) 3416 n -= cur_debug_insn_uid; 3417 else 3418 n -= MIN_NONDEBUG_INSN_UID; 3419 3420 return n; 3421 } 3422 3423 3424 /* Return the next insn. If it is a SEQUENCE, return the first insn 3425 of the sequence. */ 3426 3427 rtx_insn * 3428 next_insn (rtx_insn *insn) 3429 { 3430 if (insn) 3431 { 3432 insn = NEXT_INSN (insn); 3433 if (insn && NONJUMP_INSN_P (insn) 3434 && GET_CODE (PATTERN (insn)) == SEQUENCE) 3435 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 3436 } 3437 3438 return insn; 3439 } 3440 3441 /* Return the previous insn. If it is a SEQUENCE, return the last insn 3442 of the sequence. */ 3443 3444 rtx_insn * 3445 previous_insn (rtx_insn *insn) 3446 { 3447 if (insn) 3448 { 3449 insn = PREV_INSN (insn); 3450 if (insn && NONJUMP_INSN_P (insn)) 3451 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn))) 3452 insn = seq->insn (seq->len () - 1); 3453 } 3454 3455 return insn; 3456 } 3457 3458 /* Return the next insn after INSN that is not a NOTE. This routine does not 3459 look inside SEQUENCEs. */ 3460 3461 rtx_insn * 3462 next_nonnote_insn (rtx_insn *insn) 3463 { 3464 while (insn) 3465 { 3466 insn = NEXT_INSN (insn); 3467 if (insn == 0 || !NOTE_P (insn)) 3468 break; 3469 } 3470 3471 return insn; 3472 } 3473 3474 /* Return the next insn after INSN that is not a DEBUG_INSN. This 3475 routine does not look inside SEQUENCEs. */ 3476 3477 rtx_insn * 3478 next_nondebug_insn (rtx_insn *insn) 3479 { 3480 while (insn) 3481 { 3482 insn = NEXT_INSN (insn); 3483 if (insn == 0 || !DEBUG_INSN_P (insn)) 3484 break; 3485 } 3486 3487 return insn; 3488 } 3489 3490 /* Return the previous insn before INSN that is not a NOTE. This routine does 3491 not look inside SEQUENCEs. */ 3492 3493 rtx_insn * 3494 prev_nonnote_insn (rtx_insn *insn) 3495 { 3496 while (insn) 3497 { 3498 insn = PREV_INSN (insn); 3499 if (insn == 0 || !NOTE_P (insn)) 3500 break; 3501 } 3502 3503 return insn; 3504 } 3505 3506 /* Return the previous insn before INSN that is not a DEBUG_INSN. 3507 This routine does not look inside SEQUENCEs. */ 3508 3509 rtx_insn * 3510 prev_nondebug_insn (rtx_insn *insn) 3511 { 3512 while (insn) 3513 { 3514 insn = PREV_INSN (insn); 3515 if (insn == 0 || !DEBUG_INSN_P (insn)) 3516 break; 3517 } 3518 3519 return insn; 3520 } 3521 3522 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN. 3523 This routine does not look inside SEQUENCEs. */ 3524 3525 rtx_insn * 3526 next_nonnote_nondebug_insn (rtx_insn *insn) 3527 { 3528 while (insn) 3529 { 3530 insn = NEXT_INSN (insn); 3531 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn))) 3532 break; 3533 } 3534 3535 return insn; 3536 } 3537 3538 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN, 3539 but stop the search before we enter another basic block. This 3540 routine does not look inside SEQUENCEs. */ 3541 3542 rtx_insn * 3543 next_nonnote_nondebug_insn_bb (rtx_insn *insn) 3544 { 3545 while (insn) 3546 { 3547 insn = NEXT_INSN (insn); 3548 if (insn == 0) 3549 break; 3550 if (DEBUG_INSN_P (insn)) 3551 continue; 3552 if (!NOTE_P (insn)) 3553 break; 3554 if (NOTE_INSN_BASIC_BLOCK_P (insn)) 3555 return NULL; 3556 } 3557 3558 return insn; 3559 } 3560 3561 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN. 3562 This routine does not look inside SEQUENCEs. */ 3563 3564 rtx_insn * 3565 prev_nonnote_nondebug_insn (rtx_insn *insn) 3566 { 3567 while (insn) 3568 { 3569 insn = PREV_INSN (insn); 3570 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn))) 3571 break; 3572 } 3573 3574 return insn; 3575 } 3576 3577 /* Return the previous insn before INSN that is not a NOTE nor 3578 DEBUG_INSN, but stop the search before we enter another basic 3579 block. This routine does not look inside SEQUENCEs. */ 3580 3581 rtx_insn * 3582 prev_nonnote_nondebug_insn_bb (rtx_insn *insn) 3583 { 3584 while (insn) 3585 { 3586 insn = PREV_INSN (insn); 3587 if (insn == 0) 3588 break; 3589 if (DEBUG_INSN_P (insn)) 3590 continue; 3591 if (!NOTE_P (insn)) 3592 break; 3593 if (NOTE_INSN_BASIC_BLOCK_P (insn)) 3594 return NULL; 3595 } 3596 3597 return insn; 3598 } 3599 3600 /* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN; 3601 or 0, if there is none. This routine does not look inside 3602 SEQUENCEs. */ 3603 3604 rtx_insn * 3605 next_real_insn (rtx uncast_insn) 3606 { 3607 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn); 3608 3609 while (insn) 3610 { 3611 insn = NEXT_INSN (insn); 3612 if (insn == 0 || INSN_P (insn)) 3613 break; 3614 } 3615 3616 return insn; 3617 } 3618 3619 /* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN; 3620 or 0, if there is none. This routine does not look inside 3621 SEQUENCEs. */ 3622 3623 rtx_insn * 3624 prev_real_insn (rtx_insn *insn) 3625 { 3626 while (insn) 3627 { 3628 insn = PREV_INSN (insn); 3629 if (insn == 0 || INSN_P (insn)) 3630 break; 3631 } 3632 3633 return insn; 3634 } 3635 3636 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN; 3637 or 0, if there is none. This routine does not look inside 3638 SEQUENCEs. */ 3639 3640 rtx_insn * 3641 next_real_nondebug_insn (rtx uncast_insn) 3642 { 3643 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn); 3644 3645 while (insn) 3646 { 3647 insn = NEXT_INSN (insn); 3648 if (insn == 0 || NONDEBUG_INSN_P (insn)) 3649 break; 3650 } 3651 3652 return insn; 3653 } 3654 3655 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN; 3656 or 0, if there is none. This routine does not look inside 3657 SEQUENCEs. */ 3658 3659 rtx_insn * 3660 prev_real_nondebug_insn (rtx_insn *insn) 3661 { 3662 while (insn) 3663 { 3664 insn = PREV_INSN (insn); 3665 if (insn == 0 || NONDEBUG_INSN_P (insn)) 3666 break; 3667 } 3668 3669 return insn; 3670 } 3671 3672 /* Return the last CALL_INSN in the current list, or 0 if there is none. 3673 This routine does not look inside SEQUENCEs. */ 3674 3675 rtx_call_insn * 3676 last_call_insn (void) 3677 { 3678 rtx_insn *insn; 3679 3680 for (insn = get_last_insn (); 3681 insn && !CALL_P (insn); 3682 insn = PREV_INSN (insn)) 3683 ; 3684 3685 return safe_as_a <rtx_call_insn *> (insn); 3686 } 3687 3688 /* Find the next insn after INSN that really does something. This routine 3689 does not look inside SEQUENCEs. After reload this also skips over 3690 standalone USE and CLOBBER insn. */ 3691 3692 int 3693 active_insn_p (const rtx_insn *insn) 3694 { 3695 return (CALL_P (insn) || JUMP_P (insn) 3696 || JUMP_TABLE_DATA_P (insn) /* FIXME */ 3697 || (NONJUMP_INSN_P (insn) 3698 && (! reload_completed 3699 || (GET_CODE (PATTERN (insn)) != USE 3700 && GET_CODE (PATTERN (insn)) != CLOBBER)))); 3701 } 3702 3703 rtx_insn * 3704 next_active_insn (rtx_insn *insn) 3705 { 3706 while (insn) 3707 { 3708 insn = NEXT_INSN (insn); 3709 if (insn == 0 || active_insn_p (insn)) 3710 break; 3711 } 3712 3713 return insn; 3714 } 3715 3716 /* Find the last insn before INSN that really does something. This routine 3717 does not look inside SEQUENCEs. After reload this also skips over 3718 standalone USE and CLOBBER insn. */ 3719 3720 rtx_insn * 3721 prev_active_insn (rtx_insn *insn) 3722 { 3723 while (insn) 3724 { 3725 insn = PREV_INSN (insn); 3726 if (insn == 0 || active_insn_p (insn)) 3727 break; 3728 } 3729 3730 return insn; 3731 } 3732 3733 /* Return the next insn that uses CC0 after INSN, which is assumed to 3734 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter 3735 applied to the result of this function should yield INSN). 3736 3737 Normally, this is simply the next insn. However, if a REG_CC_USER note 3738 is present, it contains the insn that uses CC0. 3739 3740 Return 0 if we can't find the insn. */ 3741 3742 rtx_insn * 3743 next_cc0_user (rtx_insn *insn) 3744 { 3745 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX); 3746 3747 if (note) 3748 return safe_as_a <rtx_insn *> (XEXP (note, 0)); 3749 3750 insn = next_nonnote_insn (insn); 3751 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 3752 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 3753 3754 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn))) 3755 return insn; 3756 3757 return 0; 3758 } 3759 3760 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER 3761 note, it is the previous insn. */ 3762 3763 rtx_insn * 3764 prev_cc0_setter (rtx_insn *insn) 3765 { 3766 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); 3767 3768 if (note) 3769 return safe_as_a <rtx_insn *> (XEXP (note, 0)); 3770 3771 insn = prev_nonnote_insn (insn); 3772 gcc_assert (sets_cc0_p (PATTERN (insn))); 3773 3774 return insn; 3775 } 3776 3777 /* Find a RTX_AUTOINC class rtx which matches DATA. */ 3778 3779 static int 3780 find_auto_inc (const_rtx x, const_rtx reg) 3781 { 3782 subrtx_iterator::array_type array; 3783 FOR_EACH_SUBRTX (iter, array, x, NONCONST) 3784 { 3785 const_rtx x = *iter; 3786 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC 3787 && rtx_equal_p (reg, XEXP (x, 0))) 3788 return true; 3789 } 3790 return false; 3791 } 3792 3793 /* Increment the label uses for all labels present in rtx. */ 3794 3795 static void 3796 mark_label_nuses (rtx x) 3797 { 3798 enum rtx_code code; 3799 int i, j; 3800 const char *fmt; 3801 3802 code = GET_CODE (x); 3803 if (code == LABEL_REF && LABEL_P (label_ref_label (x))) 3804 LABEL_NUSES (label_ref_label (x))++; 3805 3806 fmt = GET_RTX_FORMAT (code); 3807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 3808 { 3809 if (fmt[i] == 'e') 3810 mark_label_nuses (XEXP (x, i)); 3811 else if (fmt[i] == 'E') 3812 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 3813 mark_label_nuses (XVECEXP (x, i, j)); 3814 } 3815 } 3816 3817 3818 /* Try splitting insns that can be split for better scheduling. 3819 PAT is the pattern which might split. 3820 TRIAL is the insn providing PAT. 3821 LAST is nonzero if we should return the last insn of the sequence produced. 3822 3823 If this routine succeeds in splitting, it returns the first or last 3824 replacement insn depending on the value of LAST. Otherwise, it 3825 returns TRIAL. If the insn to be returned can be split, it will be. */ 3826 3827 rtx_insn * 3828 try_split (rtx pat, rtx_insn *trial, int last) 3829 { 3830 rtx_insn *before, *after; 3831 rtx note; 3832 rtx_insn *seq, *tem; 3833 profile_probability probability; 3834 rtx_insn *insn_last, *insn; 3835 int njumps = 0; 3836 rtx_insn *call_insn = NULL; 3837 3838 /* We're not good at redistributing frame information. */ 3839 if (RTX_FRAME_RELATED_P (trial)) 3840 return trial; 3841 3842 if (any_condjump_p (trial) 3843 && (note = find_reg_note (trial, REG_BR_PROB, 0))) 3844 split_branch_probability 3845 = profile_probability::from_reg_br_prob_note (XINT (note, 0)); 3846 else 3847 split_branch_probability = profile_probability::uninitialized (); 3848 3849 probability = split_branch_probability; 3850 3851 seq = split_insns (pat, trial); 3852 3853 split_branch_probability = profile_probability::uninitialized (); 3854 3855 if (!seq) 3856 return trial; 3857 3858 /* Avoid infinite loop if any insn of the result matches 3859 the original pattern. */ 3860 insn_last = seq; 3861 while (1) 3862 { 3863 if (INSN_P (insn_last) 3864 && rtx_equal_p (PATTERN (insn_last), pat)) 3865 return trial; 3866 if (!NEXT_INSN (insn_last)) 3867 break; 3868 insn_last = NEXT_INSN (insn_last); 3869 } 3870 3871 /* We will be adding the new sequence to the function. The splitters 3872 may have introduced invalid RTL sharing, so unshare the sequence now. */ 3873 unshare_all_rtl_in_chain (seq); 3874 3875 /* Mark labels and copy flags. */ 3876 for (insn = insn_last; insn ; insn = PREV_INSN (insn)) 3877 { 3878 if (JUMP_P (insn)) 3879 { 3880 if (JUMP_P (trial)) 3881 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial); 3882 mark_jump_label (PATTERN (insn), insn, 0); 3883 njumps++; 3884 if (probability.initialized_p () 3885 && any_condjump_p (insn) 3886 && !find_reg_note (insn, REG_BR_PROB, 0)) 3887 { 3888 /* We can preserve the REG_BR_PROB notes only if exactly 3889 one jump is created, otherwise the machine description 3890 is responsible for this step using 3891 split_branch_probability variable. */ 3892 gcc_assert (njumps == 1); 3893 add_reg_br_prob_note (insn, probability); 3894 } 3895 } 3896 } 3897 3898 /* If we are splitting a CALL_INSN, look for the CALL_INSN 3899 in SEQ and copy any additional information across. */ 3900 if (CALL_P (trial)) 3901 { 3902 for (insn = insn_last; insn ; insn = PREV_INSN (insn)) 3903 if (CALL_P (insn)) 3904 { 3905 gcc_assert (call_insn == NULL_RTX); 3906 call_insn = insn; 3907 3908 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the 3909 target may have explicitly specified. */ 3910 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn); 3911 while (*p) 3912 p = &XEXP (*p, 1); 3913 *p = CALL_INSN_FUNCTION_USAGE (trial); 3914 3915 /* If the old call was a sibling call, the new one must 3916 be too. */ 3917 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial); 3918 } 3919 } 3920 3921 /* Copy notes, particularly those related to the CFG. */ 3922 for (note = REG_NOTES (trial); note; note = XEXP (note, 1)) 3923 { 3924 switch (REG_NOTE_KIND (note)) 3925 { 3926 case REG_EH_REGION: 3927 copy_reg_eh_region_note_backward (note, insn_last, NULL); 3928 break; 3929 3930 case REG_NORETURN: 3931 case REG_SETJMP: 3932 case REG_TM: 3933 case REG_CALL_NOCF_CHECK: 3934 case REG_CALL_ARG_LOCATION: 3935 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3936 { 3937 if (CALL_P (insn)) 3938 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3939 } 3940 break; 3941 3942 case REG_NON_LOCAL_GOTO: 3943 case REG_LABEL_TARGET: 3944 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3945 { 3946 if (JUMP_P (insn)) 3947 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3948 } 3949 break; 3950 3951 case REG_INC: 3952 if (!AUTO_INC_DEC) 3953 break; 3954 3955 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3956 { 3957 rtx reg = XEXP (note, 0); 3958 if (!FIND_REG_INC_NOTE (insn, reg) 3959 && find_auto_inc (PATTERN (insn), reg)) 3960 add_reg_note (insn, REG_INC, reg); 3961 } 3962 break; 3963 3964 case REG_ARGS_SIZE: 3965 fixup_args_size_notes (NULL, insn_last, get_args_size (note)); 3966 break; 3967 3968 case REG_CALL_DECL: 3969 gcc_assert (call_insn != NULL_RTX); 3970 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3971 break; 3972 3973 default: 3974 break; 3975 } 3976 } 3977 3978 /* If there are LABELS inside the split insns increment the 3979 usage count so we don't delete the label. */ 3980 if (INSN_P (trial)) 3981 { 3982 insn = insn_last; 3983 while (insn != NULL_RTX) 3984 { 3985 /* JUMP_P insns have already been "marked" above. */ 3986 if (NONJUMP_INSN_P (insn)) 3987 mark_label_nuses (PATTERN (insn)); 3988 3989 insn = PREV_INSN (insn); 3990 } 3991 } 3992 3993 before = PREV_INSN (trial); 3994 after = NEXT_INSN (trial); 3995 3996 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial)); 3997 3998 delete_insn (trial); 3999 4000 /* Recursively call try_split for each new insn created; by the 4001 time control returns here that insn will be fully split, so 4002 set LAST and continue from the insn after the one returned. 4003 We can't use next_active_insn here since AFTER may be a note. 4004 Ignore deleted insns, which can be occur if not optimizing. */ 4005 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem)) 4006 if (! tem->deleted () && INSN_P (tem)) 4007 tem = try_split (PATTERN (tem), tem, 1); 4008 4009 /* Return either the first or the last insn, depending on which was 4010 requested. */ 4011 return last 4012 ? (after ? PREV_INSN (after) : get_last_insn ()) 4013 : NEXT_INSN (before); 4014 } 4015 4016 /* Make and return an INSN rtx, initializing all its slots. 4017 Store PATTERN in the pattern slots. */ 4018 4019 rtx_insn * 4020 make_insn_raw (rtx pattern) 4021 { 4022 rtx_insn *insn; 4023 4024 insn = as_a <rtx_insn *> (rtx_alloc (INSN)); 4025 4026 INSN_UID (insn) = cur_insn_uid++; 4027 PATTERN (insn) = pattern; 4028 INSN_CODE (insn) = -1; 4029 REG_NOTES (insn) = NULL; 4030 INSN_LOCATION (insn) = curr_insn_location (); 4031 BLOCK_FOR_INSN (insn) = NULL; 4032 4033 #ifdef ENABLE_RTL_CHECKING 4034 if (insn 4035 && INSN_P (insn) 4036 && (returnjump_p (insn) 4037 || (GET_CODE (insn) == SET 4038 && SET_DEST (insn) == pc_rtx))) 4039 { 4040 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n"); 4041 debug_rtx (insn); 4042 } 4043 #endif 4044 4045 return insn; 4046 } 4047 4048 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */ 4049 4050 static rtx_insn * 4051 make_debug_insn_raw (rtx pattern) 4052 { 4053 rtx_debug_insn *insn; 4054 4055 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN)); 4056 INSN_UID (insn) = cur_debug_insn_uid++; 4057 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID) 4058 INSN_UID (insn) = cur_insn_uid++; 4059 4060 PATTERN (insn) = pattern; 4061 INSN_CODE (insn) = -1; 4062 REG_NOTES (insn) = NULL; 4063 INSN_LOCATION (insn) = curr_insn_location (); 4064 BLOCK_FOR_INSN (insn) = NULL; 4065 4066 return insn; 4067 } 4068 4069 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */ 4070 4071 static rtx_insn * 4072 make_jump_insn_raw (rtx pattern) 4073 { 4074 rtx_jump_insn *insn; 4075 4076 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN)); 4077 INSN_UID (insn) = cur_insn_uid++; 4078 4079 PATTERN (insn) = pattern; 4080 INSN_CODE (insn) = -1; 4081 REG_NOTES (insn) = NULL; 4082 JUMP_LABEL (insn) = NULL; 4083 INSN_LOCATION (insn) = curr_insn_location (); 4084 BLOCK_FOR_INSN (insn) = NULL; 4085 4086 return insn; 4087 } 4088 4089 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */ 4090 4091 static rtx_insn * 4092 make_call_insn_raw (rtx pattern) 4093 { 4094 rtx_call_insn *insn; 4095 4096 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN)); 4097 INSN_UID (insn) = cur_insn_uid++; 4098 4099 PATTERN (insn) = pattern; 4100 INSN_CODE (insn) = -1; 4101 REG_NOTES (insn) = NULL; 4102 CALL_INSN_FUNCTION_USAGE (insn) = NULL; 4103 INSN_LOCATION (insn) = curr_insn_location (); 4104 BLOCK_FOR_INSN (insn) = NULL; 4105 4106 return insn; 4107 } 4108 4109 /* Like `make_insn_raw' but make a NOTE instead of an insn. */ 4110 4111 static rtx_note * 4112 make_note_raw (enum insn_note subtype) 4113 { 4114 /* Some notes are never created this way at all. These notes are 4115 only created by patching out insns. */ 4116 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL 4117 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL); 4118 4119 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE)); 4120 INSN_UID (note) = cur_insn_uid++; 4121 NOTE_KIND (note) = subtype; 4122 BLOCK_FOR_INSN (note) = NULL; 4123 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note))); 4124 return note; 4125 } 4126 4127 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT. 4128 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects, 4129 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */ 4130 4131 static inline void 4132 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next) 4133 { 4134 SET_PREV_INSN (insn) = prev; 4135 SET_NEXT_INSN (insn) = next; 4136 if (prev != NULL) 4137 { 4138 SET_NEXT_INSN (prev) = insn; 4139 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE) 4140 { 4141 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev)); 4142 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn; 4143 } 4144 } 4145 if (next != NULL) 4146 { 4147 SET_PREV_INSN (next) = insn; 4148 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE) 4149 { 4150 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next)); 4151 SET_PREV_INSN (sequence->insn (0)) = insn; 4152 } 4153 } 4154 4155 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 4156 { 4157 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn)); 4158 SET_PREV_INSN (sequence->insn (0)) = prev; 4159 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next; 4160 } 4161 } 4162 4163 /* Add INSN to the end of the doubly-linked list. 4164 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */ 4165 4166 void 4167 add_insn (rtx_insn *insn) 4168 { 4169 rtx_insn *prev = get_last_insn (); 4170 link_insn_into_chain (insn, prev, NULL); 4171 if (get_insns () == NULL) 4172 set_first_insn (insn); 4173 set_last_insn (insn); 4174 } 4175 4176 /* Add INSN into the doubly-linked list after insn AFTER. */ 4177 4178 static void 4179 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after) 4180 { 4181 rtx_insn *next = NEXT_INSN (after); 4182 4183 gcc_assert (!optimize || !after->deleted ()); 4184 4185 link_insn_into_chain (insn, after, next); 4186 4187 if (next == NULL) 4188 { 4189 struct sequence_stack *seq; 4190 4191 for (seq = get_current_sequence (); seq; seq = seq->next) 4192 if (after == seq->last) 4193 { 4194 seq->last = insn; 4195 break; 4196 } 4197 } 4198 } 4199 4200 /* Add INSN into the doubly-linked list before insn BEFORE. */ 4201 4202 static void 4203 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before) 4204 { 4205 rtx_insn *prev = PREV_INSN (before); 4206 4207 gcc_assert (!optimize || !before->deleted ()); 4208 4209 link_insn_into_chain (insn, prev, before); 4210 4211 if (prev == NULL) 4212 { 4213 struct sequence_stack *seq; 4214 4215 for (seq = get_current_sequence (); seq; seq = seq->next) 4216 if (before == seq->first) 4217 { 4218 seq->first = insn; 4219 break; 4220 } 4221 4222 gcc_assert (seq); 4223 } 4224 } 4225 4226 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN. 4227 If BB is NULL, an attempt is made to infer the bb from before. 4228 4229 This and the next function should be the only functions called 4230 to insert an insn once delay slots have been filled since only 4231 they know how to update a SEQUENCE. */ 4232 4233 void 4234 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb) 4235 { 4236 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn); 4237 rtx_insn *after = as_a <rtx_insn *> (uncast_after); 4238 add_insn_after_nobb (insn, after); 4239 if (!BARRIER_P (after) 4240 && !BARRIER_P (insn) 4241 && (bb = BLOCK_FOR_INSN (after))) 4242 { 4243 set_block_for_insn (insn, bb); 4244 if (INSN_P (insn)) 4245 df_insn_rescan (insn); 4246 /* Should not happen as first in the BB is always 4247 either NOTE or LABEL. */ 4248 if (BB_END (bb) == after 4249 /* Avoid clobbering of structure when creating new BB. */ 4250 && !BARRIER_P (insn) 4251 && !NOTE_INSN_BASIC_BLOCK_P (insn)) 4252 BB_END (bb) = insn; 4253 } 4254 } 4255 4256 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN. 4257 If BB is NULL, an attempt is made to infer the bb from before. 4258 4259 This and the previous function should be the only functions called 4260 to insert an insn once delay slots have been filled since only 4261 they know how to update a SEQUENCE. */ 4262 4263 void 4264 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb) 4265 { 4266 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn); 4267 rtx_insn *before = as_a <rtx_insn *> (uncast_before); 4268 add_insn_before_nobb (insn, before); 4269 4270 if (!bb 4271 && !BARRIER_P (before) 4272 && !BARRIER_P (insn)) 4273 bb = BLOCK_FOR_INSN (before); 4274 4275 if (bb) 4276 { 4277 set_block_for_insn (insn, bb); 4278 if (INSN_P (insn)) 4279 df_insn_rescan (insn); 4280 /* Should not happen as first in the BB is always either NOTE or 4281 LABEL. */ 4282 gcc_assert (BB_HEAD (bb) != insn 4283 /* Avoid clobbering of structure when creating new BB. */ 4284 || BARRIER_P (insn) 4285 || NOTE_INSN_BASIC_BLOCK_P (insn)); 4286 } 4287 } 4288 4289 /* Replace insn with an deleted instruction note. */ 4290 4291 void 4292 set_insn_deleted (rtx insn) 4293 { 4294 if (INSN_P (insn)) 4295 df_insn_delete (as_a <rtx_insn *> (insn)); 4296 PUT_CODE (insn, NOTE); 4297 NOTE_KIND (insn) = NOTE_INSN_DELETED; 4298 } 4299 4300 4301 /* Unlink INSN from the insn chain. 4302 4303 This function knows how to handle sequences. 4304 4305 This function does not invalidate data flow information associated with 4306 INSN (i.e. does not call df_insn_delete). That makes this function 4307 usable for only disconnecting an insn from the chain, and re-emit it 4308 elsewhere later. 4309 4310 To later insert INSN elsewhere in the insn chain via add_insn and 4311 similar functions, PREV_INSN and NEXT_INSN must be nullified by 4312 the caller. Nullifying them here breaks many insn chain walks. 4313 4314 To really delete an insn and related DF information, use delete_insn. */ 4315 4316 void 4317 remove_insn (rtx uncast_insn) 4318 { 4319 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn); 4320 rtx_insn *next = NEXT_INSN (insn); 4321 rtx_insn *prev = PREV_INSN (insn); 4322 basic_block bb; 4323 4324 if (prev) 4325 { 4326 SET_NEXT_INSN (prev) = next; 4327 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE) 4328 { 4329 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev)); 4330 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next; 4331 } 4332 } 4333 else 4334 { 4335 struct sequence_stack *seq; 4336 4337 for (seq = get_current_sequence (); seq; seq = seq->next) 4338 if (insn == seq->first) 4339 { 4340 seq->first = next; 4341 break; 4342 } 4343 4344 gcc_assert (seq); 4345 } 4346 4347 if (next) 4348 { 4349 SET_PREV_INSN (next) = prev; 4350 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE) 4351 { 4352 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next)); 4353 SET_PREV_INSN (sequence->insn (0)) = prev; 4354 } 4355 } 4356 else 4357 { 4358 struct sequence_stack *seq; 4359 4360 for (seq = get_current_sequence (); seq; seq = seq->next) 4361 if (insn == seq->last) 4362 { 4363 seq->last = prev; 4364 break; 4365 } 4366 4367 gcc_assert (seq); 4368 } 4369 4370 /* Fix up basic block boundaries, if necessary. */ 4371 if (!BARRIER_P (insn) 4372 && (bb = BLOCK_FOR_INSN (insn))) 4373 { 4374 if (BB_HEAD (bb) == insn) 4375 { 4376 /* Never ever delete the basic block note without deleting whole 4377 basic block. */ 4378 gcc_assert (!NOTE_P (insn)); 4379 BB_HEAD (bb) = next; 4380 } 4381 if (BB_END (bb) == insn) 4382 BB_END (bb) = prev; 4383 } 4384 } 4385 4386 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */ 4387 4388 void 4389 add_function_usage_to (rtx call_insn, rtx call_fusage) 4390 { 4391 gcc_assert (call_insn && CALL_P (call_insn)); 4392 4393 /* Put the register usage information on the CALL. If there is already 4394 some usage information, put ours at the end. */ 4395 if (CALL_INSN_FUNCTION_USAGE (call_insn)) 4396 { 4397 rtx link; 4398 4399 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0; 4400 link = XEXP (link, 1)) 4401 ; 4402 4403 XEXP (link, 1) = call_fusage; 4404 } 4405 else 4406 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage; 4407 } 4408 4409 /* Delete all insns made since FROM. 4410 FROM becomes the new last instruction. */ 4411 4412 void 4413 delete_insns_since (rtx_insn *from) 4414 { 4415 if (from == 0) 4416 set_first_insn (0); 4417 else 4418 SET_NEXT_INSN (from) = 0; 4419 set_last_insn (from); 4420 } 4421 4422 /* This function is deprecated, please use sequences instead. 4423 4424 Move a consecutive bunch of insns to a different place in the chain. 4425 The insns to be moved are those between FROM and TO. 4426 They are moved to a new position after the insn AFTER. 4427 AFTER must not be FROM or TO or any insn in between. 4428 4429 This function does not know about SEQUENCEs and hence should not be 4430 called after delay-slot filling has been done. */ 4431 4432 void 4433 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after) 4434 { 4435 if (flag_checking) 4436 { 4437 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x)) 4438 gcc_assert (after != x); 4439 gcc_assert (after != to); 4440 } 4441 4442 /* Splice this bunch out of where it is now. */ 4443 if (PREV_INSN (from)) 4444 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to); 4445 if (NEXT_INSN (to)) 4446 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from); 4447 if (get_last_insn () == to) 4448 set_last_insn (PREV_INSN (from)); 4449 if (get_insns () == from) 4450 set_first_insn (NEXT_INSN (to)); 4451 4452 /* Make the new neighbors point to it and it to them. */ 4453 if (NEXT_INSN (after)) 4454 SET_PREV_INSN (NEXT_INSN (after)) = to; 4455 4456 SET_NEXT_INSN (to) = NEXT_INSN (after); 4457 SET_PREV_INSN (from) = after; 4458 SET_NEXT_INSN (after) = from; 4459 if (after == get_last_insn ()) 4460 set_last_insn (to); 4461 } 4462 4463 /* Same as function above, but take care to update BB boundaries. */ 4464 void 4465 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after) 4466 { 4467 rtx_insn *prev = PREV_INSN (from); 4468 basic_block bb, bb2; 4469 4470 reorder_insns_nobb (from, to, after); 4471 4472 if (!BARRIER_P (after) 4473 && (bb = BLOCK_FOR_INSN (after))) 4474 { 4475 rtx_insn *x; 4476 df_set_bb_dirty (bb); 4477 4478 if (!BARRIER_P (from) 4479 && (bb2 = BLOCK_FOR_INSN (from))) 4480 { 4481 if (BB_END (bb2) == to) 4482 BB_END (bb2) = prev; 4483 df_set_bb_dirty (bb2); 4484 } 4485 4486 if (BB_END (bb) == after) 4487 BB_END (bb) = to; 4488 4489 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x)) 4490 if (!BARRIER_P (x)) 4491 df_insn_change_bb (x, bb); 4492 } 4493 } 4494 4495 4496 /* Emit insn(s) of given code and pattern 4497 at a specified place within the doubly-linked list. 4498 4499 All of the emit_foo global entry points accept an object 4500 X which is either an insn list or a PATTERN of a single 4501 instruction. 4502 4503 There are thus a few canonical ways to generate code and 4504 emit it at a specific place in the instruction stream. For 4505 example, consider the instruction named SPOT and the fact that 4506 we would like to emit some instructions before SPOT. We might 4507 do it like this: 4508 4509 start_sequence (); 4510 ... emit the new instructions ... 4511 insns_head = get_insns (); 4512 end_sequence (); 4513 4514 emit_insn_before (insns_head, SPOT); 4515 4516 It used to be common to generate SEQUENCE rtl instead, but that 4517 is a relic of the past which no longer occurs. The reason is that 4518 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE 4519 generated would almost certainly die right after it was created. */ 4520 4521 static rtx_insn * 4522 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb, 4523 rtx_insn *(*make_raw) (rtx)) 4524 { 4525 rtx_insn *insn; 4526 4527 gcc_assert (before); 4528 4529 if (x == NULL_RTX) 4530 return safe_as_a <rtx_insn *> (last); 4531 4532 switch (GET_CODE (x)) 4533 { 4534 case DEBUG_INSN: 4535 case INSN: 4536 case JUMP_INSN: 4537 case CALL_INSN: 4538 case CODE_LABEL: 4539 case BARRIER: 4540 case NOTE: 4541 insn = as_a <rtx_insn *> (x); 4542 while (insn) 4543 { 4544 rtx_insn *next = NEXT_INSN (insn); 4545 add_insn_before (insn, before, bb); 4546 last = insn; 4547 insn = next; 4548 } 4549 break; 4550 4551 #ifdef ENABLE_RTL_CHECKING 4552 case SEQUENCE: 4553 gcc_unreachable (); 4554 break; 4555 #endif 4556 4557 default: 4558 last = (*make_raw) (x); 4559 add_insn_before (last, before, bb); 4560 break; 4561 } 4562 4563 return safe_as_a <rtx_insn *> (last); 4564 } 4565 4566 /* Make X be output before the instruction BEFORE. */ 4567 4568 rtx_insn * 4569 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb) 4570 { 4571 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw); 4572 } 4573 4574 /* Make an instruction with body X and code JUMP_INSN 4575 and output it before the instruction BEFORE. */ 4576 4577 rtx_jump_insn * 4578 emit_jump_insn_before_noloc (rtx x, rtx_insn *before) 4579 { 4580 return as_a <rtx_jump_insn *> ( 4581 emit_pattern_before_noloc (x, before, NULL_RTX, NULL, 4582 make_jump_insn_raw)); 4583 } 4584 4585 /* Make an instruction with body X and code CALL_INSN 4586 and output it before the instruction BEFORE. */ 4587 4588 rtx_insn * 4589 emit_call_insn_before_noloc (rtx x, rtx_insn *before) 4590 { 4591 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL, 4592 make_call_insn_raw); 4593 } 4594 4595 /* Make an instruction with body X and code DEBUG_INSN 4596 and output it before the instruction BEFORE. */ 4597 4598 rtx_insn * 4599 emit_debug_insn_before_noloc (rtx x, rtx before) 4600 { 4601 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL, 4602 make_debug_insn_raw); 4603 } 4604 4605 /* Make an insn of code BARRIER 4606 and output it before the insn BEFORE. */ 4607 4608 rtx_barrier * 4609 emit_barrier_before (rtx before) 4610 { 4611 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 4612 4613 INSN_UID (insn) = cur_insn_uid++; 4614 4615 add_insn_before (insn, before, NULL); 4616 return insn; 4617 } 4618 4619 /* Emit the label LABEL before the insn BEFORE. */ 4620 4621 rtx_code_label * 4622 emit_label_before (rtx label, rtx_insn *before) 4623 { 4624 gcc_checking_assert (INSN_UID (label) == 0); 4625 INSN_UID (label) = cur_insn_uid++; 4626 add_insn_before (label, before, NULL); 4627 return as_a <rtx_code_label *> (label); 4628 } 4629 4630 /* Helper for emit_insn_after, handles lists of instructions 4631 efficiently. */ 4632 4633 static rtx_insn * 4634 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb) 4635 { 4636 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after); 4637 rtx_insn *last; 4638 rtx_insn *after_after; 4639 if (!bb && !BARRIER_P (after)) 4640 bb = BLOCK_FOR_INSN (after); 4641 4642 if (bb) 4643 { 4644 df_set_bb_dirty (bb); 4645 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last)) 4646 if (!BARRIER_P (last)) 4647 { 4648 set_block_for_insn (last, bb); 4649 df_insn_rescan (last); 4650 } 4651 if (!BARRIER_P (last)) 4652 { 4653 set_block_for_insn (last, bb); 4654 df_insn_rescan (last); 4655 } 4656 if (BB_END (bb) == after) 4657 BB_END (bb) = last; 4658 } 4659 else 4660 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last)) 4661 continue; 4662 4663 after_after = NEXT_INSN (after); 4664 4665 SET_NEXT_INSN (after) = first; 4666 SET_PREV_INSN (first) = after; 4667 SET_NEXT_INSN (last) = after_after; 4668 if (after_after) 4669 SET_PREV_INSN (after_after) = last; 4670 4671 if (after == get_last_insn ()) 4672 set_last_insn (last); 4673 4674 return last; 4675 } 4676 4677 static rtx_insn * 4678 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb, 4679 rtx_insn *(*make_raw)(rtx)) 4680 { 4681 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after); 4682 rtx_insn *last = after; 4683 4684 gcc_assert (after); 4685 4686 if (x == NULL_RTX) 4687 return last; 4688 4689 switch (GET_CODE (x)) 4690 { 4691 case DEBUG_INSN: 4692 case INSN: 4693 case JUMP_INSN: 4694 case CALL_INSN: 4695 case CODE_LABEL: 4696 case BARRIER: 4697 case NOTE: 4698 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb); 4699 break; 4700 4701 #ifdef ENABLE_RTL_CHECKING 4702 case SEQUENCE: 4703 gcc_unreachable (); 4704 break; 4705 #endif 4706 4707 default: 4708 last = (*make_raw) (x); 4709 add_insn_after (last, after, bb); 4710 break; 4711 } 4712 4713 return last; 4714 } 4715 4716 /* Make X be output after the insn AFTER and set the BB of insn. If 4717 BB is NULL, an attempt is made to infer the BB from AFTER. */ 4718 4719 rtx_insn * 4720 emit_insn_after_noloc (rtx x, rtx after, basic_block bb) 4721 { 4722 return emit_pattern_after_noloc (x, after, bb, make_insn_raw); 4723 } 4724 4725 4726 /* Make an insn of code JUMP_INSN with body X 4727 and output it after the insn AFTER. */ 4728 4729 rtx_jump_insn * 4730 emit_jump_insn_after_noloc (rtx x, rtx after) 4731 { 4732 return as_a <rtx_jump_insn *> ( 4733 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw)); 4734 } 4735 4736 /* Make an instruction with body X and code CALL_INSN 4737 and output it after the instruction AFTER. */ 4738 4739 rtx_insn * 4740 emit_call_insn_after_noloc (rtx x, rtx after) 4741 { 4742 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw); 4743 } 4744 4745 /* Make an instruction with body X and code CALL_INSN 4746 and output it after the instruction AFTER. */ 4747 4748 rtx_insn * 4749 emit_debug_insn_after_noloc (rtx x, rtx after) 4750 { 4751 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw); 4752 } 4753 4754 /* Make an insn of code BARRIER 4755 and output it after the insn AFTER. */ 4756 4757 rtx_barrier * 4758 emit_barrier_after (rtx after) 4759 { 4760 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 4761 4762 INSN_UID (insn) = cur_insn_uid++; 4763 4764 add_insn_after (insn, after, NULL); 4765 return insn; 4766 } 4767 4768 /* Emit the label LABEL after the insn AFTER. */ 4769 4770 rtx_insn * 4771 emit_label_after (rtx label, rtx_insn *after) 4772 { 4773 gcc_checking_assert (INSN_UID (label) == 0); 4774 INSN_UID (label) = cur_insn_uid++; 4775 add_insn_after (label, after, NULL); 4776 return as_a <rtx_insn *> (label); 4777 } 4778 4779 /* Notes require a bit of special handling: Some notes need to have their 4780 BLOCK_FOR_INSN set, others should never have it set, and some should 4781 have it set or clear depending on the context. */ 4782 4783 /* Return true iff a note of kind SUBTYPE should be emitted with routines 4784 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the 4785 caller is asked to emit a note before BB_HEAD, or after BB_END. */ 4786 4787 static bool 4788 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p) 4789 { 4790 switch (subtype) 4791 { 4792 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */ 4793 case NOTE_INSN_SWITCH_TEXT_SECTIONS: 4794 return true; 4795 4796 /* Notes for var tracking and EH region markers can appear between or 4797 inside basic blocks. If the caller is emitting on the basic block 4798 boundary, do not set BLOCK_FOR_INSN on the new note. */ 4799 case NOTE_INSN_VAR_LOCATION: 4800 case NOTE_INSN_EH_REGION_BEG: 4801 case NOTE_INSN_EH_REGION_END: 4802 return on_bb_boundary_p; 4803 4804 /* Otherwise, BLOCK_FOR_INSN must be set. */ 4805 default: 4806 return false; 4807 } 4808 } 4809 4810 /* Emit a note of subtype SUBTYPE after the insn AFTER. */ 4811 4812 rtx_note * 4813 emit_note_after (enum insn_note subtype, rtx_insn *after) 4814 { 4815 rtx_note *note = make_note_raw (subtype); 4816 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after); 4817 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after); 4818 4819 if (note_outside_basic_block_p (subtype, on_bb_boundary_p)) 4820 add_insn_after_nobb (note, after); 4821 else 4822 add_insn_after (note, after, bb); 4823 return note; 4824 } 4825 4826 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */ 4827 4828 rtx_note * 4829 emit_note_before (enum insn_note subtype, rtx_insn *before) 4830 { 4831 rtx_note *note = make_note_raw (subtype); 4832 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before); 4833 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before); 4834 4835 if (note_outside_basic_block_p (subtype, on_bb_boundary_p)) 4836 add_insn_before_nobb (note, before); 4837 else 4838 add_insn_before (note, before, bb); 4839 return note; 4840 } 4841 4842 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC. 4843 MAKE_RAW indicates how to turn PATTERN into a real insn. */ 4844 4845 static rtx_insn * 4846 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc, 4847 rtx_insn *(*make_raw) (rtx)) 4848 { 4849 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after); 4850 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw); 4851 4852 if (pattern == NULL_RTX || !loc) 4853 return last; 4854 4855 after = NEXT_INSN (after); 4856 while (1) 4857 { 4858 if (active_insn_p (after) 4859 && !JUMP_TABLE_DATA_P (after) /* FIXME */ 4860 && !INSN_LOCATION (after)) 4861 INSN_LOCATION (after) = loc; 4862 if (after == last) 4863 break; 4864 after = NEXT_INSN (after); 4865 } 4866 return last; 4867 } 4868 4869 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN 4870 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after 4871 any DEBUG_INSNs. */ 4872 4873 static rtx_insn * 4874 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns, 4875 rtx_insn *(*make_raw) (rtx)) 4876 { 4877 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after); 4878 rtx_insn *prev = after; 4879 4880 if (skip_debug_insns) 4881 while (DEBUG_INSN_P (prev)) 4882 prev = PREV_INSN (prev); 4883 4884 if (INSN_P (prev)) 4885 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev), 4886 make_raw); 4887 else 4888 return emit_pattern_after_noloc (pattern, after, NULL, make_raw); 4889 } 4890 4891 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4892 rtx_insn * 4893 emit_insn_after_setloc (rtx pattern, rtx after, int loc) 4894 { 4895 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw); 4896 } 4897 4898 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4899 rtx_insn * 4900 emit_insn_after (rtx pattern, rtx after) 4901 { 4902 return emit_pattern_after (pattern, after, true, make_insn_raw); 4903 } 4904 4905 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4906 rtx_jump_insn * 4907 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc) 4908 { 4909 return as_a <rtx_jump_insn *> ( 4910 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw)); 4911 } 4912 4913 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4914 rtx_jump_insn * 4915 emit_jump_insn_after (rtx pattern, rtx after) 4916 { 4917 return as_a <rtx_jump_insn *> ( 4918 emit_pattern_after (pattern, after, true, make_jump_insn_raw)); 4919 } 4920 4921 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4922 rtx_insn * 4923 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc) 4924 { 4925 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw); 4926 } 4927 4928 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4929 rtx_insn * 4930 emit_call_insn_after (rtx pattern, rtx after) 4931 { 4932 return emit_pattern_after (pattern, after, true, make_call_insn_raw); 4933 } 4934 4935 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4936 rtx_insn * 4937 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc) 4938 { 4939 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw); 4940 } 4941 4942 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4943 rtx_insn * 4944 emit_debug_insn_after (rtx pattern, rtx after) 4945 { 4946 return emit_pattern_after (pattern, after, false, make_debug_insn_raw); 4947 } 4948 4949 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC. 4950 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP 4951 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN, 4952 CALL_INSN, etc. */ 4953 4954 static rtx_insn * 4955 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp, 4956 rtx_insn *(*make_raw) (rtx)) 4957 { 4958 rtx_insn *before = as_a <rtx_insn *> (uncast_before); 4959 rtx_insn *first = PREV_INSN (before); 4960 rtx_insn *last = emit_pattern_before_noloc (pattern, before, 4961 insnp ? before : NULL_RTX, 4962 NULL, make_raw); 4963 4964 if (pattern == NULL_RTX || !loc) 4965 return last; 4966 4967 if (!first) 4968 first = get_insns (); 4969 else 4970 first = NEXT_INSN (first); 4971 while (1) 4972 { 4973 if (active_insn_p (first) 4974 && !JUMP_TABLE_DATA_P (first) /* FIXME */ 4975 && !INSN_LOCATION (first)) 4976 INSN_LOCATION (first) = loc; 4977 if (first == last) 4978 break; 4979 first = NEXT_INSN (first); 4980 } 4981 return last; 4982 } 4983 4984 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN 4985 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert 4986 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an 4987 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */ 4988 4989 static rtx_insn * 4990 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns, 4991 bool insnp, rtx_insn *(*make_raw) (rtx)) 4992 { 4993 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before); 4994 rtx_insn *next = before; 4995 4996 if (skip_debug_insns) 4997 while (DEBUG_INSN_P (next)) 4998 next = PREV_INSN (next); 4999 5000 if (INSN_P (next)) 5001 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next), 5002 insnp, make_raw); 5003 else 5004 return emit_pattern_before_noloc (pattern, before, 5005 insnp ? before : NULL_RTX, 5006 NULL, make_raw); 5007 } 5008 5009 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5010 rtx_insn * 5011 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc) 5012 { 5013 return emit_pattern_before_setloc (pattern, before, loc, true, 5014 make_insn_raw); 5015 } 5016 5017 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */ 5018 rtx_insn * 5019 emit_insn_before (rtx pattern, rtx before) 5020 { 5021 return emit_pattern_before (pattern, before, true, true, make_insn_raw); 5022 } 5023 5024 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5025 rtx_jump_insn * 5026 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc) 5027 { 5028 return as_a <rtx_jump_insn *> ( 5029 emit_pattern_before_setloc (pattern, before, loc, false, 5030 make_jump_insn_raw)); 5031 } 5032 5033 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */ 5034 rtx_jump_insn * 5035 emit_jump_insn_before (rtx pattern, rtx before) 5036 { 5037 return as_a <rtx_jump_insn *> ( 5038 emit_pattern_before (pattern, before, true, false, 5039 make_jump_insn_raw)); 5040 } 5041 5042 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5043 rtx_insn * 5044 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc) 5045 { 5046 return emit_pattern_before_setloc (pattern, before, loc, false, 5047 make_call_insn_raw); 5048 } 5049 5050 /* Like emit_call_insn_before_noloc, 5051 but set insn_location according to BEFORE. */ 5052 rtx_insn * 5053 emit_call_insn_before (rtx pattern, rtx_insn *before) 5054 { 5055 return emit_pattern_before (pattern, before, true, false, 5056 make_call_insn_raw); 5057 } 5058 5059 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5060 rtx_insn * 5061 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc) 5062 { 5063 return emit_pattern_before_setloc (pattern, before, loc, false, 5064 make_debug_insn_raw); 5065 } 5066 5067 /* Like emit_debug_insn_before_noloc, 5068 but set insn_location according to BEFORE. */ 5069 rtx_insn * 5070 emit_debug_insn_before (rtx pattern, rtx_insn *before) 5071 { 5072 return emit_pattern_before (pattern, before, false, false, 5073 make_debug_insn_raw); 5074 } 5075 5076 /* Take X and emit it at the end of the doubly-linked 5077 INSN list. 5078 5079 Returns the last insn emitted. */ 5080 5081 rtx_insn * 5082 emit_insn (rtx x) 5083 { 5084 rtx_insn *last = get_last_insn (); 5085 rtx_insn *insn; 5086 5087 if (x == NULL_RTX) 5088 return last; 5089 5090 switch (GET_CODE (x)) 5091 { 5092 case DEBUG_INSN: 5093 case INSN: 5094 case JUMP_INSN: 5095 case CALL_INSN: 5096 case CODE_LABEL: 5097 case BARRIER: 5098 case NOTE: 5099 insn = as_a <rtx_insn *> (x); 5100 while (insn) 5101 { 5102 rtx_insn *next = NEXT_INSN (insn); 5103 add_insn (insn); 5104 last = insn; 5105 insn = next; 5106 } 5107 break; 5108 5109 #ifdef ENABLE_RTL_CHECKING 5110 case JUMP_TABLE_DATA: 5111 case SEQUENCE: 5112 gcc_unreachable (); 5113 break; 5114 #endif 5115 5116 default: 5117 last = make_insn_raw (x); 5118 add_insn (last); 5119 break; 5120 } 5121 5122 return last; 5123 } 5124 5125 /* Make an insn of code DEBUG_INSN with pattern X 5126 and add it to the end of the doubly-linked list. */ 5127 5128 rtx_insn * 5129 emit_debug_insn (rtx x) 5130 { 5131 rtx_insn *last = get_last_insn (); 5132 rtx_insn *insn; 5133 5134 if (x == NULL_RTX) 5135 return last; 5136 5137 switch (GET_CODE (x)) 5138 { 5139 case DEBUG_INSN: 5140 case INSN: 5141 case JUMP_INSN: 5142 case CALL_INSN: 5143 case CODE_LABEL: 5144 case BARRIER: 5145 case NOTE: 5146 insn = as_a <rtx_insn *> (x); 5147 while (insn) 5148 { 5149 rtx_insn *next = NEXT_INSN (insn); 5150 add_insn (insn); 5151 last = insn; 5152 insn = next; 5153 } 5154 break; 5155 5156 #ifdef ENABLE_RTL_CHECKING 5157 case JUMP_TABLE_DATA: 5158 case SEQUENCE: 5159 gcc_unreachable (); 5160 break; 5161 #endif 5162 5163 default: 5164 last = make_debug_insn_raw (x); 5165 add_insn (last); 5166 break; 5167 } 5168 5169 return last; 5170 } 5171 5172 /* Make an insn of code JUMP_INSN with pattern X 5173 and add it to the end of the doubly-linked list. */ 5174 5175 rtx_insn * 5176 emit_jump_insn (rtx x) 5177 { 5178 rtx_insn *last = NULL; 5179 rtx_insn *insn; 5180 5181 switch (GET_CODE (x)) 5182 { 5183 case DEBUG_INSN: 5184 case INSN: 5185 case JUMP_INSN: 5186 case CALL_INSN: 5187 case CODE_LABEL: 5188 case BARRIER: 5189 case NOTE: 5190 insn = as_a <rtx_insn *> (x); 5191 while (insn) 5192 { 5193 rtx_insn *next = NEXT_INSN (insn); 5194 add_insn (insn); 5195 last = insn; 5196 insn = next; 5197 } 5198 break; 5199 5200 #ifdef ENABLE_RTL_CHECKING 5201 case JUMP_TABLE_DATA: 5202 case SEQUENCE: 5203 gcc_unreachable (); 5204 break; 5205 #endif 5206 5207 default: 5208 last = make_jump_insn_raw (x); 5209 add_insn (last); 5210 break; 5211 } 5212 5213 return last; 5214 } 5215 5216 /* Make an insn of code CALL_INSN with pattern X 5217 and add it to the end of the doubly-linked list. */ 5218 5219 rtx_insn * 5220 emit_call_insn (rtx x) 5221 { 5222 rtx_insn *insn; 5223 5224 switch (GET_CODE (x)) 5225 { 5226 case DEBUG_INSN: 5227 case INSN: 5228 case JUMP_INSN: 5229 case CALL_INSN: 5230 case CODE_LABEL: 5231 case BARRIER: 5232 case NOTE: 5233 insn = emit_insn (x); 5234 break; 5235 5236 #ifdef ENABLE_RTL_CHECKING 5237 case SEQUENCE: 5238 case JUMP_TABLE_DATA: 5239 gcc_unreachable (); 5240 break; 5241 #endif 5242 5243 default: 5244 insn = make_call_insn_raw (x); 5245 add_insn (insn); 5246 break; 5247 } 5248 5249 return insn; 5250 } 5251 5252 /* Add the label LABEL to the end of the doubly-linked list. */ 5253 5254 rtx_code_label * 5255 emit_label (rtx uncast_label) 5256 { 5257 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label); 5258 5259 gcc_checking_assert (INSN_UID (label) == 0); 5260 INSN_UID (label) = cur_insn_uid++; 5261 add_insn (label); 5262 return label; 5263 } 5264 5265 /* Make an insn of code JUMP_TABLE_DATA 5266 and add it to the end of the doubly-linked list. */ 5267 5268 rtx_jump_table_data * 5269 emit_jump_table_data (rtx table) 5270 { 5271 rtx_jump_table_data *jump_table_data = 5272 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA)); 5273 INSN_UID (jump_table_data) = cur_insn_uid++; 5274 PATTERN (jump_table_data) = table; 5275 BLOCK_FOR_INSN (jump_table_data) = NULL; 5276 add_insn (jump_table_data); 5277 return jump_table_data; 5278 } 5279 5280 /* Make an insn of code BARRIER 5281 and add it to the end of the doubly-linked list. */ 5282 5283 rtx_barrier * 5284 emit_barrier (void) 5285 { 5286 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 5287 INSN_UID (barrier) = cur_insn_uid++; 5288 add_insn (barrier); 5289 return barrier; 5290 } 5291 5292 /* Emit a copy of note ORIG. */ 5293 5294 rtx_note * 5295 emit_note_copy (rtx_note *orig) 5296 { 5297 enum insn_note kind = (enum insn_note) NOTE_KIND (orig); 5298 rtx_note *note = make_note_raw (kind); 5299 NOTE_DATA (note) = NOTE_DATA (orig); 5300 add_insn (note); 5301 return note; 5302 } 5303 5304 /* Make an insn of code NOTE or type NOTE_NO 5305 and add it to the end of the doubly-linked list. */ 5306 5307 rtx_note * 5308 emit_note (enum insn_note kind) 5309 { 5310 rtx_note *note = make_note_raw (kind); 5311 add_insn (note); 5312 return note; 5313 } 5314 5315 /* Emit a clobber of lvalue X. */ 5316 5317 rtx_insn * 5318 emit_clobber (rtx x) 5319 { 5320 /* CONCATs should not appear in the insn stream. */ 5321 if (GET_CODE (x) == CONCAT) 5322 { 5323 emit_clobber (XEXP (x, 0)); 5324 return emit_clobber (XEXP (x, 1)); 5325 } 5326 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x)); 5327 } 5328 5329 /* Return a sequence of insns to clobber lvalue X. */ 5330 5331 rtx_insn * 5332 gen_clobber (rtx x) 5333 { 5334 rtx_insn *seq; 5335 5336 start_sequence (); 5337 emit_clobber (x); 5338 seq = get_insns (); 5339 end_sequence (); 5340 return seq; 5341 } 5342 5343 /* Emit a use of rvalue X. */ 5344 5345 rtx_insn * 5346 emit_use (rtx x) 5347 { 5348 /* CONCATs should not appear in the insn stream. */ 5349 if (GET_CODE (x) == CONCAT) 5350 { 5351 emit_use (XEXP (x, 0)); 5352 return emit_use (XEXP (x, 1)); 5353 } 5354 return emit_insn (gen_rtx_USE (VOIDmode, x)); 5355 } 5356 5357 /* Return a sequence of insns to use rvalue X. */ 5358 5359 rtx_insn * 5360 gen_use (rtx x) 5361 { 5362 rtx_insn *seq; 5363 5364 start_sequence (); 5365 emit_use (x); 5366 seq = get_insns (); 5367 end_sequence (); 5368 return seq; 5369 } 5370 5371 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction. 5372 Return the set in INSN that such notes describe, or NULL if the notes 5373 have no meaning for INSN. */ 5374 5375 rtx 5376 set_for_reg_notes (rtx insn) 5377 { 5378 rtx pat, reg; 5379 5380 if (!INSN_P (insn)) 5381 return NULL_RTX; 5382 5383 pat = PATTERN (insn); 5384 if (GET_CODE (pat) == PARALLEL) 5385 { 5386 /* We do not use single_set because that ignores SETs of unused 5387 registers. REG_EQUAL and REG_EQUIV notes really do require the 5388 PARALLEL to have a single SET. */ 5389 if (multiple_sets (insn)) 5390 return NULL_RTX; 5391 pat = XVECEXP (pat, 0, 0); 5392 } 5393 5394 if (GET_CODE (pat) != SET) 5395 return NULL_RTX; 5396 5397 reg = SET_DEST (pat); 5398 5399 /* Notes apply to the contents of a STRICT_LOW_PART. */ 5400 if (GET_CODE (reg) == STRICT_LOW_PART 5401 || GET_CODE (reg) == ZERO_EXTRACT) 5402 reg = XEXP (reg, 0); 5403 5404 /* Check that we have a register. */ 5405 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG)) 5406 return NULL_RTX; 5407 5408 return pat; 5409 } 5410 5411 /* Place a note of KIND on insn INSN with DATUM as the datum. If a 5412 note of this type already exists, remove it first. */ 5413 5414 rtx 5415 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum) 5416 { 5417 rtx note = find_reg_note (insn, kind, NULL_RTX); 5418 5419 switch (kind) 5420 { 5421 case REG_EQUAL: 5422 case REG_EQUIV: 5423 /* We need to support the REG_EQUAL on USE trick of find_reloads. */ 5424 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE) 5425 return NULL_RTX; 5426 5427 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes. 5428 It serves no useful purpose and breaks eliminate_regs. */ 5429 if (GET_CODE (datum) == ASM_OPERANDS) 5430 return NULL_RTX; 5431 5432 /* Notes with side effects are dangerous. Even if the side-effect 5433 initially mirrors one in PATTERN (INSN), later optimizations 5434 might alter the way that the final register value is calculated 5435 and so move or alter the side-effect in some way. The note would 5436 then no longer be a valid substitution for SET_SRC. */ 5437 if (side_effects_p (datum)) 5438 return NULL_RTX; 5439 break; 5440 5441 default: 5442 break; 5443 } 5444 5445 if (note) 5446 XEXP (note, 0) = datum; 5447 else 5448 { 5449 add_reg_note (insn, kind, datum); 5450 note = REG_NOTES (insn); 5451 } 5452 5453 switch (kind) 5454 { 5455 case REG_EQUAL: 5456 case REG_EQUIV: 5457 df_notes_rescan (as_a <rtx_insn *> (insn)); 5458 break; 5459 default: 5460 break; 5461 } 5462 5463 return note; 5464 } 5465 5466 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */ 5467 rtx 5468 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst) 5469 { 5470 rtx set = set_for_reg_notes (insn); 5471 5472 if (set && SET_DEST (set) == dst) 5473 return set_unique_reg_note (insn, kind, datum); 5474 return NULL_RTX; 5475 } 5476 5477 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a 5478 following barrier if the instruction needs one and if ALLOW_BARRIER_P 5479 is true. 5480 5481 If X is a label, it is simply added into the insn chain. */ 5482 5483 rtx_insn * 5484 emit (rtx x, bool allow_barrier_p) 5485 { 5486 enum rtx_code code = classify_insn (x); 5487 5488 switch (code) 5489 { 5490 case CODE_LABEL: 5491 return emit_label (x); 5492 case INSN: 5493 return emit_insn (x); 5494 case JUMP_INSN: 5495 { 5496 rtx_insn *insn = emit_jump_insn (x); 5497 if (allow_barrier_p 5498 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)) 5499 return emit_barrier (); 5500 return insn; 5501 } 5502 case CALL_INSN: 5503 return emit_call_insn (x); 5504 case DEBUG_INSN: 5505 return emit_debug_insn (x); 5506 default: 5507 gcc_unreachable (); 5508 } 5509 } 5510 5511 /* Space for free sequence stack entries. */ 5512 static GTY ((deletable)) struct sequence_stack *free_sequence_stack; 5513 5514 /* Begin emitting insns to a sequence. If this sequence will contain 5515 something that might cause the compiler to pop arguments to function 5516 calls (because those pops have previously been deferred; see 5517 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust 5518 before calling this function. That will ensure that the deferred 5519 pops are not accidentally emitted in the middle of this sequence. */ 5520 5521 void 5522 start_sequence (void) 5523 { 5524 struct sequence_stack *tem; 5525 5526 if (free_sequence_stack != NULL) 5527 { 5528 tem = free_sequence_stack; 5529 free_sequence_stack = tem->next; 5530 } 5531 else 5532 tem = ggc_alloc<sequence_stack> (); 5533 5534 tem->next = get_current_sequence ()->next; 5535 tem->first = get_insns (); 5536 tem->last = get_last_insn (); 5537 get_current_sequence ()->next = tem; 5538 5539 set_first_insn (0); 5540 set_last_insn (0); 5541 } 5542 5543 /* Set up the insn chain starting with FIRST as the current sequence, 5544 saving the previously current one. See the documentation for 5545 start_sequence for more information about how to use this function. */ 5546 5547 void 5548 push_to_sequence (rtx_insn *first) 5549 { 5550 rtx_insn *last; 5551 5552 start_sequence (); 5553 5554 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last)) 5555 ; 5556 5557 set_first_insn (first); 5558 set_last_insn (last); 5559 } 5560 5561 /* Like push_to_sequence, but take the last insn as an argument to avoid 5562 looping through the list. */ 5563 5564 void 5565 push_to_sequence2 (rtx_insn *first, rtx_insn *last) 5566 { 5567 start_sequence (); 5568 5569 set_first_insn (first); 5570 set_last_insn (last); 5571 } 5572 5573 /* Set up the outer-level insn chain 5574 as the current sequence, saving the previously current one. */ 5575 5576 void 5577 push_topmost_sequence (void) 5578 { 5579 struct sequence_stack *top; 5580 5581 start_sequence (); 5582 5583 top = get_topmost_sequence (); 5584 set_first_insn (top->first); 5585 set_last_insn (top->last); 5586 } 5587 5588 /* After emitting to the outer-level insn chain, update the outer-level 5589 insn chain, and restore the previous saved state. */ 5590 5591 void 5592 pop_topmost_sequence (void) 5593 { 5594 struct sequence_stack *top; 5595 5596 top = get_topmost_sequence (); 5597 top->first = get_insns (); 5598 top->last = get_last_insn (); 5599 5600 end_sequence (); 5601 } 5602 5603 /* After emitting to a sequence, restore previous saved state. 5604 5605 To get the contents of the sequence just made, you must call 5606 `get_insns' *before* calling here. 5607 5608 If the compiler might have deferred popping arguments while 5609 generating this sequence, and this sequence will not be immediately 5610 inserted into the instruction stream, use do_pending_stack_adjust 5611 before calling get_insns. That will ensure that the deferred 5612 pops are inserted into this sequence, and not into some random 5613 location in the instruction stream. See INHIBIT_DEFER_POP for more 5614 information about deferred popping of arguments. */ 5615 5616 void 5617 end_sequence (void) 5618 { 5619 struct sequence_stack *tem = get_current_sequence ()->next; 5620 5621 set_first_insn (tem->first); 5622 set_last_insn (tem->last); 5623 get_current_sequence ()->next = tem->next; 5624 5625 memset (tem, 0, sizeof (*tem)); 5626 tem->next = free_sequence_stack; 5627 free_sequence_stack = tem; 5628 } 5629 5630 /* Return 1 if currently emitting into a sequence. */ 5631 5632 int 5633 in_sequence_p (void) 5634 { 5635 return get_current_sequence ()->next != 0; 5636 } 5637 5638 /* Put the various virtual registers into REGNO_REG_RTX. */ 5639 5640 static void 5641 init_virtual_regs (void) 5642 { 5643 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx; 5644 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx; 5645 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx; 5646 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx; 5647 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx; 5648 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM] 5649 = virtual_preferred_stack_boundary_rtx; 5650 } 5651 5652 5653 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */ 5654 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS]; 5655 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS]; 5656 static int copy_insn_n_scratches; 5657 5658 /* When an insn is being copied by copy_insn_1, this is nonzero if we have 5659 copied an ASM_OPERANDS. 5660 In that case, it is the original input-operand vector. */ 5661 static rtvec orig_asm_operands_vector; 5662 5663 /* When an insn is being copied by copy_insn_1, this is nonzero if we have 5664 copied an ASM_OPERANDS. 5665 In that case, it is the copied input-operand vector. */ 5666 static rtvec copy_asm_operands_vector; 5667 5668 /* Likewise for the constraints vector. */ 5669 static rtvec orig_asm_constraints_vector; 5670 static rtvec copy_asm_constraints_vector; 5671 5672 /* Recursively create a new copy of an rtx for copy_insn. 5673 This function differs from copy_rtx in that it handles SCRATCHes and 5674 ASM_OPERANDs properly. 5675 Normally, this function is not used directly; use copy_insn as front end. 5676 However, you could first copy an insn pattern with copy_insn and then use 5677 this function afterwards to properly copy any REG_NOTEs containing 5678 SCRATCHes. */ 5679 5680 rtx 5681 copy_insn_1 (rtx orig) 5682 { 5683 rtx copy; 5684 int i, j; 5685 RTX_CODE code; 5686 const char *format_ptr; 5687 5688 if (orig == NULL) 5689 return NULL; 5690 5691 code = GET_CODE (orig); 5692 5693 switch (code) 5694 { 5695 case REG: 5696 case DEBUG_EXPR: 5697 CASE_CONST_ANY: 5698 case SYMBOL_REF: 5699 case CODE_LABEL: 5700 case PC: 5701 case CC0: 5702 case RETURN: 5703 case SIMPLE_RETURN: 5704 return orig; 5705 case CLOBBER: 5706 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 5707 clobbers or clobbers of hard registers that originated as pseudos. 5708 This is needed to allow safe register renaming. */ 5709 if (REG_P (XEXP (orig, 0)) 5710 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))) 5711 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0)))) 5712 return orig; 5713 break; 5714 5715 case SCRATCH: 5716 for (i = 0; i < copy_insn_n_scratches; i++) 5717 if (copy_insn_scratch_in[i] == orig) 5718 return copy_insn_scratch_out[i]; 5719 break; 5720 5721 case CONST: 5722 if (shared_const_p (orig)) 5723 return orig; 5724 break; 5725 5726 /* A MEM with a constant address is not sharable. The problem is that 5727 the constant address may need to be reloaded. If the mem is shared, 5728 then reloading one copy of this mem will cause all copies to appear 5729 to have been reloaded. */ 5730 5731 default: 5732 break; 5733 } 5734 5735 /* Copy the various flags, fields, and other information. We assume 5736 that all fields need copying, and then clear the fields that should 5737 not be copied. That is the sensible default behavior, and forces 5738 us to explicitly document why we are *not* copying a flag. */ 5739 copy = shallow_copy_rtx (orig); 5740 5741 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */ 5742 if (INSN_P (orig)) 5743 { 5744 RTX_FLAG (copy, jump) = 0; 5745 RTX_FLAG (copy, call) = 0; 5746 RTX_FLAG (copy, frame_related) = 0; 5747 } 5748 5749 format_ptr = GET_RTX_FORMAT (GET_CODE (copy)); 5750 5751 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++) 5752 switch (*format_ptr++) 5753 { 5754 case 'e': 5755 if (XEXP (orig, i) != NULL) 5756 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i)); 5757 break; 5758 5759 case 'E': 5760 case 'V': 5761 if (XVEC (orig, i) == orig_asm_constraints_vector) 5762 XVEC (copy, i) = copy_asm_constraints_vector; 5763 else if (XVEC (orig, i) == orig_asm_operands_vector) 5764 XVEC (copy, i) = copy_asm_operands_vector; 5765 else if (XVEC (orig, i) != NULL) 5766 { 5767 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i)); 5768 for (j = 0; j < XVECLEN (copy, i); j++) 5769 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j)); 5770 } 5771 break; 5772 5773 case 't': 5774 case 'w': 5775 case 'i': 5776 case 'p': 5777 case 's': 5778 case 'S': 5779 case 'u': 5780 case '0': 5781 /* These are left unchanged. */ 5782 break; 5783 5784 default: 5785 gcc_unreachable (); 5786 } 5787 5788 if (code == SCRATCH) 5789 { 5790 i = copy_insn_n_scratches++; 5791 gcc_assert (i < MAX_RECOG_OPERANDS); 5792 copy_insn_scratch_in[i] = orig; 5793 copy_insn_scratch_out[i] = copy; 5794 } 5795 else if (code == ASM_OPERANDS) 5796 { 5797 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig); 5798 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy); 5799 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig); 5800 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy); 5801 } 5802 5803 return copy; 5804 } 5805 5806 /* Create a new copy of an rtx. 5807 This function differs from copy_rtx in that it handles SCRATCHes and 5808 ASM_OPERANDs properly. 5809 INSN doesn't really have to be a full INSN; it could be just the 5810 pattern. */ 5811 rtx 5812 copy_insn (rtx insn) 5813 { 5814 copy_insn_n_scratches = 0; 5815 orig_asm_operands_vector = 0; 5816 orig_asm_constraints_vector = 0; 5817 copy_asm_operands_vector = 0; 5818 copy_asm_constraints_vector = 0; 5819 return copy_insn_1 (insn); 5820 } 5821 5822 /* Return a copy of INSN that can be used in a SEQUENCE delay slot, 5823 on that assumption that INSN itself remains in its original place. */ 5824 5825 rtx_insn * 5826 copy_delay_slot_insn (rtx_insn *insn) 5827 { 5828 /* Copy INSN with its rtx_code, all its notes, location etc. */ 5829 insn = as_a <rtx_insn *> (copy_rtx (insn)); 5830 INSN_UID (insn) = cur_insn_uid++; 5831 return insn; 5832 } 5833 5834 /* Initialize data structures and variables in this file 5835 before generating rtl for each function. */ 5836 5837 void 5838 init_emit (void) 5839 { 5840 set_first_insn (NULL); 5841 set_last_insn (NULL); 5842 if (MIN_NONDEBUG_INSN_UID) 5843 cur_insn_uid = MIN_NONDEBUG_INSN_UID; 5844 else 5845 cur_insn_uid = 1; 5846 cur_debug_insn_uid = 1; 5847 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1; 5848 first_label_num = label_num; 5849 get_current_sequence ()->next = NULL; 5850 5851 /* Init the tables that describe all the pseudo regs. */ 5852 5853 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101; 5854 5855 crtl->emit.regno_pointer_align 5856 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length); 5857 5858 regno_reg_rtx 5859 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length); 5860 5861 /* Put copies of all the hard registers into regno_reg_rtx. */ 5862 memcpy (regno_reg_rtx, 5863 initial_regno_reg_rtx, 5864 FIRST_PSEUDO_REGISTER * sizeof (rtx)); 5865 5866 /* Put copies of all the virtual register rtx into regno_reg_rtx. */ 5867 init_virtual_regs (); 5868 5869 /* Indicate that the virtual registers and stack locations are 5870 all pointers. */ 5871 REG_POINTER (stack_pointer_rtx) = 1; 5872 REG_POINTER (frame_pointer_rtx) = 1; 5873 REG_POINTER (hard_frame_pointer_rtx) = 1; 5874 REG_POINTER (arg_pointer_rtx) = 1; 5875 5876 REG_POINTER (virtual_incoming_args_rtx) = 1; 5877 REG_POINTER (virtual_stack_vars_rtx) = 1; 5878 REG_POINTER (virtual_stack_dynamic_rtx) = 1; 5879 REG_POINTER (virtual_outgoing_args_rtx) = 1; 5880 REG_POINTER (virtual_cfa_rtx) = 1; 5881 5882 #ifdef STACK_BOUNDARY 5883 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY; 5884 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY; 5885 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY; 5886 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY; 5887 5888 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY; 5889 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY; 5890 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY; 5891 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY; 5892 5893 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD; 5894 #endif 5895 5896 #ifdef INIT_EXPANDERS 5897 INIT_EXPANDERS; 5898 #endif 5899 } 5900 5901 /* Return the value of element I of CONST_VECTOR X as a wide_int. */ 5902 5903 wide_int 5904 const_vector_int_elt (const_rtx x, unsigned int i) 5905 { 5906 /* First handle elements that are directly encoded. */ 5907 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x)); 5908 if (i < (unsigned int) XVECLEN (x, 0)) 5909 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode); 5910 5911 /* Identify the pattern that contains element I and work out the index of 5912 the last encoded element for that pattern. */ 5913 unsigned int encoded_nelts = const_vector_encoded_nelts (x); 5914 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x); 5915 unsigned int count = i / npatterns; 5916 unsigned int pattern = i % npatterns; 5917 unsigned int final_i = encoded_nelts - npatterns + pattern; 5918 5919 /* If there are no steps, the final encoded value is the right one. */ 5920 if (!CONST_VECTOR_STEPPED_P (x)) 5921 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode); 5922 5923 /* Otherwise work out the value from the last two encoded elements. */ 5924 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns); 5925 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i); 5926 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode), 5927 rtx_mode_t (v1, elt_mode)); 5928 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff); 5929 } 5930 5931 /* Return the value of element I of CONST_VECTOR X. */ 5932 5933 rtx 5934 const_vector_elt (const_rtx x, unsigned int i) 5935 { 5936 /* First handle elements that are directly encoded. */ 5937 if (i < (unsigned int) XVECLEN (x, 0)) 5938 return CONST_VECTOR_ENCODED_ELT (x, i); 5939 5940 /* If there are no steps, the final encoded value is the right one. */ 5941 if (!CONST_VECTOR_STEPPED_P (x)) 5942 { 5943 /* Identify the pattern that contains element I and work out the index of 5944 the last encoded element for that pattern. */ 5945 unsigned int encoded_nelts = const_vector_encoded_nelts (x); 5946 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x); 5947 unsigned int pattern = i % npatterns; 5948 unsigned int final_i = encoded_nelts - npatterns + pattern; 5949 return CONST_VECTOR_ENCODED_ELT (x, final_i); 5950 } 5951 5952 /* Otherwise work out the value from the last two encoded elements. */ 5953 return immed_wide_int_const (const_vector_int_elt (x, i), 5954 GET_MODE_INNER (GET_MODE (x))); 5955 } 5956 5957 /* Return true if X is a valid element for a CONST_VECTOR of the given 5958 mode. */ 5959 5960 bool 5961 valid_for_const_vector_p (machine_mode, rtx x) 5962 { 5963 return (CONST_SCALAR_INT_P (x) 5964 || CONST_DOUBLE_AS_FLOAT_P (x) 5965 || CONST_FIXED_P (x)); 5966 } 5967 5968 /* Generate a vector constant of mode MODE in which every element has 5969 value ELT. */ 5970 5971 rtx 5972 gen_const_vec_duplicate (machine_mode mode, rtx elt) 5973 { 5974 rtx_vector_builder builder (mode, 1, 1); 5975 builder.quick_push (elt); 5976 return builder.build (); 5977 } 5978 5979 /* Return a vector rtx of mode MODE in which every element has value X. 5980 The result will be a constant if X is constant. */ 5981 5982 rtx 5983 gen_vec_duplicate (machine_mode mode, rtx x) 5984 { 5985 if (valid_for_const_vector_p (mode, x)) 5986 return gen_const_vec_duplicate (mode, x); 5987 return gen_rtx_VEC_DUPLICATE (mode, x); 5988 } 5989 5990 /* A subroutine of const_vec_series_p that handles the case in which: 5991 5992 (GET_CODE (X) == CONST_VECTOR 5993 && CONST_VECTOR_NPATTERNS (X) == 1 5994 && !CONST_VECTOR_DUPLICATE_P (X)) 5995 5996 is known to hold. */ 5997 5998 bool 5999 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out) 6000 { 6001 /* Stepped sequences are only defined for integers, to avoid specifying 6002 rounding behavior. */ 6003 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT) 6004 return false; 6005 6006 /* A non-duplicated vector with two elements can always be seen as a 6007 series with a nonzero step. Longer vectors must have a stepped 6008 encoding. */ 6009 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2) 6010 && !CONST_VECTOR_STEPPED_P (x)) 6011 return false; 6012 6013 /* Calculate the step between the first and second elements. */ 6014 scalar_mode inner = GET_MODE_INNER (GET_MODE (x)); 6015 rtx base = CONST_VECTOR_ELT (x, 0); 6016 rtx step = simplify_binary_operation (MINUS, inner, 6017 CONST_VECTOR_ENCODED_ELT (x, 1), base); 6018 if (rtx_equal_p (step, CONST0_RTX (inner))) 6019 return false; 6020 6021 /* If we have a stepped encoding, check that the step between the 6022 second and third elements is the same as STEP. */ 6023 if (CONST_VECTOR_STEPPED_P (x)) 6024 { 6025 rtx diff = simplify_binary_operation (MINUS, inner, 6026 CONST_VECTOR_ENCODED_ELT (x, 2), 6027 CONST_VECTOR_ENCODED_ELT (x, 1)); 6028 if (!rtx_equal_p (step, diff)) 6029 return false; 6030 } 6031 6032 *base_out = base; 6033 *step_out = step; 6034 return true; 6035 } 6036 6037 /* Generate a vector constant of mode MODE in which element I has 6038 the value BASE + I * STEP. */ 6039 6040 rtx 6041 gen_const_vec_series (machine_mode mode, rtx base, rtx step) 6042 { 6043 gcc_assert (valid_for_const_vector_p (mode, base) 6044 && valid_for_const_vector_p (mode, step)); 6045 6046 rtx_vector_builder builder (mode, 1, 3); 6047 builder.quick_push (base); 6048 for (int i = 1; i < 3; ++i) 6049 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode), 6050 builder[i - 1], step)); 6051 return builder.build (); 6052 } 6053 6054 /* Generate a vector of mode MODE in which element I has the value 6055 BASE + I * STEP. The result will be a constant if BASE and STEP 6056 are both constants. */ 6057 6058 rtx 6059 gen_vec_series (machine_mode mode, rtx base, rtx step) 6060 { 6061 if (step == const0_rtx) 6062 return gen_vec_duplicate (mode, base); 6063 if (valid_for_const_vector_p (mode, base) 6064 && valid_for_const_vector_p (mode, step)) 6065 return gen_const_vec_series (mode, base, step); 6066 return gen_rtx_VEC_SERIES (mode, base, step); 6067 } 6068 6069 /* Generate a new vector constant for mode MODE and constant value 6070 CONSTANT. */ 6071 6072 static rtx 6073 gen_const_vector (machine_mode mode, int constant) 6074 { 6075 machine_mode inner = GET_MODE_INNER (mode); 6076 6077 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner)); 6078 6079 rtx el = const_tiny_rtx[constant][(int) inner]; 6080 gcc_assert (el); 6081 6082 return gen_const_vec_duplicate (mode, el); 6083 } 6084 6085 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when 6086 all elements are zero, and the one vector when all elements are one. */ 6087 rtx 6088 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v) 6089 { 6090 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v))); 6091 6092 /* If the values are all the same, check to see if we can use one of the 6093 standard constant vectors. */ 6094 if (rtvec_all_equal_p (v)) 6095 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0)); 6096 6097 unsigned int nunits = GET_NUM_ELEM (v); 6098 rtx_vector_builder builder (mode, nunits, 1); 6099 for (unsigned int i = 0; i < nunits; ++i) 6100 builder.quick_push (RTVEC_ELT (v, i)); 6101 return builder.build (v); 6102 } 6103 6104 /* Initialise global register information required by all functions. */ 6105 6106 void 6107 init_emit_regs (void) 6108 { 6109 int i; 6110 machine_mode mode; 6111 mem_attrs *attrs; 6112 6113 /* Reset register attributes */ 6114 reg_attrs_htab->empty (); 6115 6116 /* We need reg_raw_mode, so initialize the modes now. */ 6117 init_reg_modes_target (); 6118 6119 /* Assign register numbers to the globally defined register rtx. */ 6120 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM); 6121 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM); 6122 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM); 6123 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM); 6124 virtual_incoming_args_rtx = 6125 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM); 6126 virtual_stack_vars_rtx = 6127 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM); 6128 virtual_stack_dynamic_rtx = 6129 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM); 6130 virtual_outgoing_args_rtx = 6131 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM); 6132 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM); 6133 virtual_preferred_stack_boundary_rtx = 6134 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM); 6135 6136 /* Initialize RTL for commonly used hard registers. These are 6137 copied into regno_reg_rtx as we begin to compile each function. */ 6138 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 6139 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i); 6140 6141 #ifdef RETURN_ADDRESS_POINTER_REGNUM 6142 return_address_pointer_rtx 6143 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM); 6144 #endif 6145 6146 pic_offset_table_rtx = NULL_RTX; 6147 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) 6148 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM); 6149 6150 for (i = 0; i < (int) MAX_MACHINE_MODE; i++) 6151 { 6152 mode = (machine_mode) i; 6153 attrs = ggc_cleared_alloc<mem_attrs> (); 6154 attrs->align = BITS_PER_UNIT; 6155 attrs->addrspace = ADDR_SPACE_GENERIC; 6156 if (mode != BLKmode && mode != VOIDmode) 6157 { 6158 attrs->size_known_p = true; 6159 attrs->size = GET_MODE_SIZE (mode); 6160 if (STRICT_ALIGNMENT) 6161 attrs->align = GET_MODE_ALIGNMENT (mode); 6162 } 6163 mode_mem_attrs[i] = attrs; 6164 } 6165 6166 split_branch_probability = profile_probability::uninitialized (); 6167 } 6168 6169 /* Initialize global machine_mode variables. */ 6170 6171 void 6172 init_derived_machine_modes (void) 6173 { 6174 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode; 6175 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) 6176 { 6177 scalar_int_mode mode = mode_iter.require (); 6178 6179 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT 6180 && !opt_byte_mode.exists ()) 6181 opt_byte_mode = mode; 6182 6183 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD 6184 && !opt_word_mode.exists ()) 6185 opt_word_mode = mode; 6186 } 6187 6188 byte_mode = opt_byte_mode.require (); 6189 word_mode = opt_word_mode.require (); 6190 ptr_mode = as_a <scalar_int_mode> 6191 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ()); 6192 } 6193 6194 /* Create some permanent unique rtl objects shared between all functions. */ 6195 6196 void 6197 init_emit_once (void) 6198 { 6199 int i; 6200 machine_mode mode; 6201 scalar_float_mode double_mode; 6202 opt_scalar_mode smode_iter; 6203 6204 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE, 6205 CONST_FIXED, and memory attribute hash tables. */ 6206 const_int_htab = hash_table<const_int_hasher>::create_ggc (37); 6207 6208 #if TARGET_SUPPORTS_WIDE_INT 6209 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37); 6210 #endif 6211 const_double_htab = hash_table<const_double_hasher>::create_ggc (37); 6212 6213 if (NUM_POLY_INT_COEFFS > 1) 6214 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37); 6215 6216 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37); 6217 6218 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37); 6219 6220 #ifdef INIT_EXPANDERS 6221 /* This is to initialize {init|mark|free}_machine_status before the first 6222 call to push_function_context_to. This is needed by the Chill front 6223 end which calls push_function_context_to before the first call to 6224 init_function_start. */ 6225 INIT_EXPANDERS; 6226 #endif 6227 6228 /* Create the unique rtx's for certain rtx codes and operand values. */ 6229 6230 /* Process stack-limiting command-line options. */ 6231 if (opt_fstack_limit_symbol_arg != NULL) 6232 stack_limit_rtx 6233 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg)); 6234 if (opt_fstack_limit_register_no >= 0) 6235 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no); 6236 6237 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case 6238 tries to use these variables. */ 6239 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++) 6240 const_int_rtx[i + MAX_SAVED_CONST_INT] = 6241 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i); 6242 6243 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT 6244 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT) 6245 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT]; 6246 else 6247 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE); 6248 6249 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require (); 6250 6251 real_from_integer (&dconst0, double_mode, 0, SIGNED); 6252 real_from_integer (&dconst1, double_mode, 1, SIGNED); 6253 real_from_integer (&dconst2, double_mode, 2, SIGNED); 6254 6255 dconstm1 = dconst1; 6256 dconstm1.sign = 1; 6257 6258 dconsthalf = dconst1; 6259 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1); 6260 6261 for (i = 0; i < 3; i++) 6262 { 6263 const REAL_VALUE_TYPE *const r = 6264 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2); 6265 6266 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT) 6267 const_tiny_rtx[i][(int) mode] = 6268 const_double_from_real_value (*r, mode); 6269 6270 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT) 6271 const_tiny_rtx[i][(int) mode] = 6272 const_double_from_real_value (*r, mode); 6273 6274 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i); 6275 6276 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT) 6277 const_tiny_rtx[i][(int) mode] = GEN_INT (i); 6278 6279 for (mode = MIN_MODE_PARTIAL_INT; 6280 mode <= MAX_MODE_PARTIAL_INT; 6281 mode = (machine_mode)((int)(mode) + 1)) 6282 const_tiny_rtx[i][(int) mode] = GEN_INT (i); 6283 } 6284 6285 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx; 6286 6287 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT) 6288 const_tiny_rtx[3][(int) mode] = constm1_rtx; 6289 6290 /* For BImode, 1 and -1 are unsigned and signed interpretations 6291 of the same value. */ 6292 const_tiny_rtx[0][(int) BImode] = const0_rtx; 6293 const_tiny_rtx[1][(int) BImode] = const_true_rtx; 6294 const_tiny_rtx[3][(int) BImode] = const_true_rtx; 6295 6296 for (mode = MIN_MODE_PARTIAL_INT; 6297 mode <= MAX_MODE_PARTIAL_INT; 6298 mode = (machine_mode)((int)(mode) + 1)) 6299 const_tiny_rtx[3][(int) mode] = constm1_rtx; 6300 6301 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT) 6302 { 6303 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)]; 6304 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner); 6305 } 6306 6307 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT) 6308 { 6309 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)]; 6310 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner); 6311 } 6312 6313 /* As for BImode, "all 1" and "all -1" are unsigned and signed 6314 interpretations of the same value. */ 6315 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL) 6316 { 6317 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6318 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3); 6319 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode]; 6320 } 6321 6322 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT) 6323 { 6324 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6325 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6326 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3); 6327 } 6328 6329 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT) 6330 { 6331 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6332 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6333 } 6334 6335 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT) 6336 { 6337 scalar_mode smode = smode_iter.require (); 6338 FCONST0 (smode).data.high = 0; 6339 FCONST0 (smode).data.low = 0; 6340 FCONST0 (smode).mode = smode; 6341 const_tiny_rtx[0][(int) smode] 6342 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6343 } 6344 6345 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT) 6346 { 6347 scalar_mode smode = smode_iter.require (); 6348 FCONST0 (smode).data.high = 0; 6349 FCONST0 (smode).data.low = 0; 6350 FCONST0 (smode).mode = smode; 6351 const_tiny_rtx[0][(int) smode] 6352 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6353 } 6354 6355 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM) 6356 { 6357 scalar_mode smode = smode_iter.require (); 6358 FCONST0 (smode).data.high = 0; 6359 FCONST0 (smode).data.low = 0; 6360 FCONST0 (smode).mode = smode; 6361 const_tiny_rtx[0][(int) smode] 6362 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6363 6364 /* We store the value 1. */ 6365 FCONST1 (smode).data.high = 0; 6366 FCONST1 (smode).data.low = 0; 6367 FCONST1 (smode).mode = smode; 6368 FCONST1 (smode).data 6369 = double_int_one.lshift (GET_MODE_FBIT (smode), 6370 HOST_BITS_PER_DOUBLE_INT, 6371 SIGNED_FIXED_POINT_MODE_P (smode)); 6372 const_tiny_rtx[1][(int) smode] 6373 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode); 6374 } 6375 6376 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM) 6377 { 6378 scalar_mode smode = smode_iter.require (); 6379 FCONST0 (smode).data.high = 0; 6380 FCONST0 (smode).data.low = 0; 6381 FCONST0 (smode).mode = smode; 6382 const_tiny_rtx[0][(int) smode] 6383 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6384 6385 /* We store the value 1. */ 6386 FCONST1 (smode).data.high = 0; 6387 FCONST1 (smode).data.low = 0; 6388 FCONST1 (smode).mode = smode; 6389 FCONST1 (smode).data 6390 = double_int_one.lshift (GET_MODE_FBIT (smode), 6391 HOST_BITS_PER_DOUBLE_INT, 6392 SIGNED_FIXED_POINT_MODE_P (smode)); 6393 const_tiny_rtx[1][(int) smode] 6394 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode); 6395 } 6396 6397 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT) 6398 { 6399 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6400 } 6401 6402 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT) 6403 { 6404 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6405 } 6406 6407 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM) 6408 { 6409 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6410 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6411 } 6412 6413 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM) 6414 { 6415 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6416 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6417 } 6418 6419 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i) 6420 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC) 6421 const_tiny_rtx[0][i] = const0_rtx; 6422 6423 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_POINTER_BOUNDS) 6424 { 6425 scalar_mode smode = smode_iter.require (); 6426 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (smode)); 6427 const_tiny_rtx[0][smode] = immed_wide_int_const (wi_zero, smode); 6428 } 6429 6430 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode); 6431 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode); 6432 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode); 6433 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode); 6434 invalid_insn_rtx = gen_rtx_INSN (VOIDmode, 6435 /*prev_insn=*/NULL, 6436 /*next_insn=*/NULL, 6437 /*bb=*/NULL, 6438 /*pattern=*/NULL_RTX, 6439 /*location=*/-1, 6440 CODE_FOR_nothing, 6441 /*reg_notes=*/NULL_RTX); 6442 } 6443 6444 /* Produce exact duplicate of insn INSN after AFTER. 6445 Care updating of libcall regions if present. */ 6446 6447 rtx_insn * 6448 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after) 6449 { 6450 rtx_insn *new_rtx; 6451 rtx link; 6452 6453 switch (GET_CODE (insn)) 6454 { 6455 case INSN: 6456 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after); 6457 break; 6458 6459 case JUMP_INSN: 6460 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after); 6461 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn); 6462 break; 6463 6464 case DEBUG_INSN: 6465 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after); 6466 break; 6467 6468 case CALL_INSN: 6469 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after); 6470 if (CALL_INSN_FUNCTION_USAGE (insn)) 6471 CALL_INSN_FUNCTION_USAGE (new_rtx) 6472 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn)); 6473 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn); 6474 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn); 6475 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn); 6476 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx) 6477 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn); 6478 break; 6479 6480 default: 6481 gcc_unreachable (); 6482 } 6483 6484 /* Update LABEL_NUSES. */ 6485 mark_jump_label (PATTERN (new_rtx), new_rtx, 0); 6486 6487 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn); 6488 6489 /* If the old insn is frame related, then so is the new one. This is 6490 primarily needed for IA-64 unwind info which marks epilogue insns, 6491 which may be duplicated by the basic block reordering code. */ 6492 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn); 6493 6494 /* Locate the end of existing REG_NOTES in NEW_RTX. */ 6495 rtx *ptail = ®_NOTES (new_rtx); 6496 while (*ptail != NULL_RTX) 6497 ptail = &XEXP (*ptail, 1); 6498 6499 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label 6500 will make them. REG_LABEL_TARGETs are created there too, but are 6501 supposed to be sticky, so we copy them. */ 6502 for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) 6503 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND) 6504 { 6505 *ptail = duplicate_reg_note (link); 6506 ptail = &XEXP (*ptail, 1); 6507 } 6508 6509 INSN_CODE (new_rtx) = INSN_CODE (insn); 6510 return new_rtx; 6511 } 6512 6513 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER]; 6514 rtx 6515 gen_hard_reg_clobber (machine_mode mode, unsigned int regno) 6516 { 6517 if (hard_reg_clobbers[mode][regno]) 6518 return hard_reg_clobbers[mode][regno]; 6519 else 6520 return (hard_reg_clobbers[mode][regno] = 6521 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno))); 6522 } 6523 6524 location_t prologue_location; 6525 location_t epilogue_location; 6526 6527 /* Hold current location information and last location information, so the 6528 datastructures are built lazily only when some instructions in given 6529 place are needed. */ 6530 static location_t curr_location; 6531 6532 /* Allocate insn location datastructure. */ 6533 void 6534 insn_locations_init (void) 6535 { 6536 prologue_location = epilogue_location = 0; 6537 curr_location = UNKNOWN_LOCATION; 6538 } 6539 6540 /* At the end of emit stage, clear current location. */ 6541 void 6542 insn_locations_finalize (void) 6543 { 6544 epilogue_location = curr_location; 6545 curr_location = UNKNOWN_LOCATION; 6546 } 6547 6548 /* Set current location. */ 6549 void 6550 set_curr_insn_location (location_t location) 6551 { 6552 curr_location = location; 6553 } 6554 6555 /* Get current location. */ 6556 location_t 6557 curr_insn_location (void) 6558 { 6559 return curr_location; 6560 } 6561 6562 /* Return lexical scope block insn belongs to. */ 6563 tree 6564 insn_scope (const rtx_insn *insn) 6565 { 6566 return LOCATION_BLOCK (INSN_LOCATION (insn)); 6567 } 6568 6569 /* Return line number of the statement that produced this insn. */ 6570 int 6571 insn_line (const rtx_insn *insn) 6572 { 6573 return LOCATION_LINE (INSN_LOCATION (insn)); 6574 } 6575 6576 /* Return source file of the statement that produced this insn. */ 6577 const char * 6578 insn_file (const rtx_insn *insn) 6579 { 6580 return LOCATION_FILE (INSN_LOCATION (insn)); 6581 } 6582 6583 /* Return expanded location of the statement that produced this insn. */ 6584 expanded_location 6585 insn_location (const rtx_insn *insn) 6586 { 6587 return expand_location (INSN_LOCATION (insn)); 6588 } 6589 6590 /* Return true if memory model MODEL requires a pre-operation (release-style) 6591 barrier or a post-operation (acquire-style) barrier. While not universal, 6592 this function matches behavior of several targets. */ 6593 6594 bool 6595 need_atomic_barrier_p (enum memmodel model, bool pre) 6596 { 6597 switch (model & MEMMODEL_BASE_MASK) 6598 { 6599 case MEMMODEL_RELAXED: 6600 case MEMMODEL_CONSUME: 6601 return false; 6602 case MEMMODEL_RELEASE: 6603 return pre; 6604 case MEMMODEL_ACQUIRE: 6605 return !pre; 6606 case MEMMODEL_ACQ_REL: 6607 case MEMMODEL_SEQ_CST: 6608 return true; 6609 default: 6610 gcc_unreachable (); 6611 } 6612 } 6613 6614 /* Return a constant shift amount for shifting a value of mode MODE 6615 by VALUE bits. */ 6616 6617 rtx 6618 gen_int_shift_amount (machine_mode, poly_int64 value) 6619 { 6620 /* Use a 64-bit mode, to avoid any truncation. 6621 6622 ??? Perhaps this should be automatically derived from the .md files 6623 instead, or perhaps have a target hook. */ 6624 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8 6625 ? DImode 6626 : int_mode_for_size (64, 0).require ()); 6627 return gen_int_mode (value, shift_mode); 6628 } 6629 6630 /* Initialize fields of rtl_data related to stack alignment. */ 6631 6632 void 6633 rtl_data::init_stack_alignment () 6634 { 6635 stack_alignment_needed = STACK_BOUNDARY; 6636 max_used_stack_slot_alignment = STACK_BOUNDARY; 6637 stack_alignment_estimated = 0; 6638 preferred_stack_boundary = STACK_BOUNDARY; 6639 } 6640 6641 6642 #include "gt-emit-rtl.h" 6643