1 /* Implementation of various C99 functions
2    Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 
4 This file is part of the GNU Fortran 95 runtime library (libgfortran).
5 
6 Libgfortran is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public
8 License as published by the Free Software Foundation; either
9 version 3 of the License, or (at your option) any later version.
10 
11 Libgfortran is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19 
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 <http://www.gnu.org/licenses/>.  */
24 
25 #include "config.h"
26 
27 #define C99_PROTOS_H WE_DONT_WANT_PROTOS_NOW
28 #include "libgfortran.h"
29 
30 /* On a C99 system "I" (with I*I = -1) should be defined in complex.h;
31    if not, we define a fallback version here.  */
32 #ifndef I
33 # if defined(_Imaginary_I)
34 #   define I _Imaginary_I
35 # elif defined(_Complex_I)
36 #   define I _Complex_I
37 # else
38 #   define I (1.0fi)
39 # endif
40 #endif
41 
42 /* Macros to get real and imaginary parts of a complex, and set
43    a complex value.  */
44 #define REALPART(z) (__real__(z))
45 #define IMAGPART(z) (__imag__(z))
46 #define COMPLEX_ASSIGN(z_, r_, i_) {__real__(z_) = (r_); __imag__(z_) = (i_);}
47 
48 
49 /* Prototypes are included to silence -Wstrict-prototypes
50    -Wmissing-prototypes.  */
51 
52 
53 /* Wrappers for systems without the various C99 single precision Bessel
54    functions.  */
55 
56 #if defined(HAVE_J0) && ! defined(HAVE_J0F)
57 #define HAVE_J0F 1
58 float j0f (float);
59 
60 float
j0f(float x)61 j0f (float x)
62 {
63   return (float) j0 ((double) x);
64 }
65 #endif
66 
67 #if defined(HAVE_J1) && !defined(HAVE_J1F)
68 #define HAVE_J1F 1
69 float j1f (float);
70 
j1f(float x)71 float j1f (float x)
72 {
73   return (float) j1 ((double) x);
74 }
75 #endif
76 
77 #if defined(HAVE_JN) && !defined(HAVE_JNF)
78 #define HAVE_JNF 1
79 float jnf (int, float);
80 
81 float
jnf(int n,float x)82 jnf (int n, float x)
83 {
84   return (float) jn (n, (double) x);
85 }
86 #endif
87 
88 #if defined(HAVE_Y0) && !defined(HAVE_Y0F)
89 #define HAVE_Y0F 1
90 float y0f (float);
91 
92 float
y0f(float x)93 y0f (float x)
94 {
95   return (float) y0 ((double) x);
96 }
97 #endif
98 
99 #if defined(HAVE_Y1) && !defined(HAVE_Y1F)
100 #define HAVE_Y1F 1
101 float y1f (float);
102 
103 float
y1f(float x)104 y1f (float x)
105 {
106   return (float) y1 ((double) x);
107 }
108 #endif
109 
110 #if defined(HAVE_YN) && !defined(HAVE_YNF)
111 #define HAVE_YNF 1
112 float ynf (int, float);
113 
114 float
ynf(int n,float x)115 ynf (int n, float x)
116 {
117   return (float) yn (n, (double) x);
118 }
119 #endif
120 
121 
122 /* Wrappers for systems without the C99 erff() and erfcf() functions.  */
123 
124 #if defined(HAVE_ERF) && !defined(HAVE_ERFF)
125 #define HAVE_ERFF 1
126 float erff (float);
127 
128 float
erff(float x)129 erff (float x)
130 {
131   return (float) erf ((double) x);
132 }
133 #endif
134 
135 #if defined(HAVE_ERFC) && !defined(HAVE_ERFCF)
136 #define HAVE_ERFCF 1
137 float erfcf (float);
138 
139 float
erfcf(float x)140 erfcf (float x)
141 {
142   return (float) erfc ((double) x);
143 }
144 #endif
145 
146 
147 #ifndef HAVE_ACOSF
148 #define HAVE_ACOSF 1
149 float acosf (float x);
150 
151 float
acosf(float x)152 acosf (float x)
153 {
154   return (float) acos (x);
155 }
156 #endif
157 
158 #if HAVE_ACOSH && !HAVE_ACOSHF
159 float acoshf (float x);
160 
161 float
acoshf(float x)162 acoshf (float x)
163 {
164   return (float) acosh ((double) x);
165 }
166 #endif
167 
168 #ifndef HAVE_ASINF
169 #define HAVE_ASINF 1
170 float asinf (float x);
171 
172 float
asinf(float x)173 asinf (float x)
174 {
175   return (float) asin (x);
176 }
177 #endif
178 
179 #if HAVE_ASINH && !HAVE_ASINHF
180 float asinhf (float x);
181 
182 float
asinhf(float x)183 asinhf (float x)
184 {
185   return (float) asinh ((double) x);
186 }
187 #endif
188 
189 #ifndef HAVE_ATAN2F
190 #define HAVE_ATAN2F 1
191 float atan2f (float y, float x);
192 
193 float
atan2f(float y,float x)194 atan2f (float y, float x)
195 {
196   return (float) atan2 (y, x);
197 }
198 #endif
199 
200 #ifndef HAVE_ATANF
201 #define HAVE_ATANF 1
202 float atanf (float x);
203 
204 float
atanf(float x)205 atanf (float x)
206 {
207   return (float) atan (x);
208 }
209 #endif
210 
211 #if HAVE_ATANH && !HAVE_ATANHF
212 float atanhf (float x);
213 
214 float
atanhf(float x)215 atanhf (float x)
216 {
217   return (float) atanh ((double) x);
218 }
219 #endif
220 
221 #ifndef HAVE_CEILF
222 #define HAVE_CEILF 1
223 float ceilf (float x);
224 
225 float
ceilf(float x)226 ceilf (float x)
227 {
228   return (float) ceil (x);
229 }
230 #endif
231 
232 #if !defined(HAVE_COPYSIGN) && defined(HAVE_INLINE_BUILTIN_COPYSIGN)
233 #define HAVE_COPYSIGN 1
234 double copysign (double x, double y);
235 
236 double
copysign(double x,double y)237 copysign (double x, double y)
238 {
239   return __builtin_copysign (x, y);
240 }
241 #endif
242 
243 #ifndef HAVE_COPYSIGNF
244 #define HAVE_COPYSIGNF 1
245 float copysignf (float x, float y);
246 
247 float
copysignf(float x,float y)248 copysignf (float x, float y)
249 {
250   return (float) copysign (x, y);
251 }
252 #endif
253 
254 #if !defined(HAVE_COPYSIGNL) && defined(HAVE_INLINE_BUILTIN_COPYSIGNL)
255 #define HAVE_COPYSIGNL 1
256 long double copysignl (long double x, long double y);
257 
258 long double
copysignl(long double x,long double y)259 copysignl (long double x, long double y)
260 {
261   return __builtin_copysignl (x, y);
262 }
263 #endif
264 
265 #ifndef HAVE_COSF
266 #define HAVE_COSF 1
267 float cosf (float x);
268 
269 float
cosf(float x)270 cosf (float x)
271 {
272   return (float) cos (x);
273 }
274 #endif
275 
276 #ifndef HAVE_COSHF
277 #define HAVE_COSHF 1
278 float coshf (float x);
279 
280 float
coshf(float x)281 coshf (float x)
282 {
283   return (float) cosh (x);
284 }
285 #endif
286 
287 #ifndef HAVE_EXPF
288 #define HAVE_EXPF 1
289 float expf (float x);
290 
291 float
expf(float x)292 expf (float x)
293 {
294   return (float) exp (x);
295 }
296 #endif
297 
298 #if !defined(HAVE_FABS) && defined(HAVE_INLINE_BUILTIN_FABS)
299 #define HAVE_FABS 1
300 double fabs (double x);
301 
302 double
fabs(double x)303 fabs (double x)
304 {
305   return __builtin_fabs (x);
306 }
307 #endif
308 
309 #ifndef HAVE_FABSF
310 #define HAVE_FABSF 1
311 float fabsf (float x);
312 
313 float
fabsf(float x)314 fabsf (float x)
315 {
316   return (float) fabs (x);
317 }
318 #endif
319 
320 #if !defined(HAVE_FABSL) && defined(HAVE_INLINE_BUILTIN_FABSL)
321 #define HAVE_FABSL 1
322 long double fabsl (long double x);
323 
324 long double
fabsl(long double x)325 fabsl (long double x)
326 {
327   return __builtin_fabsl (x);
328 }
329 #endif
330 
331 #ifndef HAVE_FLOORF
332 #define HAVE_FLOORF 1
333 float floorf (float x);
334 
335 float
floorf(float x)336 floorf (float x)
337 {
338   return (float) floor (x);
339 }
340 #endif
341 
342 #ifndef HAVE_FMODF
343 #define HAVE_FMODF 1
344 float fmodf (float x, float y);
345 
346 float
fmodf(float x,float y)347 fmodf (float x, float y)
348 {
349   return (float) fmod (x, y);
350 }
351 #endif
352 
353 #ifndef HAVE_FREXPF
354 #define HAVE_FREXPF 1
355 float frexpf (float x, int *exp);
356 
357 float
frexpf(float x,int * exp)358 frexpf (float x, int *exp)
359 {
360   return (float) frexp (x, exp);
361 }
362 #endif
363 
364 #ifndef HAVE_HYPOTF
365 #define HAVE_HYPOTF 1
366 float hypotf (float x, float y);
367 
368 float
hypotf(float x,float y)369 hypotf (float x, float y)
370 {
371   return (float) hypot (x, y);
372 }
373 #endif
374 
375 #ifndef HAVE_LOGF
376 #define HAVE_LOGF 1
377 float logf (float x);
378 
379 float
logf(float x)380 logf (float x)
381 {
382   return (float) log (x);
383 }
384 #endif
385 
386 #ifndef HAVE_LOG10F
387 #define HAVE_LOG10F 1
388 float log10f (float x);
389 
390 float
log10f(float x)391 log10f (float x)
392 {
393   return (float) log10 (x);
394 }
395 #endif
396 
397 #ifndef HAVE_SCALBN
398 #define HAVE_SCALBN 1
399 double scalbn (double x, int y);
400 
401 double
scalbn(double x,int y)402 scalbn (double x, int y)
403 {
404 #if (FLT_RADIX == 2) && defined(HAVE_LDEXP)
405   return ldexp (x, y);
406 #else
407   return x * pow (FLT_RADIX, y);
408 #endif
409 }
410 #endif
411 
412 #ifndef HAVE_SCALBNF
413 #define HAVE_SCALBNF 1
414 float scalbnf (float x, int y);
415 
416 float
scalbnf(float x,int y)417 scalbnf (float x, int y)
418 {
419   return (float) scalbn (x, y);
420 }
421 #endif
422 
423 #ifndef HAVE_SINF
424 #define HAVE_SINF 1
425 float sinf (float x);
426 
427 float
sinf(float x)428 sinf (float x)
429 {
430   return (float) sin (x);
431 }
432 #endif
433 
434 #ifndef HAVE_SINHF
435 #define HAVE_SINHF 1
436 float sinhf (float x);
437 
438 float
sinhf(float x)439 sinhf (float x)
440 {
441   return (float) sinh (x);
442 }
443 #endif
444 
445 #ifndef HAVE_SQRTF
446 #define HAVE_SQRTF 1
447 float sqrtf (float x);
448 
449 float
sqrtf(float x)450 sqrtf (float x)
451 {
452   return (float) sqrt (x);
453 }
454 #endif
455 
456 #ifndef HAVE_TANF
457 #define HAVE_TANF 1
458 float tanf (float x);
459 
460 float
tanf(float x)461 tanf (float x)
462 {
463   return (float) tan (x);
464 }
465 #endif
466 
467 #ifndef HAVE_TANHF
468 #define HAVE_TANHF 1
469 float tanhf (float x);
470 
471 float
tanhf(float x)472 tanhf (float x)
473 {
474   return (float) tanh (x);
475 }
476 #endif
477 
478 #ifndef HAVE_TRUNC
479 #define HAVE_TRUNC 1
480 double trunc (double x);
481 
482 double
trunc(double x)483 trunc (double x)
484 {
485   if (!isfinite (x))
486     return x;
487 
488   if (x < 0.0)
489     return - floor (-x);
490   else
491     return floor (x);
492 }
493 #endif
494 
495 #ifndef HAVE_TRUNCF
496 #define HAVE_TRUNCF 1
497 float truncf (float x);
498 
499 float
truncf(float x)500 truncf (float x)
501 {
502   return (float) trunc (x);
503 }
504 #endif
505 
506 #ifndef HAVE_NEXTAFTERF
507 #define HAVE_NEXTAFTERF 1
508 /* This is a portable implementation of nextafterf that is intended to be
509    independent of the floating point format or its in memory representation.
510    This implementation works correctly with denormalized values.  */
511 float nextafterf (float x, float y);
512 
513 float
nextafterf(float x,float y)514 nextafterf (float x, float y)
515 {
516   /* This variable is marked volatile to avoid excess precision problems
517      on some platforms, including IA-32.  */
518   volatile float delta;
519   float absx, denorm_min;
520 
521   if (isnan (x) || isnan (y))
522     return x + y;
523   if (x == y)
524     return x;
525   if (!isfinite (x))
526     return x > 0 ? __FLT_MAX__ : - __FLT_MAX__;
527 
528   /* absx = fabsf (x);  */
529   absx = (x < 0.0) ? -x : x;
530 
531   /* __FLT_DENORM_MIN__ is non-zero iff the target supports denormals.  */
532   if (__FLT_DENORM_MIN__ == 0.0f)
533     denorm_min = __FLT_MIN__;
534   else
535     denorm_min = __FLT_DENORM_MIN__;
536 
537   if (absx < __FLT_MIN__)
538     delta = denorm_min;
539   else
540     {
541       float frac;
542       int exp;
543 
544       /* Discard the fraction from x.  */
545       frac = frexpf (absx, &exp);
546       delta = scalbnf (0.5f, exp);
547 
548       /* Scale x by the epsilon of the representation.  By rights we should
549 	 have been able to combine this with scalbnf, but some targets don't
550 	 get that correct with denormals.  */
551       delta *= __FLT_EPSILON__;
552 
553       /* If we're going to be reducing the absolute value of X, and doing so
554 	 would reduce the exponent of X, then the delta to be applied is
555 	 one exponent smaller.  */
556       if (frac == 0.5f && (y < x) == (x > 0))
557 	delta *= 0.5f;
558 
559       /* If that underflows to zero, then we're back to the minimum.  */
560       if (delta == 0.0f)
561 	delta = denorm_min;
562     }
563 
564   if (y < x)
565     delta = -delta;
566 
567   return x + delta;
568 }
569 #endif
570 
571 
572 #ifndef HAVE_POWF
573 #define HAVE_POWF 1
574 float powf (float x, float y);
575 
576 float
powf(float x,float y)577 powf (float x, float y)
578 {
579   return (float) pow (x, y);
580 }
581 #endif
582 
583 
584 #ifndef HAVE_ROUND
585 #define HAVE_ROUND 1
586 /* Round to nearest integral value.  If the argument is halfway between two
587    integral values then round away from zero.  */
588 double round (double x);
589 
590 double
round(double x)591 round (double x)
592 {
593    double t;
594    if (!isfinite (x))
595      return (x);
596 
597    if (x >= 0.0)
598     {
599       t = floor (x);
600       if (t - x <= -0.5)
601 	t += 1.0;
602       return (t);
603     }
604    else
605     {
606       t = floor (-x);
607       if (t + x <= -0.5)
608 	t += 1.0;
609       return (-t);
610     }
611 }
612 #endif
613 
614 
615 /* Algorithm by Steven G. Kargl.  */
616 
617 #if !defined(HAVE_ROUNDL)
618 #define HAVE_ROUNDL 1
619 long double roundl (long double x);
620 
621 #if defined(HAVE_CEILL)
622 /* Round to nearest integral value.  If the argument is halfway between two
623    integral values then round away from zero.  */
624 
625 long double
roundl(long double x)626 roundl (long double x)
627 {
628    long double t;
629    if (!isfinite (x))
630      return (x);
631 
632    if (x >= 0.0)
633     {
634       t = ceill (x);
635       if (t - x > 0.5)
636 	t -= 1.0;
637       return (t);
638     }
639    else
640     {
641       t = ceill (-x);
642       if (t + x > 0.5)
643 	t -= 1.0;
644       return (-t);
645     }
646 }
647 #else
648 
649 /* Poor version of roundl for system that don't have ceill.  */
650 long double
roundl(long double x)651 roundl (long double x)
652 {
653   if (x > DBL_MAX || x < -DBL_MAX)
654     {
655 #ifdef HAVE_NEXTAFTERL
656       long double prechalf = nextafterl (0.5L, LDBL_MAX);
657 #else
658       static long double prechalf = 0.5L;
659 #endif
660       return (GFC_INTEGER_LARGEST) (x + (x > 0 ? prechalf : -prechalf));
661     }
662   else
663     /* Use round().  */
664     return round ((double) x);
665 }
666 
667 #endif
668 #endif
669 
670 #ifndef HAVE_ROUNDF
671 #define HAVE_ROUNDF 1
672 /* Round to nearest integral value.  If the argument is halfway between two
673    integral values then round away from zero.  */
674 float roundf (float x);
675 
676 float
roundf(float x)677 roundf (float x)
678 {
679    float t;
680    if (!isfinite (x))
681      return (x);
682 
683    if (x >= 0.0)
684     {
685       t = floorf (x);
686       if (t - x <= -0.5)
687 	t += 1.0;
688       return (t);
689     }
690    else
691     {
692       t = floorf (-x);
693       if (t + x <= -0.5)
694 	t += 1.0;
695       return (-t);
696     }
697 }
698 #endif
699 
700 
701 /* lround{f,,l} and llround{f,,l} functions.  */
702 
703 #if !defined(HAVE_LROUNDF) && defined(HAVE_ROUNDF)
704 #define HAVE_LROUNDF 1
705 long int lroundf (float x);
706 
707 long int
lroundf(float x)708 lroundf (float x)
709 {
710   return (long int) roundf (x);
711 }
712 #endif
713 
714 #if !defined(HAVE_LROUND) && defined(HAVE_ROUND)
715 #define HAVE_LROUND 1
716 long int lround (double x);
717 
718 long int
lround(double x)719 lround (double x)
720 {
721   return (long int) round (x);
722 }
723 #endif
724 
725 #if !defined(HAVE_LROUNDL) && defined(HAVE_ROUNDL)
726 #define HAVE_LROUNDL 1
727 long int lroundl (long double x);
728 
729 long int
lroundl(long double x)730 lroundl (long double x)
731 {
732   return (long long int) roundl (x);
733 }
734 #endif
735 
736 #if !defined(HAVE_LLROUNDF) && defined(HAVE_ROUNDF)
737 #define HAVE_LLROUNDF 1
738 long long int llroundf (float x);
739 
740 long long int
llroundf(float x)741 llroundf (float x)
742 {
743   return (long long int) roundf (x);
744 }
745 #endif
746 
747 #if !defined(HAVE_LLROUND) && defined(HAVE_ROUND)
748 #define HAVE_LLROUND 1
749 long long int llround (double x);
750 
751 long long int
llround(double x)752 llround (double x)
753 {
754   return (long long int) round (x);
755 }
756 #endif
757 
758 #if !defined(HAVE_LLROUNDL) && defined(HAVE_ROUNDL)
759 #define HAVE_LLROUNDL 1
760 long long int llroundl (long double x);
761 
762 long long int
llroundl(long double x)763 llroundl (long double x)
764 {
765   return (long long int) roundl (x);
766 }
767 #endif
768 
769 
770 #ifndef HAVE_LOG10L
771 #define HAVE_LOG10L 1
772 /* log10 function for long double variables. The version provided here
773    reduces the argument until it fits into a double, then use log10.  */
774 long double log10l (long double x);
775 
776 long double
log10l(long double x)777 log10l (long double x)
778 {
779 #if LDBL_MAX_EXP > DBL_MAX_EXP
780   if (x > DBL_MAX)
781     {
782       double val;
783       int p2_result = 0;
784       if (x > 0x1p16383L) { p2_result += 16383; x /= 0x1p16383L; }
785       if (x > 0x1p8191L) { p2_result += 8191; x /= 0x1p8191L; }
786       if (x > 0x1p4095L) { p2_result += 4095; x /= 0x1p4095L; }
787       if (x > 0x1p2047L) { p2_result += 2047; x /= 0x1p2047L; }
788       if (x > 0x1p1023L) { p2_result += 1023; x /= 0x1p1023L; }
789       val = log10 ((double) x);
790       return (val + p2_result * .30102999566398119521373889472449302L);
791     }
792 #endif
793 #if LDBL_MIN_EXP < DBL_MIN_EXP
794   if (x < DBL_MIN)
795     {
796       double val;
797       int p2_result = 0;
798       if (x < 0x1p-16380L) { p2_result += 16380; x /= 0x1p-16380L; }
799       if (x < 0x1p-8189L) { p2_result += 8189; x /= 0x1p-8189L; }
800       if (x < 0x1p-4093L) { p2_result += 4093; x /= 0x1p-4093L; }
801       if (x < 0x1p-2045L) { p2_result += 2045; x /= 0x1p-2045L; }
802       if (x < 0x1p-1021L) { p2_result += 1021; x /= 0x1p-1021L; }
803       val = fabs (log10 ((double) x));
804       return (- val - p2_result * .30102999566398119521373889472449302L);
805     }
806 #endif
807     return log10 (x);
808 }
809 #endif
810 
811 
812 #ifndef HAVE_FLOORL
813 #define HAVE_FLOORL 1
814 long double floorl (long double x);
815 
816 long double
floorl(long double x)817 floorl (long double x)
818 {
819   /* Zero, possibly signed.  */
820   if (x == 0)
821     return x;
822 
823   /* Large magnitude.  */
824   if (x > DBL_MAX || x < (-DBL_MAX))
825     return x;
826 
827   /* Small positive values.  */
828   if (x >= 0 && x < DBL_MIN)
829     return 0;
830 
831   /* Small negative values.  */
832   if (x < 0 && x > (-DBL_MIN))
833     return -1;
834 
835   return floor (x);
836 }
837 #endif
838 
839 
840 #ifndef HAVE_FMODL
841 #define HAVE_FMODL 1
842 long double fmodl (long double x, long double y);
843 
844 long double
fmodl(long double x,long double y)845 fmodl (long double x, long double y)
846 {
847   if (y == 0.0L)
848     return 0.0L;
849 
850   /* Need to check that the result has the same sign as x and magnitude
851      less than the magnitude of y.  */
852   return x - floorl (x / y) * y;
853 }
854 #endif
855 
856 
857 #if !defined(HAVE_CABSF)
858 #define HAVE_CABSF 1
859 float cabsf (float complex z);
860 
861 float
cabsf(float complex z)862 cabsf (float complex z)
863 {
864   return hypotf (REALPART (z), IMAGPART (z));
865 }
866 #endif
867 
868 #if !defined(HAVE_CABS)
869 #define HAVE_CABS 1
870 double cabs (double complex z);
871 
872 double
cabs(double complex z)873 cabs (double complex z)
874 {
875   return hypot (REALPART (z), IMAGPART (z));
876 }
877 #endif
878 
879 #if !defined(HAVE_CABSL) && defined(HAVE_HYPOTL)
880 #define HAVE_CABSL 1
881 long double cabsl (long double complex z);
882 
883 long double
cabsl(long double complex z)884 cabsl (long double complex z)
885 {
886   return hypotl (REALPART (z), IMAGPART (z));
887 }
888 #endif
889 
890 
891 #if !defined(HAVE_CARGF)
892 #define HAVE_CARGF 1
893 float cargf (float complex z);
894 
895 float
cargf(float complex z)896 cargf (float complex z)
897 {
898   return atan2f (IMAGPART (z), REALPART (z));
899 }
900 #endif
901 
902 #if !defined(HAVE_CARG)
903 #define HAVE_CARG 1
904 double carg (double complex z);
905 
906 double
carg(double complex z)907 carg (double complex z)
908 {
909   return atan2 (IMAGPART (z), REALPART (z));
910 }
911 #endif
912 
913 #if !defined(HAVE_CARGL) && defined(HAVE_ATAN2L)
914 #define HAVE_CARGL 1
915 long double cargl (long double complex z);
916 
917 long double
cargl(long double complex z)918 cargl (long double complex z)
919 {
920   return atan2l (IMAGPART (z), REALPART (z));
921 }
922 #endif
923 
924 
925 /* exp(z) = exp(a)*(cos(b) + i sin(b))  */
926 #if !defined(HAVE_CEXPF)
927 #define HAVE_CEXPF 1
928 float complex cexpf (float complex z);
929 
930 float complex
cexpf(float complex z)931 cexpf (float complex z)
932 {
933   float a, b;
934   float complex v;
935 
936   a = REALPART (z);
937   b = IMAGPART (z);
938   COMPLEX_ASSIGN (v, cosf (b), sinf (b));
939   return expf (a) * v;
940 }
941 #endif
942 
943 #if !defined(HAVE_CEXP)
944 #define HAVE_CEXP 1
945 double complex cexp (double complex z);
946 
947 double complex
cexp(double complex z)948 cexp (double complex z)
949 {
950   double a, b;
951   double complex v;
952 
953   a = REALPART (z);
954   b = IMAGPART (z);
955   COMPLEX_ASSIGN (v, cos (b), sin (b));
956   return exp (a) * v;
957 }
958 #endif
959 
960 #if !defined(HAVE_CEXPL) && defined(HAVE_COSL) && defined(HAVE_SINL) && defined(HAVE_EXPL)
961 #define HAVE_CEXPL 1
962 long double complex cexpl (long double complex z);
963 
964 long double complex
cexpl(long double complex z)965 cexpl (long double complex z)
966 {
967   long double a, b;
968   long double complex v;
969 
970   a = REALPART (z);
971   b = IMAGPART (z);
972   COMPLEX_ASSIGN (v, cosl (b), sinl (b));
973   return expl (a) * v;
974 }
975 #endif
976 
977 
978 /* log(z) = log (cabs(z)) + i*carg(z)  */
979 #if !defined(HAVE_CLOGF)
980 #define HAVE_CLOGF 1
981 float complex clogf (float complex z);
982 
983 float complex
clogf(float complex z)984 clogf (float complex z)
985 {
986   float complex v;
987 
988   COMPLEX_ASSIGN (v, logf (cabsf (z)), cargf (z));
989   return v;
990 }
991 #endif
992 
993 #if !defined(HAVE_CLOG)
994 #define HAVE_CLOG 1
995 double complex clog (double complex z);
996 
997 double complex
clog(double complex z)998 clog (double complex z)
999 {
1000   double complex v;
1001 
1002   COMPLEX_ASSIGN (v, log (cabs (z)), carg (z));
1003   return v;
1004 }
1005 #endif
1006 
1007 #if !defined(HAVE_CLOGL) && defined(HAVE_LOGL) && defined(HAVE_CABSL) && defined(HAVE_CARGL)
1008 #define HAVE_CLOGL 1
1009 long double complex clogl (long double complex z);
1010 
1011 long double complex
clogl(long double complex z)1012 clogl (long double complex z)
1013 {
1014   long double complex v;
1015 
1016   COMPLEX_ASSIGN (v, logl (cabsl (z)), cargl (z));
1017   return v;
1018 }
1019 #endif
1020 
1021 
1022 /* log10(z) = log10 (cabs(z)) + i*carg(z)  */
1023 #if !defined(HAVE_CLOG10F)
1024 #define HAVE_CLOG10F 1
1025 float complex clog10f (float complex z);
1026 
1027 float complex
clog10f(float complex z)1028 clog10f (float complex z)
1029 {
1030   float complex v;
1031 
1032   COMPLEX_ASSIGN (v, log10f (cabsf (z)), cargf (z));
1033   return v;
1034 }
1035 #endif
1036 
1037 #if !defined(HAVE_CLOG10)
1038 #define HAVE_CLOG10 1
1039 double complex clog10 (double complex z);
1040 
1041 double complex
clog10(double complex z)1042 clog10 (double complex z)
1043 {
1044   double complex v;
1045 
1046   COMPLEX_ASSIGN (v, log10 (cabs (z)), carg (z));
1047   return v;
1048 }
1049 #endif
1050 
1051 #if !defined(HAVE_CLOG10L) && defined(HAVE_LOG10L) && defined(HAVE_CABSL) && defined(HAVE_CARGL)
1052 #define HAVE_CLOG10L 1
1053 long double complex clog10l (long double complex z);
1054 
1055 long double complex
clog10l(long double complex z)1056 clog10l (long double complex z)
1057 {
1058   long double complex v;
1059 
1060   COMPLEX_ASSIGN (v, log10l (cabsl (z)), cargl (z));
1061   return v;
1062 }
1063 #endif
1064 
1065 
1066 /* pow(base, power) = cexp (power * clog (base))  */
1067 #if !defined(HAVE_CPOWF)
1068 #define HAVE_CPOWF 1
1069 float complex cpowf (float complex base, float complex power);
1070 
1071 float complex
cpowf(float complex base,float complex power)1072 cpowf (float complex base, float complex power)
1073 {
1074   return cexpf (power * clogf (base));
1075 }
1076 #endif
1077 
1078 #if !defined(HAVE_CPOW)
1079 #define HAVE_CPOW 1
1080 double complex cpow (double complex base, double complex power);
1081 
1082 double complex
cpow(double complex base,double complex power)1083 cpow (double complex base, double complex power)
1084 {
1085   return cexp (power * clog (base));
1086 }
1087 #endif
1088 
1089 #if !defined(HAVE_CPOWL) && defined(HAVE_CEXPL) && defined(HAVE_CLOGL)
1090 #define HAVE_CPOWL 1
1091 long double complex cpowl (long double complex base, long double complex power);
1092 
1093 long double complex
cpowl(long double complex base,long double complex power)1094 cpowl (long double complex base, long double complex power)
1095 {
1096   return cexpl (power * clogl (base));
1097 }
1098 #endif
1099 
1100 
1101 /* sqrt(z).  Algorithm pulled from glibc.  */
1102 #if !defined(HAVE_CSQRTF)
1103 #define HAVE_CSQRTF 1
1104 float complex csqrtf (float complex z);
1105 
1106 float complex
csqrtf(float complex z)1107 csqrtf (float complex z)
1108 {
1109   float re, im;
1110   float complex v;
1111 
1112   re = REALPART (z);
1113   im = IMAGPART (z);
1114   if (im == 0)
1115     {
1116       if (re < 0)
1117         {
1118           COMPLEX_ASSIGN (v, 0, copysignf (sqrtf (-re), im));
1119         }
1120       else
1121         {
1122           COMPLEX_ASSIGN (v, fabsf (sqrtf (re)), copysignf (0, im));
1123         }
1124     }
1125   else if (re == 0)
1126     {
1127       float r;
1128 
1129       r = sqrtf (0.5 * fabsf (im));
1130 
1131       COMPLEX_ASSIGN (v, r, copysignf (r, im));
1132     }
1133   else
1134     {
1135       float d, r, s;
1136 
1137       d = hypotf (re, im);
1138       /* Use the identity   2  Re res  Im res = Im x
1139          to avoid cancellation error in  d +/- Re x.  */
1140       if (re > 0)
1141         {
1142           r = sqrtf (0.5 * d + 0.5 * re);
1143           s = (0.5 * im) / r;
1144         }
1145       else
1146         {
1147           s = sqrtf (0.5 * d - 0.5 * re);
1148           r = fabsf ((0.5 * im) / s);
1149         }
1150 
1151       COMPLEX_ASSIGN (v, r, copysignf (s, im));
1152     }
1153   return v;
1154 }
1155 #endif
1156 
1157 #if !defined(HAVE_CSQRT)
1158 #define HAVE_CSQRT 1
1159 double complex csqrt (double complex z);
1160 
1161 double complex
csqrt(double complex z)1162 csqrt (double complex z)
1163 {
1164   double re, im;
1165   double complex v;
1166 
1167   re = REALPART (z);
1168   im = IMAGPART (z);
1169   if (im == 0)
1170     {
1171       if (re < 0)
1172         {
1173           COMPLEX_ASSIGN (v, 0, copysign (sqrt (-re), im));
1174         }
1175       else
1176         {
1177           COMPLEX_ASSIGN (v, fabs (sqrt (re)), copysign (0, im));
1178         }
1179     }
1180   else if (re == 0)
1181     {
1182       double r;
1183 
1184       r = sqrt (0.5 * fabs (im));
1185 
1186       COMPLEX_ASSIGN (v, r, copysign (r, im));
1187     }
1188   else
1189     {
1190       double d, r, s;
1191 
1192       d = hypot (re, im);
1193       /* Use the identity   2  Re res  Im res = Im x
1194          to avoid cancellation error in  d +/- Re x.  */
1195       if (re > 0)
1196         {
1197           r = sqrt (0.5 * d + 0.5 * re);
1198           s = (0.5 * im) / r;
1199         }
1200       else
1201         {
1202           s = sqrt (0.5 * d - 0.5 * re);
1203           r = fabs ((0.5 * im) / s);
1204         }
1205 
1206       COMPLEX_ASSIGN (v, r, copysign (s, im));
1207     }
1208   return v;
1209 }
1210 #endif
1211 
1212 #if !defined(HAVE_CSQRTL) && defined(HAVE_COPYSIGNL) && defined(HAVE_SQRTL) && defined(HAVE_FABSL) && defined(HAVE_HYPOTL)
1213 #define HAVE_CSQRTL 1
1214 long double complex csqrtl (long double complex z);
1215 
1216 long double complex
csqrtl(long double complex z)1217 csqrtl (long double complex z)
1218 {
1219   long double re, im;
1220   long double complex v;
1221 
1222   re = REALPART (z);
1223   im = IMAGPART (z);
1224   if (im == 0)
1225     {
1226       if (re < 0)
1227         {
1228           COMPLEX_ASSIGN (v, 0, copysignl (sqrtl (-re), im));
1229         }
1230       else
1231         {
1232           COMPLEX_ASSIGN (v, fabsl (sqrtl (re)), copysignl (0, im));
1233         }
1234     }
1235   else if (re == 0)
1236     {
1237       long double r;
1238 
1239       r = sqrtl (0.5 * fabsl (im));
1240 
1241       COMPLEX_ASSIGN (v, copysignl (r, im), r);
1242     }
1243   else
1244     {
1245       long double d, r, s;
1246 
1247       d = hypotl (re, im);
1248       /* Use the identity   2  Re res  Im res = Im x
1249          to avoid cancellation error in  d +/- Re x.  */
1250       if (re > 0)
1251         {
1252           r = sqrtl (0.5 * d + 0.5 * re);
1253           s = (0.5 * im) / r;
1254         }
1255       else
1256         {
1257           s = sqrtl (0.5 * d - 0.5 * re);
1258           r = fabsl ((0.5 * im) / s);
1259         }
1260 
1261       COMPLEX_ASSIGN (v, r, copysignl (s, im));
1262     }
1263   return v;
1264 }
1265 #endif
1266 
1267 
1268 /* sinh(a + i b) = sinh(a) cos(b) + i cosh(a) sin(b)  */
1269 #if !defined(HAVE_CSINHF)
1270 #define HAVE_CSINHF 1
1271 float complex csinhf (float complex a);
1272 
1273 float complex
csinhf(float complex a)1274 csinhf (float complex a)
1275 {
1276   float r, i;
1277   float complex v;
1278 
1279   r = REALPART (a);
1280   i = IMAGPART (a);
1281   COMPLEX_ASSIGN (v, sinhf (r) * cosf (i), coshf (r) * sinf (i));
1282   return v;
1283 }
1284 #endif
1285 
1286 #if !defined(HAVE_CSINH)
1287 #define HAVE_CSINH 1
1288 double complex csinh (double complex a);
1289 
1290 double complex
csinh(double complex a)1291 csinh (double complex a)
1292 {
1293   double r, i;
1294   double complex v;
1295 
1296   r = REALPART (a);
1297   i = IMAGPART (a);
1298   COMPLEX_ASSIGN (v, sinh (r) * cos (i), cosh (r) * sin (i));
1299   return v;
1300 }
1301 #endif
1302 
1303 #if !defined(HAVE_CSINHL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
1304 #define HAVE_CSINHL 1
1305 long double complex csinhl (long double complex a);
1306 
1307 long double complex
csinhl(long double complex a)1308 csinhl (long double complex a)
1309 {
1310   long double r, i;
1311   long double complex v;
1312 
1313   r = REALPART (a);
1314   i = IMAGPART (a);
1315   COMPLEX_ASSIGN (v, sinhl (r) * cosl (i), coshl (r) * sinl (i));
1316   return v;
1317 }
1318 #endif
1319 
1320 
1321 /* cosh(a + i b) = cosh(a) cos(b) + i sinh(a) sin(b)  */
1322 #if !defined(HAVE_CCOSHF)
1323 #define HAVE_CCOSHF 1
1324 float complex ccoshf (float complex a);
1325 
1326 float complex
ccoshf(float complex a)1327 ccoshf (float complex a)
1328 {
1329   float r, i;
1330   float complex v;
1331 
1332   r = REALPART (a);
1333   i = IMAGPART (a);
1334   COMPLEX_ASSIGN (v, coshf (r) * cosf (i), sinhf (r) * sinf (i));
1335   return v;
1336 }
1337 #endif
1338 
1339 #if !defined(HAVE_CCOSH)
1340 #define HAVE_CCOSH 1
1341 double complex ccosh (double complex a);
1342 
1343 double complex
ccosh(double complex a)1344 ccosh (double complex a)
1345 {
1346   double r, i;
1347   double complex v;
1348 
1349   r = REALPART (a);
1350   i = IMAGPART (a);
1351   COMPLEX_ASSIGN (v, cosh (r) * cos (i),  sinh (r) * sin (i));
1352   return v;
1353 }
1354 #endif
1355 
1356 #if !defined(HAVE_CCOSHL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
1357 #define HAVE_CCOSHL 1
1358 long double complex ccoshl (long double complex a);
1359 
1360 long double complex
ccoshl(long double complex a)1361 ccoshl (long double complex a)
1362 {
1363   long double r, i;
1364   long double complex v;
1365 
1366   r = REALPART (a);
1367   i = IMAGPART (a);
1368   COMPLEX_ASSIGN (v, coshl (r) * cosl (i), sinhl (r) * sinl (i));
1369   return v;
1370 }
1371 #endif
1372 
1373 
1374 /* tanh(a + i b) = (tanh(a) + i tan(b)) / (1 + i tanh(a) tan(b))  */
1375 #if !defined(HAVE_CTANHF)
1376 #define HAVE_CTANHF 1
1377 float complex ctanhf (float complex a);
1378 
1379 float complex
ctanhf(float complex a)1380 ctanhf (float complex a)
1381 {
1382   float rt, it;
1383   float complex n, d;
1384 
1385   rt = tanhf (REALPART (a));
1386   it = tanf (IMAGPART (a));
1387   COMPLEX_ASSIGN (n, rt, it);
1388   COMPLEX_ASSIGN (d, 1, rt * it);
1389 
1390   return n / d;
1391 }
1392 #endif
1393 
1394 #if !defined(HAVE_CTANH)
1395 #define HAVE_CTANH 1
1396 double complex ctanh (double complex a);
1397 double complex
ctanh(double complex a)1398 ctanh (double complex a)
1399 {
1400   double rt, it;
1401   double complex n, d;
1402 
1403   rt = tanh (REALPART (a));
1404   it = tan (IMAGPART (a));
1405   COMPLEX_ASSIGN (n, rt, it);
1406   COMPLEX_ASSIGN (d, 1, rt * it);
1407 
1408   return n / d;
1409 }
1410 #endif
1411 
1412 #if !defined(HAVE_CTANHL) && defined(HAVE_TANL) && defined(HAVE_TANHL)
1413 #define HAVE_CTANHL 1
1414 long double complex ctanhl (long double complex a);
1415 
1416 long double complex
ctanhl(long double complex a)1417 ctanhl (long double complex a)
1418 {
1419   long double rt, it;
1420   long double complex n, d;
1421 
1422   rt = tanhl (REALPART (a));
1423   it = tanl (IMAGPART (a));
1424   COMPLEX_ASSIGN (n, rt, it);
1425   COMPLEX_ASSIGN (d, 1, rt * it);
1426 
1427   return n / d;
1428 }
1429 #endif
1430 
1431 
1432 /* sin(a + i b) = sin(a) cosh(b) + i cos(a) sinh(b)  */
1433 #if !defined(HAVE_CSINF)
1434 #define HAVE_CSINF 1
1435 float complex csinf (float complex a);
1436 
1437 float complex
csinf(float complex a)1438 csinf (float complex a)
1439 {
1440   float r, i;
1441   float complex v;
1442 
1443   r = REALPART (a);
1444   i = IMAGPART (a);
1445   COMPLEX_ASSIGN (v, sinf (r) * coshf (i), cosf (r) * sinhf (i));
1446   return v;
1447 }
1448 #endif
1449 
1450 #if !defined(HAVE_CSIN)
1451 #define HAVE_CSIN 1
1452 double complex csin (double complex a);
1453 
1454 double complex
csin(double complex a)1455 csin (double complex a)
1456 {
1457   double r, i;
1458   double complex v;
1459 
1460   r = REALPART (a);
1461   i = IMAGPART (a);
1462   COMPLEX_ASSIGN (v, sin (r) * cosh (i), cos (r) * sinh (i));
1463   return v;
1464 }
1465 #endif
1466 
1467 #if !defined(HAVE_CSINL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
1468 #define HAVE_CSINL 1
1469 long double complex csinl (long double complex a);
1470 
1471 long double complex
csinl(long double complex a)1472 csinl (long double complex a)
1473 {
1474   long double r, i;
1475   long double complex v;
1476 
1477   r = REALPART (a);
1478   i = IMAGPART (a);
1479   COMPLEX_ASSIGN (v, sinl (r) * coshl (i), cosl (r) * sinhl (i));
1480   return v;
1481 }
1482 #endif
1483 
1484 
1485 /* cos(a + i b) = cos(a) cosh(b) - i sin(a) sinh(b)  */
1486 #if !defined(HAVE_CCOSF)
1487 #define HAVE_CCOSF 1
1488 float complex ccosf (float complex a);
1489 
1490 float complex
ccosf(float complex a)1491 ccosf (float complex a)
1492 {
1493   float r, i;
1494   float complex v;
1495 
1496   r = REALPART (a);
1497   i = IMAGPART (a);
1498   COMPLEX_ASSIGN (v, cosf (r) * coshf (i), - (sinf (r) * sinhf (i)));
1499   return v;
1500 }
1501 #endif
1502 
1503 #if !defined(HAVE_CCOS)
1504 #define HAVE_CCOS 1
1505 double complex ccos (double complex a);
1506 
1507 double complex
ccos(double complex a)1508 ccos (double complex a)
1509 {
1510   double r, i;
1511   double complex v;
1512 
1513   r = REALPART (a);
1514   i = IMAGPART (a);
1515   COMPLEX_ASSIGN (v, cos (r) * cosh (i), - (sin (r) * sinh (i)));
1516   return v;
1517 }
1518 #endif
1519 
1520 #if !defined(HAVE_CCOSL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
1521 #define HAVE_CCOSL 1
1522 long double complex ccosl (long double complex a);
1523 
1524 long double complex
ccosl(long double complex a)1525 ccosl (long double complex a)
1526 {
1527   long double r, i;
1528   long double complex v;
1529 
1530   r = REALPART (a);
1531   i = IMAGPART (a);
1532   COMPLEX_ASSIGN (v, cosl (r) * coshl (i), - (sinl (r) * sinhl (i)));
1533   return v;
1534 }
1535 #endif
1536 
1537 
1538 /* tan(a + i b) = (tan(a) + i tanh(b)) / (1 - i tan(a) tanh(b))  */
1539 #if !defined(HAVE_CTANF)
1540 #define HAVE_CTANF 1
1541 float complex ctanf (float complex a);
1542 
1543 float complex
ctanf(float complex a)1544 ctanf (float complex a)
1545 {
1546   float rt, it;
1547   float complex n, d;
1548 
1549   rt = tanf (REALPART (a));
1550   it = tanhf (IMAGPART (a));
1551   COMPLEX_ASSIGN (n, rt, it);
1552   COMPLEX_ASSIGN (d, 1, - (rt * it));
1553 
1554   return n / d;
1555 }
1556 #endif
1557 
1558 #if !defined(HAVE_CTAN)
1559 #define HAVE_CTAN 1
1560 double complex ctan (double complex a);
1561 
1562 double complex
ctan(double complex a)1563 ctan (double complex a)
1564 {
1565   double rt, it;
1566   double complex n, d;
1567 
1568   rt = tan (REALPART (a));
1569   it = tanh (IMAGPART (a));
1570   COMPLEX_ASSIGN (n, rt, it);
1571   COMPLEX_ASSIGN (d, 1, - (rt * it));
1572 
1573   return n / d;
1574 }
1575 #endif
1576 
1577 #if !defined(HAVE_CTANL) && defined(HAVE_TANL) && defined(HAVE_TANHL)
1578 #define HAVE_CTANL 1
1579 long double complex ctanl (long double complex a);
1580 
1581 long double complex
ctanl(long double complex a)1582 ctanl (long double complex a)
1583 {
1584   long double rt, it;
1585   long double complex n, d;
1586 
1587   rt = tanl (REALPART (a));
1588   it = tanhl (IMAGPART (a));
1589   COMPLEX_ASSIGN (n, rt, it);
1590   COMPLEX_ASSIGN (d, 1, - (rt * it));
1591 
1592   return n / d;
1593 }
1594 #endif
1595 
1596 
1597 /* Complex ASIN.  Returns wrongly NaN for infinite arguments.
1598    Algorithm taken from Abramowitz & Stegun.  */
1599 
1600 #if !defined(HAVE_CASINF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF)
1601 #define HAVE_CASINF 1
1602 complex float casinf (complex float z);
1603 
1604 complex float
casinf(complex float z)1605 casinf (complex float z)
1606 {
1607   return -I*clogf (I*z + csqrtf (1.0f-z*z));
1608 }
1609 #endif
1610 
1611 
1612 #if !defined(HAVE_CASIN) && defined(HAVE_CLOG) && defined(HAVE_CSQRT)
1613 #define HAVE_CASIN 1
1614 complex double casin (complex double z);
1615 
1616 complex double
casin(complex double z)1617 casin (complex double z)
1618 {
1619   return -I*clog (I*z + csqrt (1.0-z*z));
1620 }
1621 #endif
1622 
1623 
1624 #if !defined(HAVE_CASINL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL)
1625 #define HAVE_CASINL 1
1626 complex long double casinl (complex long double z);
1627 
1628 complex long double
casinl(complex long double z)1629 casinl (complex long double z)
1630 {
1631   return -I*clogl (I*z + csqrtl (1.0L-z*z));
1632 }
1633 #endif
1634 
1635 
1636 /* Complex ACOS.  Returns wrongly NaN for infinite arguments.
1637    Algorithm taken from Abramowitz & Stegun.  */
1638 
1639 #if !defined(HAVE_CACOSF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF)
1640 #define HAVE_CACOSF 1
1641 complex float cacosf (complex float z);
1642 
1643 complex float
cacosf(complex float z)1644 cacosf (complex float z)
1645 {
1646   return -I*clogf (z + I*csqrtf (1.0f-z*z));
1647 }
1648 #endif
1649 
1650 
1651 #if !defined(HAVE_CACOS) && defined(HAVE_CLOG) && defined(HAVE_CSQRT)
1652 #define HAVE_CACOS 1
1653 complex double cacos (complex double z);
1654 
1655 complex double
cacos(complex double z)1656 cacos (complex double z)
1657 {
1658   return -I*clog (z + I*csqrt (1.0-z*z));
1659 }
1660 #endif
1661 
1662 
1663 #if !defined(HAVE_CACOSL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL)
1664 #define HAVE_CACOSL 1
1665 complex long double cacosl (complex long double z);
1666 
1667 complex long double
cacosl(complex long double z)1668 cacosl (complex long double z)
1669 {
1670   return -I*clogl (z + I*csqrtl (1.0L-z*z));
1671 }
1672 #endif
1673 
1674 
1675 /* Complex ATAN.  Returns wrongly NaN for infinite arguments.
1676    Algorithm taken from Abramowitz & Stegun.  */
1677 
1678 #if !defined(HAVE_CATANF) && defined(HAVE_CLOGF)
1679 #define HAVE_CACOSF 1
1680 complex float catanf (complex float z);
1681 
1682 complex float
catanf(complex float z)1683 catanf (complex float z)
1684 {
1685   return I*clogf ((I+z)/(I-z))/2.0f;
1686 }
1687 #endif
1688 
1689 
1690 #if !defined(HAVE_CATAN) && defined(HAVE_CLOG)
1691 #define HAVE_CACOS 1
1692 complex double catan (complex double z);
1693 
1694 complex double
catan(complex double z)1695 catan (complex double z)
1696 {
1697   return I*clog ((I+z)/(I-z))/2.0;
1698 }
1699 #endif
1700 
1701 
1702 #if !defined(HAVE_CATANL) && defined(HAVE_CLOGL)
1703 #define HAVE_CACOSL 1
1704 complex long double catanl (complex long double z);
1705 
1706 complex long double
catanl(complex long double z)1707 catanl (complex long double z)
1708 {
1709   return I*clogl ((I+z)/(I-z))/2.0L;
1710 }
1711 #endif
1712 
1713 
1714 /* Complex ASINH.  Returns wrongly NaN for infinite arguments.
1715    Algorithm taken from Abramowitz & Stegun.  */
1716 
1717 #if !defined(HAVE_CASINHF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF)
1718 #define HAVE_CASINHF 1
1719 complex float casinhf (complex float z);
1720 
1721 complex float
casinhf(complex float z)1722 casinhf (complex float z)
1723 {
1724   return clogf (z + csqrtf (z*z+1.0f));
1725 }
1726 #endif
1727 
1728 
1729 #if !defined(HAVE_CASINH) && defined(HAVE_CLOG) && defined(HAVE_CSQRT)
1730 #define HAVE_CASINH 1
1731 complex double casinh (complex double z);
1732 
1733 complex double
casinh(complex double z)1734 casinh (complex double z)
1735 {
1736   return clog (z + csqrt (z*z+1.0));
1737 }
1738 #endif
1739 
1740 
1741 #if !defined(HAVE_CASINHL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL)
1742 #define HAVE_CASINHL 1
1743 complex long double casinhl (complex long double z);
1744 
1745 complex long double
casinhl(complex long double z)1746 casinhl (complex long double z)
1747 {
1748   return clogl (z + csqrtl (z*z+1.0L));
1749 }
1750 #endif
1751 
1752 
1753 /* Complex ACOSH.  Returns wrongly NaN for infinite arguments.
1754    Algorithm taken from Abramowitz & Stegun.  */
1755 
1756 #if !defined(HAVE_CACOSHF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF)
1757 #define HAVE_CACOSHF 1
1758 complex float cacoshf (complex float z);
1759 
1760 complex float
cacoshf(complex float z)1761 cacoshf (complex float z)
1762 {
1763   return clogf (z + csqrtf (z-1.0f) * csqrtf (z+1.0f));
1764 }
1765 #endif
1766 
1767 
1768 #if !defined(HAVE_CACOSH) && defined(HAVE_CLOG) && defined(HAVE_CSQRT)
1769 #define HAVE_CACOSH 1
1770 complex double cacosh (complex double z);
1771 
1772 complex double
cacosh(complex double z)1773 cacosh (complex double z)
1774 {
1775   return clog (z + csqrt (z-1.0) * csqrt (z+1.0));
1776 }
1777 #endif
1778 
1779 
1780 #if !defined(HAVE_CACOSHL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL)
1781 #define HAVE_CACOSHL 1
1782 complex long double cacoshl (complex long double z);
1783 
1784 complex long double
cacoshl(complex long double z)1785 cacoshl (complex long double z)
1786 {
1787   return clogl (z + csqrtl (z-1.0L) * csqrtl (z+1.0L));
1788 }
1789 #endif
1790 
1791 
1792 /* Complex ATANH.  Returns wrongly NaN for infinite arguments.
1793    Algorithm taken from Abramowitz & Stegun.  */
1794 
1795 #if !defined(HAVE_CATANHF) && defined(HAVE_CLOGF)
1796 #define HAVE_CATANHF 1
1797 complex float catanhf (complex float z);
1798 
1799 complex float
catanhf(complex float z)1800 catanhf (complex float z)
1801 {
1802   return clogf ((1.0f+z)/(1.0f-z))/2.0f;
1803 }
1804 #endif
1805 
1806 
1807 #if !defined(HAVE_CATANH) && defined(HAVE_CLOG)
1808 #define HAVE_CATANH 1
1809 complex double catanh (complex double z);
1810 
1811 complex double
catanh(complex double z)1812 catanh (complex double z)
1813 {
1814   return clog ((1.0+z)/(1.0-z))/2.0;
1815 }
1816 #endif
1817 
1818 #if !defined(HAVE_CATANHL) && defined(HAVE_CLOGL)
1819 #define HAVE_CATANHL 1
1820 complex long double catanhl (complex long double z);
1821 
1822 complex long double
catanhl(complex long double z)1823 catanhl (complex long double z)
1824 {
1825   return clogl ((1.0L+z)/(1.0L-z))/2.0L;
1826 }
1827 #endif
1828 
1829 
1830 #if !defined(HAVE_TGAMMA)
1831 #define HAVE_TGAMMA 1
1832 double tgamma (double);
1833 
1834 /* Fallback tgamma() function. Uses the algorithm from
1835    http://www.netlib.org/specfun/gamma and references therein.  */
1836 
1837 #undef SQRTPI
1838 #define SQRTPI 0.9189385332046727417803297
1839 
1840 #undef PI
1841 #define PI 3.1415926535897932384626434
1842 
1843 double
tgamma(double x)1844 tgamma (double x)
1845 {
1846   int i, n, parity;
1847   double fact, res, sum, xden, xnum, y, y1, ysq, z;
1848 
1849   static double p[8] = {
1850     -1.71618513886549492533811e0,  2.47656508055759199108314e1,
1851     -3.79804256470945635097577e2,  6.29331155312818442661052e2,
1852      8.66966202790413211295064e2, -3.14512729688483675254357e4,
1853     -3.61444134186911729807069e4,  6.64561438202405440627855e4 };
1854 
1855   static double q[8] = {
1856     -3.08402300119738975254353e1,  3.15350626979604161529144e2,
1857     -1.01515636749021914166146e3, -3.10777167157231109440444e3,
1858      2.25381184209801510330112e4,  4.75584627752788110767815e3,
1859     -1.34659959864969306392456e5, -1.15132259675553483497211e5 };
1860 
1861   static double c[7] = {             -1.910444077728e-03,
1862      8.4171387781295e-04,            -5.952379913043012e-04,
1863      7.93650793500350248e-04,        -2.777777777777681622553e-03,
1864      8.333333333333333331554247e-02,  5.7083835261e-03 };
1865 
1866   static const double xminin = 2.23e-308;
1867   static const double xbig = 171.624;
1868   static const double xnan = __builtin_nan ("0x0"), xinf = __builtin_inf ();
1869   static double eps = 0;
1870 
1871   if (eps == 0)
1872     eps = nextafter (1., 2.) - 1.;
1873 
1874   parity = 0;
1875   fact = 1;
1876   n = 0;
1877   y = x;
1878 
1879   if (isnan (x))
1880     return x;
1881 
1882   if (y <= 0)
1883     {
1884       y = -x;
1885       y1 = trunc (y);
1886       res = y - y1;
1887 
1888       if (res != 0)
1889 	{
1890 	  if (y1 != trunc (y1*0.5l)*2)
1891 	    parity = 1;
1892 	  fact = -PI / sin (PI*res);
1893 	  y = y + 1;
1894 	}
1895       else
1896 	return x == 0 ? copysign (xinf, x) : xnan;
1897     }
1898 
1899   if (y < eps)
1900     {
1901       if (y >= xminin)
1902         res = 1 / y;
1903       else
1904 	return xinf;
1905     }
1906   else if (y < 13)
1907     {
1908       y1 = y;
1909       if (y < 1)
1910 	{
1911 	  z = y;
1912 	  y = y + 1;
1913 	}
1914       else
1915 	{
1916 	  n = (int)y - 1;
1917 	  y = y - n;
1918 	  z = y - 1;
1919 	}
1920 
1921       xnum = 0;
1922       xden = 1;
1923       for (i = 0; i < 8; i++)
1924 	{
1925 	  xnum = (xnum + p[i]) * z;
1926 	  xden = xden * z + q[i];
1927 	}
1928 
1929       res = xnum / xden + 1;
1930 
1931       if (y1 < y)
1932         res = res / y1;
1933       else if (y1 > y)
1934 	for (i = 1; i <= n; i++)
1935 	  {
1936 	    res = res * y;
1937 	    y = y + 1;
1938 	  }
1939     }
1940   else
1941     {
1942       if (y < xbig)
1943 	{
1944 	  ysq = y * y;
1945 	  sum = c[6];
1946 	  for (i = 0; i < 6; i++)
1947 	    sum = sum / ysq + c[i];
1948 
1949 	  sum = sum/y - y + SQRTPI;
1950 	  sum = sum + (y - 0.5) * log (y);
1951 	  res = exp (sum);
1952 	}
1953       else
1954 	return x < 0 ? xnan : xinf;
1955     }
1956 
1957   if (parity)
1958     res = -res;
1959   if (fact != 1)
1960     res = fact / res;
1961 
1962   return res;
1963 }
1964 #endif
1965 
1966 
1967 
1968 #if !defined(HAVE_LGAMMA)
1969 #define HAVE_LGAMMA 1
1970 double lgamma (double);
1971 
1972 /* Fallback lgamma() function. Uses the algorithm from
1973    http://www.netlib.org/specfun/algama and references therein,
1974    except for negative arguments (where netlib would return +Inf)
1975    where we use the following identity:
1976        lgamma(y) = log(pi/(|y*sin(pi*y)|)) - lgamma(-y)
1977  */
1978 
1979 double
lgamma(double y)1980 lgamma (double y)
1981 {
1982 
1983 #undef SQRTPI
1984 #define SQRTPI 0.9189385332046727417803297
1985 
1986 #undef PI
1987 #define PI 3.1415926535897932384626434
1988 
1989 #define PNT68  0.6796875
1990 #define D1    -0.5772156649015328605195174
1991 #define D2     0.4227843350984671393993777
1992 #define D4     1.791759469228055000094023
1993 
1994   static double p1[8] = {
1995               4.945235359296727046734888e0, 2.018112620856775083915565e2,
1996               2.290838373831346393026739e3, 1.131967205903380828685045e4,
1997               2.855724635671635335736389e4, 3.848496228443793359990269e4,
1998               2.637748787624195437963534e4, 7.225813979700288197698961e3 };
1999   static double q1[8] = {
2000               6.748212550303777196073036e1,  1.113332393857199323513008e3,
2001               7.738757056935398733233834e3,  2.763987074403340708898585e4,
2002               5.499310206226157329794414e4,  6.161122180066002127833352e4,
2003               3.635127591501940507276287e4,  8.785536302431013170870835e3 };
2004   static double p2[8] = {
2005               4.974607845568932035012064e0,  5.424138599891070494101986e2,
2006               1.550693864978364947665077e4,  1.847932904445632425417223e5,
2007               1.088204769468828767498470e6,  3.338152967987029735917223e6,
2008               5.106661678927352456275255e6,  3.074109054850539556250927e6 };
2009   static double q2[8] = {
2010               1.830328399370592604055942e2,  7.765049321445005871323047e3,
2011               1.331903827966074194402448e5,  1.136705821321969608938755e6,
2012               5.267964117437946917577538e6,  1.346701454311101692290052e7,
2013               1.782736530353274213975932e7,  9.533095591844353613395747e6 };
2014   static double p4[8] = {
2015               1.474502166059939948905062e4,  2.426813369486704502836312e6,
2016               1.214755574045093227939592e8,  2.663432449630976949898078e9,
2017               2.940378956634553899906876e10, 1.702665737765398868392998e11,
2018               4.926125793377430887588120e11, 5.606251856223951465078242e11 };
2019   static double q4[8] = {
2020               2.690530175870899333379843e3,  6.393885654300092398984238e5,
2021               4.135599930241388052042842e7,  1.120872109616147941376570e9,
2022               1.488613728678813811542398e10, 1.016803586272438228077304e11,
2023               3.417476345507377132798597e11, 4.463158187419713286462081e11 };
2024   static double  c[7] = {
2025              -1.910444077728e-03,            8.4171387781295e-04,
2026              -5.952379913043012e-04,         7.93650793500350248e-04,
2027              -2.777777777777681622553e-03,   8.333333333333333331554247e-02,
2028               5.7083835261e-03 };
2029 
2030   static double xbig = 2.55e305, xinf = __builtin_inf (), eps = 0,
2031 		frtbig = 2.25e76;
2032 
2033   int i;
2034   double corr, res, xden, xm1, xm2, xm4, xnum, ysq;
2035 
2036   if (eps == 0)
2037     eps = __builtin_nextafter (1., 2.) - 1.;
2038 
2039   if ((y > 0) && (y <= xbig))
2040     {
2041       if (y <= eps)
2042 	res = -log (y);
2043       else if (y <= 1.5)
2044 	{
2045 	  if (y < PNT68)
2046 	    {
2047 	      corr = -log (y);
2048 	      xm1 = y;
2049 	    }
2050 	  else
2051 	    {
2052 	      corr = 0;
2053 	      xm1 = (y - 0.5) - 0.5;
2054 	    }
2055 
2056 	  if ((y <= 0.5) || (y >= PNT68))
2057 	    {
2058 	      xden = 1;
2059 	      xnum = 0;
2060 	      for (i = 0; i < 8; i++)
2061 		{
2062 		  xnum = xnum*xm1 + p1[i];
2063 		  xden = xden*xm1 + q1[i];
2064 		}
2065 	      res = corr + (xm1 * (D1 + xm1*(xnum/xden)));
2066 	    }
2067 	  else
2068 	    {
2069 	      xm2 = (y - 0.5) - 0.5;
2070 	      xden = 1;
2071 	      xnum = 0;
2072 	      for (i = 0; i < 8; i++)
2073 		{
2074 		  xnum = xnum*xm2 + p2[i];
2075 		  xden = xden*xm2 + q2[i];
2076 		}
2077 	      res = corr + xm2 * (D2 + xm2*(xnum/xden));
2078 	    }
2079 	}
2080       else if (y <= 4)
2081 	{
2082 	  xm2 = y - 2;
2083 	  xden = 1;
2084 	  xnum = 0;
2085 	  for (i = 0; i < 8; i++)
2086 	    {
2087 	      xnum = xnum*xm2 + p2[i];
2088 	      xden = xden*xm2 + q2[i];
2089 	    }
2090 	  res = xm2 * (D2 + xm2*(xnum/xden));
2091 	}
2092       else if (y <= 12)
2093 	{
2094 	  xm4 = y - 4;
2095 	  xden = -1;
2096 	  xnum = 0;
2097 	  for (i = 0; i < 8; i++)
2098 	    {
2099 	      xnum = xnum*xm4 + p4[i];
2100 	      xden = xden*xm4 + q4[i];
2101 	    }
2102 	  res = D4 + xm4*(xnum/xden);
2103 	}
2104       else
2105 	{
2106 	  res = 0;
2107 	  if (y <= frtbig)
2108 	    {
2109 	      res = c[6];
2110 	      ysq = y * y;
2111 	      for (i = 0; i < 6; i++)
2112 		res = res / ysq + c[i];
2113 	    }
2114 	  res = res/y;
2115 	  corr = log (y);
2116 	  res = res + SQRTPI - 0.5*corr;
2117 	  res = res + y*(corr-1);
2118 	}
2119     }
2120   else if (y < 0 && __builtin_floor (y) != y)
2121     {
2122       /* lgamma(y) = log(pi/(|y*sin(pi*y)|)) - lgamma(-y)
2123          For abs(y) very close to zero, we use a series expansion to
2124 	 the first order in y to avoid overflow.  */
2125       if (y > -1.e-100)
2126         res = -2 * log (fabs (y)) - lgamma (-y);
2127       else
2128         res = log (PI / fabs (y * sin (PI * y))) - lgamma (-y);
2129     }
2130   else
2131     res = xinf;
2132 
2133   return res;
2134 }
2135 #endif
2136 
2137 
2138 #if defined(HAVE_TGAMMA) && !defined(HAVE_TGAMMAF)
2139 #define HAVE_TGAMMAF 1
2140 float tgammaf (float);
2141 
2142 float
tgammaf(float x)2143 tgammaf (float x)
2144 {
2145   return (float) tgamma ((double) x);
2146 }
2147 #endif
2148 
2149 #if defined(HAVE_LGAMMA) && !defined(HAVE_LGAMMAF)
2150 #define HAVE_LGAMMAF 1
2151 float lgammaf (float);
2152 
2153 float
lgammaf(float x)2154 lgammaf (float x)
2155 {
2156   return (float) lgamma ((double) x);
2157 }
2158 #endif
2159 
2160 #ifndef HAVE_FMA
2161 #define HAVE_FMA 1
2162 double fma (double, double, double);
2163 
2164 double
fma(double x,double y,double z)2165 fma (double x, double y, double z)
2166 {
2167   return x * y + z;
2168 }
2169 #endif
2170 
2171 #ifndef HAVE_FMAF
2172 #define HAVE_FMAF 1
2173 float fmaf (float, float, float);
2174 
2175 float
fmaf(float x,float y,float z)2176 fmaf (float x, float y, float z)
2177 {
2178   return fma (x, y, z);
2179 }
2180 #endif
2181 
2182 #ifndef HAVE_FMAL
2183 #define HAVE_FMAL 1
2184 long double fmal (long double, long double, long double);
2185 
2186 long double
fmal(long double x,long double y,long double z)2187 fmal (long double x, long double y, long double z)
2188 {
2189   return x * y + z;
2190 }
2191 #endif
2192