163d1a8abSmrg // Special functions -*- C++ -*-
263d1a8abSmrg 
3*ec02198aSmrg // Copyright (C) 2006-2020 Free Software Foundation, Inc.
463d1a8abSmrg //
563d1a8abSmrg // This file is part of the GNU ISO C++ Library.  This library is free
663d1a8abSmrg // software; you can redistribute it and/or modify it under the
763d1a8abSmrg // terms of the GNU General Public License as published by the
863d1a8abSmrg // Free Software Foundation; either version 3, or (at your option)
963d1a8abSmrg // any later version.
1063d1a8abSmrg //
1163d1a8abSmrg // This library is distributed in the hope that it will be useful,
1263d1a8abSmrg // but WITHOUT ANY WARRANTY; without even the implied warranty of
1363d1a8abSmrg // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
1463d1a8abSmrg // GNU General Public License for more details.
1563d1a8abSmrg //
1663d1a8abSmrg // Under Section 7 of GPL version 3, you are granted additional
1763d1a8abSmrg // permissions described in the GCC Runtime Library Exception, version
1863d1a8abSmrg // 3.1, as published by the Free Software Foundation.
1963d1a8abSmrg 
2063d1a8abSmrg // You should have received a copy of the GNU General Public License and
2163d1a8abSmrg // a copy of the GCC Runtime Library Exception along with this program;
2263d1a8abSmrg // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
2363d1a8abSmrg // <http://www.gnu.org/licenses/>.
2463d1a8abSmrg 
2563d1a8abSmrg /** @file tr1/hypergeometric.tcc
2663d1a8abSmrg  *  This is an internal header file, included by other library headers.
2763d1a8abSmrg  *  Do not attempt to use it directly. @headername{tr1/cmath}
2863d1a8abSmrg  */
2963d1a8abSmrg 
3063d1a8abSmrg //
3163d1a8abSmrg // ISO C++ 14882 TR1: 5.2  Special functions
3263d1a8abSmrg //
3363d1a8abSmrg 
3463d1a8abSmrg // Written by Edward Smith-Rowland based:
3563d1a8abSmrg //   (1) Handbook of Mathematical Functions,
3663d1a8abSmrg //       ed. Milton Abramowitz and Irene A. Stegun,
3763d1a8abSmrg //       Dover Publications,
3863d1a8abSmrg //       Section 6, pp. 555-566
3963d1a8abSmrg //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
4063d1a8abSmrg 
4163d1a8abSmrg #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
4263d1a8abSmrg #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
4363d1a8abSmrg 
4463d1a8abSmrg namespace std _GLIBCXX_VISIBILITY(default)
4563d1a8abSmrg {
46c7a68eb7Smrg _GLIBCXX_BEGIN_NAMESPACE_VERSION
47c7a68eb7Smrg 
4863d1a8abSmrg #if _GLIBCXX_USE_STD_SPEC_FUNCS
4963d1a8abSmrg # define _GLIBCXX_MATH_NS ::std
5063d1a8abSmrg #elif defined(_GLIBCXX_TR1_CMATH)
5163d1a8abSmrg namespace tr1
5263d1a8abSmrg {
5363d1a8abSmrg # define _GLIBCXX_MATH_NS ::std::tr1
5463d1a8abSmrg #else
5563d1a8abSmrg # error do not include this header directly, use <cmath> or <tr1/cmath>
5663d1a8abSmrg #endif
5763d1a8abSmrg   // [5.2] Special functions
5863d1a8abSmrg 
5963d1a8abSmrg   // Implementation-space details.
6063d1a8abSmrg   namespace __detail
6163d1a8abSmrg   {
6263d1a8abSmrg     /**
6363d1a8abSmrg      *   @brief This routine returns the confluent hypergeometric function
6463d1a8abSmrg      *          by series expansion.
6563d1a8abSmrg      *
6663d1a8abSmrg      *   @f[
6763d1a8abSmrg      *     _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
6863d1a8abSmrg      *                      \sum_{n=0}^{\infty}
6963d1a8abSmrg      *                      \frac{\Gamma(a+n)}{\Gamma(c+n)}
7063d1a8abSmrg      *                      \frac{x^n}{n!}
7163d1a8abSmrg      *   @f]
7263d1a8abSmrg      *
7363d1a8abSmrg      *   If a and b are integers and a < 0 and either b > 0 or b < a
7463d1a8abSmrg      *   then the series is a polynomial with a finite number of
7563d1a8abSmrg      *   terms.  If b is an integer and b <= 0 the confluent
7663d1a8abSmrg      *   hypergeometric function is undefined.
7763d1a8abSmrg      *
7863d1a8abSmrg      *   @param  __a  The "numerator" parameter.
7963d1a8abSmrg      *   @param  __c  The "denominator" parameter.
8063d1a8abSmrg      *   @param  __x  The argument of the confluent hypergeometric function.
8163d1a8abSmrg      *   @return  The confluent hypergeometric function.
8263d1a8abSmrg      */
8363d1a8abSmrg     template<typename _Tp>
8463d1a8abSmrg     _Tp
__conf_hyperg_series(_Tp __a,_Tp __c,_Tp __x)8563d1a8abSmrg     __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x)
8663d1a8abSmrg     {
8763d1a8abSmrg       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
8863d1a8abSmrg 
8963d1a8abSmrg       _Tp __term = _Tp(1);
9063d1a8abSmrg       _Tp __Fac = _Tp(1);
9163d1a8abSmrg       const unsigned int __max_iter = 100000;
9263d1a8abSmrg       unsigned int __i;
9363d1a8abSmrg       for (__i = 0; __i < __max_iter; ++__i)
9463d1a8abSmrg         {
9563d1a8abSmrg           __term *= (__a + _Tp(__i)) * __x
9663d1a8abSmrg                   / ((__c + _Tp(__i)) * _Tp(1 + __i));
9763d1a8abSmrg           if (std::abs(__term) < __eps)
9863d1a8abSmrg             {
9963d1a8abSmrg               break;
10063d1a8abSmrg             }
10163d1a8abSmrg           __Fac += __term;
10263d1a8abSmrg         }
10363d1a8abSmrg       if (__i == __max_iter)
10463d1a8abSmrg         std::__throw_runtime_error(__N("Series failed to converge "
10563d1a8abSmrg                                        "in __conf_hyperg_series."));
10663d1a8abSmrg 
10763d1a8abSmrg       return __Fac;
10863d1a8abSmrg     }
10963d1a8abSmrg 
11063d1a8abSmrg 
11163d1a8abSmrg     /**
11263d1a8abSmrg      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
11363d1a8abSmrg      *          by an iterative procedure described in
11463d1a8abSmrg      *          Luke, Algorithms for the Computation of Mathematical Functions.
11563d1a8abSmrg      *
11663d1a8abSmrg      *  Like the case of the 2F1 rational approximations, these are
11763d1a8abSmrg      *  probably guaranteed to converge for x < 0, barring gross
11863d1a8abSmrg      *  numerical instability in the pre-asymptotic regime.
11963d1a8abSmrg      */
12063d1a8abSmrg     template<typename _Tp>
12163d1a8abSmrg     _Tp
__conf_hyperg_luke(_Tp __a,_Tp __c,_Tp __xin)12263d1a8abSmrg     __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin)
12363d1a8abSmrg     {
12463d1a8abSmrg       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
12563d1a8abSmrg       const int __nmax = 20000;
12663d1a8abSmrg       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
12763d1a8abSmrg       const _Tp __x  = -__xin;
12863d1a8abSmrg       const _Tp __x3 = __x * __x * __x;
12963d1a8abSmrg       const _Tp __t0 = __a / __c;
13063d1a8abSmrg       const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
13163d1a8abSmrg       const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
13263d1a8abSmrg       _Tp __F = _Tp(1);
13363d1a8abSmrg       _Tp __prec;
13463d1a8abSmrg 
13563d1a8abSmrg       _Tp __Bnm3 = _Tp(1);
13663d1a8abSmrg       _Tp __Bnm2 = _Tp(1) + __t1 * __x;
13763d1a8abSmrg       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
13863d1a8abSmrg 
13963d1a8abSmrg       _Tp __Anm3 = _Tp(1);
14063d1a8abSmrg       _Tp __Anm2 = __Bnm2 - __t0 * __x;
14163d1a8abSmrg       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
14263d1a8abSmrg                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
14363d1a8abSmrg 
14463d1a8abSmrg       int __n = 3;
14563d1a8abSmrg       while(1)
14663d1a8abSmrg         {
14763d1a8abSmrg           _Tp __npam1 = _Tp(__n - 1) + __a;
14863d1a8abSmrg           _Tp __npcm1 = _Tp(__n - 1) + __c;
14963d1a8abSmrg           _Tp __npam2 = _Tp(__n - 2) + __a;
15063d1a8abSmrg           _Tp __npcm2 = _Tp(__n - 2) + __c;
15163d1a8abSmrg           _Tp __tnm1  = _Tp(2 * __n - 1);
15263d1a8abSmrg           _Tp __tnm3  = _Tp(2 * __n - 3);
15363d1a8abSmrg           _Tp __tnm5  = _Tp(2 * __n - 5);
15463d1a8abSmrg           _Tp __F1 =  (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
15563d1a8abSmrg           _Tp __F2 =  (_Tp(__n) + __a) * __npam1
15663d1a8abSmrg                    / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
15763d1a8abSmrg           _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
15863d1a8abSmrg                    / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
15963d1a8abSmrg                    * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
16063d1a8abSmrg           _Tp __E  = -__npam1 * (_Tp(__n - 1) - __c)
16163d1a8abSmrg                    / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
16263d1a8abSmrg 
16363d1a8abSmrg           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
16463d1a8abSmrg                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
16563d1a8abSmrg           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
16663d1a8abSmrg                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
16763d1a8abSmrg           _Tp __r = __An / __Bn;
16863d1a8abSmrg 
16963d1a8abSmrg           __prec = std::abs((__F - __r) / __F);
17063d1a8abSmrg           __F = __r;
17163d1a8abSmrg 
17263d1a8abSmrg           if (__prec < __eps || __n > __nmax)
17363d1a8abSmrg             break;
17463d1a8abSmrg 
17563d1a8abSmrg           if (std::abs(__An) > __big || std::abs(__Bn) > __big)
17663d1a8abSmrg             {
17763d1a8abSmrg               __An   /= __big;
17863d1a8abSmrg               __Bn   /= __big;
17963d1a8abSmrg               __Anm1 /= __big;
18063d1a8abSmrg               __Bnm1 /= __big;
18163d1a8abSmrg               __Anm2 /= __big;
18263d1a8abSmrg               __Bnm2 /= __big;
18363d1a8abSmrg               __Anm3 /= __big;
18463d1a8abSmrg               __Bnm3 /= __big;
18563d1a8abSmrg             }
18663d1a8abSmrg           else if (std::abs(__An) < _Tp(1) / __big
18763d1a8abSmrg                 || std::abs(__Bn) < _Tp(1) / __big)
18863d1a8abSmrg             {
18963d1a8abSmrg               __An   *= __big;
19063d1a8abSmrg               __Bn   *= __big;
19163d1a8abSmrg               __Anm1 *= __big;
19263d1a8abSmrg               __Bnm1 *= __big;
19363d1a8abSmrg               __Anm2 *= __big;
19463d1a8abSmrg               __Bnm2 *= __big;
19563d1a8abSmrg               __Anm3 *= __big;
19663d1a8abSmrg               __Bnm3 *= __big;
19763d1a8abSmrg             }
19863d1a8abSmrg 
19963d1a8abSmrg           ++__n;
20063d1a8abSmrg           __Bnm3 = __Bnm2;
20163d1a8abSmrg           __Bnm2 = __Bnm1;
20263d1a8abSmrg           __Bnm1 = __Bn;
20363d1a8abSmrg           __Anm3 = __Anm2;
20463d1a8abSmrg           __Anm2 = __Anm1;
20563d1a8abSmrg           __Anm1 = __An;
20663d1a8abSmrg         }
20763d1a8abSmrg 
20863d1a8abSmrg       if (__n >= __nmax)
20963d1a8abSmrg         std::__throw_runtime_error(__N("Iteration failed to converge "
21063d1a8abSmrg                                        "in __conf_hyperg_luke."));
21163d1a8abSmrg 
21263d1a8abSmrg       return __F;
21363d1a8abSmrg     }
21463d1a8abSmrg 
21563d1a8abSmrg 
21663d1a8abSmrg     /**
21763d1a8abSmrg      *   @brief  Return the confluent hypogeometric function
21863d1a8abSmrg      *           @f$ _1F_1(a;c;x) @f$.
21963d1a8abSmrg      *
22063d1a8abSmrg      *   @todo  Handle b == nonpositive integer blowup - return NaN.
22163d1a8abSmrg      *
22263d1a8abSmrg      *   @param  __a  The @a numerator parameter.
22363d1a8abSmrg      *   @param  __c  The @a denominator parameter.
22463d1a8abSmrg      *   @param  __x  The argument of the confluent hypergeometric function.
22563d1a8abSmrg      *   @return  The confluent hypergeometric function.
22663d1a8abSmrg      */
22763d1a8abSmrg     template<typename _Tp>
22863d1a8abSmrg     _Tp
__conf_hyperg(_Tp __a,_Tp __c,_Tp __x)22963d1a8abSmrg     __conf_hyperg(_Tp __a, _Tp __c, _Tp __x)
23063d1a8abSmrg     {
23163d1a8abSmrg #if _GLIBCXX_USE_C99_MATH_TR1
23263d1a8abSmrg       const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c);
23363d1a8abSmrg #else
23463d1a8abSmrg       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
23563d1a8abSmrg #endif
23663d1a8abSmrg       if (__isnan(__a) || __isnan(__c) || __isnan(__x))
23763d1a8abSmrg         return std::numeric_limits<_Tp>::quiet_NaN();
23863d1a8abSmrg       else if (__c_nint == __c && __c_nint <= 0)
23963d1a8abSmrg         return std::numeric_limits<_Tp>::infinity();
24063d1a8abSmrg       else if (__a == _Tp(0))
24163d1a8abSmrg         return _Tp(1);
24263d1a8abSmrg       else if (__c == __a)
24363d1a8abSmrg         return std::exp(__x);
24463d1a8abSmrg       else if (__x < _Tp(0))
24563d1a8abSmrg         return __conf_hyperg_luke(__a, __c, __x);
24663d1a8abSmrg       else
24763d1a8abSmrg         return __conf_hyperg_series(__a, __c, __x);
24863d1a8abSmrg     }
24963d1a8abSmrg 
25063d1a8abSmrg 
25163d1a8abSmrg     /**
25263d1a8abSmrg      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
25363d1a8abSmrg      *   by series expansion.
25463d1a8abSmrg      *
25563d1a8abSmrg      *   The hypogeometric function is defined by
25663d1a8abSmrg      *   @f[
25763d1a8abSmrg      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
25863d1a8abSmrg      *                      \sum_{n=0}^{\infty}
25963d1a8abSmrg      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
26063d1a8abSmrg      *                      \frac{x^n}{n!}
26163d1a8abSmrg      *   @f]
26263d1a8abSmrg      *
26363d1a8abSmrg      *   This works and it's pretty fast.
26463d1a8abSmrg      *
26563d1a8abSmrg      *   @param  __a  The first @a numerator parameter.
26663d1a8abSmrg      *   @param  __a  The second @a numerator parameter.
26763d1a8abSmrg      *   @param  __c  The @a denominator parameter.
26863d1a8abSmrg      *   @param  __x  The argument of the confluent hypergeometric function.
26963d1a8abSmrg      *   @return  The confluent hypergeometric function.
27063d1a8abSmrg      */
27163d1a8abSmrg     template<typename _Tp>
27263d1a8abSmrg     _Tp
__hyperg_series(_Tp __a,_Tp __b,_Tp __c,_Tp __x)27363d1a8abSmrg     __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
27463d1a8abSmrg     {
27563d1a8abSmrg       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
27663d1a8abSmrg 
27763d1a8abSmrg       _Tp __term = _Tp(1);
27863d1a8abSmrg       _Tp __Fabc = _Tp(1);
27963d1a8abSmrg       const unsigned int __max_iter = 100000;
28063d1a8abSmrg       unsigned int __i;
28163d1a8abSmrg       for (__i = 0; __i < __max_iter; ++__i)
28263d1a8abSmrg         {
28363d1a8abSmrg           __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
28463d1a8abSmrg                   / ((__c + _Tp(__i)) * _Tp(1 + __i));
28563d1a8abSmrg           if (std::abs(__term) < __eps)
28663d1a8abSmrg             {
28763d1a8abSmrg               break;
28863d1a8abSmrg             }
28963d1a8abSmrg           __Fabc += __term;
29063d1a8abSmrg         }
29163d1a8abSmrg       if (__i == __max_iter)
29263d1a8abSmrg         std::__throw_runtime_error(__N("Series failed to converge "
29363d1a8abSmrg                                        "in __hyperg_series."));
29463d1a8abSmrg 
29563d1a8abSmrg       return __Fabc;
29663d1a8abSmrg     }
29763d1a8abSmrg 
29863d1a8abSmrg 
29963d1a8abSmrg     /**
30063d1a8abSmrg      *   @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
30163d1a8abSmrg      *           by an iterative procedure described in
30263d1a8abSmrg      *           Luke, Algorithms for the Computation of Mathematical Functions.
30363d1a8abSmrg      */
30463d1a8abSmrg     template<typename _Tp>
30563d1a8abSmrg     _Tp
__hyperg_luke(_Tp __a,_Tp __b,_Tp __c,_Tp __xin)30663d1a8abSmrg     __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin)
30763d1a8abSmrg     {
30863d1a8abSmrg       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
30963d1a8abSmrg       const int __nmax = 20000;
31063d1a8abSmrg       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
31163d1a8abSmrg       const _Tp __x  = -__xin;
31263d1a8abSmrg       const _Tp __x3 = __x * __x * __x;
31363d1a8abSmrg       const _Tp __t0 = __a * __b / __c;
31463d1a8abSmrg       const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
31563d1a8abSmrg       const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
31663d1a8abSmrg                      / (_Tp(2) * (__c + _Tp(1)));
31763d1a8abSmrg 
31863d1a8abSmrg       _Tp __F = _Tp(1);
31963d1a8abSmrg 
32063d1a8abSmrg       _Tp __Bnm3 = _Tp(1);
32163d1a8abSmrg       _Tp __Bnm2 = _Tp(1) + __t1 * __x;
32263d1a8abSmrg       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
32363d1a8abSmrg 
32463d1a8abSmrg       _Tp __Anm3 = _Tp(1);
32563d1a8abSmrg       _Tp __Anm2 = __Bnm2 - __t0 * __x;
32663d1a8abSmrg       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
32763d1a8abSmrg                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
32863d1a8abSmrg 
32963d1a8abSmrg       int __n = 3;
33063d1a8abSmrg       while (1)
33163d1a8abSmrg         {
33263d1a8abSmrg           const _Tp __npam1 = _Tp(__n - 1) + __a;
33363d1a8abSmrg           const _Tp __npbm1 = _Tp(__n - 1) + __b;
33463d1a8abSmrg           const _Tp __npcm1 = _Tp(__n - 1) + __c;
33563d1a8abSmrg           const _Tp __npam2 = _Tp(__n - 2) + __a;
33663d1a8abSmrg           const _Tp __npbm2 = _Tp(__n - 2) + __b;
33763d1a8abSmrg           const _Tp __npcm2 = _Tp(__n - 2) + __c;
33863d1a8abSmrg           const _Tp __tnm1  = _Tp(2 * __n - 1);
33963d1a8abSmrg           const _Tp __tnm3  = _Tp(2 * __n - 3);
34063d1a8abSmrg           const _Tp __tnm5  = _Tp(2 * __n - 5);
34163d1a8abSmrg           const _Tp __n2 = __n * __n;
34263d1a8abSmrg           const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
34363d1a8abSmrg                          + _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
34463d1a8abSmrg                          / (_Tp(2) * __tnm3 * __npcm1);
34563d1a8abSmrg           const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
34663d1a8abSmrg                          + _Tp(2) - __a * __b) * __npam1 * __npbm1
34763d1a8abSmrg                          / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
34863d1a8abSmrg           const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
34963d1a8abSmrg                          * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
35063d1a8abSmrg                          / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
35163d1a8abSmrg                          * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
35263d1a8abSmrg           const _Tp __E  = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
35363d1a8abSmrg                          / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
35463d1a8abSmrg 
35563d1a8abSmrg           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
35663d1a8abSmrg                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
35763d1a8abSmrg           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
35863d1a8abSmrg                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
35963d1a8abSmrg           const _Tp __r = __An / __Bn;
36063d1a8abSmrg 
36163d1a8abSmrg           const _Tp __prec = std::abs((__F - __r) / __F);
36263d1a8abSmrg           __F = __r;
36363d1a8abSmrg 
36463d1a8abSmrg           if (__prec < __eps || __n > __nmax)
36563d1a8abSmrg             break;
36663d1a8abSmrg 
36763d1a8abSmrg           if (std::abs(__An) > __big || std::abs(__Bn) > __big)
36863d1a8abSmrg             {
36963d1a8abSmrg               __An   /= __big;
37063d1a8abSmrg               __Bn   /= __big;
37163d1a8abSmrg               __Anm1 /= __big;
37263d1a8abSmrg               __Bnm1 /= __big;
37363d1a8abSmrg               __Anm2 /= __big;
37463d1a8abSmrg               __Bnm2 /= __big;
37563d1a8abSmrg               __Anm3 /= __big;
37663d1a8abSmrg               __Bnm3 /= __big;
37763d1a8abSmrg             }
37863d1a8abSmrg           else if (std::abs(__An) < _Tp(1) / __big
37963d1a8abSmrg                 || std::abs(__Bn) < _Tp(1) / __big)
38063d1a8abSmrg             {
38163d1a8abSmrg               __An   *= __big;
38263d1a8abSmrg               __Bn   *= __big;
38363d1a8abSmrg               __Anm1 *= __big;
38463d1a8abSmrg               __Bnm1 *= __big;
38563d1a8abSmrg               __Anm2 *= __big;
38663d1a8abSmrg               __Bnm2 *= __big;
38763d1a8abSmrg               __Anm3 *= __big;
38863d1a8abSmrg               __Bnm3 *= __big;
38963d1a8abSmrg             }
39063d1a8abSmrg 
39163d1a8abSmrg           ++__n;
39263d1a8abSmrg           __Bnm3 = __Bnm2;
39363d1a8abSmrg           __Bnm2 = __Bnm1;
39463d1a8abSmrg           __Bnm1 = __Bn;
39563d1a8abSmrg           __Anm3 = __Anm2;
39663d1a8abSmrg           __Anm2 = __Anm1;
39763d1a8abSmrg           __Anm1 = __An;
39863d1a8abSmrg         }
39963d1a8abSmrg 
40063d1a8abSmrg       if (__n >= __nmax)
40163d1a8abSmrg         std::__throw_runtime_error(__N("Iteration failed to converge "
40263d1a8abSmrg                                        "in __hyperg_luke."));
40363d1a8abSmrg 
40463d1a8abSmrg       return __F;
40563d1a8abSmrg     }
40663d1a8abSmrg 
40763d1a8abSmrg 
40863d1a8abSmrg     /**
40963d1a8abSmrg      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
41063d1a8abSmrg      *  by the reflection formulae in Abramowitz & Stegun formula
41163d1a8abSmrg      *  15.3.6 for d = c - a - b not integral and formula 15.3.11 for
41263d1a8abSmrg      *  d = c - a - b integral.  This assumes a, b, c != negative
41363d1a8abSmrg      *  integer.
41463d1a8abSmrg      *
41563d1a8abSmrg      *   The hypogeometric function is defined by
41663d1a8abSmrg      *   @f[
41763d1a8abSmrg      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
41863d1a8abSmrg      *                      \sum_{n=0}^{\infty}
41963d1a8abSmrg      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
42063d1a8abSmrg      *                      \frac{x^n}{n!}
42163d1a8abSmrg      *   @f]
42263d1a8abSmrg      *
42363d1a8abSmrg      *   The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
42463d1a8abSmrg      *   @f[
42563d1a8abSmrg      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
42663d1a8abSmrg      *                            _2F_1(a,b;1-d;1-x)
42763d1a8abSmrg      *                    + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
42863d1a8abSmrg      *                            _2F_1(c-a,c-b;1+d;1-x)
42963d1a8abSmrg      *   @f]
43063d1a8abSmrg      *
43163d1a8abSmrg      *   The reflection formula for integral @f$ m = c - a - b @f$ is:
43263d1a8abSmrg      *   @f[
43363d1a8abSmrg      *     _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
43463d1a8abSmrg      *                        \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
43563d1a8abSmrg      *                      -
43663d1a8abSmrg      *   @f]
43763d1a8abSmrg      */
43863d1a8abSmrg     template<typename _Tp>
43963d1a8abSmrg     _Tp
__hyperg_reflect(_Tp __a,_Tp __b,_Tp __c,_Tp __x)44063d1a8abSmrg     __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
44163d1a8abSmrg     {
44263d1a8abSmrg       const _Tp __d = __c - __a - __b;
44363d1a8abSmrg       const int __intd  = std::floor(__d + _Tp(0.5L));
44463d1a8abSmrg       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
44563d1a8abSmrg       const _Tp __toler = _Tp(1000) * __eps;
44663d1a8abSmrg       const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
44763d1a8abSmrg       const bool __d_integer = (std::abs(__d - __intd) < __toler);
44863d1a8abSmrg 
44963d1a8abSmrg       if (__d_integer)
45063d1a8abSmrg         {
45163d1a8abSmrg           const _Tp __ln_omx = std::log(_Tp(1) - __x);
45263d1a8abSmrg           const _Tp __ad = std::abs(__d);
45363d1a8abSmrg           _Tp __F1, __F2;
45463d1a8abSmrg 
45563d1a8abSmrg           _Tp __d1, __d2;
45663d1a8abSmrg           if (__d >= _Tp(0))
45763d1a8abSmrg             {
45863d1a8abSmrg               __d1 = __d;
45963d1a8abSmrg               __d2 = _Tp(0);
46063d1a8abSmrg             }
46163d1a8abSmrg           else
46263d1a8abSmrg             {
46363d1a8abSmrg               __d1 = _Tp(0);
46463d1a8abSmrg               __d2 = __d;
46563d1a8abSmrg             }
46663d1a8abSmrg 
46763d1a8abSmrg           const _Tp __lng_c = __log_gamma(__c);
46863d1a8abSmrg 
46963d1a8abSmrg           //  Evaluate F1.
47063d1a8abSmrg           if (__ad < __eps)
47163d1a8abSmrg             {
47263d1a8abSmrg               //  d = c - a - b = 0.
47363d1a8abSmrg               __F1 = _Tp(0);
47463d1a8abSmrg             }
47563d1a8abSmrg           else
47663d1a8abSmrg             {
47763d1a8abSmrg 
47863d1a8abSmrg               bool __ok_d1 = true;
47963d1a8abSmrg               _Tp __lng_ad, __lng_ad1, __lng_bd1;
48063d1a8abSmrg               __try
48163d1a8abSmrg                 {
48263d1a8abSmrg                   __lng_ad = __log_gamma(__ad);
48363d1a8abSmrg                   __lng_ad1 = __log_gamma(__a + __d1);
48463d1a8abSmrg                   __lng_bd1 = __log_gamma(__b + __d1);
48563d1a8abSmrg                 }
48663d1a8abSmrg               __catch(...)
48763d1a8abSmrg                 {
48863d1a8abSmrg                   __ok_d1 = false;
48963d1a8abSmrg                 }
49063d1a8abSmrg 
49163d1a8abSmrg               if (__ok_d1)
49263d1a8abSmrg                 {
49363d1a8abSmrg                   /* Gamma functions in the denominator are ok.
49463d1a8abSmrg                    * Proceed with evaluation.
49563d1a8abSmrg                    */
49663d1a8abSmrg                   _Tp __sum1 = _Tp(1);
49763d1a8abSmrg                   _Tp __term = _Tp(1);
49863d1a8abSmrg                   _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
49963d1a8abSmrg                                 - __lng_ad1 - __lng_bd1;
50063d1a8abSmrg 
50163d1a8abSmrg                   /* Do F1 sum.
50263d1a8abSmrg                    */
50363d1a8abSmrg                   for (int __i = 1; __i < __ad; ++__i)
50463d1a8abSmrg                     {
50563d1a8abSmrg                       const int __j = __i - 1;
50663d1a8abSmrg                       __term *= (__a + __d2 + __j) * (__b + __d2 + __j)
50763d1a8abSmrg                               / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
50863d1a8abSmrg                       __sum1 += __term;
50963d1a8abSmrg                     }
51063d1a8abSmrg 
51163d1a8abSmrg                   if (__ln_pre1 > __log_max)
51263d1a8abSmrg                     std::__throw_runtime_error(__N("Overflow of gamma functions"
51363d1a8abSmrg                                                    " in __hyperg_luke."));
51463d1a8abSmrg                   else
51563d1a8abSmrg                     __F1 = std::exp(__ln_pre1) * __sum1;
51663d1a8abSmrg                 }
51763d1a8abSmrg               else
51863d1a8abSmrg                 {
51963d1a8abSmrg                   //  Gamma functions in the denominator were not ok.
52063d1a8abSmrg                   //  So the F1 term is zero.
52163d1a8abSmrg                   __F1 = _Tp(0);
52263d1a8abSmrg                 }
52363d1a8abSmrg             } // end F1 evaluation
52463d1a8abSmrg 
52563d1a8abSmrg           // Evaluate F2.
52663d1a8abSmrg           bool __ok_d2 = true;
52763d1a8abSmrg           _Tp __lng_ad2, __lng_bd2;
52863d1a8abSmrg           __try
52963d1a8abSmrg             {
53063d1a8abSmrg               __lng_ad2 = __log_gamma(__a + __d2);
53163d1a8abSmrg               __lng_bd2 = __log_gamma(__b + __d2);
53263d1a8abSmrg             }
53363d1a8abSmrg           __catch(...)
53463d1a8abSmrg             {
53563d1a8abSmrg               __ok_d2 = false;
53663d1a8abSmrg             }
53763d1a8abSmrg 
53863d1a8abSmrg           if (__ok_d2)
53963d1a8abSmrg             {
54063d1a8abSmrg               //  Gamma functions in the denominator are ok.
54163d1a8abSmrg               //  Proceed with evaluation.
54263d1a8abSmrg               const int __maxiter = 2000;
54363d1a8abSmrg               const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
54463d1a8abSmrg               const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
54563d1a8abSmrg               const _Tp __psi_apd1 = __psi(__a + __d1);
54663d1a8abSmrg               const _Tp __psi_bpd1 = __psi(__b + __d1);
54763d1a8abSmrg 
54863d1a8abSmrg               _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
54963d1a8abSmrg                              - __psi_bpd1 - __ln_omx;
55063d1a8abSmrg               _Tp __fact = _Tp(1);
55163d1a8abSmrg               _Tp __sum2 = __psi_term;
55263d1a8abSmrg               _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
55363d1a8abSmrg                             - __lng_ad2 - __lng_bd2;
55463d1a8abSmrg 
55563d1a8abSmrg               // Do F2 sum.
55663d1a8abSmrg               int __j;
55763d1a8abSmrg               for (__j = 1; __j < __maxiter; ++__j)
55863d1a8abSmrg                 {
55963d1a8abSmrg                   //  Values for psi functions use recurrence;
56063d1a8abSmrg                   //  Abramowitz & Stegun 6.3.5
56163d1a8abSmrg                   const _Tp __term1 = _Tp(1) / _Tp(__j)
56263d1a8abSmrg                                     + _Tp(1) / (__ad + __j);
56363d1a8abSmrg                   const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
56463d1a8abSmrg                                     + _Tp(1) / (__b + __d1 + _Tp(__j - 1));
56563d1a8abSmrg                   __psi_term += __term1 - __term2;
56663d1a8abSmrg                   __fact *= (__a + __d1 + _Tp(__j - 1))
56763d1a8abSmrg                           * (__b + __d1 + _Tp(__j - 1))
56863d1a8abSmrg                           / ((__ad + __j) * __j) * (_Tp(1) - __x);
56963d1a8abSmrg                   const _Tp __delta = __fact * __psi_term;
57063d1a8abSmrg                   __sum2 += __delta;
57163d1a8abSmrg                   if (std::abs(__delta) < __eps * std::abs(__sum2))
57263d1a8abSmrg                     break;
57363d1a8abSmrg                 }
57463d1a8abSmrg               if (__j == __maxiter)
57563d1a8abSmrg                 std::__throw_runtime_error(__N("Sum F2 failed to converge "
57663d1a8abSmrg                                                "in __hyperg_reflect"));
57763d1a8abSmrg 
57863d1a8abSmrg               if (__sum2 == _Tp(0))
57963d1a8abSmrg                 __F2 = _Tp(0);
58063d1a8abSmrg               else
58163d1a8abSmrg                 __F2 = std::exp(__ln_pre2) * __sum2;
58263d1a8abSmrg             }
58363d1a8abSmrg           else
58463d1a8abSmrg             {
58563d1a8abSmrg               // Gamma functions in the denominator not ok.
58663d1a8abSmrg               // So the F2 term is zero.
58763d1a8abSmrg               __F2 = _Tp(0);
58863d1a8abSmrg             } // end F2 evaluation
58963d1a8abSmrg 
59063d1a8abSmrg           const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
59163d1a8abSmrg           const _Tp __F = __F1 + __sgn_2 * __F2;
59263d1a8abSmrg 
59363d1a8abSmrg           return __F;
59463d1a8abSmrg         }
59563d1a8abSmrg       else
59663d1a8abSmrg         {
59763d1a8abSmrg           //  d = c - a - b not an integer.
59863d1a8abSmrg 
59963d1a8abSmrg           //  These gamma functions appear in the denominator, so we
60063d1a8abSmrg           //  catch their harmless domain errors and set the terms to zero.
60163d1a8abSmrg           bool __ok1 = true;
60263d1a8abSmrg           _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
60363d1a8abSmrg           _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
60463d1a8abSmrg           __try
60563d1a8abSmrg             {
60663d1a8abSmrg               __sgn_g1ca = __log_gamma_sign(__c - __a);
60763d1a8abSmrg               __ln_g1ca = __log_gamma(__c - __a);
60863d1a8abSmrg               __sgn_g1cb = __log_gamma_sign(__c - __b);
60963d1a8abSmrg               __ln_g1cb = __log_gamma(__c - __b);
61063d1a8abSmrg             }
61163d1a8abSmrg           __catch(...)
61263d1a8abSmrg             {
61363d1a8abSmrg               __ok1 = false;
61463d1a8abSmrg             }
61563d1a8abSmrg 
61663d1a8abSmrg           bool __ok2 = true;
61763d1a8abSmrg           _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
61863d1a8abSmrg           _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
61963d1a8abSmrg           __try
62063d1a8abSmrg             {
62163d1a8abSmrg               __sgn_g2a = __log_gamma_sign(__a);
62263d1a8abSmrg               __ln_g2a = __log_gamma(__a);
62363d1a8abSmrg               __sgn_g2b = __log_gamma_sign(__b);
62463d1a8abSmrg               __ln_g2b = __log_gamma(__b);
62563d1a8abSmrg             }
62663d1a8abSmrg           __catch(...)
62763d1a8abSmrg             {
62863d1a8abSmrg               __ok2 = false;
62963d1a8abSmrg             }
63063d1a8abSmrg 
63163d1a8abSmrg           const _Tp __sgn_gc = __log_gamma_sign(__c);
63263d1a8abSmrg           const _Tp __ln_gc = __log_gamma(__c);
63363d1a8abSmrg           const _Tp __sgn_gd = __log_gamma_sign(__d);
63463d1a8abSmrg           const _Tp __ln_gd = __log_gamma(__d);
63563d1a8abSmrg           const _Tp __sgn_gmd = __log_gamma_sign(-__d);
63663d1a8abSmrg           const _Tp __ln_gmd = __log_gamma(-__d);
63763d1a8abSmrg 
63863d1a8abSmrg           const _Tp __sgn1 = __sgn_gc * __sgn_gd  * __sgn_g1ca * __sgn_g1cb;
63963d1a8abSmrg           const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a  * __sgn_g2b;
64063d1a8abSmrg 
64163d1a8abSmrg           _Tp __pre1, __pre2;
64263d1a8abSmrg           if (__ok1 && __ok2)
64363d1a8abSmrg             {
64463d1a8abSmrg               _Tp __ln_pre1 = __ln_gc + __ln_gd  - __ln_g1ca - __ln_g1cb;
64563d1a8abSmrg               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a  - __ln_g2b
64663d1a8abSmrg                             + __d * std::log(_Tp(1) - __x);
64763d1a8abSmrg               if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
64863d1a8abSmrg                 {
64963d1a8abSmrg                   __pre1 = std::exp(__ln_pre1);
65063d1a8abSmrg                   __pre2 = std::exp(__ln_pre2);
65163d1a8abSmrg                   __pre1 *= __sgn1;
65263d1a8abSmrg                   __pre2 *= __sgn2;
65363d1a8abSmrg                 }
65463d1a8abSmrg               else
65563d1a8abSmrg                 {
65663d1a8abSmrg                   std::__throw_runtime_error(__N("Overflow of gamma functions "
65763d1a8abSmrg                                                  "in __hyperg_reflect"));
65863d1a8abSmrg                 }
65963d1a8abSmrg             }
66063d1a8abSmrg           else if (__ok1 && !__ok2)
66163d1a8abSmrg             {
66263d1a8abSmrg               _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
66363d1a8abSmrg               if (__ln_pre1 < __log_max)
66463d1a8abSmrg                 {
66563d1a8abSmrg                   __pre1 = std::exp(__ln_pre1);
66663d1a8abSmrg                   __pre1 *= __sgn1;
66763d1a8abSmrg                   __pre2 = _Tp(0);
66863d1a8abSmrg                 }
66963d1a8abSmrg               else
67063d1a8abSmrg                 {
67163d1a8abSmrg                   std::__throw_runtime_error(__N("Overflow of gamma functions "
67263d1a8abSmrg                                                  "in __hyperg_reflect"));
67363d1a8abSmrg                 }
67463d1a8abSmrg             }
67563d1a8abSmrg           else if (!__ok1 && __ok2)
67663d1a8abSmrg             {
67763d1a8abSmrg               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
67863d1a8abSmrg                             + __d * std::log(_Tp(1) - __x);
67963d1a8abSmrg               if (__ln_pre2 < __log_max)
68063d1a8abSmrg                 {
68163d1a8abSmrg                   __pre1 = _Tp(0);
68263d1a8abSmrg                   __pre2 = std::exp(__ln_pre2);
68363d1a8abSmrg                   __pre2 *= __sgn2;
68463d1a8abSmrg                 }
68563d1a8abSmrg               else
68663d1a8abSmrg                 {
68763d1a8abSmrg                   std::__throw_runtime_error(__N("Overflow of gamma functions "
68863d1a8abSmrg                                                  "in __hyperg_reflect"));
68963d1a8abSmrg                 }
69063d1a8abSmrg             }
69163d1a8abSmrg           else
69263d1a8abSmrg             {
69363d1a8abSmrg               __pre1 = _Tp(0);
69463d1a8abSmrg               __pre2 = _Tp(0);
69563d1a8abSmrg               std::__throw_runtime_error(__N("Underflow of gamma functions "
69663d1a8abSmrg                                              "in __hyperg_reflect"));
69763d1a8abSmrg             }
69863d1a8abSmrg 
69963d1a8abSmrg           const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
70063d1a8abSmrg                                            _Tp(1) - __x);
70163d1a8abSmrg           const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
70263d1a8abSmrg                                            _Tp(1) - __x);
70363d1a8abSmrg 
70463d1a8abSmrg           const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
70563d1a8abSmrg 
70663d1a8abSmrg           return __F;
70763d1a8abSmrg         }
70863d1a8abSmrg     }
70963d1a8abSmrg 
71063d1a8abSmrg 
71163d1a8abSmrg     /**
71263d1a8abSmrg      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
71363d1a8abSmrg      *
71463d1a8abSmrg      *   The hypogeometric function is defined by
71563d1a8abSmrg      *   @f[
71663d1a8abSmrg      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
71763d1a8abSmrg      *                      \sum_{n=0}^{\infty}
71863d1a8abSmrg      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
71963d1a8abSmrg      *                      \frac{x^n}{n!}
72063d1a8abSmrg      *   @f]
72163d1a8abSmrg      *
72263d1a8abSmrg      *   @param  __a  The first @a numerator parameter.
72363d1a8abSmrg      *   @param  __a  The second @a numerator parameter.
72463d1a8abSmrg      *   @param  __c  The @a denominator parameter.
72563d1a8abSmrg      *   @param  __x  The argument of the confluent hypergeometric function.
72663d1a8abSmrg      *   @return  The confluent hypergeometric function.
72763d1a8abSmrg      */
72863d1a8abSmrg     template<typename _Tp>
72963d1a8abSmrg     _Tp
__hyperg(_Tp __a,_Tp __b,_Tp __c,_Tp __x)73063d1a8abSmrg     __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
73163d1a8abSmrg     {
73263d1a8abSmrg #if _GLIBCXX_USE_C99_MATH_TR1
73363d1a8abSmrg       const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a);
73463d1a8abSmrg       const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b);
73563d1a8abSmrg       const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c);
73663d1a8abSmrg #else
73763d1a8abSmrg       const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L));
73863d1a8abSmrg       const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L));
73963d1a8abSmrg       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
74063d1a8abSmrg #endif
74163d1a8abSmrg       const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
74263d1a8abSmrg       if (std::abs(__x) >= _Tp(1))
74363d1a8abSmrg         std::__throw_domain_error(__N("Argument outside unit circle "
74463d1a8abSmrg                                       "in __hyperg."));
74563d1a8abSmrg       else if (__isnan(__a) || __isnan(__b)
74663d1a8abSmrg             || __isnan(__c) || __isnan(__x))
74763d1a8abSmrg         return std::numeric_limits<_Tp>::quiet_NaN();
74863d1a8abSmrg       else if (__c_nint == __c && __c_nint <= _Tp(0))
74963d1a8abSmrg         return std::numeric_limits<_Tp>::infinity();
75063d1a8abSmrg       else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
75163d1a8abSmrg         return std::pow(_Tp(1) - __x, __c - __a - __b);
75263d1a8abSmrg       else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
75363d1a8abSmrg             && __x >= _Tp(0) && __x < _Tp(0.995L))
75463d1a8abSmrg         return __hyperg_series(__a, __b, __c, __x);
75563d1a8abSmrg       else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
75663d1a8abSmrg         {
75763d1a8abSmrg           //  For integer a and b the hypergeometric function is a
75863d1a8abSmrg           //  finite polynomial.
75963d1a8abSmrg           if (__a < _Tp(0)  &&  std::abs(__a - __a_nint) < __toler)
76063d1a8abSmrg             return __hyperg_series(__a_nint, __b, __c, __x);
76163d1a8abSmrg           else if (__b < _Tp(0)  &&  std::abs(__b - __b_nint) < __toler)
76263d1a8abSmrg             return __hyperg_series(__a, __b_nint, __c, __x);
76363d1a8abSmrg           else if (__x < -_Tp(0.25L))
76463d1a8abSmrg             return __hyperg_luke(__a, __b, __c, __x);
76563d1a8abSmrg           else if (__x < _Tp(0.5L))
76663d1a8abSmrg             return __hyperg_series(__a, __b, __c, __x);
76763d1a8abSmrg           else
76863d1a8abSmrg             if (std::abs(__c) > _Tp(10))
76963d1a8abSmrg               return __hyperg_series(__a, __b, __c, __x);
77063d1a8abSmrg             else
77163d1a8abSmrg               return __hyperg_reflect(__a, __b, __c, __x);
77263d1a8abSmrg         }
77363d1a8abSmrg       else
77463d1a8abSmrg         return __hyperg_luke(__a, __b, __c, __x);
77563d1a8abSmrg     }
77663d1a8abSmrg   } // namespace __detail
77763d1a8abSmrg #undef _GLIBCXX_MATH_NS
77863d1a8abSmrg #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
77963d1a8abSmrg } // namespace tr1
78063d1a8abSmrg #endif
781c7a68eb7Smrg 
782c7a68eb7Smrg _GLIBCXX_END_NAMESPACE_VERSION
78363d1a8abSmrg }
78463d1a8abSmrg 
78563d1a8abSmrg #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
786