1c3d31fe1Smrg /* Definitions of target machine for GNU compiler, for DEC Alpha.
2*af526226Smrg    Copyright (C) 1992-2013 Free Software Foundation, Inc.
3c3d31fe1Smrg    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4c3d31fe1Smrg 
5c3d31fe1Smrg This file is part of GCC.
6c3d31fe1Smrg 
7c3d31fe1Smrg GCC is free software; you can redistribute it and/or modify
8c3d31fe1Smrg it under the terms of the GNU General Public License as published by
9c3d31fe1Smrg the Free Software Foundation; either version 3, or (at your option)
10c3d31fe1Smrg any later version.
11c3d31fe1Smrg 
12c3d31fe1Smrg GCC is distributed in the hope that it will be useful,
13c3d31fe1Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
14c3d31fe1Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15c3d31fe1Smrg GNU General Public License for more details.
16c3d31fe1Smrg 
17c3d31fe1Smrg You should have received a copy of the GNU General Public License
18c3d31fe1Smrg along with GCC; see the file COPYING3.  If not see
19c3d31fe1Smrg <http://www.gnu.org/licenses/>.  */
20c3d31fe1Smrg 
21c3d31fe1Smrg /* Target CPU builtins.  */
22c3d31fe1Smrg #define TARGET_CPU_CPP_BUILTINS()			\
23c3d31fe1Smrg   do							\
24c3d31fe1Smrg     {							\
25c3d31fe1Smrg 	builtin_define ("__alpha");			\
26c3d31fe1Smrg 	builtin_define ("__alpha__");			\
27c3d31fe1Smrg 	builtin_assert ("cpu=alpha");			\
28c3d31fe1Smrg 	builtin_assert ("machine=alpha");		\
29c3d31fe1Smrg 	if (TARGET_CIX)					\
30c3d31fe1Smrg 	  {						\
31c3d31fe1Smrg 	    builtin_define ("__alpha_cix__");		\
32c3d31fe1Smrg 	    builtin_assert ("cpu=cix");			\
33c3d31fe1Smrg 	  }						\
34c3d31fe1Smrg 	if (TARGET_FIX)					\
35c3d31fe1Smrg 	  {						\
36c3d31fe1Smrg 	    builtin_define ("__alpha_fix__");		\
37c3d31fe1Smrg 	    builtin_assert ("cpu=fix");			\
38c3d31fe1Smrg 	  }						\
39c3d31fe1Smrg 	if (TARGET_BWX)					\
40c3d31fe1Smrg 	  {						\
41c3d31fe1Smrg 	    builtin_define ("__alpha_bwx__");		\
42c3d31fe1Smrg 	    builtin_assert ("cpu=bwx");			\
43c3d31fe1Smrg 	  }						\
44c3d31fe1Smrg 	if (TARGET_MAX)					\
45c3d31fe1Smrg 	  {						\
46c3d31fe1Smrg 	    builtin_define ("__alpha_max__");		\
47c3d31fe1Smrg 	    builtin_assert ("cpu=max");			\
48c3d31fe1Smrg 	  }						\
49c3d31fe1Smrg 	if (alpha_cpu == PROCESSOR_EV6)			\
50c3d31fe1Smrg 	  {						\
51c3d31fe1Smrg 	    builtin_define ("__alpha_ev6__");		\
52c3d31fe1Smrg 	    builtin_assert ("cpu=ev6");			\
53c3d31fe1Smrg 	  }						\
54c3d31fe1Smrg 	else if (alpha_cpu == PROCESSOR_EV5)		\
55c3d31fe1Smrg 	  {						\
56c3d31fe1Smrg 	    builtin_define ("__alpha_ev5__");		\
57c3d31fe1Smrg 	    builtin_assert ("cpu=ev5");			\
58c3d31fe1Smrg 	  }						\
59c3d31fe1Smrg 	else	/* Presumably ev4.  */			\
60c3d31fe1Smrg 	  {						\
61c3d31fe1Smrg 	    builtin_define ("__alpha_ev4__");		\
62c3d31fe1Smrg 	    builtin_assert ("cpu=ev4");			\
63c3d31fe1Smrg 	  }						\
64c3d31fe1Smrg 	if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT)	\
65c3d31fe1Smrg 	  builtin_define ("_IEEE_FP");			\
66c3d31fe1Smrg 	if (TARGET_IEEE_WITH_INEXACT)			\
67c3d31fe1Smrg 	  builtin_define ("_IEEE_FP_INEXACT");		\
68c3d31fe1Smrg 	if (TARGET_LONG_DOUBLE_128)			\
69c3d31fe1Smrg 	  builtin_define ("__LONG_DOUBLE_128__");	\
70c3d31fe1Smrg 							\
71c3d31fe1Smrg 	/* Macros dependent on the C dialect.  */	\
72c3d31fe1Smrg 	SUBTARGET_LANGUAGE_CPP_BUILTINS();		\
73c3d31fe1Smrg } while (0)
74c3d31fe1Smrg 
75c3d31fe1Smrg #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
76c3d31fe1Smrg #define SUBTARGET_LANGUAGE_CPP_BUILTINS()		\
77c3d31fe1Smrg   do							\
78c3d31fe1Smrg     {							\
79c3d31fe1Smrg       if (preprocessing_asm_p ())			\
80c3d31fe1Smrg 	builtin_define_std ("LANGUAGE_ASSEMBLY");	\
81c3d31fe1Smrg       else if (c_dialect_cxx ())			\
82c3d31fe1Smrg 	{						\
83c3d31fe1Smrg 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS");	\
84c3d31fe1Smrg 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS__");	\
85c3d31fe1Smrg 	}						\
86c3d31fe1Smrg       else						\
87c3d31fe1Smrg 	builtin_define_std ("LANGUAGE_C");		\
88c3d31fe1Smrg       if (c_dialect_objc ())				\
89c3d31fe1Smrg 	{						\
90c3d31fe1Smrg 	  builtin_define ("__LANGUAGE_OBJECTIVE_C");	\
91c3d31fe1Smrg 	  builtin_define ("__LANGUAGE_OBJECTIVE_C__");	\
92c3d31fe1Smrg 	}						\
93c3d31fe1Smrg     }							\
94c3d31fe1Smrg   while (0)
95c3d31fe1Smrg #endif
96c3d31fe1Smrg 
97c3d31fe1Smrg /* Run-time compilation parameters selecting different hardware subsets.  */
98c3d31fe1Smrg 
99c3d31fe1Smrg /* Which processor to schedule for. The cpu attribute defines a list that
100c3d31fe1Smrg    mirrors this list, so changes to alpha.md must be made at the same time.  */
101c3d31fe1Smrg 
102c3d31fe1Smrg enum processor_type
103c3d31fe1Smrg {
104c3d31fe1Smrg   PROCESSOR_EV4,			/* 2106[46]{a,} */
105c3d31fe1Smrg   PROCESSOR_EV5,			/* 21164{a,pc,} */
106c3d31fe1Smrg   PROCESSOR_EV6,			/* 21264 */
107c3d31fe1Smrg   PROCESSOR_MAX
108c3d31fe1Smrg };
109c3d31fe1Smrg 
110c3d31fe1Smrg extern enum processor_type alpha_cpu;
111c3d31fe1Smrg extern enum processor_type alpha_tune;
112c3d31fe1Smrg 
113c3d31fe1Smrg enum alpha_trap_precision
114c3d31fe1Smrg {
115c3d31fe1Smrg   ALPHA_TP_PROG,	/* No precision (default).  */
116c3d31fe1Smrg   ALPHA_TP_FUNC,      	/* Trap contained within originating function.  */
117c3d31fe1Smrg   ALPHA_TP_INSN		/* Instruction accuracy and code is resumption safe.  */
118c3d31fe1Smrg };
119c3d31fe1Smrg 
120c3d31fe1Smrg enum alpha_fp_rounding_mode
121c3d31fe1Smrg {
122c3d31fe1Smrg   ALPHA_FPRM_NORM,	/* Normal rounding mode.  */
123c3d31fe1Smrg   ALPHA_FPRM_MINF,	/* Round towards minus-infinity.  */
124c3d31fe1Smrg   ALPHA_FPRM_CHOP,	/* Chopped rounding mode (towards 0).  */
125c3d31fe1Smrg   ALPHA_FPRM_DYN	/* Dynamic rounding mode.  */
126c3d31fe1Smrg };
127c3d31fe1Smrg 
128c3d31fe1Smrg enum alpha_fp_trap_mode
129c3d31fe1Smrg {
130c3d31fe1Smrg   ALPHA_FPTM_N,		/* Normal trap mode.  */
131c3d31fe1Smrg   ALPHA_FPTM_U,		/* Underflow traps enabled.  */
132c3d31fe1Smrg   ALPHA_FPTM_SU,	/* Software completion, w/underflow traps */
133c3d31fe1Smrg   ALPHA_FPTM_SUI	/* Software completion, w/underflow & inexact traps */
134c3d31fe1Smrg };
135c3d31fe1Smrg 
136c3d31fe1Smrg extern enum alpha_trap_precision alpha_tp;
137c3d31fe1Smrg extern enum alpha_fp_rounding_mode alpha_fprm;
138c3d31fe1Smrg extern enum alpha_fp_trap_mode alpha_fptm;
139c3d31fe1Smrg 
140c3d31fe1Smrg /* Invert the easy way to make options work.  */
141c3d31fe1Smrg #define TARGET_FP	(!TARGET_SOFT_FP)
142c3d31fe1Smrg 
143c3d31fe1Smrg /* These are for target os support and cannot be changed at runtime.  */
144c3d31fe1Smrg #define TARGET_ABI_OPEN_VMS	0
145*af526226Smrg #define TARGET_ABI_OSF		(!TARGET_ABI_OPEN_VMS)
146c3d31fe1Smrg 
147c3d31fe1Smrg #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
148c3d31fe1Smrg #define TARGET_CAN_FAULT_IN_PROLOGUE 0
149c3d31fe1Smrg #endif
150c3d31fe1Smrg #ifndef TARGET_HAS_XFLOATING_LIBS
151c3d31fe1Smrg #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
152c3d31fe1Smrg #endif
153c3d31fe1Smrg #ifndef TARGET_PROFILING_NEEDS_GP
154c3d31fe1Smrg #define TARGET_PROFILING_NEEDS_GP 0
155c3d31fe1Smrg #endif
156c3d31fe1Smrg #ifndef TARGET_FIXUP_EV5_PREFETCH
157c3d31fe1Smrg #define TARGET_FIXUP_EV5_PREFETCH 0
158c3d31fe1Smrg #endif
159c3d31fe1Smrg #ifndef HAVE_AS_TLS
160c3d31fe1Smrg #define HAVE_AS_TLS 0
161c3d31fe1Smrg #endif
162c3d31fe1Smrg 
163c3d31fe1Smrg #define TARGET_DEFAULT MASK_FPREGS
164c3d31fe1Smrg 
165c3d31fe1Smrg #ifndef TARGET_CPU_DEFAULT
166c3d31fe1Smrg #define TARGET_CPU_DEFAULT 0
167c3d31fe1Smrg #endif
168c3d31fe1Smrg 
169c3d31fe1Smrg #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
170c3d31fe1Smrg #ifdef HAVE_AS_EXPLICIT_RELOCS
171c3d31fe1Smrg #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
172c3d31fe1Smrg #define TARGET_SUPPORT_ARCH 1
173c3d31fe1Smrg #else
174c3d31fe1Smrg #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
175c3d31fe1Smrg #endif
176c3d31fe1Smrg #endif
177c3d31fe1Smrg 
178c3d31fe1Smrg #ifndef TARGET_SUPPORT_ARCH
179c3d31fe1Smrg #define TARGET_SUPPORT_ARCH 0
180c3d31fe1Smrg #endif
181c3d31fe1Smrg 
182c3d31fe1Smrg /* Support for a compile-time default CPU, et cetera.  The rules are:
183c3d31fe1Smrg    --with-cpu is ignored if -mcpu is specified.
184c3d31fe1Smrg    --with-tune is ignored if -mtune is specified.  */
185c3d31fe1Smrg #define OPTION_DEFAULT_SPECS \
186c3d31fe1Smrg   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
187c3d31fe1Smrg   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
188c3d31fe1Smrg 
189c3d31fe1Smrg 
190c3d31fe1Smrg /* target machine storage layout */
191c3d31fe1Smrg 
192c3d31fe1Smrg /* Define the size of `int'.  The default is the same as the word size.  */
193c3d31fe1Smrg #define INT_TYPE_SIZE 32
194c3d31fe1Smrg 
195c3d31fe1Smrg /* Define the size of `long long'.  The default is the twice the word size.  */
196c3d31fe1Smrg #define LONG_LONG_TYPE_SIZE 64
197c3d31fe1Smrg 
198c3d31fe1Smrg /* The two floating-point formats we support are S-floating, which is
199c3d31fe1Smrg    4 bytes, and T-floating, which is 8 bytes.  `float' is S and `double'
200c3d31fe1Smrg    and `long double' are T.  */
201c3d31fe1Smrg 
202c3d31fe1Smrg #define FLOAT_TYPE_SIZE 32
203c3d31fe1Smrg #define DOUBLE_TYPE_SIZE 64
204c3d31fe1Smrg #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
205c3d31fe1Smrg 
206c3d31fe1Smrg /* Define this to set long double type size to use in libgcc2.c, which can
207c3d31fe1Smrg    not depend on target_flags.  */
208c3d31fe1Smrg #ifdef __LONG_DOUBLE_128__
209c3d31fe1Smrg #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
210c3d31fe1Smrg #else
211c3d31fe1Smrg #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
212c3d31fe1Smrg #endif
213c3d31fe1Smrg 
214c3d31fe1Smrg /* Work around target_flags dependency in ada/targtyps.c.  */
215c3d31fe1Smrg #define WIDEST_HARDWARE_FP_SIZE 64
216c3d31fe1Smrg 
217c3d31fe1Smrg #define	WCHAR_TYPE "unsigned int"
218c3d31fe1Smrg #define	WCHAR_TYPE_SIZE 32
219c3d31fe1Smrg 
220c3d31fe1Smrg /* Define this macro if it is advisable to hold scalars in registers
221c3d31fe1Smrg    in a wider mode than that declared by the program.  In such cases,
222c3d31fe1Smrg    the value is constrained to be within the bounds of the declared
223c3d31fe1Smrg    type, but kept valid in the wider mode.  The signedness of the
224c3d31fe1Smrg    extension may differ from that of the type.
225c3d31fe1Smrg 
226c3d31fe1Smrg    For Alpha, we always store objects in a full register.  32-bit integers
227c3d31fe1Smrg    are always sign-extended, but smaller objects retain their signedness.
228c3d31fe1Smrg 
229c3d31fe1Smrg    Note that small vector types can get mapped onto integer modes at the
230c3d31fe1Smrg    whim of not appearing in alpha-modes.def.  We never promoted these
231c3d31fe1Smrg    values before; don't do so now that we've trimmed the set of modes to
232c3d31fe1Smrg    those actually implemented in the backend.  */
233c3d31fe1Smrg 
234c3d31fe1Smrg #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)			\
235c3d31fe1Smrg   if (GET_MODE_CLASS (MODE) == MODE_INT				\
236c3d31fe1Smrg       && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE)	\
237c3d31fe1Smrg       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)			\
238c3d31fe1Smrg     {								\
239c3d31fe1Smrg       if ((MODE) == SImode)					\
240c3d31fe1Smrg 	(UNSIGNEDP) = 0;					\
241c3d31fe1Smrg       (MODE) = DImode;						\
242c3d31fe1Smrg     }
243c3d31fe1Smrg 
244c3d31fe1Smrg /* Define this if most significant bit is lowest numbered
245c3d31fe1Smrg    in instructions that operate on numbered bit-fields.
246c3d31fe1Smrg 
247c3d31fe1Smrg    There are no such instructions on the Alpha, but the documentation
248c3d31fe1Smrg    is little endian.  */
249c3d31fe1Smrg #define BITS_BIG_ENDIAN 0
250c3d31fe1Smrg 
251c3d31fe1Smrg /* Define this if most significant byte of a word is the lowest numbered.
252c3d31fe1Smrg    This is false on the Alpha.  */
253c3d31fe1Smrg #define BYTES_BIG_ENDIAN 0
254c3d31fe1Smrg 
255c3d31fe1Smrg /* Define this if most significant word of a multiword number is lowest
256c3d31fe1Smrg    numbered.
257c3d31fe1Smrg 
258c3d31fe1Smrg    For Alpha we can decide arbitrarily since there are no machine instructions
259c3d31fe1Smrg    for them.  Might as well be consistent with bytes.  */
260c3d31fe1Smrg #define WORDS_BIG_ENDIAN 0
261c3d31fe1Smrg 
262c3d31fe1Smrg /* Width of a word, in units (bytes).  */
263c3d31fe1Smrg #define UNITS_PER_WORD 8
264c3d31fe1Smrg 
265c3d31fe1Smrg /* Width in bits of a pointer.
266c3d31fe1Smrg    See also the macro `Pmode' defined below.  */
267c3d31fe1Smrg #define POINTER_SIZE 64
268c3d31fe1Smrg 
269c3d31fe1Smrg /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
270c3d31fe1Smrg #define PARM_BOUNDARY 64
271c3d31fe1Smrg 
272c3d31fe1Smrg /* Boundary (in *bits*) on which stack pointer should be aligned.  */
273c3d31fe1Smrg #define STACK_BOUNDARY 128
274c3d31fe1Smrg 
275c3d31fe1Smrg /* Allocation boundary (in *bits*) for the code of a function.  */
276c3d31fe1Smrg #define FUNCTION_BOUNDARY 32
277c3d31fe1Smrg 
278c3d31fe1Smrg /* Alignment of field after `int : 0' in a structure.  */
279c3d31fe1Smrg #define EMPTY_FIELD_BOUNDARY 64
280c3d31fe1Smrg 
281c3d31fe1Smrg /* Every structure's size must be a multiple of this.  */
282c3d31fe1Smrg #define STRUCTURE_SIZE_BOUNDARY 8
283c3d31fe1Smrg 
284c3d31fe1Smrg /* A bit-field declared as `int' forces `int' alignment for the struct.  */
285*af526226Smrg #undef PCC_BITFILED_TYPE_MATTERS
286c3d31fe1Smrg #define PCC_BITFIELD_TYPE_MATTERS 1
287c3d31fe1Smrg 
288c3d31fe1Smrg /* No data type wants to be aligned rounder than this.  */
289c3d31fe1Smrg #define BIGGEST_ALIGNMENT 128
290c3d31fe1Smrg 
291c3d31fe1Smrg /* For atomic access to objects, must have at least 32-bit alignment
292c3d31fe1Smrg    unless the machine has byte operations.  */
293c3d31fe1Smrg #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
294c3d31fe1Smrg 
295c3d31fe1Smrg /* Align all constants and variables to at least a word boundary so
296c3d31fe1Smrg    we can pick up pieces of them faster.  */
297c3d31fe1Smrg /* ??? Only if block-move stuff knows about different source/destination
298c3d31fe1Smrg    alignment.  */
299c3d31fe1Smrg #if 0
300c3d31fe1Smrg #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
301c3d31fe1Smrg #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
302c3d31fe1Smrg #endif
303c3d31fe1Smrg 
304c3d31fe1Smrg /* Set this nonzero if move instructions will actually fail to work
305c3d31fe1Smrg    when given unaligned data.
306c3d31fe1Smrg 
307c3d31fe1Smrg    Since we get an error message when we do one, call them invalid.  */
308c3d31fe1Smrg 
309c3d31fe1Smrg #define STRICT_ALIGNMENT 1
310c3d31fe1Smrg 
311c3d31fe1Smrg /* Set this nonzero if unaligned move instructions are extremely slow.
312c3d31fe1Smrg 
313c3d31fe1Smrg    On the Alpha, they trap.  */
314c3d31fe1Smrg 
315c3d31fe1Smrg #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
316c3d31fe1Smrg 
317c3d31fe1Smrg /* Standard register usage.  */
318c3d31fe1Smrg 
319c3d31fe1Smrg /* Number of actual hardware registers.
320c3d31fe1Smrg    The hardware registers are assigned numbers for the compiler
321c3d31fe1Smrg    from 0 to just below FIRST_PSEUDO_REGISTER.
322c3d31fe1Smrg    All registers that the compiler knows about must be given numbers,
323c3d31fe1Smrg    even those that are not normally considered general registers.
324c3d31fe1Smrg 
325c3d31fe1Smrg    We define all 32 integer registers, even though $31 is always zero,
326c3d31fe1Smrg    and all 32 floating-point registers, even though $f31 is also
327c3d31fe1Smrg    always zero.  We do not bother defining the FP status register and
328c3d31fe1Smrg    there are no other registers.
329c3d31fe1Smrg 
330c3d31fe1Smrg    Since $31 is always zero, we will use register number 31 as the
331c3d31fe1Smrg    argument pointer.  It will never appear in the generated code
332c3d31fe1Smrg    because we will always be eliminating it in favor of the stack
333c3d31fe1Smrg    pointer or hardware frame pointer.
334c3d31fe1Smrg 
335c3d31fe1Smrg    Likewise, we use $f31 for the frame pointer, which will always
336c3d31fe1Smrg    be eliminated in favor of the hardware frame pointer or the
337c3d31fe1Smrg    stack pointer.  */
338c3d31fe1Smrg 
339c3d31fe1Smrg #define FIRST_PSEUDO_REGISTER 64
340c3d31fe1Smrg 
341c3d31fe1Smrg /* 1 for registers that have pervasive standard uses
342c3d31fe1Smrg    and are not available for the register allocator.  */
343c3d31fe1Smrg 
344c3d31fe1Smrg #define FIXED_REGISTERS  \
345c3d31fe1Smrg  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
346c3d31fe1Smrg   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
347c3d31fe1Smrg   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
348c3d31fe1Smrg   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
349c3d31fe1Smrg 
350c3d31fe1Smrg /* 1 for registers not available across function calls.
351c3d31fe1Smrg    These must include the FIXED_REGISTERS and also any
352c3d31fe1Smrg    registers that can be used without being saved.
353c3d31fe1Smrg    The latter must include the registers where values are returned
354c3d31fe1Smrg    and the register where structure-value addresses are passed.
355c3d31fe1Smrg    Aside from that, you can include as many other registers as you like.  */
356c3d31fe1Smrg #define CALL_USED_REGISTERS  \
357c3d31fe1Smrg  {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
358c3d31fe1Smrg   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
359c3d31fe1Smrg   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
360c3d31fe1Smrg   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
361c3d31fe1Smrg 
362c3d31fe1Smrg /* List the order in which to allocate registers.  Each register must be
363c3d31fe1Smrg    listed once, even those in FIXED_REGISTERS.  */
364c3d31fe1Smrg 
365c3d31fe1Smrg #define REG_ALLOC_ORDER { \
366c3d31fe1Smrg    1, 2, 3, 4, 5, 6, 7, 8,	/* nonsaved integer registers */	\
367c3d31fe1Smrg    22, 23, 24, 25, 28,		/* likewise */				\
368c3d31fe1Smrg    0,				/* likewise, but return value */	\
369c3d31fe1Smrg    21, 20, 19, 18, 17, 16,	/* likewise, but input args */		\
370c3d31fe1Smrg    27,				/* likewise, but OSF procedure value */	\
371c3d31fe1Smrg 									\
372c3d31fe1Smrg    42, 43, 44, 45, 46, 47,	/* nonsaved floating-point registers */	\
373c3d31fe1Smrg    54, 55, 56, 57, 58, 59,	/* likewise */				\
374c3d31fe1Smrg    60, 61, 62,			/* likewise */				\
375c3d31fe1Smrg    32, 33,			/* likewise, but return values */	\
376c3d31fe1Smrg    53, 52, 51, 50, 49, 48,	/* likewise, but input args */		\
377c3d31fe1Smrg 									\
378c3d31fe1Smrg    9, 10, 11, 12, 13, 14,	/* saved integer registers */		\
379c3d31fe1Smrg    26,				/* return address */			\
380c3d31fe1Smrg    15,				/* hard frame pointer */		\
381c3d31fe1Smrg 									\
382c3d31fe1Smrg    34, 35, 36, 37, 38, 39,	/* saved floating-point registers */	\
383c3d31fe1Smrg    40, 41,			/* likewise */				\
384c3d31fe1Smrg 									\
385c3d31fe1Smrg    29, 30, 31, 63		/* gp, sp, ap, sfp */			\
386c3d31fe1Smrg }
387c3d31fe1Smrg 
388c3d31fe1Smrg /* Return number of consecutive hard regs needed starting at reg REGNO
389c3d31fe1Smrg    to hold something of mode MODE.
390c3d31fe1Smrg    This is ordinarily the length in words of a value of mode MODE
391c3d31fe1Smrg    but can be less for certain modes in special long registers.  */
392c3d31fe1Smrg 
393c3d31fe1Smrg #define HARD_REGNO_NREGS(REGNO, MODE)   \
394c3d31fe1Smrg   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
395c3d31fe1Smrg 
396c3d31fe1Smrg /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
397c3d31fe1Smrg    On Alpha, the integer registers can hold any mode.  The floating-point
398c3d31fe1Smrg    registers can hold 64-bit integers as well, but not smaller values.  */
399c3d31fe1Smrg 
400c3d31fe1Smrg #define HARD_REGNO_MODE_OK(REGNO, MODE) 				\
401c3d31fe1Smrg   (IN_RANGE ((REGNO), 32, 62)						\
402c3d31fe1Smrg    ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode		\
403c3d31fe1Smrg      || (MODE) == SCmode || (MODE) == DCmode				\
404c3d31fe1Smrg    : 1)
405c3d31fe1Smrg 
406c3d31fe1Smrg /* A C expression that is nonzero if a value of mode
407c3d31fe1Smrg    MODE1 is accessible in mode MODE2 without copying.
408c3d31fe1Smrg 
409c3d31fe1Smrg    This asymmetric test is true when MODE1 could be put
410c3d31fe1Smrg    in an FP register but MODE2 could not.  */
411c3d31fe1Smrg 
412c3d31fe1Smrg #define MODES_TIEABLE_P(MODE1, MODE2) 				\
413c3d31fe1Smrg   (HARD_REGNO_MODE_OK (32, (MODE1))				\
414c3d31fe1Smrg    ? HARD_REGNO_MODE_OK (32, (MODE2))				\
415c3d31fe1Smrg    : 1)
416c3d31fe1Smrg 
417c3d31fe1Smrg /* Specify the registers used for certain standard purposes.
418c3d31fe1Smrg    The values of these macros are register numbers.  */
419c3d31fe1Smrg 
420c3d31fe1Smrg /* Alpha pc isn't overloaded on a register that the compiler knows about.  */
421c3d31fe1Smrg /* #define PC_REGNUM  */
422c3d31fe1Smrg 
423c3d31fe1Smrg /* Register to use for pushing function arguments.  */
424c3d31fe1Smrg #define STACK_POINTER_REGNUM 30
425c3d31fe1Smrg 
426c3d31fe1Smrg /* Base register for access to local variables of the function.  */
427c3d31fe1Smrg #define HARD_FRAME_POINTER_REGNUM 15
428c3d31fe1Smrg 
429c3d31fe1Smrg /* Base register for access to arguments of the function.  */
430c3d31fe1Smrg #define ARG_POINTER_REGNUM 31
431c3d31fe1Smrg 
432c3d31fe1Smrg /* Base register for access to local variables of function.  */
433c3d31fe1Smrg #define FRAME_POINTER_REGNUM 63
434c3d31fe1Smrg 
435c3d31fe1Smrg /* Register in which static-chain is passed to a function.
436c3d31fe1Smrg 
437c3d31fe1Smrg    For the Alpha, this is based on an example; the calling sequence
438c3d31fe1Smrg    doesn't seem to specify this.  */
439c3d31fe1Smrg #define STATIC_CHAIN_REGNUM 1
440c3d31fe1Smrg 
441c3d31fe1Smrg /* The register number of the register used to address a table of
442c3d31fe1Smrg    static data addresses in memory.  */
443c3d31fe1Smrg #define PIC_OFFSET_TABLE_REGNUM 29
444c3d31fe1Smrg 
445c3d31fe1Smrg /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
446c3d31fe1Smrg    is clobbered by calls.  */
447c3d31fe1Smrg /* ??? It is and it isn't.  It's required to be valid for a given
448c3d31fe1Smrg    function when the function returns.  It isn't clobbered by
449c3d31fe1Smrg    current_file functions.  Moreover, we do not expose the ldgp
450c3d31fe1Smrg    until after reload, so we're probably safe.  */
451c3d31fe1Smrg /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
452c3d31fe1Smrg 
453c3d31fe1Smrg /* Define the classes of registers for register constraints in the
454c3d31fe1Smrg    machine description.  Also define ranges of constants.
455c3d31fe1Smrg 
456c3d31fe1Smrg    One of the classes must always be named ALL_REGS and include all hard regs.
457c3d31fe1Smrg    If there is more than one class, another class must be named NO_REGS
458c3d31fe1Smrg    and contain no registers.
459c3d31fe1Smrg 
460c3d31fe1Smrg    The name GENERAL_REGS must be the name of a class (or an alias for
461c3d31fe1Smrg    another name such as ALL_REGS).  This is the class of registers
462c3d31fe1Smrg    that is allowed by "g" or "r" in a register constraint.
463c3d31fe1Smrg    Also, registers outside this class are allocated only when
464c3d31fe1Smrg    instructions express preferences for them.
465c3d31fe1Smrg 
466c3d31fe1Smrg    The classes must be numbered in nondecreasing order; that is,
467c3d31fe1Smrg    a larger-numbered class must never be contained completely
468c3d31fe1Smrg    in a smaller-numbered class.
469c3d31fe1Smrg 
470c3d31fe1Smrg    For any two classes, it is very desirable that there be another
471c3d31fe1Smrg    class that represents their union.  */
472c3d31fe1Smrg 
473c3d31fe1Smrg enum reg_class {
474c3d31fe1Smrg   NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
475c3d31fe1Smrg   GENERAL_REGS, FLOAT_REGS, ALL_REGS,
476c3d31fe1Smrg   LIM_REG_CLASSES
477c3d31fe1Smrg };
478c3d31fe1Smrg 
479c3d31fe1Smrg #define N_REG_CLASSES (int) LIM_REG_CLASSES
480c3d31fe1Smrg 
481c3d31fe1Smrg /* Give names of register classes as strings for dump file.  */
482c3d31fe1Smrg 
483c3d31fe1Smrg #define REG_CLASS_NAMES					\
484c3d31fe1Smrg  {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG",	\
485c3d31fe1Smrg   "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
486c3d31fe1Smrg 
487c3d31fe1Smrg /* Define which registers fit in which classes.
488c3d31fe1Smrg    This is an initializer for a vector of HARD_REG_SET
489c3d31fe1Smrg    of length N_REG_CLASSES.  */
490c3d31fe1Smrg 
491c3d31fe1Smrg #define REG_CLASS_CONTENTS				\
492c3d31fe1Smrg { {0x00000000, 0x00000000},	/* NO_REGS */		\
493c3d31fe1Smrg   {0x00000001, 0x00000000},	/* R0_REG */		\
494c3d31fe1Smrg   {0x01000000, 0x00000000},	/* R24_REG */		\
495c3d31fe1Smrg   {0x02000000, 0x00000000},	/* R25_REG */		\
496c3d31fe1Smrg   {0x08000000, 0x00000000},	/* R27_REG */		\
497c3d31fe1Smrg   {0xffffffff, 0x80000000},	/* GENERAL_REGS */	\
498c3d31fe1Smrg   {0x00000000, 0x7fffffff},	/* FLOAT_REGS */	\
499c3d31fe1Smrg   {0xffffffff, 0xffffffff} }
500c3d31fe1Smrg 
501c3d31fe1Smrg /* The same information, inverted:
502c3d31fe1Smrg    Return the class number of the smallest class containing
503c3d31fe1Smrg    reg number REGNO.  This could be a conditional expression
504c3d31fe1Smrg    or could index an array.  */
505c3d31fe1Smrg 
506c3d31fe1Smrg #define REGNO_REG_CLASS(REGNO)			\
507c3d31fe1Smrg  ((REGNO) == 0 ? R0_REG				\
508c3d31fe1Smrg   : (REGNO) == 24 ? R24_REG			\
509c3d31fe1Smrg   : (REGNO) == 25 ? R25_REG			\
510c3d31fe1Smrg   : (REGNO) == 27 ? R27_REG			\
511c3d31fe1Smrg   : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS	\
512c3d31fe1Smrg   : GENERAL_REGS)
513c3d31fe1Smrg 
514c3d31fe1Smrg /* The class value for index registers, and the one for base regs.  */
515c3d31fe1Smrg #define INDEX_REG_CLASS NO_REGS
516c3d31fe1Smrg #define BASE_REG_CLASS GENERAL_REGS
517c3d31fe1Smrg 
518c3d31fe1Smrg /* Given an rtx X being reloaded into a reg required to be
519c3d31fe1Smrg    in class CLASS, return the class of reg to actually use.
520c3d31fe1Smrg    In general this is just CLASS; but on some machines
521c3d31fe1Smrg    in some cases it is preferable to use a more restrictive class.  */
522c3d31fe1Smrg 
523c3d31fe1Smrg #define PREFERRED_RELOAD_CLASS  alpha_preferred_reload_class
524c3d31fe1Smrg 
525c3d31fe1Smrg /* If we are copying between general and FP registers, we need a memory
526c3d31fe1Smrg    location unless the FIX extension is available.  */
527c3d31fe1Smrg 
528c3d31fe1Smrg #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
529c3d31fe1Smrg  (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
530c3d31fe1Smrg                    || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
531c3d31fe1Smrg 
532c3d31fe1Smrg /* Specify the mode to be used for memory when a secondary memory
533c3d31fe1Smrg    location is needed.  If MODE is floating-point, use it.  Otherwise,
534c3d31fe1Smrg    widen to a word like the default.  This is needed because we always
535c3d31fe1Smrg    store integers in FP registers in quadword format.  This whole
536c3d31fe1Smrg    area is very tricky! */
537c3d31fe1Smrg #define SECONDARY_MEMORY_NEEDED_MODE(MODE)		\
538c3d31fe1Smrg   (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE)		\
539c3d31fe1Smrg    : GET_MODE_SIZE (MODE) >= 4 ? (MODE)			\
540c3d31fe1Smrg    : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
541c3d31fe1Smrg 
542c3d31fe1Smrg /* Return the class of registers that cannot change mode from FROM to TO.  */
543c3d31fe1Smrg 
544c3d31fe1Smrg #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
545c3d31fe1Smrg   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)			\
546c3d31fe1Smrg    ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
547c3d31fe1Smrg 
548c3d31fe1Smrg /* Define the cost of moving between registers of various classes.  Moving
549c3d31fe1Smrg    between FLOAT_REGS and anything else except float regs is expensive.
550c3d31fe1Smrg    In fact, we make it quite expensive because we really don't want to
551c3d31fe1Smrg    do these moves unless it is clearly worth it.  Optimizations may
552c3d31fe1Smrg    reduce the impact of not being able to allocate a pseudo to a
553c3d31fe1Smrg    hard register.  */
554c3d31fe1Smrg 
555c3d31fe1Smrg #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)		\
556c3d31fe1Smrg   (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS)	? 2	\
557c3d31fe1Smrg    : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8)		\
558c3d31fe1Smrg    : 4+2*alpha_memory_latency)
559c3d31fe1Smrg 
560c3d31fe1Smrg /* A C expressions returning the cost of moving data of MODE from a register to
561c3d31fe1Smrg    or from memory.
562c3d31fe1Smrg 
563c3d31fe1Smrg    On the Alpha, bump this up a bit.  */
564c3d31fe1Smrg 
565c3d31fe1Smrg extern int alpha_memory_latency;
566c3d31fe1Smrg #define MEMORY_MOVE_COST(MODE,CLASS,IN)  (2*alpha_memory_latency)
567c3d31fe1Smrg 
568c3d31fe1Smrg /* Provide the cost of a branch.  Exact meaning under development.  */
569c3d31fe1Smrg #define BRANCH_COST(speed_p, predictable_p) 5
570c3d31fe1Smrg 
571c3d31fe1Smrg /* Stack layout; function entry, exit and calling.  */
572c3d31fe1Smrg 
573c3d31fe1Smrg /* Define this if pushing a word on the stack
574c3d31fe1Smrg    makes the stack pointer a smaller address.  */
575c3d31fe1Smrg #define STACK_GROWS_DOWNWARD
576c3d31fe1Smrg 
577c3d31fe1Smrg /* Define this to nonzero if the nominal address of the stack frame
578c3d31fe1Smrg    is at the high-address end of the local variables;
579c3d31fe1Smrg    that is, each additional local variable allocated
580c3d31fe1Smrg    goes at a more negative offset in the frame.  */
581c3d31fe1Smrg /* #define FRAME_GROWS_DOWNWARD 0 */
582c3d31fe1Smrg 
583c3d31fe1Smrg /* Offset within stack frame to start allocating local variables at.
584c3d31fe1Smrg    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
585c3d31fe1Smrg    first local allocated.  Otherwise, it is the offset to the BEGINNING
586c3d31fe1Smrg    of the first local allocated.  */
587c3d31fe1Smrg 
588c3d31fe1Smrg #define STARTING_FRAME_OFFSET 0
589c3d31fe1Smrg 
590c3d31fe1Smrg /* If we generate an insn to push BYTES bytes,
591c3d31fe1Smrg    this says how many the stack pointer really advances by.
592c3d31fe1Smrg    On Alpha, don't define this because there are no push insns.  */
593c3d31fe1Smrg /*  #define PUSH_ROUNDING(BYTES) */
594c3d31fe1Smrg 
595c3d31fe1Smrg /* Define this to be nonzero if stack checking is built into the ABI.  */
596c3d31fe1Smrg #define STACK_CHECK_BUILTIN 1
597c3d31fe1Smrg 
598c3d31fe1Smrg /* Define this if the maximum size of all the outgoing args is to be
599c3d31fe1Smrg    accumulated and pushed during the prologue.  The amount can be
600c3d31fe1Smrg    found in the variable crtl->outgoing_args_size.  */
601c3d31fe1Smrg #define ACCUMULATE_OUTGOING_ARGS 1
602c3d31fe1Smrg 
603c3d31fe1Smrg /* Offset of first parameter from the argument pointer register value.  */
604c3d31fe1Smrg 
605c3d31fe1Smrg #define FIRST_PARM_OFFSET(FNDECL) 0
606c3d31fe1Smrg 
607c3d31fe1Smrg /* Definitions for register eliminations.
608c3d31fe1Smrg 
609c3d31fe1Smrg    We have two registers that can be eliminated on the Alpha.  First, the
610c3d31fe1Smrg    frame pointer register can often be eliminated in favor of the stack
611c3d31fe1Smrg    pointer register.  Secondly, the argument pointer register can always be
612c3d31fe1Smrg    eliminated; it is replaced with either the stack or frame pointer.  */
613c3d31fe1Smrg 
614c3d31fe1Smrg /* This is an array of structures.  Each structure initializes one pair
615c3d31fe1Smrg    of eliminable registers.  The "from" register number is given first,
616c3d31fe1Smrg    followed by "to".  Eliminations of the same "from" register are listed
617c3d31fe1Smrg    in order of preference.  */
618c3d31fe1Smrg 
619c3d31fe1Smrg #define ELIMINABLE_REGS				     \
620c3d31fe1Smrg {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
621c3d31fe1Smrg  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
622c3d31fe1Smrg  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
623c3d31fe1Smrg  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
624c3d31fe1Smrg 
625c3d31fe1Smrg /* Round up to a multiple of 16 bytes.  */
626c3d31fe1Smrg #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
627c3d31fe1Smrg 
628c3d31fe1Smrg /* Define the offset between two registers, one to be eliminated, and the other
629c3d31fe1Smrg    its replacement, at the start of a routine.  */
630c3d31fe1Smrg #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
631c3d31fe1Smrg   ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
632c3d31fe1Smrg 
633c3d31fe1Smrg /* Define this if stack space is still allocated for a parameter passed
634c3d31fe1Smrg    in a register.  */
635c3d31fe1Smrg /* #define REG_PARM_STACK_SPACE */
636c3d31fe1Smrg 
637c3d31fe1Smrg /* Define how to find the value returned by a function.
638c3d31fe1Smrg    VALTYPE is the data type of the value (as a tree).
639c3d31fe1Smrg    If the precise function being called is known, FUNC is its FUNCTION_DECL;
640c3d31fe1Smrg    otherwise, FUNC is 0.
641c3d31fe1Smrg 
642c3d31fe1Smrg    On Alpha the value is found in $0 for integer functions and
643c3d31fe1Smrg    $f0 for floating-point functions.  */
644c3d31fe1Smrg 
645c3d31fe1Smrg #define FUNCTION_VALUE(VALTYPE, FUNC) \
646c3d31fe1Smrg   function_value (VALTYPE, FUNC, VOIDmode)
647c3d31fe1Smrg 
648c3d31fe1Smrg /* Define how to find the value returned by a library function
649c3d31fe1Smrg    assuming the value has mode MODE.  */
650c3d31fe1Smrg 
651c3d31fe1Smrg #define LIBCALL_VALUE(MODE) \
652c3d31fe1Smrg   function_value (NULL, NULL, MODE)
653c3d31fe1Smrg 
654c3d31fe1Smrg /* 1 if N is a possible register number for a function value
655c3d31fe1Smrg    as seen by the caller.  */
656c3d31fe1Smrg 
657c3d31fe1Smrg #define FUNCTION_VALUE_REGNO_P(N)  \
658c3d31fe1Smrg   ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
659c3d31fe1Smrg 
660c3d31fe1Smrg /* 1 if N is a possible register number for function argument passing.
661c3d31fe1Smrg    On Alpha, these are $16-$21 and $f16-$f21.  */
662c3d31fe1Smrg 
663c3d31fe1Smrg #define FUNCTION_ARG_REGNO_P(N) \
664c3d31fe1Smrg   (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
665c3d31fe1Smrg 
666c3d31fe1Smrg /* Define a data type for recording info about an argument list
667c3d31fe1Smrg    during the scan of that argument list.  This data type should
668c3d31fe1Smrg    hold all necessary information about the function itself
669c3d31fe1Smrg    and about the args processed so far, enough to enable macros
670c3d31fe1Smrg    such as FUNCTION_ARG to determine where the next arg should go.
671c3d31fe1Smrg 
672c3d31fe1Smrg    On Alpha, this is a single integer, which is a number of words
673c3d31fe1Smrg    of arguments scanned so far.
674c3d31fe1Smrg    Thus 6 or more means all following args should go on the stack.  */
675c3d31fe1Smrg 
676c3d31fe1Smrg #define CUMULATIVE_ARGS int
677c3d31fe1Smrg 
678c3d31fe1Smrg /* Initialize a variable CUM of type CUMULATIVE_ARGS
679c3d31fe1Smrg    for a call to a function whose data type is FNTYPE.
680c3d31fe1Smrg    For a library call, FNTYPE is 0.  */
681c3d31fe1Smrg 
682c3d31fe1Smrg #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
683c3d31fe1Smrg   (CUM) = 0
684c3d31fe1Smrg 
685c3d31fe1Smrg /* Define intermediate macro to compute the size (in registers) of an argument
686c3d31fe1Smrg    for the Alpha.  */
687c3d31fe1Smrg 
688c3d31fe1Smrg #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED)				\
689c3d31fe1Smrg   ((MODE) == TFmode || (MODE) == TCmode ? 1				\
690c3d31fe1Smrg    : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
691c3d31fe1Smrg       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
692c3d31fe1Smrg 
693c3d31fe1Smrg /* Make (or fake) .linkage entry for function call.
694c3d31fe1Smrg    IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.  */
695c3d31fe1Smrg 
696c3d31fe1Smrg /* This macro defines the start of an assembly comment.  */
697c3d31fe1Smrg 
698c3d31fe1Smrg #define ASM_COMMENT_START " #"
699c3d31fe1Smrg 
700c3d31fe1Smrg /* This macro produces the initial definition of a function.  */
701c3d31fe1Smrg 
702*af526226Smrg #undef ASM_DECLARE_FUNCTION_NAME
703c3d31fe1Smrg #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
704c3d31fe1Smrg   alpha_start_function(FILE,NAME,DECL);
705c3d31fe1Smrg 
706c3d31fe1Smrg /* This macro closes up a function definition for the assembler.  */
707c3d31fe1Smrg 
708*af526226Smrg #undef ASM_DECLARE_FUNCTION_SIZE
709c3d31fe1Smrg #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
710c3d31fe1Smrg   alpha_end_function(FILE,NAME,DECL)
711c3d31fe1Smrg 
712c3d31fe1Smrg /* Output any profiling code before the prologue.  */
713c3d31fe1Smrg 
714c3d31fe1Smrg #define PROFILE_BEFORE_PROLOGUE 1
715c3d31fe1Smrg 
716c3d31fe1Smrg /* Never use profile counters.  */
717c3d31fe1Smrg 
718c3d31fe1Smrg #define NO_PROFILE_COUNTERS 1
719c3d31fe1Smrg 
720c3d31fe1Smrg /* Output assembler code to FILE to increment profiler label # LABELNO
721c3d31fe1Smrg    for profiling a function entry.  Under OSF/1, profiling is enabled
722c3d31fe1Smrg    by simply passing -pg to the assembler and linker.  */
723c3d31fe1Smrg 
724c3d31fe1Smrg #define FUNCTION_PROFILER(FILE, LABELNO)
725c3d31fe1Smrg 
726c3d31fe1Smrg /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
727c3d31fe1Smrg    the stack pointer does not matter.  The value is tested only in
728c3d31fe1Smrg    functions that have frame pointers.
729c3d31fe1Smrg    No definition is equivalent to always zero.  */
730c3d31fe1Smrg 
731c3d31fe1Smrg #define EXIT_IGNORE_STACK 1
732c3d31fe1Smrg 
733c3d31fe1Smrg /* Define registers used by the epilogue and return instruction.  */
734c3d31fe1Smrg 
735c3d31fe1Smrg #define EPILOGUE_USES(REGNO)	((REGNO) == 26)
736c3d31fe1Smrg 
737c3d31fe1Smrg /* Length in units of the trampoline for entering a nested function.  */
738c3d31fe1Smrg 
739c3d31fe1Smrg #define TRAMPOLINE_SIZE    32
740c3d31fe1Smrg 
741c3d31fe1Smrg /* The alignment of a trampoline, in bits.  */
742c3d31fe1Smrg 
743c3d31fe1Smrg #define TRAMPOLINE_ALIGNMENT  64
744c3d31fe1Smrg 
745c3d31fe1Smrg /* A C expression whose value is RTL representing the value of the return
746c3d31fe1Smrg    address for the frame COUNT steps up from the current frame.
747c3d31fe1Smrg    FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
748c3d31fe1Smrg    the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.  */
749c3d31fe1Smrg 
750c3d31fe1Smrg #define RETURN_ADDR_RTX  alpha_return_addr
751c3d31fe1Smrg 
752c3d31fe1Smrg /* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
753c3d31fe1Smrg    can use DWARF_ALT_FRAME_RETURN_COLUMN defined below.  This is just the same
754c3d31fe1Smrg    as the default definition in dwarf2out.c.  */
755c3d31fe1Smrg #undef DWARF_FRAME_REGNUM
756c3d31fe1Smrg #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
757c3d31fe1Smrg 
758c3d31fe1Smrg /* Before the prologue, RA lives in $26.  */
759c3d31fe1Smrg #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 26)
760c3d31fe1Smrg #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
761c3d31fe1Smrg #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
762c3d31fe1Smrg #define DWARF_ZERO_REG 31
763c3d31fe1Smrg 
764c3d31fe1Smrg /* Describe how we implement __builtin_eh_return.  */
765c3d31fe1Smrg #define EH_RETURN_DATA_REGNO(N)	((N) < 4 ? (N) + 16 : INVALID_REGNUM)
766c3d31fe1Smrg #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 28)
767c3d31fe1Smrg #define EH_RETURN_HANDLER_RTX \
768*af526226Smrg   gen_rtx_MEM (Pmode, plus_constant (Pmode, stack_pointer_rtx, \
769c3d31fe1Smrg 				     crtl->outgoing_args_size))
770c3d31fe1Smrg 
771c3d31fe1Smrg /* Addressing modes, and classification of registers for them.  */
772c3d31fe1Smrg 
773c3d31fe1Smrg /* Macros to check register numbers against specific register classes.  */
774c3d31fe1Smrg 
775c3d31fe1Smrg /* These assume that REGNO is a hard or pseudo reg number.
776c3d31fe1Smrg    They give nonzero only if REGNO is a hard reg of the suitable class
777c3d31fe1Smrg    or a pseudo reg currently allocated to a suitable hard reg.
778c3d31fe1Smrg    Since they use reg_renumber, they are safe only once reg_renumber
779*af526226Smrg    has been allocated, which happens in reginfo.c during register
780*af526226Smrg    allocation.  */
781c3d31fe1Smrg 
782c3d31fe1Smrg #define REGNO_OK_FOR_INDEX_P(REGNO) 0
783c3d31fe1Smrg #define REGNO_OK_FOR_BASE_P(REGNO) \
784c3d31fe1Smrg ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32  \
785c3d31fe1Smrg  || (REGNO) == 63 || reg_renumber[REGNO] == 63)
786c3d31fe1Smrg 
787c3d31fe1Smrg /* Maximum number of registers that can appear in a valid memory address.  */
788c3d31fe1Smrg #define MAX_REGS_PER_ADDRESS 1
789c3d31fe1Smrg 
790c3d31fe1Smrg /* Recognize any constant value that is a valid address.  For the Alpha,
791c3d31fe1Smrg    there are only constants none since we want to use LDA to load any
792c3d31fe1Smrg    symbolic addresses into registers.  */
793c3d31fe1Smrg 
794c3d31fe1Smrg #define CONSTANT_ADDRESS_P(X)   \
795c3d31fe1Smrg   (CONST_INT_P (X)		\
796c3d31fe1Smrg    && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
797c3d31fe1Smrg 
798c3d31fe1Smrg /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
799c3d31fe1Smrg    and check its validity for a certain class.
800c3d31fe1Smrg    We have two alternate definitions for each of them.
801c3d31fe1Smrg    The usual definition accepts all pseudo regs; the other rejects
802c3d31fe1Smrg    them unless they have been allocated suitable hard regs.
803c3d31fe1Smrg    The symbol REG_OK_STRICT causes the latter definition to be used.
804c3d31fe1Smrg 
805c3d31fe1Smrg    Most source files want to accept pseudo regs in the hope that
806c3d31fe1Smrg    they will get allocated to the class that the insn wants them to be in.
807c3d31fe1Smrg    Source files for reload pass need to be strict.
808c3d31fe1Smrg    After reload, it makes no difference, since pseudo regs have
809c3d31fe1Smrg    been eliminated by then.  */
810c3d31fe1Smrg 
811c3d31fe1Smrg /* Nonzero if X is a hard reg that can be used as an index
812c3d31fe1Smrg    or if it is a pseudo reg.  */
813c3d31fe1Smrg #define REG_OK_FOR_INDEX_P(X) 0
814c3d31fe1Smrg 
815c3d31fe1Smrg /* Nonzero if X is a hard reg that can be used as a base reg
816c3d31fe1Smrg    or if it is a pseudo reg.  */
817c3d31fe1Smrg #define NONSTRICT_REG_OK_FOR_BASE_P(X)  \
818c3d31fe1Smrg   (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
819c3d31fe1Smrg 
820c3d31fe1Smrg /* ??? Nonzero if X is the frame pointer, or some virtual register
821c3d31fe1Smrg    that may eliminate to the frame pointer.  These will be allowed to
822c3d31fe1Smrg    have offsets greater than 32K.  This is done because register
823c3d31fe1Smrg    elimination offsets will change the hi/lo split, and if we split
824c3d31fe1Smrg    before reload, we will require additional instructions.  */
825c3d31fe1Smrg #define NONSTRICT_REG_OK_FP_BASE_P(X)		\
826c3d31fe1Smrg   (REGNO (X) == 31 || REGNO (X) == 63		\
827c3d31fe1Smrg    || (REGNO (X) >= FIRST_PSEUDO_REGISTER	\
828*af526226Smrg        && REGNO (X) < LAST_VIRTUAL_POINTER_REGISTER))
829c3d31fe1Smrg 
830c3d31fe1Smrg /* Nonzero if X is a hard reg that can be used as a base reg.  */
831c3d31fe1Smrg #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
832c3d31fe1Smrg 
833c3d31fe1Smrg #ifdef REG_OK_STRICT
834c3d31fe1Smrg #define REG_OK_FOR_BASE_P(X)	STRICT_REG_OK_FOR_BASE_P (X)
835c3d31fe1Smrg #else
836c3d31fe1Smrg #define REG_OK_FOR_BASE_P(X)	NONSTRICT_REG_OK_FOR_BASE_P (X)
837c3d31fe1Smrg #endif
838c3d31fe1Smrg 
839c3d31fe1Smrg /* Try a machine-dependent way of reloading an illegitimate address
840c3d31fe1Smrg    operand.  If we find one, push the reload and jump to WIN.  This
841c3d31fe1Smrg    macro is used in only one place: `find_reloads_address' in reload.c.  */
842c3d31fe1Smrg 
843c3d31fe1Smrg #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)		     \
844c3d31fe1Smrg do {									     \
845c3d31fe1Smrg   rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
846c3d31fe1Smrg   if (new_x)								     \
847c3d31fe1Smrg     {									     \
848c3d31fe1Smrg       X = new_x;							     \
849c3d31fe1Smrg       goto WIN;								     \
850c3d31fe1Smrg     }									     \
851c3d31fe1Smrg } while (0)
852c3d31fe1Smrg 
853c3d31fe1Smrg 
854c3d31fe1Smrg /* Specify the machine mode that this machine uses
855c3d31fe1Smrg    for the index in the tablejump instruction.  */
856c3d31fe1Smrg #define CASE_VECTOR_MODE SImode
857c3d31fe1Smrg 
858c3d31fe1Smrg /* Define as C expression which evaluates to nonzero if the tablejump
859c3d31fe1Smrg    instruction expects the table to contain offsets from the address of the
860c3d31fe1Smrg    table.
861c3d31fe1Smrg 
862c3d31fe1Smrg    Do not define this if the table should contain absolute addresses.
863c3d31fe1Smrg    On the Alpha, the table is really GP-relative, not relative to the PC
864c3d31fe1Smrg    of the table, but we pretend that it is PC-relative; this should be OK,
865c3d31fe1Smrg    but we should try to find some better way sometime.  */
866c3d31fe1Smrg #define CASE_VECTOR_PC_RELATIVE 1
867c3d31fe1Smrg 
868c3d31fe1Smrg /* Define this as 1 if `char' should by default be signed; else as 0.  */
869c3d31fe1Smrg #define DEFAULT_SIGNED_CHAR 1
870c3d31fe1Smrg 
871c3d31fe1Smrg /* Max number of bytes we can move to or from memory
872c3d31fe1Smrg    in one reasonably fast instruction.  */
873c3d31fe1Smrg 
874c3d31fe1Smrg #define MOVE_MAX 8
875c3d31fe1Smrg 
876c3d31fe1Smrg /* If a memory-to-memory move would take MOVE_RATIO or more simple
877c3d31fe1Smrg    move-instruction pairs, we will do a movmem or libcall instead.
878c3d31fe1Smrg 
879c3d31fe1Smrg    Without byte/word accesses, we want no more than four instructions;
880c3d31fe1Smrg    with, several single byte accesses are better.  */
881c3d31fe1Smrg 
882c3d31fe1Smrg #define MOVE_RATIO(speed)  (TARGET_BWX ? 7 : 2)
883c3d31fe1Smrg 
884c3d31fe1Smrg /* Largest number of bytes of an object that can be placed in a register.
885c3d31fe1Smrg    On the Alpha we have plenty of registers, so use TImode.  */
886c3d31fe1Smrg #define MAX_FIXED_MODE_SIZE	GET_MODE_BITSIZE (TImode)
887c3d31fe1Smrg 
888c3d31fe1Smrg /* Nonzero if access to memory by bytes is no faster than for words.
889c3d31fe1Smrg    Also nonzero if doing byte operations (specifically shifts) in registers
890c3d31fe1Smrg    is undesirable.
891c3d31fe1Smrg 
892c3d31fe1Smrg    On the Alpha, we want to not use the byte operation and instead use
893c3d31fe1Smrg    masking operations to access fields; these will save instructions.  */
894c3d31fe1Smrg 
895c3d31fe1Smrg #define SLOW_BYTE_ACCESS	1
896c3d31fe1Smrg 
897c3d31fe1Smrg /* Define if operations between registers always perform the operation
898c3d31fe1Smrg    on the full register even if a narrower mode is specified.  */
899c3d31fe1Smrg #define WORD_REGISTER_OPERATIONS
900c3d31fe1Smrg 
901c3d31fe1Smrg /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
902c3d31fe1Smrg    will either zero-extend or sign-extend.  The value of this macro should
903c3d31fe1Smrg    be the code that says which one of the two operations is implicitly
904c3d31fe1Smrg    done, UNKNOWN if none.  */
905c3d31fe1Smrg #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
906c3d31fe1Smrg 
907c3d31fe1Smrg /* Define if loading short immediate values into registers sign extends.  */
908c3d31fe1Smrg #define SHORT_IMMEDIATES_SIGN_EXTEND
909c3d31fe1Smrg 
910c3d31fe1Smrg /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
911c3d31fe1Smrg    is done just by pretending it is already truncated.  */
912c3d31fe1Smrg #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
913c3d31fe1Smrg 
914c3d31fe1Smrg /* The CIX ctlz and cttz instructions return 64 for zero.  */
915c3d31fe1Smrg #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, TARGET_CIX)
916c3d31fe1Smrg #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, TARGET_CIX)
917c3d31fe1Smrg 
918c3d31fe1Smrg /* Define the value returned by a floating-point comparison instruction.  */
919c3d31fe1Smrg 
920c3d31fe1Smrg #define FLOAT_STORE_FLAG_VALUE(MODE) \
921c3d31fe1Smrg   REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
922c3d31fe1Smrg 
923c3d31fe1Smrg /* Specify the machine mode that pointers have.
924c3d31fe1Smrg    After generation of rtl, the compiler makes no further distinction
925c3d31fe1Smrg    between pointers and any other objects of this machine mode.  */
926c3d31fe1Smrg #define Pmode DImode
927c3d31fe1Smrg 
928c3d31fe1Smrg /* Mode of a function address in a call instruction (for indexing purposes).  */
929c3d31fe1Smrg 
930c3d31fe1Smrg #define FUNCTION_MODE Pmode
931c3d31fe1Smrg 
932c3d31fe1Smrg /* Define this if addresses of constant functions
933c3d31fe1Smrg    shouldn't be put through pseudo regs where they can be cse'd.
934c3d31fe1Smrg    Desirable on machines where ordinary constants are expensive
935c3d31fe1Smrg    but a CALL with constant address is cheap.
936c3d31fe1Smrg 
937c3d31fe1Smrg    We define this on the Alpha so that gen_call and gen_call_value
938c3d31fe1Smrg    get to see the SYMBOL_REF (for the hint field of the jsr).  It will
939c3d31fe1Smrg    then copy it into a register, thus actually letting the address be
940c3d31fe1Smrg    cse'ed.  */
941c3d31fe1Smrg 
942c3d31fe1Smrg #define NO_FUNCTION_CSE
943c3d31fe1Smrg 
944c3d31fe1Smrg /* Define this to be nonzero if shift instructions ignore all but the low-order
945c3d31fe1Smrg    few bits.  */
946c3d31fe1Smrg #define SHIFT_COUNT_TRUNCATED 1
947c3d31fe1Smrg 
948c3d31fe1Smrg /* Control the assembler format that we output.  */
949c3d31fe1Smrg 
950c3d31fe1Smrg /* Output to assembler file text saying following lines
951c3d31fe1Smrg    may contain character constants, extra white space, comments, etc.  */
952c3d31fe1Smrg #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
953c3d31fe1Smrg 
954c3d31fe1Smrg /* Output to assembler file text saying following lines
955c3d31fe1Smrg    no longer contain unusual constructs.  */
956c3d31fe1Smrg #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
957c3d31fe1Smrg 
958c3d31fe1Smrg #define TEXT_SECTION_ASM_OP "\t.text"
959c3d31fe1Smrg 
960c3d31fe1Smrg /* Output before writable data.  */
961c3d31fe1Smrg 
962c3d31fe1Smrg #define DATA_SECTION_ASM_OP "\t.data"
963c3d31fe1Smrg 
964c3d31fe1Smrg /* How to refer to registers in assembler output.
965c3d31fe1Smrg    This sequence is indexed by compiler's hard-register-number (see above).  */
966c3d31fe1Smrg 
967c3d31fe1Smrg #define REGISTER_NAMES						\
968c3d31fe1Smrg {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8",		\
969c3d31fe1Smrg  "$9", "$10", "$11", "$12", "$13", "$14", "$15",		\
970c3d31fe1Smrg  "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",	\
971c3d31fe1Smrg  "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP",		\
972c3d31fe1Smrg  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8",	\
973c3d31fe1Smrg  "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",		\
974c3d31fe1Smrg  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
975c3d31fe1Smrg  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
976c3d31fe1Smrg 
977c3d31fe1Smrg /* Strip name encoding when emitting labels.  */
978c3d31fe1Smrg 
979c3d31fe1Smrg #define ASM_OUTPUT_LABELREF(STREAM, NAME)	\
980c3d31fe1Smrg do {						\
981c3d31fe1Smrg   const char *name_ = NAME;			\
982c3d31fe1Smrg   if (*name_ == '@' || *name_ == '%')		\
983c3d31fe1Smrg     name_ += 2;					\
984c3d31fe1Smrg   if (*name_ == '*')				\
985c3d31fe1Smrg     name_++;					\
986c3d31fe1Smrg   else						\
987c3d31fe1Smrg     fputs (user_label_prefix, STREAM);		\
988c3d31fe1Smrg   fputs (name_, STREAM);			\
989c3d31fe1Smrg } while (0)
990c3d31fe1Smrg 
991c3d31fe1Smrg /* Globalizing directive for a label.  */
992c3d31fe1Smrg #define GLOBAL_ASM_OP "\t.globl "
993c3d31fe1Smrg 
994*af526226Smrg /* Use dollar signs rather than periods in special g++ assembler names.  */
995c3d31fe1Smrg 
996*af526226Smrg #undef NO_DOLLAR_IN_LABEL
997c3d31fe1Smrg 
998c3d31fe1Smrg /* This is how to store into the string LABEL
999c3d31fe1Smrg    the symbol_ref name of an internal numbered label where
1000c3d31fe1Smrg    PREFIX is the class of label and NUM is the number within the class.
1001c3d31fe1Smrg    This is suitable for output with `assemble_name'.  */
1002c3d31fe1Smrg 
1003*af526226Smrg #undef ASM_GENERATE_INTERNAL_LABEL
1004c3d31fe1Smrg #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1005c3d31fe1Smrg   sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1006c3d31fe1Smrg 
1007c3d31fe1Smrg /* This is how to output an element of a case-vector that is relative.  */
1008c3d31fe1Smrg 
1009c3d31fe1Smrg #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1010*af526226Smrg   fprintf (FILE, "\t.gprel32 $L%d\n", (VALUE))
1011c3d31fe1Smrg 
1012c3d31fe1Smrg 
1013c3d31fe1Smrg /* Print operand X (an rtx) in assembler syntax to file FILE.
1014c3d31fe1Smrg    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1015c3d31fe1Smrg    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1016c3d31fe1Smrg 
1017c3d31fe1Smrg #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
1018c3d31fe1Smrg 
1019c3d31fe1Smrg /* Determine which codes are valid without a following integer.  These must
1020c3d31fe1Smrg    not be alphabetic.
1021c3d31fe1Smrg 
1022c3d31fe1Smrg    ~    Generates the name of the current function.
1023c3d31fe1Smrg 
1024c3d31fe1Smrg    /	Generates the instruction suffix.  The TRAP_SUFFIX and ROUND_SUFFIX
1025c3d31fe1Smrg 	attributes are examined to determine what is appropriate.
1026c3d31fe1Smrg 
1027c3d31fe1Smrg    ,    Generates single precision suffix for floating point
1028c3d31fe1Smrg 	instructions (s for IEEE, f for VAX)
1029c3d31fe1Smrg 
1030c3d31fe1Smrg    -	Generates double precision suffix for floating point
1031c3d31fe1Smrg 	instructions (t for IEEE, g for VAX)
1032c3d31fe1Smrg    */
1033c3d31fe1Smrg 
1034c3d31fe1Smrg #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1035c3d31fe1Smrg   ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1036c3d31fe1Smrg    || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1037c3d31fe1Smrg 
1038c3d31fe1Smrg /* Print a memory address as an operand to reference that memory location.  */
1039c3d31fe1Smrg 
1040c3d31fe1Smrg #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1041c3d31fe1Smrg   print_operand_address((FILE), (ADDR))
1042c3d31fe1Smrg 
1043c3d31fe1Smrg /* If we use NM, pass -g to it so it only lists globals.  */
1044c3d31fe1Smrg #define NM_FLAGS "-pg"
1045c3d31fe1Smrg 
1046c3d31fe1Smrg /* Definitions for debugging.  */
1047c3d31fe1Smrg 
1048c3d31fe1Smrg /* Correct the offset of automatic variables and arguments.  Note that
1049c3d31fe1Smrg    the Alpha debug format wants all automatic variables and arguments
1050c3d31fe1Smrg    to be in terms of two different offsets from the virtual frame pointer,
1051c3d31fe1Smrg    which is the stack pointer before any adjustment in the function.
1052c3d31fe1Smrg    The offset for the argument pointer is fixed for the native compiler,
1053c3d31fe1Smrg    it is either zero (for the no arguments case) or large enough to hold
1054c3d31fe1Smrg    all argument registers.
1055c3d31fe1Smrg    The offset for the auto pointer is the fourth argument to the .frame
1056c3d31fe1Smrg    directive (local_offset).
1057c3d31fe1Smrg    To stay compatible with the native tools we use the same offsets
1058c3d31fe1Smrg    from the virtual frame pointer and adjust the debugger arg/auto offsets
1059c3d31fe1Smrg    accordingly. These debugger offsets are set up in output_prolog.  */
1060c3d31fe1Smrg 
1061c3d31fe1Smrg extern long alpha_arg_offset;
1062c3d31fe1Smrg extern long alpha_auto_offset;
1063c3d31fe1Smrg #define DEBUGGER_AUTO_OFFSET(X) \
1064c3d31fe1Smrg   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1065c3d31fe1Smrg #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1066c3d31fe1Smrg 
1067c3d31fe1Smrg #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
1068c3d31fe1Smrg   alpha_output_filename (STREAM, NAME)
1069c3d31fe1Smrg 
1070c3d31fe1Smrg /* By default, turn on GDB extensions.  */
1071c3d31fe1Smrg #define DEFAULT_GDB_EXTENSIONS 1
1072c3d31fe1Smrg 
1073c3d31fe1Smrg /* The system headers under Alpha systems are generally C++-aware.  */
1074c3d31fe1Smrg #define NO_IMPLICIT_EXTERN_C
1075