16a5c9aabSmrg //===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
26a5c9aabSmrg //
3*490215a3Smrg // This file is distributed under the University of Illinois Open Source
4*490215a3Smrg // License. See LICENSE.TXT for details.
56a5c9aabSmrg //
66a5c9aabSmrg //===----------------------------------------------------------------------===//
76a5c9aabSmrg //
86a5c9aabSmrg // Part of the Sanitizer Allocator.
96a5c9aabSmrg //
106a5c9aabSmrg //===----------------------------------------------------------------------===//
116a5c9aabSmrg #ifndef SANITIZER_ALLOCATOR_H
126a5c9aabSmrg #error This file must be included inside sanitizer_allocator.h
136a5c9aabSmrg #endif
146a5c9aabSmrg 
156a5c9aabSmrg template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
166a5c9aabSmrg 
176a5c9aabSmrg // SizeClassAllocator64 -- allocator for 64-bit address space.
186a5c9aabSmrg // The template parameter Params is a class containing the actual parameters.
196a5c9aabSmrg //
206a5c9aabSmrg // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
216a5c9aabSmrg // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
226a5c9aabSmrg // Otherwise SpaceBeg=kSpaceBeg (fixed address).
236a5c9aabSmrg // kSpaceSize is a power of two.
246a5c9aabSmrg // At the beginning the entire space is mprotect-ed, then small parts of it
256a5c9aabSmrg // are mapped on demand.
266a5c9aabSmrg //
276a5c9aabSmrg // Region: a part of Space dedicated to a single size class.
286a5c9aabSmrg // There are kNumClasses Regions of equal size.
296a5c9aabSmrg //
306a5c9aabSmrg // UserChunk: a piece of memory returned to user.
316a5c9aabSmrg // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
326a5c9aabSmrg 
336a5c9aabSmrg // FreeArray is an array free-d chunks (stored as 4-byte offsets)
346a5c9aabSmrg //
356a5c9aabSmrg // A Region looks like this:
366a5c9aabSmrg // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
376a5c9aabSmrg 
386a5c9aabSmrg struct SizeClassAllocator64FlagMasks {  //  Bit masks.
396a5c9aabSmrg   enum {
406a5c9aabSmrg     kRandomShuffleChunks = 1,
416a5c9aabSmrg   };
426a5c9aabSmrg };
436a5c9aabSmrg 
446a5c9aabSmrg template <class Params>
456a5c9aabSmrg class SizeClassAllocator64 {
466a5c9aabSmrg  public:
476a5c9aabSmrg   static const uptr kSpaceBeg = Params::kSpaceBeg;
486a5c9aabSmrg   static const uptr kSpaceSize = Params::kSpaceSize;
496a5c9aabSmrg   static const uptr kMetadataSize = Params::kMetadataSize;
506a5c9aabSmrg   typedef typename Params::SizeClassMap SizeClassMap;
516a5c9aabSmrg   typedef typename Params::MapUnmapCallback MapUnmapCallback;
526a5c9aabSmrg 
536a5c9aabSmrg   static const bool kRandomShuffleChunks =
546a5c9aabSmrg       Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
556a5c9aabSmrg 
566a5c9aabSmrg   typedef SizeClassAllocator64<Params> ThisT;
576a5c9aabSmrg   typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
586a5c9aabSmrg 
596a5c9aabSmrg   // When we know the size class (the region base) we can represent a pointer
606a5c9aabSmrg   // as a 4-byte integer (offset from the region start shifted right by 4).
616a5c9aabSmrg   typedef u32 CompactPtrT;
626a5c9aabSmrg   static const uptr kCompactPtrScale = 4;
PointerToCompactPtr(uptr base,uptr ptr)63e56e5d0aSmrg   CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
646a5c9aabSmrg     return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
656a5c9aabSmrg   }
CompactPtrToPointer(uptr base,CompactPtrT ptr32)66e56e5d0aSmrg   uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
676a5c9aabSmrg     return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
686a5c9aabSmrg   }
696a5c9aabSmrg 
Init(s32 release_to_os_interval_ms)70e56e5d0aSmrg   void Init(s32 release_to_os_interval_ms) {
716a5c9aabSmrg     uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
726a5c9aabSmrg     if (kUsingConstantSpaceBeg) {
73ff135a7aSmrg       CHECK_EQ(kSpaceBeg, address_range.Init(TotalSpaceSize,
74ff135a7aSmrg                                              PrimaryAllocatorName, kSpaceBeg));
756a5c9aabSmrg     } else {
76ff135a7aSmrg       NonConstSpaceBeg = address_range.Init(TotalSpaceSize,
77ff135a7aSmrg                                             PrimaryAllocatorName);
786a5c9aabSmrg       CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
796a5c9aabSmrg     }
80e56e5d0aSmrg     SetReleaseToOSIntervalMs(release_to_os_interval_ms);
81*490215a3Smrg     MapWithCallbackOrDie(SpaceEnd(), AdditionalSize());
82ff135a7aSmrg     // Check that the RegionInfo array is aligned on the CacheLine size.
83ff135a7aSmrg     DCHECK_EQ(SpaceEnd() % kCacheLineSize, 0);
846a5c9aabSmrg   }
856a5c9aabSmrg 
ReleaseToOSIntervalMs()86e56e5d0aSmrg   s32 ReleaseToOSIntervalMs() const {
87e56e5d0aSmrg     return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
886a5c9aabSmrg   }
896a5c9aabSmrg 
SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms)90e56e5d0aSmrg   void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
91e56e5d0aSmrg     atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
92e56e5d0aSmrg                  memory_order_relaxed);
936a5c9aabSmrg   }
946a5c9aabSmrg 
ForceReleaseToOS()95ff135a7aSmrg   void ForceReleaseToOS() {
96ff135a7aSmrg     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
97ff135a7aSmrg       BlockingMutexLock l(&GetRegionInfo(class_id)->mutex);
98ff135a7aSmrg       MaybeReleaseToOS(class_id, true /*force*/);
99ff135a7aSmrg     }
100ff135a7aSmrg   }
101ff135a7aSmrg 
CanAllocate(uptr size,uptr alignment)1026a5c9aabSmrg   static bool CanAllocate(uptr size, uptr alignment) {
1036a5c9aabSmrg     return size <= SizeClassMap::kMaxSize &&
1046a5c9aabSmrg       alignment <= SizeClassMap::kMaxSize;
1056a5c9aabSmrg   }
1066a5c9aabSmrg 
ReturnToAllocator(AllocatorStats * stat,uptr class_id,const CompactPtrT * chunks,uptr n_chunks)1076a5c9aabSmrg   NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
1086a5c9aabSmrg                                   const CompactPtrT *chunks, uptr n_chunks) {
1096a5c9aabSmrg     RegionInfo *region = GetRegionInfo(class_id);
1106a5c9aabSmrg     uptr region_beg = GetRegionBeginBySizeClass(class_id);
1116a5c9aabSmrg     CompactPtrT *free_array = GetFreeArray(region_beg);
1126a5c9aabSmrg 
1136a5c9aabSmrg     BlockingMutexLock l(&region->mutex);
1146a5c9aabSmrg     uptr old_num_chunks = region->num_freed_chunks;
1156a5c9aabSmrg     uptr new_num_freed_chunks = old_num_chunks + n_chunks;
116e56e5d0aSmrg     // Failure to allocate free array space while releasing memory is non
117e56e5d0aSmrg     // recoverable.
118e56e5d0aSmrg     if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
119ff135a7aSmrg                                        new_num_freed_chunks))) {
120ff135a7aSmrg       Report("FATAL: Internal error: %s's allocator exhausted the free list "
121ff135a7aSmrg              "space for size class %zd (%zd bytes).\n", SanitizerToolName,
122ff135a7aSmrg              class_id, ClassIdToSize(class_id));
123ff135a7aSmrg       Die();
124ff135a7aSmrg     }
1256a5c9aabSmrg     for (uptr i = 0; i < n_chunks; i++)
1266a5c9aabSmrg       free_array[old_num_chunks + i] = chunks[i];
1276a5c9aabSmrg     region->num_freed_chunks = new_num_freed_chunks;
128e56e5d0aSmrg     region->stats.n_freed += n_chunks;
129e56e5d0aSmrg 
130ff135a7aSmrg     MaybeReleaseToOS(class_id, false /*force*/);
1316a5c9aabSmrg   }
1326a5c9aabSmrg 
GetFromAllocator(AllocatorStats * stat,uptr class_id,CompactPtrT * chunks,uptr n_chunks)133e56e5d0aSmrg   NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
1346a5c9aabSmrg                                  CompactPtrT *chunks, uptr n_chunks) {
1356a5c9aabSmrg     RegionInfo *region = GetRegionInfo(class_id);
1366a5c9aabSmrg     uptr region_beg = GetRegionBeginBySizeClass(class_id);
1376a5c9aabSmrg     CompactPtrT *free_array = GetFreeArray(region_beg);
1386a5c9aabSmrg 
1396a5c9aabSmrg     BlockingMutexLock l(&region->mutex);
1406a5c9aabSmrg     if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
141e56e5d0aSmrg       if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
142e56e5d0aSmrg                                       n_chunks - region->num_freed_chunks)))
143e56e5d0aSmrg         return false;
1446a5c9aabSmrg       CHECK_GE(region->num_freed_chunks, n_chunks);
1456a5c9aabSmrg     }
1466a5c9aabSmrg     region->num_freed_chunks -= n_chunks;
1476a5c9aabSmrg     uptr base_idx = region->num_freed_chunks;
1486a5c9aabSmrg     for (uptr i = 0; i < n_chunks; i++)
1496a5c9aabSmrg       chunks[i] = free_array[base_idx + i];
150e56e5d0aSmrg     region->stats.n_allocated += n_chunks;
151e56e5d0aSmrg     return true;
1526a5c9aabSmrg   }
1536a5c9aabSmrg 
PointerIsMine(const void * p)154*490215a3Smrg   bool PointerIsMine(const void *p) {
1556a5c9aabSmrg     uptr P = reinterpret_cast<uptr>(p);
1566a5c9aabSmrg     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
1576a5c9aabSmrg       return P / kSpaceSize == kSpaceBeg / kSpaceSize;
1586a5c9aabSmrg     return P >= SpaceBeg() && P < SpaceEnd();
1596a5c9aabSmrg   }
1606a5c9aabSmrg 
GetRegionBegin(const void * p)1616a5c9aabSmrg   uptr GetRegionBegin(const void *p) {
1626a5c9aabSmrg     if (kUsingConstantSpaceBeg)
1636a5c9aabSmrg       return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
1646a5c9aabSmrg     uptr space_beg = SpaceBeg();
1656a5c9aabSmrg     return ((reinterpret_cast<uptr>(p)  - space_beg) & ~(kRegionSize - 1)) +
1666a5c9aabSmrg         space_beg;
1676a5c9aabSmrg   }
1686a5c9aabSmrg 
GetRegionBeginBySizeClass(uptr class_id)169e56e5d0aSmrg   uptr GetRegionBeginBySizeClass(uptr class_id) const {
1706a5c9aabSmrg     return SpaceBeg() + kRegionSize * class_id;
1716a5c9aabSmrg   }
1726a5c9aabSmrg 
GetSizeClass(const void * p)1736a5c9aabSmrg   uptr GetSizeClass(const void *p) {
1746a5c9aabSmrg     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
1756a5c9aabSmrg       return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
1766a5c9aabSmrg     return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
1776a5c9aabSmrg            kNumClassesRounded;
1786a5c9aabSmrg   }
1796a5c9aabSmrg 
GetBlockBegin(const void * p)1806a5c9aabSmrg   void *GetBlockBegin(const void *p) {
1816a5c9aabSmrg     uptr class_id = GetSizeClass(p);
1826a5c9aabSmrg     uptr size = ClassIdToSize(class_id);
1836a5c9aabSmrg     if (!size) return nullptr;
1846a5c9aabSmrg     uptr chunk_idx = GetChunkIdx((uptr)p, size);
1856a5c9aabSmrg     uptr reg_beg = GetRegionBegin(p);
1866a5c9aabSmrg     uptr beg = chunk_idx * size;
1876a5c9aabSmrg     uptr next_beg = beg + size;
1886a5c9aabSmrg     if (class_id >= kNumClasses) return nullptr;
189*490215a3Smrg     RegionInfo *region = GetRegionInfo(class_id);
1906a5c9aabSmrg     if (region->mapped_user >= next_beg)
1916a5c9aabSmrg       return reinterpret_cast<void*>(reg_beg + beg);
1926a5c9aabSmrg     return nullptr;
1936a5c9aabSmrg   }
1946a5c9aabSmrg 
GetActuallyAllocatedSize(void * p)1956a5c9aabSmrg   uptr GetActuallyAllocatedSize(void *p) {
1966a5c9aabSmrg     CHECK(PointerIsMine(p));
1976a5c9aabSmrg     return ClassIdToSize(GetSizeClass(p));
1986a5c9aabSmrg   }
1996a5c9aabSmrg 
ClassID(uptr size)200*490215a3Smrg   uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
2016a5c9aabSmrg 
GetMetaData(const void * p)2026a5c9aabSmrg   void *GetMetaData(const void *p) {
2036a5c9aabSmrg     uptr class_id = GetSizeClass(p);
2046a5c9aabSmrg     uptr size = ClassIdToSize(class_id);
2056a5c9aabSmrg     uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
2066a5c9aabSmrg     uptr region_beg = GetRegionBeginBySizeClass(class_id);
2076a5c9aabSmrg     return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
2086a5c9aabSmrg                                     (1 + chunk_idx) * kMetadataSize);
2096a5c9aabSmrg   }
2106a5c9aabSmrg 
TotalMemoryUsed()2116a5c9aabSmrg   uptr TotalMemoryUsed() {
2126a5c9aabSmrg     uptr res = 0;
2136a5c9aabSmrg     for (uptr i = 0; i < kNumClasses; i++)
2146a5c9aabSmrg       res += GetRegionInfo(i)->allocated_user;
2156a5c9aabSmrg     return res;
2166a5c9aabSmrg   }
2176a5c9aabSmrg 
2186a5c9aabSmrg   // Test-only.
TestOnlyUnmap()2196a5c9aabSmrg   void TestOnlyUnmap() {
220e56e5d0aSmrg     UnmapWithCallbackOrDie(SpaceBeg(), kSpaceSize + AdditionalSize());
2216a5c9aabSmrg   }
2226a5c9aabSmrg 
FillMemoryProfile(uptr start,uptr rss,bool file,uptr * stats,uptr stats_size)2236a5c9aabSmrg   static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
2246a5c9aabSmrg                            uptr stats_size) {
2256a5c9aabSmrg     for (uptr class_id = 0; class_id < stats_size; class_id++)
2266a5c9aabSmrg       if (stats[class_id] == start)
2276a5c9aabSmrg         stats[class_id] = rss;
2286a5c9aabSmrg   }
2296a5c9aabSmrg 
PrintStats(uptr class_id,uptr rss)2306a5c9aabSmrg   void PrintStats(uptr class_id, uptr rss) {
2316a5c9aabSmrg     RegionInfo *region = GetRegionInfo(class_id);
2326a5c9aabSmrg     if (region->mapped_user == 0) return;
233e56e5d0aSmrg     uptr in_use = region->stats.n_allocated - region->stats.n_freed;
2346a5c9aabSmrg     uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
2356a5c9aabSmrg     Printf(
236e56e5d0aSmrg         "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
237e56e5d0aSmrg         "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
238e56e5d0aSmrg         "last released: %6zdK region: 0x%zx\n",
239e56e5d0aSmrg         region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
240e56e5d0aSmrg         region->mapped_user >> 10, region->stats.n_allocated,
241e56e5d0aSmrg         region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
242e56e5d0aSmrg         rss >> 10, region->rtoi.num_releases,
243e56e5d0aSmrg         region->rtoi.last_released_bytes >> 10,
244e56e5d0aSmrg         SpaceBeg() + kRegionSize * class_id);
2456a5c9aabSmrg   }
2466a5c9aabSmrg 
PrintStats()2476a5c9aabSmrg   void PrintStats() {
2486a5c9aabSmrg     uptr rss_stats[kNumClasses];
2496a5c9aabSmrg     for (uptr class_id = 0; class_id < kNumClasses; class_id++)
2506a5c9aabSmrg       rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
2516a5c9aabSmrg     GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
252ff135a7aSmrg 
253ff135a7aSmrg     uptr total_mapped = 0;
254ff135a7aSmrg     uptr total_rss = 0;
255ff135a7aSmrg     uptr n_allocated = 0;
256ff135a7aSmrg     uptr n_freed = 0;
257ff135a7aSmrg     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
258ff135a7aSmrg       RegionInfo *region = GetRegionInfo(class_id);
259ff135a7aSmrg       if (region->mapped_user != 0) {
260ff135a7aSmrg         total_mapped += region->mapped_user;
261ff135a7aSmrg         total_rss += rss_stats[class_id];
262ff135a7aSmrg       }
263ff135a7aSmrg       n_allocated += region->stats.n_allocated;
264ff135a7aSmrg       n_freed += region->stats.n_freed;
265ff135a7aSmrg     }
266ff135a7aSmrg 
267ff135a7aSmrg     Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
268ff135a7aSmrg            "%zd allocations; remains %zd\n", total_mapped >> 20,
269ff135a7aSmrg            total_rss >> 20, n_allocated, n_allocated - n_freed);
2706a5c9aabSmrg     for (uptr class_id = 1; class_id < kNumClasses; class_id++)
2716a5c9aabSmrg       PrintStats(class_id, rss_stats[class_id]);
2726a5c9aabSmrg   }
2736a5c9aabSmrg 
2746a5c9aabSmrg   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
2756a5c9aabSmrg   // introspection API.
ForceLock()2766a5c9aabSmrg   void ForceLock() {
2776a5c9aabSmrg     for (uptr i = 0; i < kNumClasses; i++) {
2786a5c9aabSmrg       GetRegionInfo(i)->mutex.Lock();
2796a5c9aabSmrg     }
2806a5c9aabSmrg   }
2816a5c9aabSmrg 
ForceUnlock()2826a5c9aabSmrg   void ForceUnlock() {
2836a5c9aabSmrg     for (int i = (int)kNumClasses - 1; i >= 0; i--) {
2846a5c9aabSmrg       GetRegionInfo(i)->mutex.Unlock();
2856a5c9aabSmrg     }
2866a5c9aabSmrg   }
2876a5c9aabSmrg 
2886a5c9aabSmrg   // Iterate over all existing chunks.
2896a5c9aabSmrg   // The allocator must be locked when calling this function.
ForEachChunk(ForEachChunkCallback callback,void * arg)2906a5c9aabSmrg   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
2916a5c9aabSmrg     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
2926a5c9aabSmrg       RegionInfo *region = GetRegionInfo(class_id);
2936a5c9aabSmrg       uptr chunk_size = ClassIdToSize(class_id);
2946a5c9aabSmrg       uptr region_beg = SpaceBeg() + class_id * kRegionSize;
2956a5c9aabSmrg       for (uptr chunk = region_beg;
296*490215a3Smrg            chunk < region_beg + region->allocated_user;
2976a5c9aabSmrg            chunk += chunk_size) {
2986a5c9aabSmrg         // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
2996a5c9aabSmrg         callback(chunk, arg);
3006a5c9aabSmrg       }
3016a5c9aabSmrg     }
3026a5c9aabSmrg   }
3036a5c9aabSmrg 
ClassIdToSize(uptr class_id)3046a5c9aabSmrg   static uptr ClassIdToSize(uptr class_id) {
3056a5c9aabSmrg     return SizeClassMap::Size(class_id);
3066a5c9aabSmrg   }
3076a5c9aabSmrg 
AdditionalSize()3086a5c9aabSmrg   static uptr AdditionalSize() {
3096a5c9aabSmrg     return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
3106a5c9aabSmrg                      GetPageSizeCached());
3116a5c9aabSmrg   }
3126a5c9aabSmrg 
3136a5c9aabSmrg   typedef SizeClassMap SizeClassMapT;
3146a5c9aabSmrg   static const uptr kNumClasses = SizeClassMap::kNumClasses;
3156a5c9aabSmrg   static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
3166a5c9aabSmrg 
317e56e5d0aSmrg   // A packed array of counters. Each counter occupies 2^n bits, enough to store
318e56e5d0aSmrg   // counter's max_value. Ctor will try to allocate the required buffer via
319e56e5d0aSmrg   // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
320e56e5d0aSmrg   // whether the initialization was successful by checking IsAllocated() result.
321e56e5d0aSmrg   // For the performance sake, none of the accessors check the validity of the
322e56e5d0aSmrg   // arguments, it is assumed that index is always in [0, n) range and the value
323e56e5d0aSmrg   // is not incremented past max_value.
324e56e5d0aSmrg   template<class MemoryMapperT>
325e56e5d0aSmrg   class PackedCounterArray {
326e56e5d0aSmrg    public:
PackedCounterArray(u64 num_counters,u64 max_value,MemoryMapperT * mapper)327e56e5d0aSmrg     PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapperT *mapper)
328e56e5d0aSmrg         : n(num_counters), memory_mapper(mapper) {
329e56e5d0aSmrg       CHECK_GT(num_counters, 0);
330e56e5d0aSmrg       CHECK_GT(max_value, 0);
331e56e5d0aSmrg       constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
332e56e5d0aSmrg       // Rounding counter storage size up to the power of two allows for using
333e56e5d0aSmrg       // bit shifts calculating particular counter's index and offset.
334e56e5d0aSmrg       uptr counter_size_bits =
335e56e5d0aSmrg           RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
336e56e5d0aSmrg       CHECK_LE(counter_size_bits, kMaxCounterBits);
337e56e5d0aSmrg       counter_size_bits_log = Log2(counter_size_bits);
338e56e5d0aSmrg       counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
339e56e5d0aSmrg 
340e56e5d0aSmrg       uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
341e56e5d0aSmrg       CHECK_GT(packing_ratio, 0);
342e56e5d0aSmrg       packing_ratio_log = Log2(packing_ratio);
343e56e5d0aSmrg       bit_offset_mask = packing_ratio - 1;
344e56e5d0aSmrg 
345e56e5d0aSmrg       buffer_size =
346e56e5d0aSmrg           (RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log) *
347e56e5d0aSmrg           sizeof(*buffer);
348e56e5d0aSmrg       buffer = reinterpret_cast<u64*>(
349e56e5d0aSmrg           memory_mapper->MapPackedCounterArrayBuffer(buffer_size));
350e56e5d0aSmrg     }
~PackedCounterArray()351e56e5d0aSmrg     ~PackedCounterArray() {
352e56e5d0aSmrg       if (buffer) {
353e56e5d0aSmrg         memory_mapper->UnmapPackedCounterArrayBuffer(
354e56e5d0aSmrg             reinterpret_cast<uptr>(buffer), buffer_size);
355e56e5d0aSmrg       }
356e56e5d0aSmrg     }
357e56e5d0aSmrg 
IsAllocated()358e56e5d0aSmrg     bool IsAllocated() const {
359e56e5d0aSmrg       return !!buffer;
360e56e5d0aSmrg     }
361e56e5d0aSmrg 
GetCount()362e56e5d0aSmrg     u64 GetCount() const {
363e56e5d0aSmrg       return n;
364e56e5d0aSmrg     }
365e56e5d0aSmrg 
Get(uptr i)366e56e5d0aSmrg     uptr Get(uptr i) const {
367e56e5d0aSmrg       DCHECK_LT(i, n);
368e56e5d0aSmrg       uptr index = i >> packing_ratio_log;
369e56e5d0aSmrg       uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
370e56e5d0aSmrg       return (buffer[index] >> bit_offset) & counter_mask;
371e56e5d0aSmrg     }
372e56e5d0aSmrg 
Inc(uptr i)373e56e5d0aSmrg     void Inc(uptr i) const {
374e56e5d0aSmrg       DCHECK_LT(Get(i), counter_mask);
375e56e5d0aSmrg       uptr index = i >> packing_ratio_log;
376e56e5d0aSmrg       uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
377e56e5d0aSmrg       buffer[index] += 1ULL << bit_offset;
378e56e5d0aSmrg     }
379e56e5d0aSmrg 
IncRange(uptr from,uptr to)380e56e5d0aSmrg     void IncRange(uptr from, uptr to) const {
381e56e5d0aSmrg       DCHECK_LE(from, to);
382e56e5d0aSmrg       for (uptr i = from; i <= to; i++)
383e56e5d0aSmrg         Inc(i);
384e56e5d0aSmrg     }
385e56e5d0aSmrg 
3866a5c9aabSmrg    private:
387e56e5d0aSmrg     const u64 n;
388e56e5d0aSmrg     u64 counter_size_bits_log;
389e56e5d0aSmrg     u64 counter_mask;
390e56e5d0aSmrg     u64 packing_ratio_log;
391e56e5d0aSmrg     u64 bit_offset_mask;
392e56e5d0aSmrg 
393e56e5d0aSmrg     MemoryMapperT* const memory_mapper;
394e56e5d0aSmrg     u64 buffer_size;
395e56e5d0aSmrg     u64* buffer;
396e56e5d0aSmrg   };
397e56e5d0aSmrg 
398e56e5d0aSmrg   template<class MemoryMapperT>
399e56e5d0aSmrg   class FreePagesRangeTracker {
400e56e5d0aSmrg    public:
FreePagesRangeTracker(MemoryMapperT * mapper)401e56e5d0aSmrg     explicit FreePagesRangeTracker(MemoryMapperT* mapper)
402e56e5d0aSmrg         : memory_mapper(mapper),
403e56e5d0aSmrg           page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)),
404e56e5d0aSmrg           in_the_range(false), current_page(0), current_range_start_page(0) {}
405e56e5d0aSmrg 
NextPage(bool freed)406e56e5d0aSmrg     void NextPage(bool freed) {
407e56e5d0aSmrg       if (freed) {
408e56e5d0aSmrg         if (!in_the_range) {
409e56e5d0aSmrg           current_range_start_page = current_page;
410e56e5d0aSmrg           in_the_range = true;
411e56e5d0aSmrg         }
412e56e5d0aSmrg       } else {
413e56e5d0aSmrg         CloseOpenedRange();
414e56e5d0aSmrg       }
415e56e5d0aSmrg       current_page++;
416e56e5d0aSmrg     }
417e56e5d0aSmrg 
Done()418e56e5d0aSmrg     void Done() {
419e56e5d0aSmrg       CloseOpenedRange();
420e56e5d0aSmrg     }
421e56e5d0aSmrg 
422e56e5d0aSmrg    private:
CloseOpenedRange()423e56e5d0aSmrg     void CloseOpenedRange() {
424e56e5d0aSmrg       if (in_the_range) {
425e56e5d0aSmrg         memory_mapper->ReleasePageRangeToOS(
426e56e5d0aSmrg             current_range_start_page << page_size_scaled_log,
427e56e5d0aSmrg             current_page << page_size_scaled_log);
428e56e5d0aSmrg         in_the_range = false;
429e56e5d0aSmrg       }
430e56e5d0aSmrg     }
431e56e5d0aSmrg 
432e56e5d0aSmrg     MemoryMapperT* const memory_mapper;
433e56e5d0aSmrg     const uptr page_size_scaled_log;
434e56e5d0aSmrg     bool in_the_range;
435e56e5d0aSmrg     uptr current_page;
436e56e5d0aSmrg     uptr current_range_start_page;
437e56e5d0aSmrg   };
438e56e5d0aSmrg 
439e56e5d0aSmrg   // Iterates over the free_array to identify memory pages containing freed
440e56e5d0aSmrg   // chunks only and returns these pages back to OS.
441e56e5d0aSmrg   // allocated_pages_count is the total number of pages allocated for the
442e56e5d0aSmrg   // current bucket.
443e56e5d0aSmrg   template<class MemoryMapperT>
ReleaseFreeMemoryToOS(CompactPtrT * free_array,uptr free_array_count,uptr chunk_size,uptr allocated_pages_count,MemoryMapperT * memory_mapper)444e56e5d0aSmrg   static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
445e56e5d0aSmrg                                     uptr free_array_count, uptr chunk_size,
446e56e5d0aSmrg                                     uptr allocated_pages_count,
447e56e5d0aSmrg                                     MemoryMapperT *memory_mapper) {
448e56e5d0aSmrg     const uptr page_size = GetPageSizeCached();
449e56e5d0aSmrg 
450e56e5d0aSmrg     // Figure out the number of chunks per page and whether we can take a fast
451e56e5d0aSmrg     // path (the number of chunks per page is the same for all pages).
452e56e5d0aSmrg     uptr full_pages_chunk_count_max;
453e56e5d0aSmrg     bool same_chunk_count_per_page;
454e56e5d0aSmrg     if (chunk_size <= page_size && page_size % chunk_size == 0) {
455e56e5d0aSmrg       // Same number of chunks per page, no cross overs.
456e56e5d0aSmrg       full_pages_chunk_count_max = page_size / chunk_size;
457e56e5d0aSmrg       same_chunk_count_per_page = true;
458e56e5d0aSmrg     } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
459e56e5d0aSmrg         chunk_size % (page_size % chunk_size) == 0) {
460e56e5d0aSmrg       // Some chunks are crossing page boundaries, which means that the page
461e56e5d0aSmrg       // contains one or two partial chunks, but all pages contain the same
462e56e5d0aSmrg       // number of chunks.
463e56e5d0aSmrg       full_pages_chunk_count_max = page_size / chunk_size + 1;
464e56e5d0aSmrg       same_chunk_count_per_page = true;
465e56e5d0aSmrg     } else if (chunk_size <= page_size) {
466e56e5d0aSmrg       // Some chunks are crossing page boundaries, which means that the page
467e56e5d0aSmrg       // contains one or two partial chunks.
468e56e5d0aSmrg       full_pages_chunk_count_max = page_size / chunk_size + 2;
469e56e5d0aSmrg       same_chunk_count_per_page = false;
470e56e5d0aSmrg     } else if (chunk_size > page_size && chunk_size % page_size == 0) {
471e56e5d0aSmrg       // One chunk covers multiple pages, no cross overs.
472e56e5d0aSmrg       full_pages_chunk_count_max = 1;
473e56e5d0aSmrg       same_chunk_count_per_page = true;
474e56e5d0aSmrg     } else if (chunk_size > page_size) {
475e56e5d0aSmrg       // One chunk covers multiple pages, Some chunks are crossing page
476e56e5d0aSmrg       // boundaries. Some pages contain one chunk, some contain two.
477e56e5d0aSmrg       full_pages_chunk_count_max = 2;
478e56e5d0aSmrg       same_chunk_count_per_page = false;
479e56e5d0aSmrg     } else {
480e56e5d0aSmrg       UNREACHABLE("All chunk_size/page_size ratios must be handled.");
481e56e5d0aSmrg     }
482e56e5d0aSmrg 
483e56e5d0aSmrg     PackedCounterArray<MemoryMapperT> counters(allocated_pages_count,
484e56e5d0aSmrg                                                full_pages_chunk_count_max,
485e56e5d0aSmrg                                                memory_mapper);
486e56e5d0aSmrg     if (!counters.IsAllocated())
487e56e5d0aSmrg       return;
488e56e5d0aSmrg 
489e56e5d0aSmrg     const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
490e56e5d0aSmrg     const uptr page_size_scaled = page_size >> kCompactPtrScale;
491e56e5d0aSmrg     const uptr page_size_scaled_log = Log2(page_size_scaled);
492e56e5d0aSmrg 
493e56e5d0aSmrg     // Iterate over free chunks and count how many free chunks affect each
494e56e5d0aSmrg     // allocated page.
495e56e5d0aSmrg     if (chunk_size <= page_size && page_size % chunk_size == 0) {
496e56e5d0aSmrg       // Each chunk affects one page only.
497e56e5d0aSmrg       for (uptr i = 0; i < free_array_count; i++)
498e56e5d0aSmrg         counters.Inc(free_array[i] >> page_size_scaled_log);
499e56e5d0aSmrg     } else {
500e56e5d0aSmrg       // In all other cases chunks might affect more than one page.
501e56e5d0aSmrg       for (uptr i = 0; i < free_array_count; i++) {
502e56e5d0aSmrg         counters.IncRange(
503e56e5d0aSmrg             free_array[i] >> page_size_scaled_log,
504e56e5d0aSmrg             (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
505e56e5d0aSmrg       }
506e56e5d0aSmrg     }
507e56e5d0aSmrg 
508e56e5d0aSmrg     // Iterate over pages detecting ranges of pages with chunk counters equal
509e56e5d0aSmrg     // to the expected number of chunks for the particular page.
510e56e5d0aSmrg     FreePagesRangeTracker<MemoryMapperT> range_tracker(memory_mapper);
511e56e5d0aSmrg     if (same_chunk_count_per_page) {
512e56e5d0aSmrg       // Fast path, every page has the same number of chunks affecting it.
513e56e5d0aSmrg       for (uptr i = 0; i < counters.GetCount(); i++)
514e56e5d0aSmrg         range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
515e56e5d0aSmrg     } else {
516e56e5d0aSmrg       // Show path, go through the pages keeping count how many chunks affect
517e56e5d0aSmrg       // each page.
518e56e5d0aSmrg       const uptr pn =
519e56e5d0aSmrg           chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
520e56e5d0aSmrg       const uptr pnc = pn * chunk_size_scaled;
521e56e5d0aSmrg       // The idea is to increment the current page pointer by the first chunk
522e56e5d0aSmrg       // size, middle portion size (the portion of the page covered by chunks
523e56e5d0aSmrg       // except the first and the last one) and then the last chunk size, adding
524e56e5d0aSmrg       // up the number of chunks on the current page and checking on every step
525e56e5d0aSmrg       // whether the page boundary was crossed.
526e56e5d0aSmrg       uptr prev_page_boundary = 0;
527e56e5d0aSmrg       uptr current_boundary = 0;
528e56e5d0aSmrg       for (uptr i = 0; i < counters.GetCount(); i++) {
529e56e5d0aSmrg         uptr page_boundary = prev_page_boundary + page_size_scaled;
530e56e5d0aSmrg         uptr chunks_per_page = pn;
531e56e5d0aSmrg         if (current_boundary < page_boundary) {
532e56e5d0aSmrg           if (current_boundary > prev_page_boundary)
533e56e5d0aSmrg             chunks_per_page++;
534e56e5d0aSmrg           current_boundary += pnc;
535e56e5d0aSmrg           if (current_boundary < page_boundary) {
536e56e5d0aSmrg             chunks_per_page++;
537e56e5d0aSmrg             current_boundary += chunk_size_scaled;
538e56e5d0aSmrg           }
539e56e5d0aSmrg         }
540e56e5d0aSmrg         prev_page_boundary = page_boundary;
541e56e5d0aSmrg 
542e56e5d0aSmrg         range_tracker.NextPage(counters.Get(i) == chunks_per_page);
543e56e5d0aSmrg       }
544e56e5d0aSmrg     }
545e56e5d0aSmrg     range_tracker.Done();
546e56e5d0aSmrg   }
547e56e5d0aSmrg 
548e56e5d0aSmrg  private:
549e56e5d0aSmrg   friend class MemoryMapper;
550e56e5d0aSmrg 
551ff135a7aSmrg   ReservedAddressRange address_range;
552ff135a7aSmrg 
5536a5c9aabSmrg   static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
5546a5c9aabSmrg   // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
5556a5c9aabSmrg   // In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
5566a5c9aabSmrg   // elements, but in reality this will not happen. For simplicity we
5576a5c9aabSmrg   // dedicate 1/8 of the region's virtual space to FreeArray.
5586a5c9aabSmrg   static const uptr kFreeArraySize = kRegionSize / 8;
5596a5c9aabSmrg 
5606a5c9aabSmrg   static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
5616a5c9aabSmrg   uptr NonConstSpaceBeg;
SpaceBeg()5626a5c9aabSmrg   uptr SpaceBeg() const {
5636a5c9aabSmrg     return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
5646a5c9aabSmrg   }
SpaceEnd()5656a5c9aabSmrg   uptr SpaceEnd() const { return  SpaceBeg() + kSpaceSize; }
5666a5c9aabSmrg   // kRegionSize must be >= 2^32.
5673bf62c3fSmrg #if _LP64
5686a5c9aabSmrg   COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
5696a5c9aabSmrg   // kRegionSize must be <= 2^36, see CompactPtrT.
5706a5c9aabSmrg   COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
5713bf62c3fSmrg #endif
5726a5c9aabSmrg   // Call mmap for user memory with at least this size.
5736a5c9aabSmrg   static const uptr kUserMapSize = 1 << 16;
5746a5c9aabSmrg   // Call mmap for metadata memory with at least this size.
5756a5c9aabSmrg   static const uptr kMetaMapSize = 1 << 16;
5766a5c9aabSmrg   // Call mmap for free array memory with at least this size.
5776a5c9aabSmrg   static const uptr kFreeArrayMapSize = 1 << 16;
578e56e5d0aSmrg 
579e56e5d0aSmrg   atomic_sint32_t release_to_os_interval_ms_;
580e56e5d0aSmrg 
581e56e5d0aSmrg   struct Stats {
582e56e5d0aSmrg     uptr n_allocated;
583e56e5d0aSmrg     uptr n_freed;
584e56e5d0aSmrg   };
5856a5c9aabSmrg 
5866a5c9aabSmrg   struct ReleaseToOsInfo {
5876a5c9aabSmrg     uptr n_freed_at_last_release;
5886a5c9aabSmrg     uptr num_releases;
589e56e5d0aSmrg     u64 last_release_at_ns;
590e56e5d0aSmrg     u64 last_released_bytes;
5916a5c9aabSmrg   };
5926a5c9aabSmrg 
ALIGNED(SANITIZER_CACHE_LINE_SIZE)593ff135a7aSmrg   struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
5946a5c9aabSmrg     BlockingMutex mutex;
5956a5c9aabSmrg     uptr num_freed_chunks;  // Number of elements in the freearray.
5966a5c9aabSmrg     uptr mapped_free_array;  // Bytes mapped for freearray.
5976a5c9aabSmrg     uptr allocated_user;  // Bytes allocated for user memory.
5986a5c9aabSmrg     uptr allocated_meta;  // Bytes allocated for metadata.
5996a5c9aabSmrg     uptr mapped_user;  // Bytes mapped for user memory.
6006a5c9aabSmrg     uptr mapped_meta;  // Bytes mapped for metadata.
6016a5c9aabSmrg     u32 rand_state;  // Seed for random shuffle, used if kRandomShuffleChunks.
602e56e5d0aSmrg     bool exhausted;  // Whether region is out of space for new chunks.
603e56e5d0aSmrg     Stats stats;
6046a5c9aabSmrg     ReleaseToOsInfo rtoi;
6056a5c9aabSmrg   };
606ff135a7aSmrg   COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
6076a5c9aabSmrg 
GetRegionInfo(uptr class_id)608e56e5d0aSmrg   RegionInfo *GetRegionInfo(uptr class_id) const {
609ff135a7aSmrg     DCHECK_LT(class_id, kNumClasses);
610ff135a7aSmrg     RegionInfo *regions = reinterpret_cast<RegionInfo *>(SpaceEnd());
6116a5c9aabSmrg     return &regions[class_id];
6126a5c9aabSmrg   }
6136a5c9aabSmrg 
GetMetadataEnd(uptr region_beg)614e56e5d0aSmrg   uptr GetMetadataEnd(uptr region_beg) const {
6156a5c9aabSmrg     return region_beg + kRegionSize - kFreeArraySize;
6166a5c9aabSmrg   }
6176a5c9aabSmrg 
GetChunkIdx(uptr chunk,uptr size)618e56e5d0aSmrg   uptr GetChunkIdx(uptr chunk, uptr size) const {
6196a5c9aabSmrg     if (!kUsingConstantSpaceBeg)
6206a5c9aabSmrg       chunk -= SpaceBeg();
6216a5c9aabSmrg 
6226a5c9aabSmrg     uptr offset = chunk % kRegionSize;
6236a5c9aabSmrg     // Here we divide by a non-constant. This is costly.
6246a5c9aabSmrg     // size always fits into 32-bits. If the offset fits too, use 32-bit div.
6256a5c9aabSmrg     if (offset >> (SANITIZER_WORDSIZE / 2))
6266a5c9aabSmrg       return offset / size;
6276a5c9aabSmrg     return (u32)offset / (u32)size;
6286a5c9aabSmrg   }
6296a5c9aabSmrg 
GetFreeArray(uptr region_beg)630e56e5d0aSmrg   CompactPtrT *GetFreeArray(uptr region_beg) const {
631e56e5d0aSmrg     return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
6326a5c9aabSmrg   }
6336a5c9aabSmrg 
MapWithCallback(uptr beg,uptr size)634*490215a3Smrg   bool MapWithCallback(uptr beg, uptr size) {
635*490215a3Smrg     uptr mapped = address_range.Map(beg, size);
636e56e5d0aSmrg     if (UNLIKELY(!mapped))
637e56e5d0aSmrg       return false;
638e56e5d0aSmrg     CHECK_EQ(beg, mapped);
639e56e5d0aSmrg     MapUnmapCallback().OnMap(beg, size);
640e56e5d0aSmrg     return true;
641e56e5d0aSmrg   }
642e56e5d0aSmrg 
MapWithCallbackOrDie(uptr beg,uptr size)643*490215a3Smrg   void MapWithCallbackOrDie(uptr beg, uptr size) {
644*490215a3Smrg     CHECK_EQ(beg, address_range.MapOrDie(beg, size));
645e56e5d0aSmrg     MapUnmapCallback().OnMap(beg, size);
646e56e5d0aSmrg   }
647e56e5d0aSmrg 
UnmapWithCallbackOrDie(uptr beg,uptr size)648e56e5d0aSmrg   void UnmapWithCallbackOrDie(uptr beg, uptr size) {
649e56e5d0aSmrg     MapUnmapCallback().OnUnmap(beg, size);
650ff135a7aSmrg     address_range.Unmap(beg, size);
651e56e5d0aSmrg   }
652e56e5d0aSmrg 
EnsureFreeArraySpace(RegionInfo * region,uptr region_beg,uptr num_freed_chunks)653e56e5d0aSmrg   bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
6546a5c9aabSmrg                             uptr num_freed_chunks) {
6556a5c9aabSmrg     uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
6566a5c9aabSmrg     if (region->mapped_free_array < needed_space) {
6576a5c9aabSmrg       uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
658e56e5d0aSmrg       CHECK_LE(new_mapped_free_array, kFreeArraySize);
6596a5c9aabSmrg       uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
6606a5c9aabSmrg                              region->mapped_free_array;
6616a5c9aabSmrg       uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
662*490215a3Smrg       if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size)))
663e56e5d0aSmrg         return false;
6646a5c9aabSmrg       region->mapped_free_array = new_mapped_free_array;
6656a5c9aabSmrg     }
666e56e5d0aSmrg     return true;
6676a5c9aabSmrg   }
6686a5c9aabSmrg 
669e56e5d0aSmrg   // Check whether this size class is exhausted.
IsRegionExhausted(RegionInfo * region,uptr class_id,uptr additional_map_size)670ff135a7aSmrg   bool IsRegionExhausted(RegionInfo *region, uptr class_id,
671ff135a7aSmrg                          uptr additional_map_size) {
672ff135a7aSmrg     if (LIKELY(region->mapped_user + region->mapped_meta +
673ff135a7aSmrg                additional_map_size <= kRegionSize - kFreeArraySize))
674ff135a7aSmrg       return false;
675e56e5d0aSmrg     if (!region->exhausted) {
676e56e5d0aSmrg       region->exhausted = true;
677e56e5d0aSmrg       Printf("%s: Out of memory. ", SanitizerToolName);
6786a5c9aabSmrg       Printf("The process has exhausted %zuMB for size class %zu.\n",
679ff135a7aSmrg              kRegionSize >> 20, ClassIdToSize(class_id));
6806a5c9aabSmrg     }
681ff135a7aSmrg     return true;
682ff135a7aSmrg   }
683ff135a7aSmrg 
PopulateFreeArray(AllocatorStats * stat,uptr class_id,RegionInfo * region,uptr requested_count)684ff135a7aSmrg   NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
685ff135a7aSmrg                                   RegionInfo *region, uptr requested_count) {
686ff135a7aSmrg     // region->mutex is held.
687ff135a7aSmrg     const uptr region_beg = GetRegionBeginBySizeClass(class_id);
688ff135a7aSmrg     const uptr size = ClassIdToSize(class_id);
689ff135a7aSmrg 
690ff135a7aSmrg     const uptr total_user_bytes =
691ff135a7aSmrg         region->allocated_user + requested_count * size;
692ff135a7aSmrg     // Map more space for chunks, if necessary.
693ff135a7aSmrg     if (LIKELY(total_user_bytes > region->mapped_user)) {
694ff135a7aSmrg       if (UNLIKELY(region->mapped_user == 0)) {
695ff135a7aSmrg         if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
696ff135a7aSmrg           // The random state is initialized from ASLR.
697ff135a7aSmrg           region->rand_state = static_cast<u32>(region_beg >> 12);
698ff135a7aSmrg         // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
699ff135a7aSmrg         // preventing just allocated memory from being released sooner than
700ff135a7aSmrg         // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
701ff135a7aSmrg         // for short lived processes.
702ff135a7aSmrg         // Do it only when the feature is turned on, to avoid a potentially
703ff135a7aSmrg         // extraneous syscall.
704ff135a7aSmrg         if (ReleaseToOSIntervalMs() >= 0)
705ff135a7aSmrg           region->rtoi.last_release_at_ns = MonotonicNanoTime();
706ff135a7aSmrg       }
707ff135a7aSmrg       // Do the mmap for the user memory.
708ff135a7aSmrg       const uptr user_map_size =
709ff135a7aSmrg           RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
710ff135a7aSmrg       if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
711e56e5d0aSmrg         return false;
712ff135a7aSmrg       if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
713*490215a3Smrg                                     user_map_size)))
714ff135a7aSmrg         return false;
715ff135a7aSmrg       stat->Add(AllocatorStatMapped, user_map_size);
716ff135a7aSmrg       region->mapped_user += user_map_size;
717e56e5d0aSmrg     }
718ff135a7aSmrg     const uptr new_chunks_count =
719ff135a7aSmrg         (region->mapped_user - region->allocated_user) / size;
720ff135a7aSmrg 
721ff135a7aSmrg     if (kMetadataSize) {
722ff135a7aSmrg       // Calculate the required space for metadata.
723ff135a7aSmrg       const uptr total_meta_bytes =
724ff135a7aSmrg           region->allocated_meta + new_chunks_count * kMetadataSize;
725ff135a7aSmrg       const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
726ff135a7aSmrg           RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
727e56e5d0aSmrg       // Map more space for metadata, if necessary.
728ff135a7aSmrg       if (meta_map_size) {
729ff135a7aSmrg         if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
730e56e5d0aSmrg           return false;
731ff135a7aSmrg         if (UNLIKELY(!MapWithCallback(
732ff135a7aSmrg             GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
733*490215a3Smrg             meta_map_size)))
734ff135a7aSmrg           return false;
735ff135a7aSmrg         region->mapped_meta += meta_map_size;
736ff135a7aSmrg       }
7376a5c9aabSmrg     }
7386a5c9aabSmrg 
739e56e5d0aSmrg     // If necessary, allocate more space for the free array and populate it with
740e56e5d0aSmrg     // newly allocated chunks.
741e56e5d0aSmrg     const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
742e56e5d0aSmrg     if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
743e56e5d0aSmrg       return false;
744e56e5d0aSmrg     CompactPtrT *free_array = GetFreeArray(region_beg);
745ff135a7aSmrg     for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
746e56e5d0aSmrg          i++, chunk += size)
747e56e5d0aSmrg       free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
748e56e5d0aSmrg     if (kRandomShuffleChunks)
749e56e5d0aSmrg       RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
750e56e5d0aSmrg                     &region->rand_state);
751e56e5d0aSmrg 
752e56e5d0aSmrg     // All necessary memory is mapped and now it is safe to advance all
753e56e5d0aSmrg     // 'allocated_*' counters.
754e56e5d0aSmrg     region->num_freed_chunks += new_chunks_count;
755e56e5d0aSmrg     region->allocated_user += new_chunks_count * size;
756e56e5d0aSmrg     CHECK_LE(region->allocated_user, region->mapped_user);
757ff135a7aSmrg     region->allocated_meta += new_chunks_count * kMetadataSize;
758e56e5d0aSmrg     CHECK_LE(region->allocated_meta, region->mapped_meta);
759e56e5d0aSmrg     region->exhausted = false;
760e56e5d0aSmrg 
761e56e5d0aSmrg     // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
762e56e5d0aSmrg     // MaybeReleaseToOS from releasing just allocated pages or protect these
763e56e5d0aSmrg     // not yet used chunks some other way.
764e56e5d0aSmrg 
7656a5c9aabSmrg     return true;
7666a5c9aabSmrg   }
7676a5c9aabSmrg 
768e56e5d0aSmrg   class MemoryMapper {
769e56e5d0aSmrg    public:
MemoryMapper(const ThisT & base_allocator,uptr class_id)770e56e5d0aSmrg     MemoryMapper(const ThisT& base_allocator, uptr class_id)
771e56e5d0aSmrg         : allocator(base_allocator),
772e56e5d0aSmrg           region_base(base_allocator.GetRegionBeginBySizeClass(class_id)),
773e56e5d0aSmrg           released_ranges_count(0),
774e56e5d0aSmrg           released_bytes(0) {
775e56e5d0aSmrg     }
776e56e5d0aSmrg 
GetReleasedRangesCount()777e56e5d0aSmrg     uptr GetReleasedRangesCount() const {
778e56e5d0aSmrg       return released_ranges_count;
779e56e5d0aSmrg     }
780e56e5d0aSmrg 
GetReleasedBytes()781e56e5d0aSmrg     uptr GetReleasedBytes() const {
782e56e5d0aSmrg       return released_bytes;
783e56e5d0aSmrg     }
784e56e5d0aSmrg 
MapPackedCounterArrayBuffer(uptr buffer_size)785e56e5d0aSmrg     uptr MapPackedCounterArrayBuffer(uptr buffer_size) {
786e56e5d0aSmrg       // TODO(alekseyshl): The idea to explore is to check if we have enough
787e56e5d0aSmrg       // space between num_freed_chunks*sizeof(CompactPtrT) and
788e56e5d0aSmrg       // mapped_free_array to fit buffer_size bytes and use that space instead
789e56e5d0aSmrg       // of mapping a temporary one.
790e56e5d0aSmrg       return reinterpret_cast<uptr>(
791e56e5d0aSmrg           MmapOrDieOnFatalError(buffer_size, "ReleaseToOSPageCounters"));
792e56e5d0aSmrg     }
793e56e5d0aSmrg 
UnmapPackedCounterArrayBuffer(uptr buffer,uptr buffer_size)794e56e5d0aSmrg     void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {
795e56e5d0aSmrg       UnmapOrDie(reinterpret_cast<void *>(buffer), buffer_size);
796e56e5d0aSmrg     }
797e56e5d0aSmrg 
798e56e5d0aSmrg     // Releases [from, to) range of pages back to OS.
ReleasePageRangeToOS(CompactPtrT from,CompactPtrT to)799e56e5d0aSmrg     void ReleasePageRangeToOS(CompactPtrT from, CompactPtrT to) {
800e56e5d0aSmrg       const uptr from_page = allocator.CompactPtrToPointer(region_base, from);
801e56e5d0aSmrg       const uptr to_page = allocator.CompactPtrToPointer(region_base, to);
802e56e5d0aSmrg       ReleaseMemoryPagesToOS(from_page, to_page);
803e56e5d0aSmrg       released_ranges_count++;
804e56e5d0aSmrg       released_bytes += to_page - from_page;
805e56e5d0aSmrg     }
806e56e5d0aSmrg 
807e56e5d0aSmrg    private:
808e56e5d0aSmrg     const ThisT& allocator;
809e56e5d0aSmrg     const uptr region_base;
810e56e5d0aSmrg     uptr released_ranges_count;
811e56e5d0aSmrg     uptr released_bytes;
812e56e5d0aSmrg   };
813e56e5d0aSmrg 
814e56e5d0aSmrg   // Attempts to release RAM occupied by freed chunks back to OS. The region is
815e56e5d0aSmrg   // expected to be locked.
MaybeReleaseToOS(uptr class_id,bool force)816ff135a7aSmrg   void MaybeReleaseToOS(uptr class_id, bool force) {
8176a5c9aabSmrg     RegionInfo *region = GetRegionInfo(class_id);
818e56e5d0aSmrg     const uptr chunk_size = ClassIdToSize(class_id);
819e56e5d0aSmrg     const uptr page_size = GetPageSizeCached();
820e56e5d0aSmrg 
8216a5c9aabSmrg     uptr n = region->num_freed_chunks;
822e56e5d0aSmrg     if (n * chunk_size < page_size)
8236a5c9aabSmrg       return;  // No chance to release anything.
824e56e5d0aSmrg     if ((region->stats.n_freed -
825e56e5d0aSmrg          region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
8266a5c9aabSmrg       return;  // Nothing new to release.
8276a5c9aabSmrg     }
828e56e5d0aSmrg 
829ff135a7aSmrg     if (!force) {
830e56e5d0aSmrg       s32 interval_ms = ReleaseToOSIntervalMs();
831e56e5d0aSmrg       if (interval_ms < 0)
832e56e5d0aSmrg         return;
833e56e5d0aSmrg 
834ff135a7aSmrg       if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
835ff135a7aSmrg           MonotonicNanoTime()) {
836e56e5d0aSmrg         return;  // Memory was returned recently.
837ff135a7aSmrg       }
838ff135a7aSmrg     }
839e56e5d0aSmrg 
840e56e5d0aSmrg     MemoryMapper memory_mapper(*this, class_id);
841e56e5d0aSmrg 
842e56e5d0aSmrg     ReleaseFreeMemoryToOS<MemoryMapper>(
843e56e5d0aSmrg         GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
844e56e5d0aSmrg         RoundUpTo(region->allocated_user, page_size) / page_size,
845e56e5d0aSmrg         &memory_mapper);
846e56e5d0aSmrg 
847e56e5d0aSmrg     if (memory_mapper.GetReleasedRangesCount() > 0) {
848e56e5d0aSmrg       region->rtoi.n_freed_at_last_release = region->stats.n_freed;
849e56e5d0aSmrg       region->rtoi.num_releases += memory_mapper.GetReleasedRangesCount();
850e56e5d0aSmrg       region->rtoi.last_released_bytes = memory_mapper.GetReleasedBytes();
8516a5c9aabSmrg     }
852ff135a7aSmrg     region->rtoi.last_release_at_ns = MonotonicNanoTime();
8536a5c9aabSmrg   }
8546a5c9aabSmrg };
855