xref: /netbsd/external/gpl3/gdb/dist/sim/frv/mloop.in (revision 48596154)
1# Simulator main loop for frv. -*- C -*-
2# Copyright (C) 1998-2013 Free Software Foundation, Inc.
3# Contributed by Red Hat.
4#
5# This file is part of the GNU Simulators.
6#
7# This program is free software; you can redistribute it and/or modify
8# it under the terms of the GNU General Public License as published by
9# the Free Software Foundation; either version 3 of the License, or
10# (at your option) any later version.
11#
12# This program is distributed in the hope that it will be useful,
13# but WITHOUT ANY WARRANTY; without even the implied warranty of
14# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15# GNU General Public License for more details.
16#
17# You should have received a copy of the GNU General Public License
18# along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
20# Syntax:
21# /bin/sh mainloop.in command
22#
23# Command is one of:
24#
25# init
26# support
27# extract-{simple,scache,pbb}
28# {full,fast}-exec-{simple,scache,pbb}
29#
30# A target need only provide a "full" version of one of simple,scache,pbb.
31# If the target wants it can also provide a fast version of same.
32# It can't provide more than this.
33
34# ??? After a few more ports are done, revisit.
35# Will eventually need to machine generate a lot of this.
36
37case "x$1" in
38
39xsupport)
40
41cat <<EOF
42
43static INLINE const IDESC *
44extract (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, ARGBUF *abuf,
45         int fast_p)
46{
47  const IDESC *id = @cpu@_decode (current_cpu, pc, insn, insn, abuf);
48  @cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
49  if (! fast_p)
50    {
51      int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc);
52      int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc);
53      @cpu@_fill_argbuf_tp (current_cpu, abuf, trace_p, profile_p);
54    }
55  return id;
56}
57
58static INLINE SEM_PC
59execute (SIM_CPU *current_cpu, SCACHE *sc, int fast_p)
60{
61  SEM_PC vpc;
62
63  /* Force gr0 to zero before every insn.  */
64  @cpu@_h_gr_set (current_cpu, 0, 0);
65
66  if (fast_p)
67    {
68      vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, sc);
69    }
70  else
71    {
72      ARGBUF *abuf = &sc->argbuf;
73      const IDESC *idesc = abuf->idesc;
74#if WITH_SCACHE_PBB
75      int virtual_p = CGEN_ATTR_VALUE (NULL, idesc->attrs, CGEN_INSN_VIRTUAL);
76#else
77      int virtual_p = 0;
78#endif
79
80      if (! virtual_p)
81	{
82	  /* FIXME: call x-before */
83	  if (ARGBUF_PROFILE_P (abuf))
84	    PROFILE_COUNT_INSN (current_cpu, abuf->addr, idesc->num);
85	  /* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}.  */
86	  if (FRV_COUNT_CYCLES (current_cpu, ARGBUF_PROFILE_P (abuf)))
87	    {
88	      @cpu@_model_insn_before (current_cpu, sc->first_insn_p);
89	      model_insn = FRV_INSN_MODEL_PASS_1;
90	      if (idesc->timing->model_fn != NULL)
91		(*idesc->timing->model_fn) (current_cpu, sc);
92	    }
93	  else
94	    model_insn = FRV_INSN_NO_MODELING;
95	  TRACE_INSN_INIT (current_cpu, abuf, 1);
96	  TRACE_INSN (current_cpu, idesc->idata,
97		      (const struct argbuf *) abuf, abuf->addr);
98	}
99#if WITH_SCACHE
100      vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, sc);
101#else
102      vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, abuf);
103#endif
104      if (! virtual_p)
105	{
106	  /* FIXME: call x-after */
107	  if (FRV_COUNT_CYCLES (current_cpu, ARGBUF_PROFILE_P (abuf)))
108	    {
109	      int cycles;
110	      if (idesc->timing->model_fn != NULL)
111		{
112		  model_insn = FRV_INSN_MODEL_PASS_2;
113		  cycles = (*idesc->timing->model_fn) (current_cpu, sc);
114		}
115	      else
116		cycles = 1;
117	      @cpu@_model_insn_after (current_cpu, sc->last_insn_p, cycles);
118	    }
119	  TRACE_INSN_FINI (current_cpu, abuf, 1);
120	}
121    }
122
123  return vpc;
124}
125
126static void
127@cpu@_parallel_write_init (SIM_CPU *current_cpu)
128{
129  CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
130  CGEN_WRITE_QUEUE_CLEAR (q);
131  previous_vliw_pc = CPU_PC_GET(current_cpu);
132  frv_interrupt_state.f_ne_flags[0] = 0;
133  frv_interrupt_state.f_ne_flags[1] = 0;
134  frv_interrupt_state.imprecise_interrupt = NULL;
135}
136
137static void
138@cpu@_parallel_write_queued (SIM_CPU *current_cpu)
139{
140  int i;
141
142  FRV_VLIW *vliw = CPU_VLIW (current_cpu);
143  CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
144
145  /* Loop over the queued writes, executing them. Set the pc to the address
146     of the insn which queued each write for the proper context in case an
147     interrupt is caused. Restore the proper pc after the writes are
148     completed.  */
149  IADDR save_pc = CPU_PC_GET (current_cpu);
150  IADDR new_pc  = save_pc;
151  int branch_taken = 0;
152  int limit = CGEN_WRITE_QUEUE_INDEX (q);
153  frv_interrupt_state.data_written.length = 0;
154
155  for (i = 0; i < limit; ++i)
156    {
157      CGEN_WRITE_QUEUE_ELEMENT *item = CGEN_WRITE_QUEUE_ELEMENT (q, i);
158
159      /* If an imprecise interrupt was generated, then, check whether the
160	 result should still be written.  */
161      if (frv_interrupt_state.imprecise_interrupt != NULL)
162	{
163	  /* Only check writes by the insn causing the exception.  */
164	  if (CGEN_WRITE_QUEUE_ELEMENT_IADDR (item)
165	      == frv_interrupt_state.imprecise_interrupt->vpc)
166	    {
167	      /* Execute writes of floating point operations resulting in
168		 overflow, underflow or inexact.  */
169	      if (frv_interrupt_state.imprecise_interrupt->kind
170		  == FRV_FP_EXCEPTION)
171		{
172		  if ((frv_interrupt_state.imprecise_interrupt
173		       ->u.fp_info.fsr_mask
174		       & ~(FSR_INEXACT | FSR_OVERFLOW | FSR_UNDERFLOW)))
175		    continue; /* Don't execute */
176		}
177	      /* Execute writes marked as 'forced'.  */
178	      else if (! (CGEN_WRITE_QUEUE_ELEMENT_FLAGS (item)
179			  & FRV_WRITE_QUEUE_FORCE_WRITE))
180		continue; /* Don't execute */
181	    }
182	}
183
184      /* Only execute the first branch on the queue.  */
185      if (CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_PC_WRITE
186          || CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_FN_PC_WRITE)
187	{
188	  if (branch_taken)
189	    continue;
190	  branch_taken = 1;
191	  if (CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_PC_WRITE)
192	    new_pc = item->kinds.pc_write.value;
193          else
194	    new_pc = item->kinds.fn_pc_write.value;
195	}
196
197      CPU_PC_SET (current_cpu, CGEN_WRITE_QUEUE_ELEMENT_IADDR (item));
198      frv_save_data_written_for_interrupts (current_cpu, item);
199      cgen_write_queue_element_execute (current_cpu, item);
200    }
201
202  /* Update the LR with the address of the next insn if the flag is set.
203     This flag gets set in frvbf_set_write_next_vliw_to_LR by the JMPL,
204     JMPIL and CALL insns.  */
205  if (frvbf_write_next_vliw_addr_to_LR)
206    {
207      frvbf_h_spr_set_handler (current_cpu, H_SPR_LR, save_pc);
208      frvbf_write_next_vliw_addr_to_LR = 0;
209    }
210
211  CPU_PC_SET (current_cpu, new_pc);
212  CGEN_WRITE_QUEUE_CLEAR (q);
213}
214
215void
216@cpu@_perform_writeback (SIM_CPU *current_cpu)
217{
218  @cpu@_parallel_write_queued (current_cpu);
219}
220
221static unsigned cache_reqno = 0x80000000; /* Start value is for debugging.  */
222
223#if 0 /* experimental */
224/* FR400 has single prefetch.  */
225static void
226fr400_simulate_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc)
227{
228  int cur_ix;
229  FRV_CACHE *cache;
230
231/* The cpu receives 8 bytes worth of insn data for each fetch aligned
232   on 8 byte boundary.  */
233#define FR400_FETCH_SIZE 8
234
235  cur_ix = LS;
236  vpc &= ~(FR400_FETCH_SIZE - 1);
237  cache = CPU_INSN_CACHE (current_cpu);
238
239  /* Request a load of the current address buffer, if necessary.  */
240  if (frv_insn_fetch_buffer[cur_ix].address != vpc)
241    {
242      frv_insn_fetch_buffer[cur_ix].address = vpc;
243      frv_insn_fetch_buffer[cur_ix].reqno = cache_reqno++;
244      if (FRV_COUNT_CYCLES (current_cpu, 1))
245	frv_cache_request_load (cache, frv_insn_fetch_buffer[cur_ix].reqno,
246				frv_insn_fetch_buffer[cur_ix].address,
247				UNIT_I0 + cur_ix);
248    }
249
250  /* Wait for the current address buffer to be loaded, if necessary.  */
251  if (FRV_COUNT_CYCLES (current_cpu, 1))
252    {
253      FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
254      int wait;
255
256      /* Account for any branch penalty.  */
257      if (ps->branch_penalty > 0 && ! ps->past_first_p)
258	{
259	  frv_model_advance_cycles (current_cpu, ps->branch_penalty);
260	  frv_model_trace_wait_cycles (current_cpu, ps->branch_penalty,
261				       "Branch penalty:");
262	  ps->branch_penalty = 0;
263	}
264
265      /* Account for insn fetch latency.  */
266      wait = 0;
267      while (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
268	{
269	  frv_model_advance_cycles (current_cpu, 1);
270	  ++wait;
271	}
272      frv_model_trace_wait_cycles (current_cpu, wait, "Insn fetch:");
273      return;
274    }
275
276  /* Otherwise just load the insns directly from the cache.
277   */
278  if (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
279    {
280      frv_cache_read (cache, cur_ix, vpc);
281      frv_insn_fetch_buffer[cur_ix].reqno = NO_REQNO;
282    }
283}
284#endif /* experimental */
285
286/* FR500 has dual prefetch.  */
287static void
288simulate_dual_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc, int fetch_size)
289{
290  int i;
291  int cur_ix, pre_ix;
292  SI pre_address;
293  FRV_CACHE *cache;
294
295  /* See if the pc is within the addresses specified by either of the
296     fetch buffers.  If so, that will be the current buffer. Otherwise,
297     arbitrarily select the LD buffer as the current one since it gets
298     priority in the case of interfering load requests.  */
299  cur_ix = LD;
300  vpc &= ~(fetch_size - 1);
301  for (i = LS; i < FRV_CACHE_PIPELINES; ++i)
302    {
303      if (frv_insn_fetch_buffer[i].address == vpc)
304	{
305	  cur_ix = i;
306	  break;
307	}
308    }
309  cache = CPU_INSN_CACHE (current_cpu);
310
311  /* Request a load of the current address buffer, if necessary.  */
312  if (frv_insn_fetch_buffer[cur_ix].address != vpc)
313    {
314      frv_insn_fetch_buffer[cur_ix].address = vpc;
315      frv_insn_fetch_buffer[cur_ix].reqno = cache_reqno++;
316      if (FRV_COUNT_CYCLES (current_cpu, 1))
317	frv_cache_request_load (cache, frv_insn_fetch_buffer[cur_ix].reqno,
318				frv_insn_fetch_buffer[cur_ix].address,
319				UNIT_I0 + cur_ix);
320    }
321
322  /* If the prefetch buffer does not represent the next sequential address, then
323     request a load of the next sequential address.  */
324  pre_ix = (cur_ix + 1) % FRV_CACHE_PIPELINES;
325  pre_address = vpc + fetch_size;
326  if (frv_insn_fetch_buffer[pre_ix].address != pre_address)
327    {
328      frv_insn_fetch_buffer[pre_ix].address = pre_address;
329      frv_insn_fetch_buffer[pre_ix].reqno = cache_reqno++;
330      if (FRV_COUNT_CYCLES (current_cpu, 1))
331	frv_cache_request_load (cache, frv_insn_fetch_buffer[pre_ix].reqno,
332				frv_insn_fetch_buffer[pre_ix].address,
333				UNIT_I0 + pre_ix);
334    }
335
336  /* If counting cycles, account for any branch penalty and/or insn fetch
337     latency here.  */
338  if (FRV_COUNT_CYCLES (current_cpu, 1))
339    {
340      FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
341      int wait;
342
343      /* Account for any branch penalty.  */
344      if (ps->branch_penalty > 0 && ! ps->past_first_p)
345	{
346	  frv_model_advance_cycles (current_cpu, ps->branch_penalty);
347	  frv_model_trace_wait_cycles (current_cpu, ps->branch_penalty,
348				       "Branch penalty:");
349	  ps->branch_penalty = 0;
350	}
351
352      /* Account for insn fetch latency.  */
353      wait = 0;
354      while (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
355	{
356	  frv_model_advance_cycles (current_cpu, 1);
357	  ++wait;
358	}
359      frv_model_trace_wait_cycles (current_cpu, wait, "Insn fetch:");
360      return;
361    }
362
363  /* Otherwise just load the insns directly from the cache.
364   */
365  if (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
366    {
367      frv_cache_read (cache, cur_ix, vpc);
368      frv_insn_fetch_buffer[cur_ix].reqno = NO_REQNO;
369    }
370  if (frv_insn_fetch_buffer[pre_ix].reqno != NO_REQNO)
371    {
372      frv_cache_read (cache, pre_ix, pre_address);
373      frv_insn_fetch_buffer[pre_ix].reqno = NO_REQNO;
374    }
375}
376
377static void
378@cpu@_simulate_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc)
379{
380  SI hsr0;
381  SIM_DESC sd;
382
383  /* Nothing to do if not counting cycles and the cache is not enabled.  */
384  hsr0 = GET_HSR0 ();
385  if (! GET_HSR0_ICE (hsr0) && ! FRV_COUNT_CYCLES (current_cpu, 1))
386    return;
387
388  /* Different machines handle prefetch defferently.  */
389  sd = CPU_STATE (current_cpu);
390  switch (STATE_ARCHITECTURE (sd)->mach)
391    {
392    case bfd_mach_fr400:
393    case bfd_mach_fr450:
394      simulate_dual_insn_prefetch (current_cpu, vpc, 8);
395      break;
396    case bfd_mach_frvtomcat:
397    case bfd_mach_fr500:
398    case bfd_mach_fr550:
399    case bfd_mach_frv:
400      simulate_dual_insn_prefetch (current_cpu, vpc, 16);
401      break;
402    default:
403      break;
404    }
405}
406
407int frv_save_profile_model_p;
408EOF
409
410;;
411
412xinit)
413
414cat <<EOF
415/*xxxinit*/
416  /* If the timer is enabled, then we will enable model profiling during
417     execution.  This is because the timer needs accurate cycles counts to
418     work properly.  Save the original setting of model profiling.  */
419  if (frv_interrupt_state.timer.enabled)
420    frv_save_profile_model_p = PROFILE_MODEL_P (current_cpu);
421EOF
422
423;;
424
425xextract-simple | xextract-scache)
426
427# Inputs:  current_cpu, vpc, sc, FAST_P
428# Outputs: sc filled in
429# SET_LAST_INSN_P(last_p) called to indicate whether insn is last one
430
431cat <<EOF
432{
433  CGEN_INSN_INT insn = frvbf_read_imem_USI (current_cpu, vpc);
434  extract (current_cpu, vpc, insn, SEM_ARGBUF (sc), FAST_P);
435  SET_LAST_INSN_P ((insn & 0x80000000) != 0);
436}
437EOF
438
439;;
440
441xfull-exec-* | xfast-exec-*)
442
443# Inputs: current_cpu, vpc, FAST_P
444# Outputs:
445#   vpc contains the address of the next insn to execute
446#   pc of current_cpu must be up to date (=vpc) upon exit
447#   CPU_INSN_COUNT (current_cpu) must be updated by number of insns executed
448#
449# Unlike the non-parallel case, this version is responsible for doing the
450# scache lookup.
451
452cat <<EOF
453{
454  FRV_VLIW *vliw;
455  int first_insn_p = 1;
456  int last_insn_p = 0;
457  int ninsns;
458  CGEN_ATTR_VALUE_ENUM_TYPE slot;
459
460  /* If the timer is enabled, then enable model profiling.  This is because
461     the timer needs accurate cycles counts to work properly.  */
462  if (frv_interrupt_state.timer.enabled && ! frv_save_profile_model_p)
463    sim_profile_set_option (current_state, "-model", PROFILE_MODEL_IDX, "1");
464
465  /* Init parallel-write queue and vliw.  */
466  @cpu@_parallel_write_init (current_cpu);
467  vliw = CPU_VLIW (current_cpu);
468  frv_vliw_reset (vliw, STATE_ARCHITECTURE (CPU_STATE (current_cpu))->mach,
469                  CPU_ELF_FLAGS (current_cpu));
470  frv_current_fm_slot = UNIT_NIL;
471
472  for (ninsns = 0; ! last_insn_p && ninsns < FRV_VLIW_SIZE; ++ninsns)
473    {
474      SCACHE *sc;
475      const CGEN_INSN *insn;
476      int error;
477      /* Go through the motions of finding the insns in the cache.  */
478      @cpu@_simulate_insn_prefetch (current_cpu, vpc);
479
480      sc = @cpu@_scache_lookup (current_cpu, vpc, scache, hash_mask, FAST_P);
481      sc->first_insn_p = first_insn_p;
482      last_insn_p = sc->last_insn_p;
483
484      /* Add the insn to the vliw and set up the interrupt state.  */
485      insn = sc->argbuf.idesc->idata;
486      error = frv_vliw_add_insn (vliw, insn);
487      if (! error)
488        frv_vliw_setup_insn (current_cpu, insn);
489      frv_detect_insn_access_interrupts (current_cpu, sc);
490      slot = (*vliw->current_vliw)[vliw->next_slot - 1];
491      if (slot >= UNIT_FM0 && slot <= UNIT_FM3)
492        frv_current_fm_slot = slot;
493
494      vpc = execute (current_cpu, sc, FAST_P);
495
496      SET_H_PC (vpc); /* needed for interrupt handling */
497      first_insn_p = 0;
498    }
499
500  /* If the timer is enabled, and model profiling was not originally enabled,
501     then turn it off again.  This is the only place we can currently gain
502     control to do this.  */
503  if (frv_interrupt_state.timer.enabled && ! frv_save_profile_model_p)
504    sim_profile_set_option (current_state, "-model", PROFILE_MODEL_IDX, "0");
505
506  /* Check for interrupts.  Also handles writeback if necessary.  */
507  frv_process_interrupts (current_cpu);
508
509  CPU_INSN_COUNT (current_cpu) += ninsns;
510}
511EOF
512
513;;
514
515*)
516  echo "Invalid argument to mainloop.in: $1" >&2
517  exit 1
518  ;;
519
520esac
521