xref: /netbsd/external/mit/lua/dist/src/ltable.c (revision f13f21ab)
1 /*	$NetBSD: ltable.c,v 1.13 2023/06/08 21:12:08 nikita Exp $	*/
2 
3 /*
4 ** Id: ltable.c
5 ** Lua tables (hash)
6 ** See Copyright Notice in lua.h
7 */
8 
9 #define ltable_c
10 #define LUA_CORE
11 
12 #include "lprefix.h"
13 
14 
15 /*
16 ** Implementation of tables (aka arrays, objects, or hash tables).
17 ** Tables keep its elements in two parts: an array part and a hash part.
18 ** Non-negative integer keys are all candidates to be kept in the array
19 ** part. The actual size of the array is the largest 'n' such that
20 ** more than half the slots between 1 and n are in use.
21 ** Hash uses a mix of chained scatter table with Brent's variation.
22 ** A main invariant of these tables is that, if an element is not
23 ** in its main position (i.e. the 'original' position that its hash gives
24 ** to it), then the colliding element is in its own main position.
25 ** Hence even when the load factor reaches 100%, performance remains good.
26 */
27 
28 #ifndef _KERNEL
29 #include <math.h>
30 #include <limits.h>
31 #endif /* _KERNEL */
32 
33 #include "lua.h"
34 
35 #include "ldebug.h"
36 #include "ldo.h"
37 #include "lgc.h"
38 #include "lmem.h"
39 #include "lobject.h"
40 #include "lstate.h"
41 #include "lstring.h"
42 #include "ltable.h"
43 #include "lvm.h"
44 
45 
46 /*
47 ** MAXABITS is the largest integer such that MAXASIZE fits in an
48 ** unsigned int.
49 */
50 #define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
51 
52 
53 /*
54 ** MAXASIZE is the maximum size of the array part. It is the minimum
55 ** between 2^MAXABITS and the maximum size that, measured in bytes,
56 ** fits in a 'size_t'.
57 */
58 #define MAXASIZE	luaM_limitN(1u << MAXABITS, TValue)
59 
60 /*
61 ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
62 ** signed int.
63 */
64 #define MAXHBITS	(MAXABITS - 1)
65 
66 
67 /*
68 ** MAXHSIZE is the maximum size of the hash part. It is the minimum
69 ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
70 ** it fits in a 'size_t'.
71 */
72 #define MAXHSIZE	luaM_limitN(1u << MAXHBITS, Node)
73 
74 
75 /*
76 ** When the original hash value is good, hashing by a power of 2
77 ** avoids the cost of '%'.
78 */
79 #define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))
80 
81 /*
82 ** for other types, it is better to avoid modulo by power of 2, as
83 ** they can have many 2 factors.
84 */
85 #define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))
86 
87 
88 #define hashstr(t,str)		hashpow2(t, (str)->hash)
89 #define hashboolean(t,p)	hashpow2(t, p)
90 
91 
92 #define hashpointer(t,p)	hashmod(t, point2uint(p))
93 
94 
95 #define dummynode		(&dummynode_)
96 
97 static const Node dummynode_ = {
98   {{NULL}, LUA_VEMPTY,  /* value's value and type */
99    LUA_VNIL, 0, {NULL}}  /* key type, next, and key value */
100 };
101 
102 
103 static const TValue absentkey = {ABSTKEYCONSTANT};
104 
105 
106 /*
107 ** Hash for integers. To allow a good hash, use the remainder operator
108 ** ('%'). If integer fits as a non-negative int, compute an int
109 ** remainder, which is faster. Otherwise, use an unsigned-integer
110 ** remainder, which uses all bits and ensures a non-negative result.
111 */
hashint(const Table * t,lua_Integer i)112 static Node *hashint (const Table *t, lua_Integer i) {
113   lua_Unsigned ui = l_castS2U(i);
114   if (ui <= cast_uint(INT_MAX))
115     return hashmod(t, cast_int(ui));
116   else
117     return hashmod(t, ui);
118 }
119 
120 
121 #ifndef _KERNEL
122 /*
123 ** Hash for floating-point numbers.
124 ** The main computation should be just
125 **     n = frexp(n, &i); return (n * INT_MAX) + i
126 ** but there are some numerical subtleties.
127 ** In a two-complement representation, INT_MAX does not has an exact
128 ** representation as a float, but INT_MIN does; because the absolute
129 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
130 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
131 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
132 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
133 ** INT_MIN.
134 */
135 #if !defined(l_hashfloat)
l_hashfloat(lua_Number n)136 static int l_hashfloat (lua_Number n) {
137   int i;
138   lua_Integer ni;
139   n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
140   if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
141     lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
142     return 0;
143   }
144   else {  /* normal case */
145     unsigned int u = cast_uint(i) + cast_uint(ni);
146     return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
147   }
148 }
149 #endif
150 #endif /* _KERNEL */
151 
152 
153 /*
154 ** returns the 'main' position of an element in a table (that is,
155 ** the index of its hash value).
156 */
mainpositionTV(const Table * t,const TValue * key)157 static Node *mainpositionTV (const Table *t, const TValue *key) {
158   switch (ttypetag(key)) {
159     case LUA_VNUMINT: {
160       lua_Integer i = ivalue(key);
161       return hashint(t, i);
162     }
163 #ifndef _KERNEL
164     case LUA_VNUMFLT: {
165       lua_Number n = fltvalue(key);
166       return hashmod(t, l_hashfloat(n));
167     }
168 #endif /* _KERNEL */
169     case LUA_VSHRSTR: {
170       TString *ts = tsvalue(key);
171       return hashstr(t, ts);
172     }
173     case LUA_VLNGSTR: {
174       TString *ts = tsvalue(key);
175       return hashpow2(t, luaS_hashlongstr(ts));
176     }
177     case LUA_VFALSE:
178       return hashboolean(t, 0);
179     case LUA_VTRUE:
180       return hashboolean(t, 1);
181     case LUA_VLIGHTUSERDATA: {
182       void *p = pvalue(key);
183       return hashpointer(t, p);
184     }
185     case LUA_VLCF: {
186       lua_CFunction f = fvalue(key);
187       return hashpointer(t, f);
188     }
189     default: {
190       GCObject *o = gcvalue(key);
191       return hashpointer(t, o);
192     }
193   }
194 }
195 
196 
mainpositionfromnode(const Table * t,Node * nd)197 l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
198   TValue key;
199   getnodekey(cast(lua_State *, NULL), &key, nd);
200   return mainpositionTV(t, &key);
201 }
202 
203 
204 /*
205 ** Check whether key 'k1' is equal to the key in node 'n2'. This
206 ** equality is raw, so there are no metamethods. Floats with integer
207 ** values have been normalized, so integers cannot be equal to
208 ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
209 ** that short strings are handled in the default case.
210 ** A true 'deadok' means to accept dead keys as equal to their original
211 ** values. All dead keys are compared in the default case, by pointer
212 ** identity. (Only collectable objects can produce dead keys.) Note that
213 ** dead long strings are also compared by identity.
214 ** Once a key is dead, its corresponding value may be collected, and
215 ** then another value can be created with the same address. If this
216 ** other value is given to 'next', 'equalkey' will signal a false
217 ** positive. In a regular traversal, this situation should never happen,
218 ** as all keys given to 'next' came from the table itself, and therefore
219 ** could not have been collected. Outside a regular traversal, we
220 ** have garbage in, garbage out. What is relevant is that this false
221 ** positive does not break anything.  (In particular, 'next' will return
222 ** some other valid item on the table or nil.)
223 */
equalkey(const TValue * k1,const Node * n2,int deadok)224 static int equalkey (const TValue *k1, const Node *n2, int deadok) {
225   if ((rawtt(k1) != keytt(n2)) &&  /* not the same variants? */
226        !(deadok && keyisdead(n2) && iscollectable(k1)))
227    return 0;  /* cannot be same key */
228   switch (keytt(n2)) {
229     case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
230       return 1;
231     case LUA_VNUMINT:
232       return (ivalue(k1) == keyival(n2));
233 #ifndef _KERNEL
234     case LUA_VNUMFLT:
235       return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
236 #endif /* _KERNEL */
237     case LUA_VLIGHTUSERDATA:
238       return pvalue(k1) == pvalueraw(keyval(n2));
239     case LUA_VLCF:
240       return fvalue(k1) == fvalueraw(keyval(n2));
241     case ctb(LUA_VLNGSTR):
242       return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
243     default:
244       return gcvalue(k1) == gcvalueraw(keyval(n2));
245   }
246 }
247 
248 
249 /*
250 ** True if value of 'alimit' is equal to the real size of the array
251 ** part of table 't'. (Otherwise, the array part must be larger than
252 ** 'alimit'.)
253 */
254 #define limitequalsasize(t)	(isrealasize(t) || ispow2((t)->alimit))
255 
256 
257 /*
258 ** Returns the real size of the 'array' array
259 */
luaH_realasize(const Table * t)260 LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
261   if (limitequalsasize(t))
262     return t->alimit;  /* this is the size */
263   else {
264     unsigned int size = t->alimit;
265     /* compute the smallest power of 2 not smaller than 'n' */
266     size |= (size >> 1);
267     size |= (size >> 2);
268     size |= (size >> 4);
269     size |= (size >> 8);
270 #if (UINT_MAX >> 14) > 3  /* unsigned int has more than 16 bits */
271     size |= (size >> 16);
272 #if (UINT_MAX >> 30) > 3
273     size |= (size >> 32);  /* unsigned int has more than 32 bits */
274 #endif
275 #endif
276     size++;
277     lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
278     return size;
279   }
280 }
281 
282 
283 /*
284 ** Check whether real size of the array is a power of 2.
285 ** (If it is not, 'alimit' cannot be changed to any other value
286 ** without changing the real size.)
287 */
ispow2realasize(const Table * t)288 static int ispow2realasize (const Table *t) {
289   return (!isrealasize(t) || ispow2(t->alimit));
290 }
291 
292 
setlimittosize(Table * t)293 static unsigned int setlimittosize (Table *t) {
294   t->alimit = luaH_realasize(t);
295   setrealasize(t);
296   return t->alimit;
297 }
298 
299 
300 #define limitasasize(t)	check_exp(isrealasize(t), t->alimit)
301 
302 
303 
304 /*
305 ** "Generic" get version. (Not that generic: not valid for integers,
306 ** which may be in array part, nor for floats with integral values.)
307 ** See explanation about 'deadok' in function 'equalkey'.
308 */
getgeneric(Table * t,const TValue * key,int deadok)309 static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
310   Node *n = mainpositionTV(t, key);
311   for (;;) {  /* check whether 'key' is somewhere in the chain */
312     if (equalkey(key, n, deadok))
313       return gval(n);  /* that's it */
314     else {
315       int nx = gnext(n);
316       if (nx == 0)
317         return &absentkey;  /* not found */
318       n += nx;
319     }
320   }
321 }
322 
323 
324 /*
325 ** returns the index for 'k' if 'k' is an appropriate key to live in
326 ** the array part of a table, 0 otherwise.
327 */
arrayindex(lua_Integer k)328 static unsigned int arrayindex (lua_Integer k) {
329   if (l_castS2U(k) - 1u < MAXASIZE)  /* 'k' in [1, MAXASIZE]? */
330     return cast_uint(k);  /* 'key' is an appropriate array index */
331   else
332     return 0;
333 }
334 
335 
336 /*
337 ** returns the index of a 'key' for table traversals. First goes all
338 ** elements in the array part, then elements in the hash part. The
339 ** beginning of a traversal is signaled by 0.
340 */
findindex(lua_State * L,Table * t,TValue * key,unsigned int asize)341 static unsigned int findindex (lua_State *L, Table *t, TValue *key,
342                                unsigned int asize) {
343   unsigned int i;
344   if (ttisnil(key)) return 0;  /* first iteration */
345   i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
346   if (i - 1u < asize)  /* is 'key' inside array part? */
347     return i;  /* yes; that's the index */
348   else {
349     const TValue *n = getgeneric(t, key, 1);
350     if (l_unlikely(isabstkey(n)))
351       luaG_runerror(L, "invalid key to 'next'");  /* key not found */
352     i = cast_int(nodefromval(n) - gnode(t, 0));  /* key index in hash table */
353     /* hash elements are numbered after array ones */
354     return (i + 1) + asize;
355   }
356 }
357 
358 
luaH_next(lua_State * L,Table * t,StkId key)359 int luaH_next (lua_State *L, Table *t, StkId key) {
360   unsigned int asize = luaH_realasize(t);
361   unsigned int i = findindex(L, t, s2v(key), asize);  /* find original key */
362   for (; i < asize; i++) {  /* try first array part */
363     if (!isempty(&t->array[i])) {  /* a non-empty entry? */
364       setivalue(s2v(key), i + 1);
365       setobj2s(L, key + 1, &t->array[i]);
366       return 1;
367     }
368   }
369   for (i -= asize; cast_int(i) < sizenode(t); i++) {  /* hash part */
370     if (!isempty(gval(gnode(t, i)))) {  /* a non-empty entry? */
371       Node *n = gnode(t, i);
372       getnodekey(L, s2v(key), n);
373       setobj2s(L, key + 1, gval(n));
374       return 1;
375     }
376   }
377   return 0;  /* no more elements */
378 }
379 
380 
freehash(lua_State * L,Table * t)381 static void freehash (lua_State *L, Table *t) {
382   if (!isdummy(t))
383     luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
384 }
385 
386 
387 /*
388 ** {=============================================================
389 ** Rehash
390 ** ==============================================================
391 */
392 
393 /*
394 ** Compute the optimal size for the array part of table 't'. 'nums' is a
395 ** "count array" where 'nums[i]' is the number of integers in the table
396 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
397 ** integer keys in the table and leaves with the number of keys that
398 ** will go to the array part; return the optimal size.  (The condition
399 ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
400 */
computesizes(unsigned int nums[],unsigned int * pna)401 static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
402   int i;
403   unsigned int twotoi;  /* 2^i (candidate for optimal size) */
404   unsigned int a = 0;  /* number of elements smaller than 2^i */
405   unsigned int na = 0;  /* number of elements to go to array part */
406   unsigned int optimal = 0;  /* optimal size for array part */
407   /* loop while keys can fill more than half of total size */
408   for (i = 0, twotoi = 1;
409        twotoi > 0 && *pna > twotoi / 2;
410        i++, twotoi *= 2) {
411     a += nums[i];
412     if (a > twotoi/2) {  /* more than half elements present? */
413       optimal = twotoi;  /* optimal size (till now) */
414       na = a;  /* all elements up to 'optimal' will go to array part */
415     }
416   }
417   lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
418   *pna = na;
419   return optimal;
420 }
421 
422 
countint(lua_Integer key,unsigned int * nums)423 static int countint (lua_Integer key, unsigned int *nums) {
424   unsigned int k = arrayindex(key);
425   if (k != 0) {  /* is 'key' an appropriate array index? */
426     nums[luaO_ceillog2(k)]++;  /* count as such */
427     return 1;
428   }
429   else
430     return 0;
431 }
432 
433 
434 /*
435 ** Count keys in array part of table 't': Fill 'nums[i]' with
436 ** number of keys that will go into corresponding slice and return
437 ** total number of non-nil keys.
438 */
numusearray(const Table * t,unsigned int * nums)439 static unsigned int numusearray (const Table *t, unsigned int *nums) {
440   int lg;
441   unsigned int ttlg;  /* 2^lg */
442   unsigned int ause = 0;  /* summation of 'nums' */
443   unsigned int i = 1;  /* count to traverse all array keys */
444   unsigned int asize = limitasasize(t);  /* real array size */
445   /* traverse each slice */
446   for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
447     unsigned int lc = 0;  /* counter */
448     unsigned int lim = ttlg;
449     if (lim > asize) {
450       lim = asize;  /* adjust upper limit */
451       if (i > lim)
452         break;  /* no more elements to count */
453     }
454     /* count elements in range (2^(lg - 1), 2^lg] */
455     for (; i <= lim; i++) {
456       if (!isempty(&t->array[i-1]))
457         lc++;
458     }
459     nums[lg] += lc;
460     ause += lc;
461   }
462   return ause;
463 }
464 
465 
numusehash(const Table * t,unsigned int * nums,unsigned int * pna)466 static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
467   int totaluse = 0;  /* total number of elements */
468   int ause = 0;  /* elements added to 'nums' (can go to array part) */
469   int i = sizenode(t);
470   while (i--) {
471     Node *n = &t->node[i];
472     if (!isempty(gval(n))) {
473       if (keyisinteger(n))
474         ause += countint(keyival(n), nums);
475       totaluse++;
476     }
477   }
478   *pna += ause;
479   return totaluse;
480 }
481 
482 
483 /*
484 ** Creates an array for the hash part of a table with the given
485 ** size, or reuses the dummy node if size is zero.
486 ** The computation for size overflow is in two steps: the first
487 ** comparison ensures that the shift in the second one does not
488 ** overflow.
489 */
setnodevector(lua_State * L,Table * t,unsigned int size)490 static void setnodevector (lua_State *L, Table *t, unsigned int size) {
491   if (size == 0) {  /* no elements to hash part? */
492     t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
493     t->lsizenode = 0;
494     t->lastfree = NULL;  /* signal that it is using dummy node */
495   }
496   else {
497     int i;
498     int lsize = luaO_ceillog2(size);
499     if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
500       luaG_runerror(L, "table overflow");
501     size = twoto(lsize);
502     t->node = luaM_newvector(L, size, Node);
503     for (i = 0; i < cast_int(size); i++) {
504       Node *n = gnode(t, i);
505       gnext(n) = 0;
506       setnilkey(n);
507       setempty(gval(n));
508     }
509     t->lsizenode = cast_byte(lsize);
510     t->lastfree = gnode(t, size);  /* all positions are free */
511   }
512 }
513 
514 
515 /*
516 ** (Re)insert all elements from the hash part of 'ot' into table 't'.
517 */
reinsert(lua_State * L,Table * ot,Table * t)518 static void reinsert (lua_State *L, Table *ot, Table *t) {
519   int j;
520   int size = sizenode(ot);
521   for (j = 0; j < size; j++) {
522     Node *old = gnode(ot, j);
523     if (!isempty(gval(old))) {
524       /* doesn't need barrier/invalidate cache, as entry was
525          already present in the table */
526       TValue k;
527       getnodekey(L, &k, old);
528       luaH_set(L, t, &k, gval(old));
529     }
530   }
531 }
532 
533 
534 /*
535 ** Exchange the hash part of 't1' and 't2'.
536 */
exchangehashpart(Table * t1,Table * t2)537 static void exchangehashpart (Table *t1, Table *t2) {
538   lu_byte lsizenode = t1->lsizenode;
539   Node *node = t1->node;
540   Node *lastfree = t1->lastfree;
541   t1->lsizenode = t2->lsizenode;
542   t1->node = t2->node;
543   t1->lastfree = t2->lastfree;
544   t2->lsizenode = lsizenode;
545   t2->node = node;
546   t2->lastfree = lastfree;
547 }
548 
549 
550 /*
551 ** Resize table 't' for the new given sizes. Both allocations (for
552 ** the hash part and for the array part) can fail, which creates some
553 ** subtleties. If the first allocation, for the hash part, fails, an
554 ** error is raised and that is it. Otherwise, it copies the elements from
555 ** the shrinking part of the array (if it is shrinking) into the new
556 ** hash. Then it reallocates the array part.  If that fails, the table
557 ** is in its original state; the function frees the new hash part and then
558 ** raises the allocation error. Otherwise, it sets the new hash part
559 ** into the table, initializes the new part of the array (if any) with
560 ** nils and reinserts the elements of the old hash back into the new
561 ** parts of the table.
562 */
luaH_resize(lua_State * L,Table * t,unsigned int newasize,unsigned int nhsize)563 void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
564                                           unsigned int nhsize) {
565   unsigned int i;
566   Table newt;  /* to keep the new hash part */
567   unsigned int oldasize = setlimittosize(t);
568   TValue *newarray;
569   /* create new hash part with appropriate size into 'newt' */
570   setnodevector(L, &newt, nhsize);
571   if (newasize < oldasize) {  /* will array shrink? */
572     t->alimit = newasize;  /* pretend array has new size... */
573     exchangehashpart(t, &newt);  /* and new hash */
574     /* re-insert into the new hash the elements from vanishing slice */
575     for (i = newasize; i < oldasize; i++) {
576       if (!isempty(&t->array[i]))
577         luaH_setint(L, t, i + 1, &t->array[i]);
578     }
579     t->alimit = oldasize;  /* restore current size... */
580     exchangehashpart(t, &newt);  /* and hash (in case of errors) */
581   }
582   /* allocate new array */
583   newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
584   if (l_unlikely(newarray == NULL && newasize > 0)) {  /* allocation failed? */
585     freehash(L, &newt);  /* release new hash part */
586     luaM_error(L);  /* raise error (with array unchanged) */
587   }
588   /* allocation ok; initialize new part of the array */
589   exchangehashpart(t, &newt);  /* 't' has the new hash ('newt' has the old) */
590   t->array = newarray;  /* set new array part */
591   t->alimit = newasize;
592   for (i = oldasize; i < newasize; i++)  /* clear new slice of the array */
593      setempty(&t->array[i]);
594   /* re-insert elements from old hash part into new parts */
595   reinsert(L, &newt, t);  /* 'newt' now has the old hash */
596   freehash(L, &newt);  /* free old hash part */
597 }
598 
599 
luaH_resizearray(lua_State * L,Table * t,unsigned int nasize)600 void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
601   int nsize = allocsizenode(t);
602   luaH_resize(L, t, nasize, nsize);
603 }
604 
605 /*
606 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
607 */
rehash(lua_State * L,Table * t,const TValue * ek)608 static void rehash (lua_State *L, Table *t, const TValue *ek) {
609   unsigned int asize;  /* optimal size for array part */
610   unsigned int na;  /* number of keys in the array part */
611   unsigned int nums[MAXABITS + 1];
612   int i;
613   int totaluse;
614   for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
615   setlimittosize(t);
616   na = numusearray(t, nums);  /* count keys in array part */
617   totaluse = na;  /* all those keys are integer keys */
618   totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
619   /* count extra key */
620   if (ttisinteger(ek))
621     na += countint(ivalue(ek), nums);
622   totaluse++;
623   /* compute new size for array part */
624   asize = computesizes(nums, &na);
625   /* resize the table to new computed sizes */
626   luaH_resize(L, t, asize, totaluse - na);
627 }
628 
629 
630 
631 /*
632 ** }=============================================================
633 */
634 
635 
luaH_new(lua_State * L)636 Table *luaH_new (lua_State *L) {
637   GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
638   Table *t = gco2t(o);
639   t->metatable = NULL;
640   t->flags = cast_byte(maskflags);  /* table has no metamethod fields */
641   t->array = NULL;
642   t->alimit = 0;
643   setnodevector(L, t, 0);
644   return t;
645 }
646 
647 
luaH_free(lua_State * L,Table * t)648 void luaH_free (lua_State *L, Table *t) {
649   freehash(L, t);
650   luaM_freearray(L, t->array, luaH_realasize(t));
651   luaM_free(L, t);
652 }
653 
654 
getfreepos(Table * t)655 static Node *getfreepos (Table *t) {
656   if (!isdummy(t)) {
657     while (t->lastfree > t->node) {
658       t->lastfree--;
659       if (keyisnil(t->lastfree))
660         return t->lastfree;
661     }
662   }
663   return NULL;  /* could not find a free place */
664 }
665 
666 
667 
668 /*
669 ** inserts a new key into a hash table; first, check whether key's main
670 ** position is free. If not, check whether colliding node is in its main
671 ** position or not: if it is not, move colliding node to an empty place and
672 ** put new key in its main position; otherwise (colliding node is in its main
673 ** position), new key goes to an empty position.
674 */
luaH_newkey(lua_State * L,Table * t,const TValue * key,TValue * value)675 void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) {
676   Node *mp;
677 #ifndef _KERNEL
678   TValue aux;
679 #endif /* _KERNEL */
680   if (l_unlikely(ttisnil(key)))
681     luaG_runerror(L, "table index is nil");
682 #ifndef _KERNEL
683   else if (ttisfloat(key)) {
684     lua_Number f = fltvalue(key);
685     lua_Integer k;
686     if (luaV_flttointeger(f, &k, F2Ieq)) {  /* does key fit in an integer? */
687       setivalue(&aux, k);
688       key = &aux;  /* insert it as an integer */
689     }
690     else if (l_unlikely(luai_numisnan(f)))
691       luaG_runerror(L, "table index is NaN");
692   }
693 #endif /* _KERNEL */
694   if (ttisnil(value))
695     return;  /* do not insert nil values */
696   mp = mainpositionTV(t, key);
697   if (!isempty(gval(mp)) || isdummy(t)) {  /* main position is taken? */
698     Node *othern;
699     Node *f = getfreepos(t);  /* get a free place */
700     if (f == NULL) {  /* cannot find a free place? */
701       rehash(L, t, key);  /* grow table */
702       /* whatever called 'newkey' takes care of TM cache */
703       luaH_set(L, t, key, value);  /* insert key into grown table */
704       return;
705     }
706     lua_assert(!isdummy(t));
707     othern = mainpositionfromnode(t, mp);
708     if (othern != mp) {  /* is colliding node out of its main position? */
709       /* yes; move colliding node into free position */
710       while (othern + gnext(othern) != mp)  /* find previous */
711         othern += gnext(othern);
712       gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
713       *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
714       if (gnext(mp) != 0) {
715         gnext(f) += cast_int(mp - f);  /* correct 'next' */
716         gnext(mp) = 0;  /* now 'mp' is free */
717       }
718       setempty(gval(mp));
719     }
720     else {  /* colliding node is in its own main position */
721       /* new node will go into free position */
722       if (gnext(mp) != 0)
723         gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
724       else lua_assert(gnext(f) == 0);
725       gnext(mp) = cast_int(f - mp);
726       mp = f;
727     }
728   }
729   setnodekey(L, mp, key);
730   luaC_barrierback(L, obj2gco(t), key);
731   lua_assert(isempty(gval(mp)));
732   setobj2t(L, gval(mp), value);
733 }
734 
735 
736 /*
737 ** Search function for integers. If integer is inside 'alimit', get it
738 ** directly from the array part. Otherwise, if 'alimit' is not equal to
739 ** the real size of the array, key still can be in the array part. In
740 ** this case, try to avoid a call to 'luaH_realasize' when key is just
741 ** one more than the limit (so that it can be incremented without
742 ** changing the real size of the array).
743 */
luaH_getint(Table * t,lua_Integer key)744 const TValue *luaH_getint (Table *t, lua_Integer key) {
745   if (l_castS2U(key) - 1u < t->alimit)  /* 'key' in [1, t->alimit]? */
746     return &t->array[key - 1];
747   else if (!limitequalsasize(t) &&  /* key still may be in the array part? */
748            (l_castS2U(key) == t->alimit + 1 ||
749             l_castS2U(key) - 1u < luaH_realasize(t))) {
750     t->alimit = cast_uint(key);  /* probably '#t' is here now */
751     return &t->array[key - 1];
752   }
753   else {
754     Node *n = hashint(t, key);
755     for (;;) {  /* check whether 'key' is somewhere in the chain */
756       if (keyisinteger(n) && keyival(n) == key)
757         return gval(n);  /* that's it */
758       else {
759         int nx = gnext(n);
760         if (nx == 0) break;
761         n += nx;
762       }
763     }
764     return &absentkey;
765   }
766 }
767 
768 
769 /*
770 ** search function for short strings
771 */
luaH_getshortstr(Table * t,TString * key)772 const TValue *luaH_getshortstr (Table *t, TString *key) {
773   Node *n = hashstr(t, key);
774   lua_assert(key->tt == LUA_VSHRSTR);
775   for (;;) {  /* check whether 'key' is somewhere in the chain */
776     if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
777       return gval(n);  /* that's it */
778     else {
779       int nx = gnext(n);
780       if (nx == 0)
781         return &absentkey;  /* not found */
782       n += nx;
783     }
784   }
785 }
786 
787 
luaH_getstr(Table * t,TString * key)788 const TValue *luaH_getstr (Table *t, TString *key) {
789   if (key->tt == LUA_VSHRSTR)
790     return luaH_getshortstr(t, key);
791   else {  /* for long strings, use generic case */
792     TValue ko;
793     setsvalue(cast(lua_State *, NULL), &ko, key);
794     return getgeneric(t, &ko, 0);
795   }
796 }
797 
798 
799 /*
800 ** main search function
801 */
luaH_get(Table * t,const TValue * key)802 const TValue *luaH_get (Table *t, const TValue *key) {
803   switch (ttypetag(key)) {
804     case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
805     case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
806     case LUA_VNIL: return &absentkey;
807 #ifndef _KERNEL
808     case LUA_VNUMFLT: {
809       lua_Integer k;
810       if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
811         return luaH_getint(t, k);  /* use specialized version */
812       /* else... */
813     }  /* FALLTHROUGH */
814 #endif /* _KERNEL */
815     default:
816       return getgeneric(t, key, 0);
817   }
818 }
819 
820 
821 /*
822 ** Finish a raw "set table" operation, where 'slot' is where the value
823 ** should have been (the result of a previous "get table").
824 ** Beware: when using this function you probably need to check a GC
825 ** barrier and invalidate the TM cache.
826 */
luaH_finishset(lua_State * L,Table * t,const TValue * key,const TValue * slot,TValue * value)827 void luaH_finishset (lua_State *L, Table *t, const TValue *key,
828                                    const TValue *slot, TValue *value) {
829   if (isabstkey(slot))
830     luaH_newkey(L, t, key, value);
831   else
832     setobj2t(L, cast(TValue *, slot), value);
833 }
834 
835 
836 /*
837 ** beware: when using this function you probably need to check a GC
838 ** barrier and invalidate the TM cache.
839 */
luaH_set(lua_State * L,Table * t,const TValue * key,TValue * value)840 void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
841   const TValue *slot = luaH_get(t, key);
842   luaH_finishset(L, t, key, slot, value);
843 }
844 
845 
luaH_setint(lua_State * L,Table * t,lua_Integer key,TValue * value)846 void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
847   const TValue *p = luaH_getint(t, key);
848   if (isabstkey(p)) {
849     TValue k;
850     setivalue(&k, key);
851     luaH_newkey(L, t, &k, value);
852   }
853   else
854     setobj2t(L, cast(TValue *, p), value);
855 }
856 
857 
858 /*
859 ** Try to find a boundary in the hash part of table 't'. From the
860 ** caller, we know that 'j' is zero or present and that 'j + 1' is
861 ** present. We want to find a larger key that is absent from the
862 ** table, so that we can do a binary search between the two keys to
863 ** find a boundary. We keep doubling 'j' until we get an absent index.
864 ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
865 ** absent, we are ready for the binary search. ('j', being max integer,
866 ** is larger or equal to 'i', but it cannot be equal because it is
867 ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
868 ** boundary. ('j + 1' cannot be a present integer key because it is
869 ** not a valid integer in Lua.)
870 */
hash_search(Table * t,lua_Unsigned j)871 static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
872   lua_Unsigned i;
873   if (j == 0) j++;  /* the caller ensures 'j + 1' is present */
874   do {
875     i = j;  /* 'i' is a present index */
876     if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
877       j *= 2;
878     else {
879       j = LUA_MAXINTEGER;
880       if (isempty(luaH_getint(t, j)))  /* t[j] not present? */
881         break;  /* 'j' now is an absent index */
882       else  /* weird case */
883         return j;  /* well, max integer is a boundary... */
884     }
885   } while (!isempty(luaH_getint(t, j)));  /* repeat until an absent t[j] */
886   /* i < j  &&  t[i] present  &&  t[j] absent */
887   while (j - i > 1u) {  /* do a binary search between them */
888     lua_Unsigned m = (i + j) / 2;
889     if (isempty(luaH_getint(t, m))) j = m;
890     else i = m;
891   }
892   return i;
893 }
894 
895 
binsearch(const TValue * array,unsigned int i,unsigned int j)896 static unsigned int binsearch (const TValue *array, unsigned int i,
897                                                     unsigned int j) {
898   while (j - i > 1u) {  /* binary search */
899     unsigned int m = (i + j) / 2;
900     if (isempty(&array[m - 1])) j = m;
901     else i = m;
902   }
903   return i;
904 }
905 
906 
907 /*
908 ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
909 ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
910 ** and 'maxinteger' if t[maxinteger] is present.)
911 ** (In the next explanation, we use Lua indices, that is, with base 1.
912 ** The code itself uses base 0 when indexing the array part of the table.)
913 ** The code starts with 'limit = t->alimit', a position in the array
914 ** part that may be a boundary.
915 **
916 ** (1) If 't[limit]' is empty, there must be a boundary before it.
917 ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
918 ** is present. If so, it is a boundary. Otherwise, do a binary search
919 ** between 0 and limit to find a boundary. In both cases, try to
920 ** use this boundary as the new 'alimit', as a hint for the next call.
921 **
922 ** (2) If 't[limit]' is not empty and the array has more elements
923 ** after 'limit', try to find a boundary there. Again, try first
924 ** the special case (which should be quite frequent) where 'limit+1'
925 ** is empty, so that 'limit' is a boundary. Otherwise, check the
926 ** last element of the array part. If it is empty, there must be a
927 ** boundary between the old limit (present) and the last element
928 ** (absent), which is found with a binary search. (This boundary always
929 ** can be a new limit.)
930 **
931 ** (3) The last case is when there are no elements in the array part
932 ** (limit == 0) or its last element (the new limit) is present.
933 ** In this case, must check the hash part. If there is no hash part
934 ** or 'limit+1' is absent, 'limit' is a boundary.  Otherwise, call
935 ** 'hash_search' to find a boundary in the hash part of the table.
936 ** (In those cases, the boundary is not inside the array part, and
937 ** therefore cannot be used as a new limit.)
938 */
luaH_getn(Table * t)939 lua_Unsigned luaH_getn (Table *t) {
940   unsigned int limit = t->alimit;
941   if (limit > 0 && isempty(&t->array[limit - 1])) {  /* (1)? */
942     /* there must be a boundary before 'limit' */
943     if (limit >= 2 && !isempty(&t->array[limit - 2])) {
944       /* 'limit - 1' is a boundary; can it be a new limit? */
945       if (ispow2realasize(t) && !ispow2(limit - 1)) {
946         t->alimit = limit - 1;
947         setnorealasize(t);  /* now 'alimit' is not the real size */
948       }
949       return limit - 1;
950     }
951     else {  /* must search for a boundary in [0, limit] */
952       unsigned int boundary = binsearch(t->array, 0, limit);
953       /* can this boundary represent the real size of the array? */
954       if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
955         t->alimit = boundary;  /* use it as the new limit */
956         setnorealasize(t);
957       }
958       return boundary;
959     }
960   }
961   /* 'limit' is zero or present in table */
962   if (!limitequalsasize(t)) {  /* (2)? */
963     /* 'limit' > 0 and array has more elements after 'limit' */
964     if (isempty(&t->array[limit]))  /* 'limit + 1' is empty? */
965       return limit;  /* this is the boundary */
966     /* else, try last element in the array */
967     limit = luaH_realasize(t);
968     if (isempty(&t->array[limit - 1])) {  /* empty? */
969       /* there must be a boundary in the array after old limit,
970          and it must be a valid new limit */
971       unsigned int boundary = binsearch(t->array, t->alimit, limit);
972       t->alimit = boundary;
973       return boundary;
974     }
975     /* else, new limit is present in the table; check the hash part */
976   }
977   /* (3) 'limit' is the last element and either is zero or present in table */
978   lua_assert(limit == luaH_realasize(t) &&
979              (limit == 0 || !isempty(&t->array[limit - 1])));
980   if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
981     return limit;  /* 'limit + 1' is absent */
982   else  /* 'limit + 1' is also present */
983     return hash_search(t, limit);
984 }
985 
986 
987 
988 #if defined(LUA_DEBUG)
989 
990 /* export these functions for the test library */
991 
luaH_mainposition(const Table * t,const TValue * key)992 Node *luaH_mainposition (const Table *t, const TValue *key) {
993   return mainpositionTV(t, key);
994 }
995 
996 #endif
997