xref: /netbsd/lib/libc/db/hash/hash_bigkey.c (revision bf9ec67e)
1 /*	$NetBSD: hash_bigkey.c,v 1.14 1999/07/29 07:48:03 mycroft Exp $	*/
2 
3 /*-
4  * Copyright (c) 1990, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Margo Seltzer.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #if defined(LIBC_SCCS) && !defined(lint)
41 #if 0
42 static char sccsid[] = "@(#)hash_bigkey.c	8.3 (Berkeley) 5/31/94";
43 #else
44 __RCSID("$NetBSD: hash_bigkey.c,v 1.14 1999/07/29 07:48:03 mycroft Exp $");
45 #endif
46 #endif /* LIBC_SCCS and not lint */
47 
48 /*
49  * PACKAGE: hash
50  * DESCRIPTION:
51  *	Big key/data handling for the hashing package.
52  *
53  * ROUTINES:
54  * External
55  *	__big_keydata
56  *	__big_split
57  *	__big_insert
58  *	__big_return
59  *	__big_delete
60  *	__find_last_page
61  * Internal
62  *	collect_key
63  *	collect_data
64  */
65 
66 #include <sys/param.h>
67 
68 #include <errno.h>
69 #include <stdio.h>
70 #include <stdlib.h>
71 #include <string.h>
72 
73 #ifdef DEBUG
74 #include <assert.h>
75 #endif
76 
77 #include <db.h>
78 #include "hash.h"
79 #include "page.h"
80 #include "extern.h"
81 
82 static int collect_key __P((HTAB *, BUFHEAD *, int, DBT *, int));
83 static int collect_data __P((HTAB *, BUFHEAD *, int, int));
84 
85 /*
86  * Big_insert
87  *
88  * You need to do an insert and the key/data pair is too big
89  *
90  * Returns:
91  * 0 ==> OK
92  *-1 ==> ERROR
93  */
94 extern int
95 __big_insert(hashp, bufp, key, val)
96 	HTAB *hashp;
97 	BUFHEAD *bufp;
98 	const DBT *key, *val;
99 {
100 	register u_int16_t *p;
101 	int key_size, n, val_size;
102 	u_int16_t space, move_bytes, off;
103 	char *cp, *key_data, *val_data;
104 
105 	cp = bufp->page;		/* Character pointer of p. */
106 	p = (u_int16_t *)(void *)cp;
107 
108 	key_data = (char *)key->data;
109 	key_size = key->size;
110 	val_data = (char *)val->data;
111 	val_size = val->size;
112 
113 	/* First move the Key */
114 	for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
115 	    space = FREESPACE(p) - BIGOVERHEAD) {
116 		move_bytes = MIN(space, key_size);
117 		off = OFFSET(p) - move_bytes;
118 		memmove(cp + off, key_data, (size_t)move_bytes);
119 		key_size -= move_bytes;
120 		key_data += move_bytes;
121 		n = p[0];
122 		p[++n] = off;
123 		p[0] = ++n;
124 		FREESPACE(p) = off - PAGE_META(n);
125 		OFFSET(p) = off;
126 		p[n] = PARTIAL_KEY;
127 		bufp = __add_ovflpage(hashp, bufp);
128 		if (!bufp)
129 			return (-1);
130 		n = p[0];
131 		if (!key_size) {
132 			space = FREESPACE(p);
133 			if (space) {
134 				move_bytes = MIN(space, val_size);
135 				/*
136 				 * If the data would fit exactly in the
137 				 * remaining space, we must overflow it to the
138 				 * next page; otherwise the invariant that the
139 				 * data must end on a page with FREESPACE
140 				 * non-zero would fail.
141 				 */
142 				if (space == val_size && val_size == val->size)
143 					goto toolarge;
144 				off = OFFSET(p) - move_bytes;
145 				memmove(cp + off, val_data, (size_t)move_bytes);
146 				val_data += move_bytes;
147 				val_size -= move_bytes;
148 				p[n] = off;
149 				p[n - 2] = FULL_KEY_DATA;
150 				FREESPACE(p) = FREESPACE(p) - move_bytes;
151 				OFFSET(p) = off;
152 			} else {
153 			toolarge:
154 				p[n - 2] = FULL_KEY;
155 			}
156 		}
157 		p = (u_int16_t *)(void *)bufp->page;
158 		cp = bufp->page;
159 		bufp->flags |= BUF_MOD;
160 	}
161 
162 	/* Now move the data */
163 	for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
164 	    space = FREESPACE(p) - BIGOVERHEAD) {
165 		move_bytes = MIN(space, val_size);
166 		/*
167 		 * Here's the hack to make sure that if the data ends on the
168 		 * same page as the key ends, FREESPACE is at least one.
169 		 */
170 		if (space == val_size && val_size == val->size)
171 			move_bytes--;
172 		off = OFFSET(p) - move_bytes;
173 		memmove(cp + off, val_data, (size_t)move_bytes);
174 		val_size -= move_bytes;
175 		val_data += move_bytes;
176 		n = p[0];
177 		p[++n] = off;
178 		p[0] = ++n;
179 		FREESPACE(p) = off - PAGE_META(n);
180 		OFFSET(p) = off;
181 		if (val_size) {
182 			p[n] = FULL_KEY;
183 			bufp = __add_ovflpage(hashp, bufp);
184 			if (!bufp)
185 				return (-1);
186 			cp = bufp->page;
187 			p = (u_int16_t *)(void *)cp;
188 		} else
189 			p[n] = FULL_KEY_DATA;
190 		bufp->flags |= BUF_MOD;
191 	}
192 	return (0);
193 }
194 
195 /*
196  * Called when bufp's page  contains a partial key (index should be 1)
197  *
198  * All pages in the big key/data pair except bufp are freed.  We cannot
199  * free bufp because the page pointing to it is lost and we can't get rid
200  * of its pointer.
201  *
202  * Returns:
203  * 0 => OK
204  *-1 => ERROR
205  */
206 extern int
207 __big_delete(hashp, bufp)
208 	HTAB *hashp;
209 	BUFHEAD *bufp;
210 {
211 	register BUFHEAD *last_bfp, *rbufp;
212 	u_int16_t *bp, pageno;
213 	int key_done, n;
214 
215 	rbufp = bufp;
216 	last_bfp = NULL;
217 	bp = (u_int16_t *)(void *)bufp->page;
218 	pageno = 0;
219 	key_done = 0;
220 
221 	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
222 		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
223 			key_done = 1;
224 
225 		/*
226 		 * If there is freespace left on a FULL_KEY_DATA page, then
227 		 * the data is short and fits entirely on this page, and this
228 		 * is the last page.
229 		 */
230 		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
231 			break;
232 		pageno = bp[bp[0] - 1];
233 		rbufp->flags |= BUF_MOD;
234 		rbufp = __get_buf(hashp, (u_int32_t)pageno, rbufp, 0);
235 		if (last_bfp)
236 			__free_ovflpage(hashp, last_bfp);
237 		last_bfp = rbufp;
238 		if (!rbufp)
239 			return (-1);		/* Error. */
240 		bp = (u_int16_t *)(void *)rbufp->page;
241 	}
242 
243 	/*
244 	 * If we get here then rbufp points to the last page of the big
245 	 * key/data pair.  Bufp points to the first one -- it should now be
246 	 * empty pointing to the next page after this pair.  Can't free it
247 	 * because we don't have the page pointing to it.
248 	 */
249 
250 	/* This is information from the last page of the pair. */
251 	n = bp[0];
252 	pageno = bp[n - 1];
253 
254 	/* Now, bp is the first page of the pair. */
255 	bp = (u_int16_t *)(void *)bufp->page;
256 	if (n > 2) {
257 		/* There is an overflow page. */
258 		bp[1] = pageno;
259 		bp[2] = OVFLPAGE;
260 		bufp->ovfl = rbufp->ovfl;
261 	} else
262 		/* This is the last page. */
263 		bufp->ovfl = NULL;
264 	n -= 2;
265 	bp[0] = n;
266 	FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
267 	OFFSET(bp) = hashp->BSIZE;
268 
269 	bufp->flags |= BUF_MOD;
270 	if (rbufp)
271 		__free_ovflpage(hashp, rbufp);
272 	if (last_bfp != rbufp)
273 		__free_ovflpage(hashp, last_bfp);
274 
275 	hashp->NKEYS--;
276 	return (0);
277 }
278 /*
279  * Returns:
280  *  0 = key not found
281  * -1 = get next overflow page
282  * -2 means key not found and this is big key/data
283  * -3 error
284  */
285 extern int
286 __find_bigpair(hashp, bufp, ndx, key, size)
287 	HTAB *hashp;
288 	BUFHEAD *bufp;
289 	int ndx;
290 	char *key;
291 	int size;
292 {
293 	register u_int16_t *bp;
294 	register char *p;
295 	int ksize;
296 	u_int16_t bytes;
297 	char *kkey;
298 
299 	bp = (u_int16_t *)(void *)bufp->page;
300 	p = bufp->page;
301 	ksize = size;
302 	kkey = key;
303 
304 	for (bytes = hashp->BSIZE - bp[ndx];
305 	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
306 	    bytes = hashp->BSIZE - bp[ndx]) {
307 		if (memcmp(p + bp[ndx], kkey, (size_t)bytes))
308 			return (-2);
309 		kkey += bytes;
310 		ksize -= bytes;
311 		bufp = __get_buf(hashp, (u_int32_t)bp[ndx + 2], bufp, 0);
312 		if (!bufp)
313 			return (-3);
314 		p = bufp->page;
315 		bp = (u_int16_t *)(void *)p;
316 		ndx = 1;
317 	}
318 
319 	if (bytes != ksize || memcmp(p + bp[ndx], kkey, (size_t)bytes)) {
320 #ifdef HASH_STATISTICS
321 		++hash_collisions;
322 #endif
323 		return (-2);
324 	} else
325 		return (ndx);
326 }
327 
328 /*
329  * Given the buffer pointer of the first overflow page of a big pair,
330  * find the end of the big pair
331  *
332  * This will set bpp to the buffer header of the last page of the big pair.
333  * It will return the pageno of the overflow page following the last page
334  * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
335  * bucket)
336  */
337 extern u_int16_t
338 __find_last_page(hashp, bpp)
339 	HTAB *hashp;
340 	BUFHEAD **bpp;
341 {
342 	BUFHEAD *bufp;
343 	u_int16_t *bp, pageno;
344 	int n;
345 
346 	bufp = *bpp;
347 	bp = (u_int16_t *)(void *)bufp->page;
348 	for (;;) {
349 		n = bp[0];
350 
351 		/*
352 		 * This is the last page if: the tag is FULL_KEY_DATA and
353 		 * either only 2 entries OVFLPAGE marker is explicit there
354 		 * is freespace on the page.
355 		 */
356 		if (bp[2] == FULL_KEY_DATA &&
357 		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
358 			break;
359 
360 		pageno = bp[n - 1];
361 		bufp = __get_buf(hashp, (u_int32_t)pageno, bufp, 0);
362 		if (!bufp)
363 			return (0);	/* Need to indicate an error! */
364 		bp = (u_int16_t *)(void *)bufp->page;
365 	}
366 
367 	*bpp = bufp;
368 	if (bp[0] > 2)
369 		return (bp[3]);
370 	else
371 		return (0);
372 }
373 
374 /*
375  * Return the data for the key/data pair that begins on this page at this
376  * index (index should always be 1).
377  */
378 extern int
379 __big_return(hashp, bufp, ndx, val, set_current)
380 	HTAB *hashp;
381 	BUFHEAD *bufp;
382 	int ndx;
383 	DBT *val;
384 	int set_current;
385 {
386 	BUFHEAD *save_p;
387 	u_int16_t *bp, len, off, save_addr;
388 	char *tp;
389 
390 	bp = (u_int16_t *)(void *)bufp->page;
391 	while (bp[ndx + 1] == PARTIAL_KEY) {
392 		bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp, 0);
393 		if (!bufp)
394 			return (-1);
395 		bp = (u_int16_t *)(void *)bufp->page;
396 		ndx = 1;
397 	}
398 
399 	if (bp[ndx + 1] == FULL_KEY) {
400 		bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp, 0);
401 		if (!bufp)
402 			return (-1);
403 		bp = (u_int16_t *)(void *)bufp->page;
404 		save_p = bufp;
405 		save_addr = save_p->addr;
406 		off = bp[1];
407 		len = 0;
408 	} else
409 		if (!FREESPACE(bp)) {
410 			/*
411 			 * This is a hack.  We can't distinguish between
412 			 * FULL_KEY_DATA that contains complete data or
413 			 * incomplete data, so we require that if the data
414 			 * is complete, there is at least 1 byte of free
415 			 * space left.
416 			 */
417 			off = bp[bp[0]];
418 			len = bp[1] - off;
419 			save_p = bufp;
420 			save_addr = bufp->addr;
421 			bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp,
422 			    0);
423 			if (!bufp)
424 				return (-1);
425 			bp = (u_int16_t *)(void *)bufp->page;
426 		} else {
427 			/* The data is all on one page. */
428 			tp = (char *)(void *)bp;
429 			off = bp[bp[0]];
430 			val->data = (u_char *)tp + off;
431 			val->size = bp[1] - off;
432 			if (set_current) {
433 				if (bp[0] == 2) {	/* No more buckets in
434 							 * chain */
435 					hashp->cpage = NULL;
436 					hashp->cbucket++;
437 					hashp->cndx = 1;
438 				} else {
439 					hashp->cpage = __get_buf(hashp,
440 					    (u_int32_t)bp[bp[0] - 1], bufp, 0);
441 					if (!hashp->cpage)
442 						return (-1);
443 					hashp->cndx = 1;
444 					if (!((u_int16_t *)(void *)
445 					    hashp->cpage->page)[0]) {
446 						hashp->cbucket++;
447 						hashp->cpage = NULL;
448 					}
449 				}
450 			}
451 			return (0);
452 		}
453 
454 	val->size = collect_data(hashp, bufp, (int)len, set_current);
455 	if (val->size == (size_t)-1)
456 		return (-1);
457 	if (save_p->addr != save_addr) {
458 		/* We are pretty short on buffers. */
459 		errno = EINVAL;			/* OUT OF BUFFERS */
460 		return (-1);
461 	}
462 	memmove(hashp->tmp_buf, (save_p->page) + off, (size_t)len);
463 	val->data = (u_char *)hashp->tmp_buf;
464 	return (0);
465 }
466 /*
467  * Count how big the total datasize is by recursing through the pages.  Then
468  * allocate a buffer and copy the data as you recurse up.
469  */
470 static int
471 collect_data(hashp, bufp, len, set)
472 	HTAB *hashp;
473 	BUFHEAD *bufp;
474 	int len, set;
475 {
476 	register u_int16_t *bp;
477 	register char *p;
478 	BUFHEAD *xbp;
479 	u_int16_t save_addr;
480 	int mylen, totlen;
481 
482 	p = bufp->page;
483 	bp = (u_int16_t *)(void *)p;
484 	mylen = hashp->BSIZE - bp[1];
485 	save_addr = bufp->addr;
486 
487 	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
488 		totlen = len + mylen;
489 		if (hashp->tmp_buf)
490 			free(hashp->tmp_buf);
491 		if ((hashp->tmp_buf = (char *)malloc((size_t)totlen)) == NULL)
492 			return (-1);
493 		if (set) {
494 			hashp->cndx = 1;
495 			if (bp[0] == 2) {	/* No more buckets in chain */
496 				hashp->cpage = NULL;
497 				hashp->cbucket++;
498 			} else {
499 				hashp->cpage =
500 				    __get_buf(hashp, (u_int32_t)bp[bp[0] - 1],
501 				    bufp, 0);
502 				if (!hashp->cpage)
503 					return (-1);
504 				else if (!((u_int16_t *)(void *)hashp->cpage->page)[0]) {
505 					hashp->cbucket++;
506 					hashp->cpage = NULL;
507 				}
508 			}
509 		}
510 	} else {
511 		xbp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp, 0);
512 		if (!xbp || ((totlen =
513 		    collect_data(hashp, xbp, len + mylen, set)) < 1))
514 			return (-1);
515 	}
516 	if (bufp->addr != save_addr) {
517 		errno = EINVAL;			/* Out of buffers. */
518 		return (-1);
519 	}
520 	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], (size_t)mylen);
521 	return (totlen);
522 }
523 
524 /*
525  * Fill in the key and data for this big pair.
526  */
527 extern int
528 __big_keydata(hashp, bufp, key, val, set)
529 	HTAB *hashp;
530 	BUFHEAD *bufp;
531 	DBT *key, *val;
532 	int set;
533 {
534 	key->size = collect_key(hashp, bufp, 0, val, set);
535 	if (key->size == (size_t)-1)
536 		return (-1);
537 	key->data = (u_char *)hashp->tmp_key;
538 	return (0);
539 }
540 
541 /*
542  * Count how big the total key size is by recursing through the pages.  Then
543  * collect the data, allocate a buffer and copy the key as you recurse up.
544  */
545 static int
546 collect_key(hashp, bufp, len, val, set)
547 	HTAB *hashp;
548 	BUFHEAD *bufp;
549 	int len;
550 	DBT *val;
551 	int set;
552 {
553 	BUFHEAD *xbp;
554 	char *p;
555 	int mylen, totlen;
556 	u_int16_t *bp, save_addr;
557 
558 	p = bufp->page;
559 	bp = (u_int16_t *)(void *)p;
560 	mylen = hashp->BSIZE - bp[1];
561 
562 	save_addr = bufp->addr;
563 	totlen = len + mylen;
564 	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
565 		if (hashp->tmp_key != NULL)
566 			free(hashp->tmp_key);
567 		if ((hashp->tmp_key = (char *)malloc((size_t)totlen)) == NULL)
568 			return (-1);
569 		if (__big_return(hashp, bufp, 1, val, set))
570 			return (-1);
571 	} else {
572 		xbp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp, 0);
573 		if (!xbp || ((totlen =
574 		    collect_key(hashp, xbp, totlen, val, set)) < 1))
575 			return (-1);
576 	}
577 	if (bufp->addr != save_addr) {
578 		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
579 		return (-1);
580 	}
581 	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], (size_t)mylen);
582 	return (totlen);
583 }
584 
585 /*
586  * Returns:
587  *  0 => OK
588  * -1 => error
589  */
590 extern int
591 __big_split(hashp, op, np, big_keyp, addr, obucket, ret)
592 	HTAB *hashp;
593 	BUFHEAD *op;	/* Pointer to where to put keys that go in old bucket */
594 	BUFHEAD *np;	/* Pointer to new bucket page */
595 			/* Pointer to first page containing the big key/data */
596 	BUFHEAD *big_keyp;
597 	int addr;	/* Address of big_keyp */
598 	u_int32_t   obucket;/* Old Bucket */
599 	SPLIT_RETURN *ret;
600 {
601 	register BUFHEAD *tmpp;
602 	register u_int16_t *tp;
603 	BUFHEAD *bp;
604 	DBT key, val;
605 	u_int32_t change;
606 	u_int16_t free_space, n, off;
607 
608 	bp = big_keyp;
609 
610 	/* Now figure out where the big key/data goes */
611 	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
612 		return (-1);
613 	change = (__call_hash(hashp, key.data, (int)key.size) != obucket);
614 
615 	if ((ret->next_addr = __find_last_page(hashp, &big_keyp)) != 0) {
616 		if (!(ret->nextp =
617 		    __get_buf(hashp, (u_int32_t)ret->next_addr, big_keyp, 0)))
618 			return (-1);;
619 	} else
620 		ret->nextp = NULL;
621 
622 	/* Now make one of np/op point to the big key/data pair */
623 #ifdef DEBUG
624 	assert(np->ovfl == NULL);
625 #endif
626 	if (change)
627 		tmpp = np;
628 	else
629 		tmpp = op;
630 
631 	tmpp->flags |= BUF_MOD;
632 #ifdef DEBUG1
633 	(void)fprintf(stderr,
634 	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
635 	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
636 #endif
637 	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
638 	tp = (u_int16_t *)(void *)tmpp->page;
639 #ifdef DEBUG
640 	assert(FREESPACE(tp) >= OVFLSIZE);
641 #endif
642 	n = tp[0];
643 	off = OFFSET(tp);
644 	free_space = FREESPACE(tp);
645 	tp[++n] = (u_int16_t)addr;
646 	tp[++n] = OVFLPAGE;
647 	tp[0] = n;
648 	OFFSET(tp) = off;
649 	FREESPACE(tp) = free_space - OVFLSIZE;
650 
651 	/*
652 	 * Finally, set the new and old return values. BIG_KEYP contains a
653 	 * pointer to the last page of the big key_data pair. Make sure that
654 	 * big_keyp has no following page (2 elements) or create an empty
655 	 * following page.
656 	 */
657 
658 	ret->newp = np;
659 	ret->oldp = op;
660 
661 	tp = (u_int16_t *)(void *)big_keyp->page;
662 	big_keyp->flags |= BUF_MOD;
663 	if (tp[0] > 2) {
664 		/*
665 		 * There may be either one or two offsets on this page.  If
666 		 * there is one, then the overflow page is linked on normally
667 		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
668 		 * the second offset and needs to get stuffed in after the
669 		 * next overflow page is added.
670 		 */
671 		n = tp[4];
672 		free_space = FREESPACE(tp);
673 		off = OFFSET(tp);
674 		tp[0] -= 2;
675 		FREESPACE(tp) = free_space + OVFLSIZE;
676 		OFFSET(tp) = off;
677 		tmpp = __add_ovflpage(hashp, big_keyp);
678 		if (!tmpp)
679 			return (-1);
680 		tp[4] = n;
681 	} else
682 		tmpp = big_keyp;
683 
684 	if (change)
685 		ret->newp = tmpp;
686 	else
687 		ret->oldp = tmpp;
688 	return (0);
689 }
690