xref: /netbsd/lib/libc/gen/arc4random.c (revision 6550d01e)
1 /*	$NetBSD: arc4random.c,v 1.10 2011/02/04 22:07:07 christos Exp $	*/
2 /*	$OpenBSD: arc4random.c,v 1.6 2001/06/05 05:05:38 pvalchev Exp $	*/
3 
4 /*
5  * Arc4 random number generator for OpenBSD.
6  * Copyright 1996 David Mazieres <dm@lcs.mit.edu>.
7  *
8  * Modification and redistribution in source and binary forms is
9  * permitted provided that due credit is given to the author and the
10  * OpenBSD project by leaving this copyright notice intact.
11  */
12 
13 /*
14  * This code is derived from section 17.1 of Applied Cryptography,
15  * second edition, which describes a stream cipher allegedly
16  * compatible with RSA Labs "RC4" cipher (the actual description of
17  * which is a trade secret).  The same algorithm is used as a stream
18  * cipher called "arcfour" in Tatu Ylonen's ssh package.
19  *
20  * Here the stream cipher has been modified always to include the time
21  * when initializing the state.  That makes it impossible to
22  * regenerate the same random sequence twice, so this can't be used
23  * for encryption, but will generate good random numbers.
24  *
25  * RC4 is a registered trademark of RSA Laboratories.
26  */
27 
28 #include <sys/cdefs.h>
29 #if defined(LIBC_SCCS) && !defined(lint)
30 __RCSID("$NetBSD: arc4random.c,v 1.10 2011/02/04 22:07:07 christos Exp $");
31 #endif /* LIBC_SCCS and not lint */
32 
33 #include "namespace.h"
34 #include <fcntl.h>
35 #include <stdlib.h>
36 #include <unistd.h>
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/sysctl.h>
41 
42 #ifdef __weak_alias
43 __weak_alias(arc4random,_arc4random)
44 #endif
45 
46 struct arc4_stream {
47 	uint8_t i;
48 	uint8_t j;
49 	uint8_t s[256];
50 };
51 
52 static int rs_initialized;
53 static struct arc4_stream rs;
54 
55 static inline void arc4_init(struct arc4_stream *);
56 static inline void arc4_addrandom(struct arc4_stream *, u_char *, int);
57 static void arc4_stir(struct arc4_stream *);
58 static inline uint8_t arc4_getbyte(struct arc4_stream *);
59 static inline uint32_t arc4_getword(struct arc4_stream *);
60 
61 static inline void
62 arc4_init(struct arc4_stream *as)
63 {
64 	int     n;
65 
66 	for (n = 0; n < 256; n++)
67 		as->s[n] = n;
68 	as->i = 0;
69 	as->j = 0;
70 }
71 
72 static inline void
73 arc4_addrandom(struct arc4_stream *as, u_char *dat, int datlen)
74 {
75 	int     n;
76 	uint8_t si;
77 
78 	as->i--;
79 	for (n = 0; n < 256; n++) {
80 		as->i = (as->i + 1);
81 		si = as->s[as->i];
82 		as->j = (as->j + si + dat[n % datlen]);
83 		as->s[as->i] = as->s[as->j];
84 		as->s[as->j] = si;
85 	}
86 	as->j = as->i;
87 }
88 
89 static void
90 arc4_stir(struct arc4_stream *as)
91 {
92 	int     fd;
93 	struct {
94 		struct timeval tv;
95 		u_int rnd[(128 - sizeof(struct timeval)) / sizeof(u_int)];
96 	}       rdat;
97 	int	n;
98 
99 	gettimeofday(&rdat.tv, NULL);
100 	fd = open("/dev/urandom", O_RDONLY);
101 	if (fd != -1) {
102 		read(fd, rdat.rnd, sizeof(rdat.rnd));
103 		close(fd);
104 	}
105 #ifdef KERN_URND
106 	else {
107 		int mib[2];
108 		u_int i;
109 		size_t len;
110 
111 		/* Device could not be opened, we might be chrooted, take
112 		 * randomness from sysctl. */
113 
114 		mib[0] = CTL_KERN;
115 		mib[1] = KERN_URND;
116 
117 		for (i = 0; i < sizeof(rdat.rnd) / sizeof(u_int); i++) {
118 			len = sizeof(u_int);
119 			if (sysctl(mib, 2, &rdat.rnd[i], &len, NULL, 0) == -1)
120 				break;
121 		}
122 	}
123 #endif
124 	/* fd < 0 or failed sysctl ?  Ah, what the heck. We'll just take
125 	 * whatever was on the stack... */
126 
127 	arc4_addrandom(as, (void *) &rdat, sizeof(rdat));
128 
129 	/*
130 	 * Throw away the first N words of output, as suggested in the
131 	 * paper "Weaknesses in the Key Scheduling Algorithm of RC4"
132 	 * by Fluher, Mantin, and Shamir.  (N = 256 in our case.)
133 	 */
134 	for (n = 0; n < 256 * 4; n++)
135 		arc4_getbyte(as);
136 }
137 
138 static inline uint8_t
139 arc4_getbyte(struct arc4_stream *as)
140 {
141 	uint8_t si, sj;
142 
143 	as->i = (as->i + 1);
144 	si = as->s[as->i];
145 	as->j = (as->j + si);
146 	sj = as->s[as->j];
147 	as->s[as->i] = sj;
148 	as->s[as->j] = si;
149 	return (as->s[(si + sj) & 0xff]);
150 }
151 
152 static inline uint32_t
153 arc4_getword(struct arc4_stream *as)
154 {
155 	uint32_t val;
156 	val = arc4_getbyte(as) << 24;
157 	val |= arc4_getbyte(as) << 16;
158 	val |= arc4_getbyte(as) << 8;
159 	val |= arc4_getbyte(as);
160 	return val;
161 }
162 
163 void
164 arc4random_stir(void)
165 {
166 	if (!rs_initialized) {
167 		arc4_init(&rs);
168 		rs_initialized = 1;
169 	}
170 	arc4_stir(&rs);
171 }
172 
173 void
174 arc4random_addrandom(u_char *dat, int datlen)
175 {
176 	if (!rs_initialized)
177 		arc4random_stir();
178 	arc4_addrandom(&rs, dat, datlen);
179 }
180 
181 uint32_t
182 arc4random(void)
183 {
184 	if (!rs_initialized)
185 		arc4random_stir();
186 	return arc4_getword(&rs);
187 }
188 
189 void
190 arc4random_buf(void *buf, size_t len)
191 {
192 	uint8_t *bp = buf;
193 	uint8_t *ep = bp + len;
194 
195 	bp[0] = arc4_getbyte(&rs) % 3;
196 	while (bp[0]--)
197 		(void)arc4_getbyte(&rs);
198 
199 	while (bp < ep)
200 		*bp++ = arc4_getbyte(&rs);
201 }
202 
203 /*-
204  * Written by Damien Miller.
205  * With simplifications by Jinmei Tatuya.
206  */
207 
208 /*
209  * Calculate a uniformly distributed random number less than
210  * upper_bound avoiding "modulo bias".
211  *
212  * Uniformity is achieved by generating new random numbers
213  * until the one returned is outside the range
214  * [0, 2^32 % upper_bound[. This guarantees the selected
215  * random number will be inside the range
216  * [2^32 % upper_bound, 2^32[ which maps back to
217  * [0, upper_bound[ after reduction modulo upper_bound.
218  */
219 uint32_t
220 arc4random_uniform(uint32_t upper_bound)
221 {
222 	uint32_t r, min;
223 
224 	if (upper_bound < 2)
225 		return 0;
226 
227 #if defined(ULONG_MAX) && (ULONG_MAX > 0xFFFFFFFFUL)
228 	min = 0x100000000UL % upper_bound;
229 #else
230 	/* calculate (2^32 % upper_bound) avoiding 64-bit math */
231 	if (upper_bound > 0x80000000U)
232 		/* 2^32 - upper_bound (only one "value area") */
233 		min = 1 + ~upper_bound;
234 	else
235 		/* ((2^32 - x) % x) == (2^32 % x) when x <= 2^31 */
236 		min = (0xFFFFFFFFU - upper_bound + 1) % upper_bound;
237 #endif
238 
239 	/*
240 	 * This could theoretically loop forever but each retry has
241 	 * p > 0.5 (worst case, usually far better) of selecting a
242 	 * number inside the range we need, so it should rarely need
243 	 * to re-roll (at all).
244 	 */
245 	if (!rs_initialized)
246 		arc4random_stir();
247 	if (arc4_getbyte(&rs) & 1)
248 		(void)arc4_getbyte(&rs);
249 	do
250 		r = arc4_getword(&rs);
251 	while (r < min);
252 
253 	return r % upper_bound;
254 }
255 
256 
257 #if 0
258 /*-------- Test code for i386 --------*/
259 #include <stdio.h>
260 #include <machine/pctr.h>
261 int
262 main(int argc, char **argv)
263 {
264 	const int iter = 1000000;
265 	int     i;
266 	pctrval v;
267 
268 	v = rdtsc();
269 	for (i = 0; i < iter; i++)
270 		arc4random();
271 	v = rdtsc() - v;
272 	v /= iter;
273 
274 	printf("%qd cycles\n", v);
275 }
276 #endif
277