xref: /netbsd/lib/libcurses/getch.c (revision c4a72b64)
1 /*	$NetBSD: getch.c,v 1.37 2002/10/22 12:07:20 blymn Exp $	*/
2 
3 /*
4  * Copyright (c) 1981, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)getch.c	8.2 (Berkeley) 5/4/94";
40 #else
41 __RCSID("$NetBSD: getch.c,v 1.37 2002/10/22 12:07:20 blymn Exp $");
42 #endif
43 #endif					/* not lint */
44 
45 #include <string.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #include <stdio.h>
49 #include "curses.h"
50 #include "curses_private.h"
51 
52 #define DEFAULT_DELAY 2			/* default delay for timeout() */
53 
54 /*
55  * Keyboard input handler.  Do this by snarfing
56  * all the info we can out of the termcap entry for TERM and putting it
57  * into a set of keymaps.  A keymap is an array the size of all the possible
58  * single characters we can get, the contents of the array is a structure
59  * that contains the type of entry this character is (i.e. part/end of a
60  * multi-char sequence or a plain char) and either a pointer which will point
61  * to another keymap (in the case of a multi-char sequence) OR the data value
62  * that this key should return.
63  *
64  */
65 
66 /* private data structures for holding the key definitions */
67 typedef struct key_entry key_entry_t;
68 
69 struct key_entry {
70 	short   type;		/* type of key this is */
71 	bool    enable;         /* true if the key is active */
72 	union {
73 		keymap_t *next;	/* next keymap is key is multi-key sequence */
74 		wchar_t   symbol;	/* key symbol if key is a leaf entry */
75 	} value;
76 };
77 /* Types of key structures we can have */
78 #define KEYMAP_MULTI  1		/* part of a multi char sequence */
79 #define KEYMAP_LEAF   2		/* key has a symbol associated with it, either
80 				 * it is the end of a multi-char sequence or a
81 				 * single char key that generates a symbol */
82 
83 /* allocate this many key_entry structs at once to speed start up must
84  * be a power of 2.
85  */
86 #define KEYMAP_ALLOC_CHUNK 4
87 
88 /* The max number of different chars we can receive */
89 #define MAX_CHAR 256
90 
91 /*
92  * Unused mapping flag.
93  */
94 #define MAPPING_UNUSED (0 - MAX_CHAR) /* never been used */
95 
96 struct keymap {
97 	int	count;	       /* count of number of key structs allocated */
98 	short	mapping[MAX_CHAR]; /* mapping of key to allocated structs */
99 	key_entry_t **key;     /* dynamic array of keys */
100 };
101 
102 
103 /* Key buffer */
104 #define INBUF_SZ 16		/* size of key buffer - must be larger than
105 				 * longest multi-key sequence */
106 static wchar_t  inbuf[INBUF_SZ];
107 static int     start, end, working; /* pointers for manipulating inbuf data */
108 
109 #define INC_POINTER(ptr)  do {	\
110 	(ptr)++;		\
111 	ptr %= INBUF_SZ;	\
112 } while(/*CONSTCOND*/0)
113 
114 static short	state;		/* state of the inkey function */
115 
116 #define INKEY_NORM	 0	/* no key backlog to process */
117 #define INKEY_ASSEMBLING 1	/* assembling a multi-key sequence */
118 #define INKEY_BACKOUT	 2	/* recovering from an unrecognised key */
119 #define INKEY_TIMEOUT	 3	/* multi-key sequence timeout */
120 
121 /* The termcap data we are interested in and the symbols they map to */
122 struct tcdata {
123 	const char	*name;	/* name of termcap entry */
124 	wchar_t	symbol;		/* the symbol associated with it */
125 };
126 
127 static const struct tcdata tc[] = {
128 	{"!1", KEY_SSAVE},
129 	{"!2", KEY_SSUSPEND},
130 	{"!3", KEY_SUNDO},
131 	{"#1", KEY_SHELP},
132 	{"#2", KEY_SHOME},
133 	{"#3", KEY_SIC},
134 	{"#4", KEY_SLEFT},
135 	{"%0", KEY_REDO},
136 	{"%1", KEY_HELP},
137 	{"%2", KEY_MARK},
138 	{"%3", KEY_MESSAGE},
139 	{"%4", KEY_MOVE},
140 	{"%5", KEY_NEXT},
141 	{"%6", KEY_OPEN},
142 	{"%7", KEY_OPTIONS},
143 	{"%8", KEY_PREVIOUS},
144 	{"%9", KEY_PRINT},
145 	{"%a", KEY_SMESSAGE},
146 	{"%b", KEY_SMOVE},
147 	{"%c", KEY_SNEXT},
148 	{"%d", KEY_SOPTIONS},
149 	{"%e", KEY_SPREVIOUS},
150 	{"%f", KEY_SPRINT},
151 	{"%g", KEY_SREDO},
152 	{"%h", KEY_SREPLACE},
153 	{"%i", KEY_SRIGHT},
154 	{"%j", KEY_SRSUME},
155 	{"&0", KEY_SCANCEL},
156 	{"&1", KEY_REFERENCE},
157 	{"&2", KEY_REFRESH},
158 	{"&3", KEY_REPLACE},
159 	{"&4", KEY_RESTART},
160 	{"&5", KEY_RESUME},
161 	{"&6", KEY_SAVE},
162 	{"&7", KEY_SUSPEND},
163 	{"&8", KEY_UNDO},
164 	{"&9", KEY_SBEG},
165 	{"*0", KEY_SFIND},
166 	{"*1", KEY_SCOMMAND},
167 	{"*2", KEY_SCOPY},
168 	{"*3", KEY_SCREATE},
169 	{"*4", KEY_SDC},
170 	{"*5", KEY_SDL},
171 	{"*6", KEY_SELECT},
172 	{"*7", KEY_SEND},
173 	{"*8", KEY_SEOL},
174 	{"*9", KEY_SEXIT},
175 	{"@0", KEY_FIND},
176 	{"@1", KEY_BEG},
177 	{"@2", KEY_CANCEL},
178 	{"@3", KEY_CLOSE},
179 	{"@4", KEY_COMMAND},
180 	{"@5", KEY_COPY},
181 	{"@6", KEY_CREATE},
182 	{"@7", KEY_END},
183 	{"@8", KEY_ENTER},
184 	{"@9", KEY_EXIT},
185 	{"F1", KEY_F(11)},
186 	{"F2", KEY_F(12)},
187 	{"F3", KEY_F(13)},
188 	{"F4", KEY_F(14)},
189 	{"F5", KEY_F(15)},
190 	{"F6", KEY_F(16)},
191 	{"F7", KEY_F(17)},
192 	{"F8", KEY_F(18)},
193 	{"F9", KEY_F(19)},
194 	{"FA", KEY_F(20)},
195 	{"FB", KEY_F(21)},
196 	{"FC", KEY_F(22)},
197 	{"FD", KEY_F(23)},
198 	{"FE", KEY_F(24)},
199 	{"FF", KEY_F(25)},
200 	{"FG", KEY_F(26)},
201 	{"FH", KEY_F(27)},
202 	{"FI", KEY_F(28)},
203 	{"FJ", KEY_F(29)},
204 	{"FK", KEY_F(30)},
205 	{"FL", KEY_F(31)},
206 	{"FM", KEY_F(32)},
207 	{"FN", KEY_F(33)},
208 	{"FO", KEY_F(34)},
209 	{"FP", KEY_F(35)},
210 	{"FQ", KEY_F(36)},
211 	{"FR", KEY_F(37)},
212 	{"FS", KEY_F(38)},
213 	{"FT", KEY_F(39)},
214 	{"FU", KEY_F(40)},
215 	{"FV", KEY_F(41)},
216 	{"FW", KEY_F(42)},
217 	{"FX", KEY_F(43)},
218 	{"FY", KEY_F(44)},
219 	{"FZ", KEY_F(45)},
220 	{"Fa", KEY_F(46)},
221 	{"Fb", KEY_F(47)},
222 	{"Fc", KEY_F(48)},
223 	{"Fd", KEY_F(49)},
224 	{"Fe", KEY_F(50)},
225 	{"Ff", KEY_F(51)},
226 	{"Fg", KEY_F(52)},
227 	{"Fh", KEY_F(53)},
228 	{"Fi", KEY_F(54)},
229 	{"Fj", KEY_F(55)},
230 	{"Fk", KEY_F(56)},
231 	{"Fl", KEY_F(57)},
232 	{"Fm", KEY_F(58)},
233 	{"Fn", KEY_F(59)},
234 	{"Fo", KEY_F(60)},
235 	{"Fp", KEY_F(61)},
236 	{"Fq", KEY_F(62)},
237 	{"Fr", KEY_F(63)},
238 	{"K1", KEY_A1},
239 	{"K2", KEY_B2},
240 	{"K3", KEY_A3},
241 	{"K4", KEY_C1},
242 	{"K5", KEY_C3},
243 	{"Km", KEY_MOUSE},
244 	{"k0", KEY_F0},
245 	{"k1", KEY_F(1)},
246 	{"k2", KEY_F(2)},
247 	{"k3", KEY_F(3)},
248 	{"k4", KEY_F(4)},
249 	{"k5", KEY_F(5)},
250 	{"k6", KEY_F(6)},
251 	{"k7", KEY_F(7)},
252 	{"k8", KEY_F(8)},
253 	{"k9", KEY_F(9)},
254 	{"k;", KEY_F(10)},
255 	{"kA", KEY_IL},
256 	{"ka", KEY_CATAB},
257 	{"kB", KEY_BTAB},
258 	{"kb", KEY_BACKSPACE},
259 	{"kC", KEY_CLEAR},
260 	{"kD", KEY_DC},
261 	{"kd", KEY_DOWN},
262 	{"kE", KEY_EOL},
263 	{"kF", KEY_SF},
264 	{"kH", KEY_LL},
265 	{"kh", KEY_HOME},
266 	{"kI", KEY_IC},
267 	{"kL", KEY_DL},
268 	{"kl", KEY_LEFT},
269 	{"kM", KEY_EIC},
270 	{"kN", KEY_NPAGE},
271 	{"kP", KEY_PPAGE},
272 	{"kR", KEY_SR},
273 	{"kr", KEY_RIGHT},
274 	{"kS", KEY_EOS},
275 	{"kT", KEY_STAB},
276 	{"kt", KEY_CTAB},
277 	{"ku", KEY_UP}
278 };
279 /* Number of TC entries .... */
280 static const int num_tcs = (sizeof(tc) / sizeof(struct tcdata));
281 
282 /* prototypes for private functions */
283 static void add_key_sequence(SCREEN *screen, char *sequence, int key_type);
284 static key_entry_t *add_new_key(keymap_t *current, char chr, int key_type,
285 				int symbol);
286 static void delete_key_sequence(keymap_t *current, int key_type);
287 static void do_keyok(keymap_t *current, int key_type, bool flag, int *retval);
288 static keymap_t		*new_keymap(void);	/* create a new keymap */
289 static key_entry_t	*new_key(void);		/* create a new key entry */
290 static wchar_t		inkey(int to, int delay);
291 
292 /*
293  * Free the storage associated with the given keymap
294  */
295 void
296 _cursesi_free_keymap(keymap_t *map)
297 {
298 	int i;
299 
300 	  /* check for, and free, child keymaps */
301 	for (i = 0; i < MAX_CHAR; i++) {
302 		if (map->mapping[i] >= 0) {
303 			if (map->key[map->mapping[i]]->type == KEYMAP_MULTI)
304 				_cursesi_free_keymap(
305 					map->key[map->mapping[i]]->value.next);
306 		}
307 	}
308 
309 	  /* now free any allocated keymap structs */
310 	for (i = 0; i < map->count; i += KEYMAP_ALLOC_CHUNK) {
311 		free(map->key[i]);
312 	}
313 
314 	free(map->key);
315 	free(map);
316 }
317 
318 
319 /*
320  * Add a new key entry to the keymap pointed to by current.  Entry
321  * contains the character to add to the keymap, type is the type of
322  * entry to add (either multikey or leaf) and symbol is the symbolic
323  * value for a leaf type entry.  The function returns a pointer to the
324  * new keymap entry.
325  */
326 static key_entry_t *
327 add_new_key(keymap_t *current, char chr, int key_type, int symbol)
328 {
329 	key_entry_t *the_key;
330         int i, ki;
331 
332 #ifdef DEBUG
333 	__CTRACE("Adding character %s of type %d, symbol 0x%x\n", unctrl(chr),
334 		 key_type, symbol);
335 #endif
336 	if (current->mapping[(unsigned char) chr] < 0) {
337 		if (current->mapping[(unsigned char) chr] == MAPPING_UNUSED) {
338 			  /* first time for this char */
339 			current->mapping[(unsigned char) chr] =
340 				current->count;	/* map new entry */
341 			ki = current->count;
342 
343 			  /* make sure we have room in the key array first */
344 			if ((current->count & (KEYMAP_ALLOC_CHUNK - 1)) == 0)
345 			{
346 				if ((current->key =
347 				     realloc(current->key,
348 					     ki * sizeof(key_entry_t *)
349 					     + KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t *))) == NULL) {
350 					fprintf(stderr,
351 					  "Could not malloc for key entry\n");
352 					exit(1);
353 				}
354 
355 				the_key = new_key();
356 				for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
357 					current->key[ki + i] = &the_key[i];
358 				}
359 			}
360                 } else {
361 			  /* the mapping was used but freed, reuse it */
362 			ki = - current->mapping[(unsigned char) chr];
363 			current->mapping[(unsigned char) chr] = ki;
364 		}
365 
366 		current->count++;
367 
368 		  /* point at the current key array element to use */
369 		the_key = current->key[ki];
370 
371 		the_key->type = key_type;
372 
373 		switch (key_type) {
374 		  case KEYMAP_MULTI:
375 			    /* need for next key */
376 #ifdef DEBUG
377 			  __CTRACE("Creating new keymap\n");
378 #endif
379 			  the_key->value.next = new_keymap();
380 			  the_key->enable = TRUE;
381 			  break;
382 
383 		  case KEYMAP_LEAF:
384 				/* the associated symbol for the key */
385 #ifdef DEBUG
386 			  __CTRACE("Adding leaf key\n");
387 #endif
388 			  the_key->value.symbol = symbol;
389 			  the_key->enable = TRUE;
390 			  break;
391 
392 		  default:
393 			  fprintf(stderr, "add_new_key: bad type passed\n");
394 			  exit(1);
395 		}
396 	} else {
397 		  /* the key is already known - just return the address. */
398 #ifdef DEBUG
399 		__CTRACE("Keymap already known\n");
400 #endif
401 		the_key = current->key[current->mapping[(unsigned char) chr]];
402 	}
403 
404         return the_key;
405 }
406 
407 /*
408  * Delete the given key symbol from the key mappings for the screen.
409  *
410  */
411 void
412 delete_key_sequence(keymap_t *current, int key_type)
413 {
414 	key_entry_t *key;
415 	int i;
416 
417 	  /*
418 	   * we need to iterate over all the keys as there may be
419 	   * multiple instances of the leaf symbol.
420 	   */
421 	for (i = 0; i < MAX_CHAR; i++) {
422 		if (current->mapping[i] < 0)
423 			continue; /* no mapping for the key, next! */
424 
425 		key = current->key[current->mapping[i]];
426 
427 		if (key->type == KEYMAP_MULTI) {
428 			  /* have not found the leaf, recurse down */
429 			delete_key_sequence(key->value.next, key_type);
430 			  /* if we deleted the last key in the map, free */
431 			if (key->value.next->count == 0)
432 				_cursesi_free_keymap(key->value.next);
433 		} else if ((key->type == KEYMAP_LEAF)
434 			   && (key->value.symbol == key_type)) {
435 			  /*
436 			   * delete the mapping by negating the current
437 			   * index - this "holds" the position in the
438 			   * allocation just in case we later re-add
439 			   * the key for that mapping.
440 			   */
441 			current->mapping[i] = - current->mapping[i];
442 			current->count--;
443 		}
444 	}
445 }
446 
447 /*
448  * Add the sequence of characters given in sequence as the key mapping
449  * for the given key symbol.
450  */
451 void
452 add_key_sequence(SCREEN *screen, char *sequence, int key_type)
453 {
454 	key_entry_t *tmp_key;
455 	keymap_t *current;
456 	int length, j, key_ent;
457 
458 	current = screen->base_keymap;	/* always start with
459 					 * base keymap. */
460 	length = (int) strlen(sequence);
461 
462 	for (j = 0; j < length - 1; j++) {
463 		  /* add the entry to the struct */
464 		tmp_key = add_new_key(current, sequence[j], KEYMAP_MULTI, 0);
465 
466 		  /* index into the key array - it's
467 		     clearer if we stash this */
468 		key_ent = current->mapping[(unsigned char) sequence[j]];
469 
470 		current->key[key_ent] = tmp_key;
471 
472 		  /* next key uses this map... */
473 		current = current->key[key_ent]->value.next;
474 	}
475 
476 	/*
477 	 * This is the last key in the sequence (it may have been the
478 	 * only one but that does not matter) this means it is a leaf
479 	 * key and should have a symbol associated with it.
480 	 */
481 	tmp_key = add_new_key(current, sequence[length - 1], KEYMAP_LEAF,
482 			      key_type);
483 	current->key[current->mapping[(int)sequence[length - 1]]] = tmp_key;
484 }
485 
486 /*
487  * Init_getch - initialise all the pointers & structures needed to make
488  * getch work in keypad mode.
489  *
490  */
491 void
492 __init_getch(SCREEN *screen)
493 {
494 	char entry[1024], *p;
495 	int     i;
496 	size_t limit;
497 #ifdef DEBUG
498 	int k, length;
499 #endif
500 
501 	/* init the inkey state variable */
502 	state = INKEY_NORM;
503 
504 	/* init the base keymap */
505 	screen->base_keymap = new_keymap();
506 
507 	/* key input buffer pointers */
508 	start = end = working = 0;
509 
510 	/* now do the termcap snarfing ... */
511 
512 	for (i = 0; i < num_tcs; i++) {
513 		p = entry;
514 		limit = 1023;
515 		if (t_getstr(screen->cursesi_genbuf, tc[i].name,
516 			     &p, &limit) != NULL) {
517 #ifdef DEBUG
518 			__CTRACE("Processing termcap entry %s, sequence ",
519 				 tc[i].name);
520 			length = (int) strlen(entry);
521 			for (k = 0; k <= length -1; k++)
522 				__CTRACE("%s", unctrl(entry[k]));
523 			__CTRACE("\n");
524 #endif
525 			add_key_sequence(screen, entry, tc[i].symbol);
526 		}
527 
528 	}
529 }
530 
531 
532 /*
533  * new_keymap - allocates & initialises a new keymap structure.  This
534  * function returns a pointer to the new keymap.
535  *
536  */
537 static keymap_t *
538 new_keymap(void)
539 {
540 	int     i;
541 	keymap_t *new_map;
542 
543 	if ((new_map = malloc(sizeof(keymap_t))) == NULL) {
544 		perror("Inkey: Cannot allocate new keymap");
545 		exit(2);
546 	}
547 
548 	/* Initialise the new map */
549 	new_map->count = 0;
550 	for (i = 0; i < MAX_CHAR; i++) {
551 		new_map->mapping[i] = MAPPING_UNUSED; /* no mapping for char */
552 	}
553 
554 	/* key array will be allocated when first key is added */
555 	new_map->key = NULL;
556 
557 	return new_map;
558 }
559 
560 /*
561  * new_key - allocates & initialises a new key entry.  This function returns
562  * a pointer to the newly allocated key entry.
563  *
564  */
565 static key_entry_t *
566 new_key(void)
567 {
568 	key_entry_t *new_one;
569 	int i;
570 
571 	if ((new_one = malloc(KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t)))
572 	    == NULL) {
573 		perror("inkey: Cannot allocate new key entry chunk");
574 		exit(2);
575 	}
576 
577 	for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
578 		new_one[i].type = 0;
579 		new_one[i].value.next = NULL;
580 	}
581 
582 	return new_one;
583 }
584 
585 /*
586  * inkey - do the work to process keyboard input, check for multi-key
587  * sequences and return the appropriate symbol if we get a match.
588  *
589  */
590 
591 wchar_t
592 inkey(int to, int delay)
593 {
594 	wchar_t		 k;
595 	int              c, mapping;
596 	keymap_t	*current = _cursesi_screen->base_keymap;
597 	FILE            *infd = _cursesi_screen->infd;
598 
599 	k = 0;		/* XXX gcc -Wuninitialized */
600 
601 	for (;;) {		/* loop until we get a complete key sequence */
602 reread:
603 		if (state == INKEY_NORM) {
604 			if (delay && __timeout(delay) == ERR)
605 				return ERR;
606 			if ((c = getchar()) == EOF) {
607 				clearerr(infd);
608 				return ERR;
609 			}
610 
611 			if (delay && (__notimeout() == ERR))
612 				return ERR;
613 
614 			k = (wchar_t) c;
615 #ifdef DEBUG
616 			__CTRACE("inkey (state normal) got '%s'\n", unctrl(k));
617 #endif
618 
619 			working = start;
620 			inbuf[working] = k;
621 			INC_POINTER(working);
622 			end = working;
623 			state = INKEY_ASSEMBLING;	/* go to the assembling
624 							 * state now */
625 		} else if (state == INKEY_BACKOUT) {
626 			k = inbuf[working];
627 			INC_POINTER(working);
628 			if (working == end) {	/* see if we have run
629 						 * out of keys in the
630 						 * backlog */
631 
632 				/* if we have then switch to
633 				   assembling */
634 				state = INKEY_ASSEMBLING;
635 			}
636 		} else if (state == INKEY_ASSEMBLING) {
637 			/* assembling a key sequence */
638 			if (delay) {
639 				if (__timeout(to ? DEFAULT_DELAY : delay) == ERR)
640 						return ERR;
641 			} else {
642 				if (to && (__timeout(DEFAULT_DELAY) == ERR))
643 					return ERR;
644 			}
645 
646 			c = getchar();
647 			if (ferror(infd)) {
648 				clearerr(infd);
649 				return ERR;
650 			}
651 
652 			if ((to || delay) && (__notimeout() == ERR))
653 					return ERR;
654 
655 			k = (wchar_t) c;
656 #ifdef DEBUG
657 			__CTRACE("inkey (state assembling) got '%s'\n", unctrl(k));
658 #endif
659 			if (feof(infd)) {	/* inter-char timeout,
660 						 * start backing out */
661 				clearerr(infd);
662 				if (start == end)
663 					/* no chars in the buffer, restart */
664 					goto reread;
665 
666 				k = inbuf[start];
667 				state = INKEY_TIMEOUT;
668 			} else {
669 				inbuf[working] = k;
670 				INC_POINTER(working);
671 				end = working;
672 			}
673 		} else {
674 			fprintf(stderr, "Inkey state screwed - exiting!!!");
675 			exit(2);
676 		}
677 
678 		  /*
679 		   * Check key has no special meaning and we have not
680 		   * timed out and the key has not been disabled
681 		   */
682 		mapping = current->mapping[k];
683 		if (((state == INKEY_TIMEOUT) || (mapping < 0))
684 			|| ((current->key[mapping]->type == KEYMAP_LEAF)
685 			    && (current->key[mapping]->enable == FALSE))) {
686 			/* return the first key we know about */
687 			k = inbuf[start];
688 
689 			INC_POINTER(start);
690 			working = start;
691 
692 			if (start == end) {	/* only one char processed */
693 				state = INKEY_NORM;
694 			} else {/* otherwise we must have more than one char
695 				 * to backout */
696 				state = INKEY_BACKOUT;
697 			}
698 			return k;
699 		} else {	/* must be part of a multikey sequence */
700 			/* check for completed key sequence */
701 			if (current->key[current->mapping[k]]->type == KEYMAP_LEAF) {
702 				start = working;	/* eat the key sequence
703 							 * in inbuf */
704 
705 				/* check if inbuf empty now */
706 				if (start == end) {
707 					/* if it is go back to normal */
708 					state = INKEY_NORM;
709 				} else {
710 					/* otherwise go to backout state */
711 					state = INKEY_BACKOUT;
712 				}
713 
714 				/* return the symbol */
715 				return current->key[current->mapping[k]]->value.symbol;
716 
717 			} else {
718 				/*
719 				 * Step on to next part of the multi-key
720 				 * sequence.
721 				 */
722 				current = current->key[current->mapping[k]]->value.next;
723 			}
724 		}
725 	}
726 }
727 
728 #ifndef _CURSES_USE_MACROS
729 /*
730  * getch --
731  *	Read in a character from stdscr.
732  */
733 int
734 getch(void)
735 {
736 	return wgetch(stdscr);
737 }
738 
739 /*
740  * mvgetch --
741  *      Read in a character from stdscr at the given location.
742  */
743 int
744 mvgetch(int y, int x)
745 {
746 	return mvwgetch(stdscr, y, x);
747 }
748 
749 /*
750  * mvwgetch --
751  *      Read in a character from stdscr at the given location in the
752  *      given window.
753  */
754 int
755 mvwgetch(WINDOW *win, int y, int x)
756 {
757 	if (wmove(win, y, x) == ERR)
758 		return ERR;
759 
760 	return wgetch(win);
761 }
762 
763 #endif
764 
765 /*
766  * keyok --
767  *      Set the enable flag for a keysym, if the flag is false then
768  * getch will not return this keysym even if the matching key sequence
769  * is seen.
770  */
771 int
772 keyok(int key_type, bool flag)
773 {
774 	int result = ERR;
775 
776 	do_keyok(_cursesi_screen->base_keymap, key_type, flag, &result);
777 	return result;
778 }
779 
780 /*
781  * do_keyok --
782  *       Does the actual work for keyok, we need to recurse through the
783  * keymaps finding the passed key symbol.
784  */
785 void
786 do_keyok(keymap_t *current, int key_type, bool flag, int *retval)
787 {
788 	key_entry_t *key;
789 	int i;
790 
791 	  /*
792 	   * we need to iterate over all the keys as there may be
793 	   * multiple instances of the leaf symbol.
794 	   */
795 	for (i = 0; i < MAX_CHAR; i++) {
796 		if (current->mapping[i] < 0)
797 			continue; /* no mapping for the key, next! */
798 
799 		key = current->key[current->mapping[i]];
800 
801 		if (key->type == KEYMAP_MULTI)
802 			do_keyok(key->value.next, key_type, flag, retval);
803 		else if ((key->type == KEYMAP_LEAF)
804 			 && (key->value.symbol == key_type)) {
805 			key->enable = flag;
806 			*retval = OK; /* we found at least one instance, ok */
807 		}
808 	}
809 }
810 
811 /*
812  * define_key --
813  *      Add a custom mapping of a key sequence to key symbol.
814  *
815  */
816 int
817 define_key(char *sequence, int symbol)
818 {
819 
820 	if (symbol <= 0)
821 		return ERR;
822 
823 	if (sequence == NULL)
824 		delete_key_sequence(_cursesi_screen->base_keymap, symbol);
825 	else
826 		add_key_sequence(_cursesi_screen, sequence, symbol);
827 
828 	return OK;
829 }
830 
831 /*
832  * wgetch --
833  *	Read in a character from the window.
834  */
835 int
836 wgetch(WINDOW *win)
837 {
838 	int inp, weset;
839 	int c;
840 	FILE *infd = _cursesi_screen->infd;
841 
842 	if (!(win->flags & __SCROLLOK) && (win->flags & __FULLWIN)
843 	    && win->curx == win->maxx - 1 && win->cury == win->maxy - 1
844 	    && __echoit)
845 		return (ERR);
846 
847 	if (is_wintouched(win))
848 		wrefresh(win);
849 #ifdef DEBUG
850 	__CTRACE("wgetch: __echoit = %d, __rawmode = %d, flags = %0.2o\n",
851 	    __echoit, __rawmode, win->flags);
852 #endif
853 	if (__echoit && !__rawmode) {
854 		cbreak();
855 		weset = 1;
856 	} else
857 		weset = 0;
858 
859 	__save_termios();
860 
861 	if (win->flags & __KEYPAD) {
862 		switch (win->delay)
863 		{
864 		case -1:
865 			inp = inkey (win->flags & __NOTIMEOUT ? 0 : 1, 0);
866 			break;
867 		case 0:
868 			if (__nodelay() == ERR) {
869 				__restore_termios();
870 				return ERR;
871 			}
872 			inp = inkey(0, 0);
873 			break;
874 		default:
875 			inp = inkey(win->flags & __NOTIMEOUT ? 0 : 1, win->delay);
876 			break;
877 		}
878 	} else {
879 		switch (win->delay)
880 		{
881 		case -1:
882 			break;
883 		case 0:
884 			if (__nodelay() == ERR) {
885 				__restore_termios();
886 				return ERR;
887 			}
888 			break;
889 		default:
890 			if (__timeout(win->delay) == ERR) {
891 				__restore_termios();
892 				return ERR;
893 			}
894 			break;
895 		}
896 
897 		c = getchar();
898 		if (feof(infd)) {
899 			clearerr(infd);
900 			__restore_termios();
901 			return ERR;	/* we have timed out */
902 		}
903 
904 		if (ferror(infd)) {
905 			clearerr(infd);
906 			inp = ERR;
907 		} else {
908 			inp = c;
909 		}
910 	}
911 #ifdef DEBUG
912 	if (inp > 255)
913 		  /* we have a key symbol - treat it differently */
914 		  /* XXXX perhaps __unctrl should be expanded to include
915 		   * XXXX the keysyms in the table....
916 		   */
917 		__CTRACE("wgetch assembled keysym 0x%x\n", inp);
918 	else
919 		__CTRACE("wgetch got '%s'\n", unctrl(inp));
920 #endif
921 	if (win->delay > -1) {
922 		if (__delay() == ERR) {
923 			__restore_termios();
924 			return ERR;
925 		}
926 	}
927 
928 	__restore_termios();
929 
930 	if (__echoit)
931 		waddch(win, (chtype) inp);
932 
933 	if (weset)
934 		nocbreak();
935 
936 	return ((inp < 0) || (inp == ERR) ? ERR : inp);
937 }
938 
939 /*
940  * ungetch --
941  *     Put the character back into the input queue.
942  */
943 int
944 ungetch(int c)
945 {
946 	return ((ungetc(c, _cursesi_screen->infd) == EOF) ? ERR : OK);
947 }
948