xref: /netbsd/lib/libkvm/kvm_proc.c (revision bf9ec67e)
1 /*	$NetBSD: kvm_proc.c,v 1.45 2001/03/24 10:02:45 jdolecek Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1989, 1992, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software developed by the Computer Systems
44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45  * BG 91-66 and contributed to Berkeley.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. All advertising materials mentioning features or use of this software
56  *    must display the following acknowledgement:
57  *	This product includes software developed by the University of
58  *	California, Berkeley and its contributors.
59  * 4. Neither the name of the University nor the names of its contributors
60  *    may be used to endorse or promote products derived from this software
61  *    without specific prior written permission.
62  *
63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73  * SUCH DAMAGE.
74  */
75 
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.45 2001/03/24 10:02:45 jdolecek Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84 
85 /*
86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
87  * users of this code, so we've factored it out into a separate module.
88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
89  * most other applications are interested only in open/close/read/nlist).
90  */
91 
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/proc.h>
95 #include <sys/exec.h>
96 #include <sys/stat.h>
97 #include <sys/ioctl.h>
98 #include <sys/tty.h>
99 #include <stdlib.h>
100 #include <string.h>
101 #include <unistd.h>
102 #include <nlist.h>
103 #include <kvm.h>
104 
105 #include <uvm/uvm_extern.h>
106 #include <uvm/uvm_amap.h>
107 
108 #include <sys/sysctl.h>
109 
110 #include <limits.h>
111 #include <db.h>
112 #include <paths.h>
113 
114 #include "kvm_private.h"
115 
116 /*
117  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
118  */
119 struct miniproc {
120 	struct	vmspace *p_vmspace;
121 	char	p_stat;
122 	struct	proc *p_paddr;
123 	pid_t	p_pid;
124 };
125 
126 /*
127  * Convert from struct proc and kinfo_proc{,2} to miniproc.
128  */
129 #define PTOMINI(kp, p) \
130 		do { \
131 		(p)->p_stat = (kp)->p_stat; \
132 		(p)->p_pid = (kp)->p_pid; \
133 		(p)->p_paddr = NULL; \
134 		(p)->p_vmspace = (kp)->p_vmspace; \
135 	} while (/*CONSTCOND*/0);
136 
137 #define KPTOMINI(kp, p) \
138 		do { \
139 		(p)->p_stat = (kp)->kp_proc.p_stat; \
140 		(p)->p_pid = (kp)->kp_proc.p_pid; \
141 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
142 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
143 	} while (/*CONSTCOND*/0);
144 
145 #define KP2TOMINI(kp, p) \
146 		do { \
147 		(p)->p_stat = (kp)->p_stat; \
148 		(p)->p_pid = (kp)->p_pid; \
149 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
150 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
151 	} while (/*CONSTCOND*/0);
152 
153 
154 #define	PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(void *)(foo))
155 
156 #define KREAD(kd, addr, obj) \
157 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
158 
159 /* XXX: What uses these two functions? */
160 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
161 		    u_long *));
162 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
163 		    size_t));
164 
165 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
166 		    u_long *));
167 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
168 		    char *, size_t));
169 
170 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
171 		    int));
172 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
173 		    int));
174 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
175 		    void (*)(struct ps_strings *, u_long *, int *)));
176 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
177 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
178 		    struct kinfo_proc *, int));
179 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
180 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
181 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
182 
183 
184 static char *
185 _kvm_ureadm(kd, p, va, cnt)
186 	kvm_t *kd;
187 	const struct miniproc *p;
188 	u_long va;
189 	u_long *cnt;
190 {
191 	int true = 1;
192 	u_long addr, head;
193 	u_long offset;
194 	struct vm_map_entry vme;
195 	struct vm_amap amap;
196 	struct vm_anon *anonp, anon;
197 	struct vm_page pg;
198 	u_long slot;
199 
200 	if (kd->swapspc == NULL) {
201 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
202 		if (kd->swapspc == NULL)
203 			return NULL;
204 	}
205 
206 	/*
207 	 * Look through the address map for the memory object
208 	 * that corresponds to the given virtual address.
209 	 * The header just has the entire valid range.
210 	 */
211 	head = (u_long)&p->p_vmspace->vm_map.header;
212 	addr = head;
213 	while (true) {
214 		if (KREAD(kd, addr, &vme))
215 			return NULL;
216 
217 		if (va >= vme.start && va < vme.end &&
218 		    vme.aref.ar_amap != NULL)
219 			break;
220 
221 		addr = (u_long)vme.next;
222 		if (addr == head)
223 			return NULL;
224 
225 	}
226 
227 	/*
228 	 * we found the map entry, now to find the object...
229 	 */
230 	if (vme.aref.ar_amap == NULL)
231 		return NULL;
232 
233 	addr = (u_long)vme.aref.ar_amap;
234 	if (KREAD(kd, addr, &amap))
235 		return NULL;
236 
237 	offset = va - vme.start;
238 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
239 	/* sanity-check slot number */
240 	if (slot  > amap.am_nslot)
241 		return NULL;
242 
243 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
244 	if (KREAD(kd, addr, &anonp))
245 		return NULL;
246 
247 	addr = (u_long)anonp;
248 	if (KREAD(kd, addr, &anon))
249 		return NULL;
250 
251 	addr = (u_long)anon.u.an_page;
252 	if (addr) {
253 		if (KREAD(kd, addr, &pg))
254 			return NULL;
255 
256 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
257 		    (off_t)pg.phys_addr) != kd->nbpg)
258 			return NULL;
259 	}
260 	else {
261 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
262 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
263 			return NULL;
264 	}
265 
266 	/* Found the page. */
267 	offset %= kd->nbpg;
268 	*cnt = kd->nbpg - offset;
269 	return (&kd->swapspc[(size_t)offset]);
270 }
271 
272 char *
273 _kvm_uread(kd, p, va, cnt)
274 	kvm_t *kd;
275 	const struct proc *p;
276 	u_long va;
277 	u_long *cnt;
278 {
279 	struct miniproc mp;
280 
281 	PTOMINI(p, &mp);
282 	return (_kvm_ureadm(kd, &mp, va, cnt));
283 }
284 
285 /*
286  * Read proc's from memory file into buffer bp, which has space to hold
287  * at most maxcnt procs.
288  */
289 static int
290 kvm_proclist(kd, what, arg, p, bp, maxcnt)
291 	kvm_t *kd;
292 	int what, arg;
293 	struct proc *p;
294 	struct kinfo_proc *bp;
295 	int maxcnt;
296 {
297 	int cnt = 0;
298 	struct eproc eproc;
299 	struct pgrp pgrp;
300 	struct session sess;
301 	struct tty tty;
302 	struct proc proc;
303 
304 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
305 		if (KREAD(kd, (u_long)p, &proc)) {
306 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
307 			return (-1);
308 		}
309 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
310 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
311 			    &eproc.e_ucred)) {
312 				_kvm_err(kd, kd->program,
313 				    "can't read proc credentials at %p", p);
314 				return -1;
315 			}
316 
317 		switch(what) {
318 
319 		case KERN_PROC_PID:
320 			if (proc.p_pid != (pid_t)arg)
321 				continue;
322 			break;
323 
324 		case KERN_PROC_UID:
325 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
326 				continue;
327 			break;
328 
329 		case KERN_PROC_RUID:
330 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
331 				continue;
332 			break;
333 		}
334 		/*
335 		 * We're going to add another proc to the set.  If this
336 		 * will overflow the buffer, assume the reason is because
337 		 * nprocs (or the proc list) is corrupt and declare an error.
338 		 */
339 		if (cnt >= maxcnt) {
340 			_kvm_err(kd, kd->program, "nprocs corrupt");
341 			return (-1);
342 		}
343 		/*
344 		 * gather eproc
345 		 */
346 		eproc.e_paddr = p;
347 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
348 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
349 				 proc.p_pgrp);
350 			return (-1);
351 		}
352 		eproc.e_sess = pgrp.pg_session;
353 		eproc.e_pgid = pgrp.pg_id;
354 		eproc.e_jobc = pgrp.pg_jobc;
355 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
356 			_kvm_err(kd, kd->program, "can't read session at %p",
357 				pgrp.pg_session);
358 			return (-1);
359 		}
360 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
361 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
362 				_kvm_err(kd, kd->program,
363 					 "can't read tty at %p", sess.s_ttyp);
364 				return (-1);
365 			}
366 			eproc.e_tdev = tty.t_dev;
367 			eproc.e_tsess = tty.t_session;
368 			if (tty.t_pgrp != NULL) {
369 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
370 					_kvm_err(kd, kd->program,
371 						 "can't read tpgrp at %p",
372 						tty.t_pgrp);
373 					return (-1);
374 				}
375 				eproc.e_tpgid = pgrp.pg_id;
376 			} else
377 				eproc.e_tpgid = -1;
378 		} else
379 			eproc.e_tdev = NODEV;
380 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
381 		eproc.e_sid = sess.s_sid;
382 		if (sess.s_leader == p)
383 			eproc.e_flag |= EPROC_SLEADER;
384 		if (proc.p_wmesg)
385 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
386 			    eproc.e_wmesg, WMESGLEN);
387 
388 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
389 		    sizeof(eproc.e_vm));
390 
391 		eproc.e_xsize = eproc.e_xrssize = 0;
392 		eproc.e_xccount = eproc.e_xswrss = 0;
393 
394 		switch (what) {
395 
396 		case KERN_PROC_PGRP:
397 			if (eproc.e_pgid != (pid_t)arg)
398 				continue;
399 			break;
400 
401 		case KERN_PROC_TTY:
402 			if ((proc.p_flag & P_CONTROLT) == 0 ||
403 			     eproc.e_tdev != (dev_t)arg)
404 				continue;
405 			break;
406 		}
407 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
408 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
409 		++bp;
410 		++cnt;
411 	}
412 	return (cnt);
413 }
414 
415 /*
416  * Build proc info array by reading in proc list from a crash dump.
417  * Return number of procs read.  maxcnt is the max we will read.
418  */
419 static int
420 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
421 	kvm_t *kd;
422 	int what, arg;
423 	u_long a_allproc;
424 	u_long a_deadproc;
425 	u_long a_zombproc;
426 	int maxcnt;
427 {
428 	struct kinfo_proc *bp = kd->procbase;
429 	int acnt, dcnt, zcnt;
430 	struct proc *p;
431 
432 	if (KREAD(kd, a_allproc, &p)) {
433 		_kvm_err(kd, kd->program, "cannot read allproc");
434 		return (-1);
435 	}
436 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
437 	if (acnt < 0)
438 		return (acnt);
439 
440 	if (KREAD(kd, a_deadproc, &p)) {
441 		_kvm_err(kd, kd->program, "cannot read deadproc");
442 		return (-1);
443 	}
444 
445 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
446 	if (dcnt < 0)
447 		dcnt = 0;
448 
449 	if (KREAD(kd, a_zombproc, &p)) {
450 		_kvm_err(kd, kd->program, "cannot read zombproc");
451 		return (-1);
452 	}
453 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
454 	    maxcnt - (acnt + dcnt));
455 	if (zcnt < 0)
456 		zcnt = 0;
457 
458 	return (acnt + zcnt);
459 }
460 
461 struct kinfo_proc2 *
462 kvm_getproc2(kd, op, arg, esize, cnt)
463 	kvm_t *kd;
464 	int op, arg;
465 	size_t esize;
466 	int *cnt;
467 {
468 	size_t size;
469 	int mib[6], st, nprocs;
470 	struct user user;
471 
472 	if (kd->procbase2 != NULL) {
473 		free(kd->procbase2);
474 		/*
475 		 * Clear this pointer in case this call fails.  Otherwise,
476 		 * kvm_close() will free it again.
477 		 */
478 		kd->procbase2 = NULL;
479 	}
480 
481 	if (ISSYSCTL(kd)) {
482 		size = 0;
483 		mib[0] = CTL_KERN;
484 		mib[1] = KERN_PROC2;
485 		mib[2] = op;
486 		mib[3] = arg;
487 		mib[4] = esize;
488 		mib[5] = 0;
489 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
490 		if (st == -1) {
491 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
492 			return NULL;
493 		}
494 
495 		mib[5] = size / esize;
496 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
497 		if (kd->procbase2 == NULL)
498 			return NULL;
499 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
500 		if (st == -1) {
501 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
502 			return NULL;
503 		}
504 		nprocs = size / esize;
505 	} else {
506 		char *kp2c;
507 		struct kinfo_proc *kp;
508 		struct kinfo_proc2 kp2, *kp2p;
509 		int i;
510 
511 		kp = kvm_getprocs(kd, op, arg, &nprocs);
512 		if (kp == NULL)
513 			return NULL;
514 
515 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
516 		kp2c = (char *)(void *)kd->procbase2;
517 		kp2p = &kp2;
518 		for (i = 0; i < nprocs; i++, kp++) {
519 			memset(kp2p, 0, sizeof(kp2));
520 			kp2p->p_forw = PTRTOINT64(kp->kp_proc.p_forw);
521 			kp2p->p_back = PTRTOINT64(kp->kp_proc.p_back);
522 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
523 
524 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
525 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
526 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
527 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
528 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
529 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
530 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
531 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
532 			kp2p->p_tsess = 0;
533 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
534 
535 			kp2p->p_eflag = 0;
536 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
537 			kp2p->p_flag = kp->kp_proc.p_flag;
538 
539 			kp2p->p_pid = kp->kp_proc.p_pid;
540 
541 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
542 			kp2p->p_sid = kp->kp_eproc.e_sid;
543 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
544 
545 			kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
546 
547 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
548 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
549 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
550 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
551 
552 			/*CONSTCOND*/
553 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
554 			    MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
555 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
556 
557 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
558 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
559 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
560 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
561 
562 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
563 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
564 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
565 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
566 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
567 			kp2p->p_swtime = kp->kp_proc.p_swtime;
568 			kp2p->p_slptime = kp->kp_proc.p_slptime;
569 #if 0 /* XXX thorpej */
570 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
571 #else
572 			kp2p->p_schedflags = 0;
573 #endif
574 
575 			kp2p->p_uticks = kp->kp_proc.p_uticks;
576 			kp2p->p_sticks = kp->kp_proc.p_sticks;
577 			kp2p->p_iticks = kp->kp_proc.p_iticks;
578 
579 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
580 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
581 
582 			kp2p->p_holdcnt = kp->kp_proc.p_holdcnt;
583 
584 			memcpy(&kp2p->p_siglist, &kp->kp_proc.p_sigctx.ps_siglist, sizeof(ki_sigset_t));
585 			memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
586 			memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigctx.ps_sigignore, sizeof(ki_sigset_t));
587 			memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
588 
589 			kp2p->p_stat = kp->kp_proc.p_stat;
590 			kp2p->p_priority = kp->kp_proc.p_priority;
591 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
592 			kp2p->p_nice = kp->kp_proc.p_nice;
593 
594 			kp2p->p_xstat = kp->kp_proc.p_xstat;
595 			kp2p->p_acflag = kp->kp_proc.p_acflag;
596 
597 			/*CONSTCOND*/
598 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
599 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
600 
601 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
602 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
603 
604 			strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
605 
606 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
607 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
608 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
609 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
610 
611 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
612 
613 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
614 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
615 				kp2p->p_uvalid = 0;
616 			} else {
617 				kp2p->p_uvalid = 1;
618 
619 				kp2p->p_ustart_sec = (u_int32_t)
620 				    user.u_stats.p_start.tv_sec;
621 				kp2p->p_ustart_usec = (u_int32_t)
622 				    user.u_stats.p_start.tv_usec;
623 
624 				kp2p->p_uutime_sec = (u_int32_t)
625 				    user.u_stats.p_ru.ru_utime.tv_sec;
626 				kp2p->p_uutime_usec = (u_int32_t)
627 				    user.u_stats.p_ru.ru_utime.tv_usec;
628 				kp2p->p_ustime_sec = (u_int32_t)
629 				    user.u_stats.p_ru.ru_stime.tv_sec;
630 				kp2p->p_ustime_usec = (u_int32_t)
631 				    user.u_stats.p_ru.ru_stime.tv_usec;
632 
633 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
634 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
635 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
636 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
637 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
638 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
639 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
640 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
641 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
642 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
643 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
644 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
645 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
646 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
647 
648 				kp2p->p_uctime_sec = (u_int32_t)
649 				    (user.u_stats.p_cru.ru_utime.tv_sec +
650 				    user.u_stats.p_cru.ru_stime.tv_sec);
651 				kp2p->p_uctime_usec = (u_int32_t)
652 				    (user.u_stats.p_cru.ru_utime.tv_usec +
653 				    user.u_stats.p_cru.ru_stime.tv_usec);
654 			}
655 
656 			memcpy(kp2c, &kp2, esize);
657 			kp2c += esize;
658 		}
659 
660 		free(kd->procbase);
661 	}
662 	*cnt = nprocs;
663 	return (kd->procbase2);
664 }
665 
666 struct kinfo_proc *
667 kvm_getprocs(kd, op, arg, cnt)
668 	kvm_t *kd;
669 	int op, arg;
670 	int *cnt;
671 {
672 	size_t size;
673 	int mib[4], st, nprocs;
674 
675 	if (kd->procbase != NULL) {
676 		free(kd->procbase);
677 		/*
678 		 * Clear this pointer in case this call fails.  Otherwise,
679 		 * kvm_close() will free it again.
680 		 */
681 		kd->procbase = NULL;
682 	}
683 	if (ISKMEM(kd)) {
684 		size = 0;
685 		mib[0] = CTL_KERN;
686 		mib[1] = KERN_PROC;
687 		mib[2] = op;
688 		mib[3] = arg;
689 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
690 		if (st == -1) {
691 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
692 			return NULL;
693 		}
694 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
695 		if (kd->procbase == NULL)
696 			return NULL;
697 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
698 		if (st == -1) {
699 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
700 			return NULL;
701 		}
702 		if (size % sizeof(struct kinfo_proc) != 0) {
703 			_kvm_err(kd, kd->program,
704 			    "proc size mismatch (%lu total, %lu chunks)",
705 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
706 			return NULL;
707 		}
708 		nprocs = size / sizeof(struct kinfo_proc);
709 	} else if (ISSYSCTL(kd)) {
710 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
711 		    "can't use kvm_getprocs");
712 		return NULL;
713 	} else {
714 		struct nlist nl[5], *p;
715 
716 		nl[0].n_name = "_nprocs";
717 		nl[1].n_name = "_allproc";
718 		nl[2].n_name = "_deadproc";
719 		nl[3].n_name = "_zombproc";
720 		nl[4].n_name = NULL;
721 
722 		if (kvm_nlist(kd, nl) != 0) {
723 			for (p = nl; p->n_type != 0; ++p)
724 				;
725 			_kvm_err(kd, kd->program,
726 				 "%s: no such symbol", p->n_name);
727 			return NULL;
728 		}
729 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
730 			_kvm_err(kd, kd->program, "can't read nprocs");
731 			return NULL;
732 		}
733 		size = nprocs * sizeof(struct kinfo_proc);
734 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
735 		if (kd->procbase == NULL)
736 			return NULL;
737 
738 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
739 		    nl[2].n_value, nl[3].n_value, nprocs);
740 		if (nprocs < 0)
741 			return NULL;
742 #ifdef notdef
743 		size = nprocs * sizeof(struct kinfo_proc);
744 		(void)realloc(kd->procbase, size);
745 #endif
746 	}
747 	*cnt = nprocs;
748 	return (kd->procbase);
749 }
750 
751 void
752 _kvm_freeprocs(kd)
753 	kvm_t *kd;
754 {
755 	if (kd->procbase) {
756 		free(kd->procbase);
757 		kd->procbase = NULL;
758 	}
759 }
760 
761 void *
762 _kvm_realloc(kd, p, n)
763 	kvm_t *kd;
764 	void *p;
765 	size_t n;
766 {
767 	void *np = realloc(p, n);
768 
769 	if (np == NULL)
770 		_kvm_err(kd, kd->program, "out of memory");
771 	return (np);
772 }
773 
774 /*
775  * Read in an argument vector from the user address space of process p.
776  * addr if the user-space base address of narg null-terminated contiguous
777  * strings.  This is used to read in both the command arguments and
778  * environment strings.  Read at most maxcnt characters of strings.
779  */
780 static char **
781 kvm_argv(kd, p, addr, narg, maxcnt)
782 	kvm_t *kd;
783 	const struct miniproc *p;
784 	u_long addr;
785 	int narg;
786 	int maxcnt;
787 {
788 	char *np, *cp, *ep, *ap;
789 	u_long oaddr = (u_long)~0L;
790 	u_long len;
791 	size_t cc;
792 	char **argv;
793 
794 	/*
795 	 * Check that there aren't an unreasonable number of agruments,
796 	 * and that the address is in user space.
797 	 */
798 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
799 		return NULL;
800 
801 	if (kd->argv == NULL) {
802 		/*
803 		 * Try to avoid reallocs.
804 		 */
805 		kd->argc = MAX(narg + 1, 32);
806 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
807 						sizeof(*kd->argv));
808 		if (kd->argv == NULL)
809 			return NULL;
810 	} else if (narg + 1 > kd->argc) {
811 		kd->argc = MAX(2 * kd->argc, narg + 1);
812 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
813 						sizeof(*kd->argv));
814 		if (kd->argv == NULL)
815 			return NULL;
816 	}
817 	if (kd->argspc == NULL) {
818 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
819 		if (kd->argspc == NULL)
820 			return NULL;
821 		kd->arglen = kd->nbpg;
822 	}
823 	if (kd->argbuf == NULL) {
824 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
825 		if (kd->argbuf == NULL)
826 			return NULL;
827 	}
828 	cc = sizeof(char *) * narg;
829 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
830 		return NULL;
831 	ap = np = kd->argspc;
832 	argv = kd->argv;
833 	len = 0;
834 	/*
835 	 * Loop over pages, filling in the argument vector.
836 	 */
837 	while (argv < kd->argv + narg && *argv != NULL) {
838 		addr = (u_long)*argv & ~(kd->nbpg - 1);
839 		if (addr != oaddr) {
840 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
841 			    (size_t)kd->nbpg) != kd->nbpg)
842 				return NULL;
843 			oaddr = addr;
844 		}
845 		addr = (u_long)*argv & (kd->nbpg - 1);
846 		cp = kd->argbuf + (size_t)addr;
847 		cc = kd->nbpg - (size_t)addr;
848 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
849 			cc = (size_t)(maxcnt - len);
850 		ep = memchr(cp, '\0', cc);
851 		if (ep != NULL)
852 			cc = ep - cp + 1;
853 		if (len + cc > kd->arglen) {
854 			int off;
855 			char **pp;
856 			char *op = kd->argspc;
857 
858 			kd->arglen *= 2;
859 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
860 			    (size_t)kd->arglen);
861 			if (kd->argspc == NULL)
862 				return NULL;
863 			/*
864 			 * Adjust argv pointers in case realloc moved
865 			 * the string space.
866 			 */
867 			off = kd->argspc - op;
868 			for (pp = kd->argv; pp < argv; pp++)
869 				*pp += off;
870 			ap += off;
871 			np += off;
872 		}
873 		memcpy(np, cp, cc);
874 		np += cc;
875 		len += cc;
876 		if (ep != NULL) {
877 			*argv++ = ap;
878 			ap = np;
879 		} else
880 			*argv += cc;
881 		if (maxcnt > 0 && len >= maxcnt) {
882 			/*
883 			 * We're stopping prematurely.  Terminate the
884 			 * current string.
885 			 */
886 			if (ep == NULL) {
887 				*np = '\0';
888 				*argv++ = ap;
889 			}
890 			break;
891 		}
892 	}
893 	/* Make sure argv is terminated. */
894 	*argv = NULL;
895 	return (kd->argv);
896 }
897 
898 static void
899 ps_str_a(p, addr, n)
900 	struct ps_strings *p;
901 	u_long *addr;
902 	int *n;
903 {
904 	*addr = (u_long)p->ps_argvstr;
905 	*n = p->ps_nargvstr;
906 }
907 
908 static void
909 ps_str_e(p, addr, n)
910 	struct ps_strings *p;
911 	u_long *addr;
912 	int *n;
913 {
914 	*addr = (u_long)p->ps_envstr;
915 	*n = p->ps_nenvstr;
916 }
917 
918 /*
919  * Determine if the proc indicated by p is still active.
920  * This test is not 100% foolproof in theory, but chances of
921  * being wrong are very low.
922  */
923 static int
924 proc_verify(kd, kernp, p)
925 	kvm_t *kd;
926 	u_long kernp;
927 	const struct miniproc *p;
928 {
929 	struct proc kernproc;
930 
931 	/*
932 	 * Just read in the whole proc.  It's not that big relative
933 	 * to the cost of the read system call.
934 	 */
935 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
936 	    sizeof(kernproc))
937 		return 0;
938 	return (p->p_pid == kernproc.p_pid &&
939 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
940 }
941 
942 static char **
943 kvm_doargv(kd, p, nchr, info)
944 	kvm_t *kd;
945 	const struct miniproc *p;
946 	int nchr;
947 	void (*info)(struct ps_strings *, u_long *, int *);
948 {
949 	char **ap;
950 	u_long addr;
951 	int cnt;
952 	struct ps_strings arginfo;
953 
954 	/*
955 	 * Pointers are stored at the top of the user stack.
956 	 */
957 	if (p->p_stat == SZOMB)
958 		return NULL;
959 	cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
960 	    (void *)&arginfo, sizeof(arginfo));
961 	if (cnt != sizeof(arginfo))
962 		return NULL;
963 
964 	(*info)(&arginfo, &addr, &cnt);
965 	if (cnt == 0)
966 		return NULL;
967 	ap = kvm_argv(kd, p, addr, cnt, nchr);
968 	/*
969 	 * For live kernels, make sure this process didn't go away.
970 	 */
971 	if (ap != NULL && ISALIVE(kd) &&
972 	    !proc_verify(kd, (u_long)p->p_paddr, p))
973 		ap = NULL;
974 	return (ap);
975 }
976 
977 /*
978  * Get the command args.  This code is now machine independent.
979  */
980 char **
981 kvm_getargv(kd, kp, nchr)
982 	kvm_t *kd;
983 	const struct kinfo_proc *kp;
984 	int nchr;
985 {
986 	struct miniproc p;
987 
988 	KPTOMINI(kp, &p);
989 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
990 }
991 
992 char **
993 kvm_getenvv(kd, kp, nchr)
994 	kvm_t *kd;
995 	const struct kinfo_proc *kp;
996 	int nchr;
997 {
998 	struct miniproc p;
999 
1000 	KPTOMINI(kp, &p);
1001 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1002 }
1003 
1004 static char **
1005 kvm_doargv2(kd, pid, type, nchr)
1006 	kvm_t *kd;
1007 	pid_t pid;
1008 	int type;
1009 	int nchr;
1010 {
1011 	size_t bufs;
1012 	int narg, mib[4];
1013 	size_t newarglen;
1014 	char **ap, *bp, *endp;
1015 
1016 	/*
1017 	 * Check that there aren't an unreasonable number of agruments.
1018 	 */
1019 	if (nchr > ARG_MAX)
1020 		return NULL;
1021 
1022 	if (nchr == 0)
1023 		nchr = ARG_MAX;
1024 
1025 	/* Get number of strings in argv */
1026 	mib[0] = CTL_KERN;
1027 	mib[1] = KERN_PROC_ARGS;
1028 	mib[2] = pid;
1029 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1030 	bufs = sizeof(narg);
1031 	if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
1032 		return NULL;
1033 
1034 	if (kd->argv == NULL) {
1035 		/*
1036 		 * Try to avoid reallocs.
1037 		 */
1038 		kd->argc = MAX(narg + 1, 32);
1039 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1040 						sizeof(*kd->argv));
1041 		if (kd->argv == NULL)
1042 			return NULL;
1043 	} else if (narg + 1 > kd->argc) {
1044 		kd->argc = MAX(2 * kd->argc, narg + 1);
1045 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1046 						sizeof(*kd->argv));
1047 		if (kd->argv == NULL)
1048 			return NULL;
1049 	}
1050 
1051 	newarglen = MIN(nchr, ARG_MAX);
1052 	if (kd->arglen < newarglen) {
1053 		if (kd->arglen == 0)
1054 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1055 		else
1056 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1057 			    newarglen);
1058 		if (kd->argspc == NULL)
1059 			return NULL;
1060 		kd->arglen = newarglen;
1061 	}
1062 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
1063 
1064 	mib[0] = CTL_KERN;
1065 	mib[1] = KERN_PROC_ARGS;
1066 	mib[2] = pid;
1067 	mib[3] = type;
1068 	bufs = kd->arglen;
1069 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
1070 		return NULL;
1071 
1072 	bp = kd->argspc;
1073 	bp[kd->arglen-1] = '\0';	/* make sure the string ends with nul */
1074 	ap = kd->argv;
1075 	endp = bp + MIN(nchr, bufs);
1076 
1077 	while (bp < endp) {
1078 		*ap++ = bp;
1079 		/* XXX: don't need following anymore, or stick check for max argc in above while loop? */
1080 		if (ap >= kd->argv + kd->argc) {
1081 			kd->argc *= 2;
1082 			kd->argv = _kvm_realloc(kd, kd->argv,
1083 			    kd->argc * sizeof(*kd->argv));
1084 			ap = kd->argv;
1085 		}
1086 		bp += strlen(bp) + 1;
1087 	}
1088 	*ap = NULL;
1089 
1090 	return (kd->argv);
1091 }
1092 
1093 char **
1094 kvm_getargv2(kd, kp, nchr)
1095 	kvm_t *kd;
1096 	const struct kinfo_proc2 *kp;
1097 	int nchr;
1098 {
1099 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1100 }
1101 
1102 char **
1103 kvm_getenvv2(kd, kp, nchr)
1104 	kvm_t *kd;
1105 	const struct kinfo_proc2 *kp;
1106 	int nchr;
1107 {
1108 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1109 }
1110 
1111 /*
1112  * Read from user space.  The user context is given by p.
1113  */
1114 static ssize_t
1115 kvm_ureadm(kd, p, uva, buf, len)
1116 	kvm_t *kd;
1117 	const struct miniproc *p;
1118 	u_long uva;
1119 	char *buf;
1120 	size_t len;
1121 {
1122 	char *cp;
1123 
1124 	cp = buf;
1125 	while (len > 0) {
1126 		size_t cc;
1127 		char *dp;
1128 		u_long cnt;
1129 
1130 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1131 		if (dp == NULL) {
1132 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1133 			return 0;
1134 		}
1135 		cc = (size_t)MIN(cnt, len);
1136 		memcpy(cp, dp, cc);
1137 		cp += cc;
1138 		uva += cc;
1139 		len -= cc;
1140 	}
1141 	return (ssize_t)(cp - buf);
1142 }
1143 
1144 ssize_t
1145 kvm_uread(kd, p, uva, buf, len)
1146 	kvm_t *kd;
1147 	const struct proc *p;
1148 	u_long uva;
1149 	char *buf;
1150 	size_t len;
1151 {
1152 	struct miniproc mp;
1153 
1154 	PTOMINI(p, &mp);
1155 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1156 }
1157