xref: /netbsd/lib/libm/noieee_src/n_cabs.c (revision bf9ec67e)
1 /*      $NetBSD: n_cabs.c,v 1.3 1999/07/02 15:37:36 simonb Exp $ */
2 /*
3  * Copyright (c) 1985, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #ifndef lint
36 static char sccsid[] = "@(#)cabs.c	8.1 (Berkeley) 6/4/93";
37 #endif /* not lint */
38 
39 /* HYPOT(X,Y)
40  * RETURN THE SQUARE ROOT OF X^2 + Y^2  WHERE Z=X+iY
41  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
42  * CODED IN C BY K.C. NG, 11/28/84;
43  * REVISED BY K.C. NG, 7/12/85.
44  *
45  * Required system supported functions :
46  *	copysign(x,y)
47  *	finite(x)
48  *	scalb(x,N)
49  *	sqrt(x)
50  *
51  * Method :
52  *	1. replace x by |x| and y by |y|, and swap x and
53  *	   y if y > x (hence x is never smaller than y).
54  *	2. Hypot(x,y) is computed by:
55  *	   Case I, x/y > 2
56  *
57  *				       y
58  *		hypot = x + -----------------------------
59  *			 		    2
60  *			    sqrt ( 1 + [x/y]  )  +  x/y
61  *
62  *	   Case II, x/y <= 2
63  *				                   y
64  *		hypot = x + --------------------------------------------------
65  *				          		     2
66  *				     			[x/y]   -  2
67  *			   (sqrt(2)+1) + (x-y)/y + -----------------------------
68  *			 		    			  2
69  *			    			  sqrt ( 1 + [x/y]  )  + sqrt(2)
70  *
71  *
72  *
73  * Special cases:
74  *	hypot(x,y) is INF if x or y is +INF or -INF; else
75  *	hypot(x,y) is NAN if x or y is NAN.
76  *
77  * Accuracy:
78  * 	hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
79  *	in the last place). See Kahan's "Interval Arithmetic Options in the
80  *	Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
81  *      1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
82  *	code follows in	comments.) In a test run with 500,000 random arguments
83  *	on a VAX, the maximum observed error was .959 ulps.
84  *
85  * Constants:
86  * The hexadecimal values are the intended ones for the following constants.
87  * The decimal values may be used, provided that the compiler will convert
88  * from decimal to binary accurately enough to produce the hexadecimal values
89  * shown.
90  */
91 #include "mathimpl.h"
92 
93 vc(r2p1hi, 2.4142135623730950345E0   ,8279,411a,ef32,99fc,   2, .9A827999FCEF32)
94 vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
95 vc(sqrt2,  1.4142135623730950622E0   ,04f3,40b5,de65,33f9,   1, .B504F333F9DE65)
96 
97 ic(r2p1hi, 2.4142135623730949234E0   ,   1, 1.3504F333F9DE6)
98 ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
99 ic(sqrt2,  1.4142135623730951455E0   ,   0, 1.6A09E667F3BCD)
100 
101 #ifdef vccast
102 #define	r2p1hi	vccast(r2p1hi)
103 #define	r2p1lo	vccast(r2p1lo)
104 #define	sqrt2	vccast(sqrt2)
105 #endif
106 
107 double
108 hypot(x,y)
109 double x, y;
110 {
111 	static const double zero=0, one=1,
112 		      small=1.0E-18;	/* fl(1+small)==1 */
113 	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
114 	double t,r;
115 	int exp;
116 
117 	if(finite(x))
118 	    if(finite(y))
119 	    {
120 		x=copysign(x,one);
121 		y=copysign(y,one);
122 		if(y > x)
123 		    { t=x; x=y; y=t; }
124 		if(x == zero) return(zero);
125 		if(y == zero) return(x);
126 		exp= logb(x);
127 		if(exp-(int)logb(y) > ibig )
128 			/* raise inexact flag and return |x| */
129 		   { one+small; return(x); }
130 
131 	    /* start computing sqrt(x^2 + y^2) */
132 		r=x-y;
133 		if(r>y) { 	/* x/y > 2 */
134 		    r=x/y;
135 		    r=r+sqrt(one+r*r); }
136 		else {		/* 1 <= x/y <= 2 */
137 		    r/=y; t=r*(r+2.0);
138 		    r+=t/(sqrt2+sqrt(2.0+t));
139 		    r+=r2p1lo; r+=r2p1hi; }
140 
141 		r=y/r;
142 		return(x+r);
143 
144 	    }
145 
146 	    else if(y==y)   	   /* y is +-INF */
147 		     return(copysign(y,one));
148 	    else
149 		     return(y);	   /* y is NaN and x is finite */
150 
151 	else if(x==x) 		   /* x is +-INF */
152 	         return (copysign(x,one));
153 	else if(finite(y))
154 	         return(x);		   /* x is NaN, y is finite */
155 #if !defined(__vax__)&&!defined(tahoe)
156 	else if(y!=y) return(y);  /* x and y is NaN */
157 #endif	/* !defined(__vax__)&&!defined(tahoe) */
158 	else return(copysign(y,one));   /* y is INF */
159 }
160 
161 /* CABS(Z)
162  * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER  Z = X + iY
163  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
164  * CODED IN C BY K.C. NG, 11/28/84.
165  * REVISED BY K.C. NG, 7/12/85.
166  *
167  * Required kernel function :
168  *	hypot(x,y)
169  *
170  * Method :
171  *	cabs(z) = hypot(x,y) .
172  */
173 
174 struct complex { double x, y; };
175 
176 double
177 cabs(z)
178 struct complex z;
179 {
180 	return hypot(z.x,z.y);
181 }
182 
183 double
184 z_abs(z)
185 struct complex *z;
186 {
187 	return hypot(z->x,z->y);
188 }
189 
190 /* A faster but less accurate version of cabs(x,y) */
191 #if 0
192 double hypot(x,y)
193 double x, y;
194 {
195 	static const double zero=0, one=1;
196 		      small=1.0E-18;	/* fl(1+small)==1 */
197 	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
198 	double temp;
199 	int exp;
200 
201 	if(finite(x))
202 	    if(finite(y))
203 	    {
204 		x=copysign(x,one);
205 		y=copysign(y,one);
206 		if(y > x)
207 		    { temp=x; x=y; y=temp; }
208 		if(x == zero) return(zero);
209 		if(y == zero) return(x);
210 		exp= logb(x);
211 		x=scalb(x,-exp);
212 		if(exp-(int)logb(y) > ibig )
213 			/* raise inexact flag and return |x| */
214 		   { one+small; return(scalb(x,exp)); }
215 		else y=scalb(y,-exp);
216 		return(scalb(sqrt(x*x+y*y),exp));
217 	    }
218 
219 	    else if(y==y)   	   /* y is +-INF */
220 		     return(copysign(y,one));
221 	    else
222 		     return(y);	   /* y is NaN and x is finite */
223 
224 	else if(x==x) 		   /* x is +-INF */
225 	         return (copysign(x,one));
226 	else if(finite(y))
227 	         return(x);		   /* x is NaN, y is finite */
228 	else if(y!=y) return(y);  	/* x and y is NaN */
229 	else return(copysign(y,one));   /* y is INF */
230 }
231 #endif
232