xref: /netbsd/lib/libm/noieee_src/n_gamma.c (revision c4a72b64)
1 /*      $NetBSD: n_gamma.c,v 1.4 2002/06/15 00:10:17 matt Exp $ */
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)gamma.c	8.1 (Berkeley) 6/4/93";
38 #endif
39 #endif /* not lint */
40 
41 /*
42  * This code by P. McIlroy, Oct 1992;
43  *
44  * The financial support of UUNET Communications Services is greatfully
45  * acknowledged.
46  */
47 
48 #include <math.h>
49 #include "mathimpl.h"
50 #include <errno.h>
51 
52 /* METHOD:
53  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
54  * 	At negative integers, return +Inf, and set errno.
55  *
56  * x < 6.5:
57  *	Use argument reduction G(x+1) = xG(x) to reach the
58  *	range [1.066124,2.066124].  Use a rational
59  *	approximation centered at the minimum (x0+1) to
60  *	ensure monotonicity.
61  *
62  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
63  *	adjusted for equal-ripples:
64  *
65  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
66  *
67  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
68  *	avoid premature round-off.
69  *
70  * Special values:
71  *	non-positive integer:	Set overflow trap; return +Inf;
72  *	x > 171.63:		Set overflow trap; return +Inf;
73  *	NaN: 			Set invalid trap;  return NaN
74  *
75  * Accuracy: Gamma(x) is accurate to within
76  *	x > 0:  error provably < 0.9ulp.
77  *	Maximum observed in 1,000,000 trials was .87ulp.
78  *	x < 0:
79  *	Maximum observed error < 4ulp in 1,000,000 trials.
80  */
81 
82 static double neg_gam (double);
83 static double small_gam (double);
84 static double smaller_gam (double);
85 static struct Double large_gam (double);
86 static struct Double ratfun_gam (double, double);
87 
88 /*
89  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
90  * [1.066.., 2.066..] accurate to 4.25e-19.
91  */
92 #define LEFT -.3955078125	/* left boundary for rat. approx */
93 #define x0 .461632144968362356785	/* xmin - 1 */
94 
95 #define a0_hi 0.88560319441088874992
96 #define a0_lo -.00000000000000004996427036469019695
97 #define P0	 6.21389571821820863029017800727e-01
98 #define P1	 2.65757198651533466104979197553e-01
99 #define P2	 5.53859446429917461063308081748e-03
100 #define P3	 1.38456698304096573887145282811e-03
101 #define P4	 2.40659950032711365819348969808e-03
102 #define Q0	 1.45019531250000000000000000000e+00
103 #define Q1	 1.06258521948016171343454061571e+00
104 #define Q2	-2.07474561943859936441469926649e-01
105 #define Q3	-1.46734131782005422506287573015e-01
106 #define Q4	 3.07878176156175520361557573779e-02
107 #define Q5	 5.12449347980666221336054633184e-03
108 #define Q6	-1.76012741431666995019222898833e-03
109 #define Q7	 9.35021023573788935372153030556e-05
110 #define Q8	 6.13275507472443958924745652239e-06
111 /*
112  * Constants for large x approximation (x in [6, Inf])
113  * (Accurate to 2.8*10^-19 absolute)
114  */
115 #define lns2pi_hi 0.418945312500000
116 #define lns2pi_lo -.000006779295327258219670263595
117 #define Pa0	 8.33333333333333148296162562474e-02
118 #define Pa1	-2.77777777774548123579378966497e-03
119 #define Pa2	 7.93650778754435631476282786423e-04
120 #define Pa3	-5.95235082566672847950717262222e-04
121 #define Pa4	 8.41428560346653702135821806252e-04
122 #define Pa5	-1.89773526463879200348872089421e-03
123 #define Pa6	 5.69394463439411649408050664078e-03
124 #define Pa7	-1.44705562421428915453880392761e-02
125 
126 static const double zero = 0., one = 1.0, tiny = 1e-300;
127 /*
128  * TRUNC sets trailing bits in a floating-point number to zero.
129  * is a temporary variable.
130  */
131 #if defined(__vax__) || defined(tahoe)
132 #define _IEEE		0
133 #define TRUNC(x)	x = (double) (float) (x)
134 #else
135 static int endian;
136 #define _IEEE		1
137 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
138 #define infnan(x)	0.0
139 #endif
140 
141 double
142 gamma(x)
143 	double x;
144 {
145 	double b;
146 	struct Double u;
147 #if _IEEE
148 	int endian = (*(int *) &one) ? 1 : 0;
149 #endif
150 
151 	if (x >= 6) {
152 		if(x > 171.63)
153 			return(one/zero);
154 		u = large_gam(x);
155 		return(__exp__D(u.a, u.b));
156 	} else if (x >= 1.0 + LEFT + x0) {
157 		return (small_gam(x));
158 	} else if (x > 1.e-17) {
159 		return (smaller_gam(x));
160 	} else if (x > -1.e-17) {
161 		if (x == 0.0) {
162 			if (!_IEEE) return (infnan(ERANGE));
163 			else return (one/x);
164 		}
165 		b =one+1e-20;		/* Raise inexact flag. ??? -ragge */
166 		return (one/x);
167 	} else if (!finite(x)) {
168 		if (_IEEE)		/* x = NaN, -Inf */
169 			return (x*x);
170 		else
171 			return (infnan(EDOM));
172 	 } else
173 		return (neg_gam(x));
174 }
175 /*
176  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
177  */
178 static struct Double
179 large_gam(double x)
180 {
181 	double z, p;
182 	struct Double t, u, v;
183 
184 	z = one/(x*x);
185 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
186 	p = p/x;
187 
188 	u = __log__D(x);
189 	u.a -= one;
190 	v.a = (x -= .5);
191 	TRUNC(v.a);
192 	v.b = x - v.a;
193 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
194 	t.b = v.b*u.a + x*u.b;
195 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
196 	t.b += lns2pi_lo; t.b += p;
197 	u.a = lns2pi_hi + t.b; u.a += t.a;
198 	u.b = t.a - u.a;
199 	u.b += lns2pi_hi; u.b += t.b;
200 	return (u);
201 }
202 /*
203  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
204  * It also has correct monotonicity.
205  */
206 static double
207 small_gam(double x)
208 {
209 	double y, ym1, t;
210 	struct Double yy, r;
211 	y = x - one;
212 	ym1 = y - one;
213 	if (y <= 1.0 + (LEFT + x0)) {
214 		yy = ratfun_gam(y - x0, 0);
215 		return (yy.a + yy.b);
216 	}
217 	r.a = y;
218 	TRUNC(r.a);
219 	yy.a = r.a - one;
220 	y = ym1;
221 	yy.b = r.b = y - yy.a;
222 	/* Argument reduction: G(x+1) = x*G(x) */
223 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
224 		t = r.a*yy.a;
225 		r.b = r.a*yy.b + y*r.b;
226 		r.a = t;
227 		TRUNC(r.a);
228 		r.b += (t - r.a);
229 	}
230 	/* Return r*gamma(y). */
231 	yy = ratfun_gam(y - x0, 0);
232 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
233 	y += yy.a*r.a;
234 	return (y);
235 }
236 /*
237  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
238  */
239 static double
240 smaller_gam(double x)
241 {
242 	double t, d;
243 	struct Double r, xx;
244 	if (x < x0 + LEFT) {
245 		t = x, TRUNC(t);
246 		d = (t+x)*(x-t);
247 		t *= t;
248 		xx.a = (t + x), TRUNC(xx.a);
249 		xx.b = x - xx.a; xx.b += t; xx.b += d;
250 		t = (one-x0); t += x;
251 		d = (one-x0); d -= t; d += x;
252 		x = xx.a + xx.b;
253 	} else {
254 		xx.a =  x, TRUNC(xx.a);
255 		xx.b = x - xx.a;
256 		t = x - x0;
257 		d = (-x0 -t); d += x;
258 	}
259 	r = ratfun_gam(t, d);
260 	d = r.a/x, TRUNC(d);
261 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
262 	return (d + r.a/x);
263 }
264 /*
265  * returns (z+c)^2 * P(z)/Q(z) + a0
266  */
267 static struct Double
268 ratfun_gam(double z, double c)
269 {
270 	double p, q;
271 	struct Double r, t;
272 
273 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
274 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
275 
276 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
277 	p = p/q;
278 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
279 	t.b = (z - t.a) + c;
280 	t.b *= (t.a + z);
281 	q = (t.a *= t.a);		/* t = (z+c)^2 */
282 	TRUNC(t.a);
283 	t.b += (q - t.a);
284 	r.a = p, TRUNC(r.a);		/* r = P/Q */
285 	r.b = p - r.a;
286 	t.b = t.b*p + t.a*r.b + a0_lo;
287 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
288 	r.a = t.a + a0_hi, TRUNC(r.a);
289 	r.b = ((a0_hi-r.a) + t.a) + t.b;
290 	return (r);			/* r = a0 + t */
291 }
292 
293 static double
294 neg_gam(double x)
295 {
296 	int sgn = 1;
297 	struct Double lg, lsine;
298 	double y, z;
299 
300 	y = floor(x + .5);
301 	if (y == x) {		/* Negative integer. */
302 		if(!_IEEE)
303 			return (infnan(ERANGE));
304 		else
305 			return (one/zero);
306 	}
307 	z = fabs(x - y);
308 	y = .5*ceil(x);
309 	if (y == ceil(y))
310 		sgn = -1;
311 	if (z < .25)
312 		z = sin(M_PI*z);
313 	else
314 		z = cos(M_PI*(0.5-z));
315 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
316 	if (x < -170) {
317 		if (x < -190)
318 			return ((double)sgn*tiny*tiny);
319 		y = one - x;		/* exact: 128 < |x| < 255 */
320 		lg = large_gam(y);
321 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
322 		lg.a -= lsine.a;		/* exact (opposite signs) */
323 		lg.b -= lsine.b;
324 		y = -(lg.a + lg.b);
325 		z = (y + lg.a) + lg.b;
326 		y = __exp__D(y, z);
327 		if (sgn < 0) y = -y;
328 		return (y);
329 	}
330 	y = one-x;
331 	if (one-y == x)
332 		y = gamma(y);
333 	else		/* 1-x is inexact */
334 		y = -x*gamma(-x);
335 	if (sgn < 0) y = -y;
336 	return (M_PI / (y*z));
337 }
338