xref: /netbsd/lib/libm/noieee_src/n_j0.c (revision bf9ec67e)
1 /*	$NetBSD: n_j0.c,v 1.4 1999/07/02 15:37:37 simonb Exp $	*/
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)j0.c	8.2 (Berkeley) 11/30/93";
38 #endif
39 #endif /* not lint */
40 
41 /*
42  * 16 December 1992
43  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
44  */
45 
46 /*
47  * ====================================================
48  * Copyright (C) 1992 by Sun Microsystems, Inc.
49  *
50  * Developed at SunPro, a Sun Microsystems, Inc. business.
51  * Permission to use, copy, modify, and distribute this
52  * software is freely granted, provided that this notice
53  * is preserved.
54  * ====================================================
55  *
56  * ******************* WARNING ********************
57  * This is an alpha version of SunPro's FDLIBM (Freely
58  * Distributable Math Library) for IEEE double precision
59  * arithmetic. FDLIBM is a basic math library written
60  * in C that runs on machines that conform to IEEE
61  * Standard 754/854. This alpha version is distributed
62  * for testing purpose. Those who use this software
63  * should report any bugs to
64  *
65  *		fdlibm-comments@sunpro.eng.sun.com
66  *
67  * -- K.C. Ng, Oct 12, 1992
68  * ************************************************
69  */
70 
71 /* double j0(double x), y0(double x)
72  * Bessel function of the first and second kinds of order zero.
73  * Method -- j0(x):
74  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
75  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
76  *	   for x in (0,2)
77  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
78  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
79  *	   for x in (2,inf)
80  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
81  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
82  *	   as follow:
83  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
84  *			= 1/sqrt(2) * (cos(x) + sin(x))
85  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
86  *			= 1/sqrt(2) * (sin(x) - cos(x))
87  * 	   (To avoid cancellation, use
88  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
89  * 	    to compute the worse one.)
90  *
91  *	3 Special cases
92  *		j0(nan)= nan
93  *		j0(0) = 1
94  *		j0(inf) = 0
95  *
96  * Method -- y0(x):
97  *	1. For x<2.
98  *	   Since
99  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
100  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
101  *	   We use the following function to approximate y0,
102  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
103  *	   where
104  *		U(z) = u0 + u1*z + ... + u6*z^6
105  *		V(z) = 1  + v1*z + ... + v4*z^4
106  *	   with absolute approximation error bounded by 2**-72.
107  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
108  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
109  *	2. For x>=2.
110  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
111  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
112  *	   by the method mentioned above.
113  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
114  */
115 
116 #include "mathimpl.h"
117 #include <float.h>
118 #include <errno.h>
119 
120 #if defined(__vax__) || defined(tahoe)
121 #define _IEEE	0
122 #else
123 #define _IEEE	1
124 #define infnan(x) (0.0)
125 #endif
126 
127 static double pzero __P((double)), qzero __P((double));
128 
129 static double
130 huge 	= 1e300,
131 zero    = 0.0,
132 one	= 1.0,
133 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
134 tpi	= 0.636619772367581343075535053490057448,
135  		/* R0/S0 on [0, 2.00] */
136 r02 =   1.562499999999999408594634421055018003102e-0002,
137 r03 =  -1.899792942388547334476601771991800712355e-0004,
138 r04 =   1.829540495327006565964161150603950916854e-0006,
139 r05 =  -4.618326885321032060803075217804816988758e-0009,
140 s01 =   1.561910294648900170180789369288114642057e-0002,
141 s02 =   1.169267846633374484918570613449245536323e-0004,
142 s03 =   5.135465502073181376284426245689510134134e-0007,
143 s04 =   1.166140033337900097836930825478674320464e-0009;
144 
145 double
146 j0(x)
147 	double x;
148 {
149 	double z, s,c,ss,cc,r,u,v;
150 
151 	if (!finite(x)) {
152 		if (_IEEE) return one/(x*x);
153 		else return (0);
154 	}
155 	x = fabs(x);
156 	if (x >= 2.0) {	/* |x| >= 2.0 */
157 		s = sin(x);
158 		c = cos(x);
159 		ss = s-c;
160 		cc = s+c;
161 		if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
162 		    z = -cos(x+x);
163 		    if ((s*c)<zero) cc = z/ss;
164 		    else 	    ss = z/cc;
165 		}
166 	/*
167 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
168 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
169 	 */
170 		if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
171 			z = (invsqrtpi*cc)/sqrt(x);
172 		else {
173 		    u = pzero(x); v = qzero(x);
174 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
175 		}
176 		return z;
177 	}
178 	if (x < 1.220703125e-004) {		   /* |x| < 2**-13 */
179 	    if (huge+x > one) {			   /* raise inexact if x != 0 */
180 	        if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
181 			return one;
182 	        else return (one - 0.25*x*x);
183 	    }
184 	}
185 	z = x*x;
186 	r =  z*(r02+z*(r03+z*(r04+z*r05)));
187 	s =  one+z*(s01+z*(s02+z*(s03+z*s04)));
188 	if (x < one) {			/* |x| < 1.00 */
189 	    return (one + z*(-0.25+(r/s)));
190 	} else {
191 	    u = 0.5*x;
192 	    return ((one+u)*(one-u)+z*(r/s));
193 	}
194 }
195 
196 static double
197 u00 =  -7.380429510868722527422411862872999615628e-0002,
198 u01 =   1.766664525091811069896442906220827182707e-0001,
199 u02 =  -1.381856719455968955440002438182885835344e-0002,
200 u03 =   3.474534320936836562092566861515617053954e-0004,
201 u04 =  -3.814070537243641752631729276103284491172e-0006,
202 u05 =   1.955901370350229170025509706510038090009e-0008,
203 u06 =  -3.982051941321034108350630097330144576337e-0011,
204 v01 =   1.273048348341237002944554656529224780561e-0002,
205 v02 =   7.600686273503532807462101309675806839635e-0005,
206 v03 =   2.591508518404578033173189144579208685163e-0007,
207 v04 =   4.411103113326754838596529339004302243157e-0010;
208 
209 double
210 y0(x)
211 	double x;
212 {
213 	double z, s, c, ss, cc, u, v;
214     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
215 	if (!finite(x)) {
216 		if (_IEEE)
217 			return (one/(x+x*x));
218 		else
219 			return (0);
220 	}
221         if (x == 0) {
222 		if (_IEEE)	return (-one/zero);
223 		else		return(infnan(-ERANGE));
224 	}
225         if (x<0) {
226 		if (_IEEE)	return (zero/zero);
227 		else		return (infnan(EDOM));
228 	}
229         if (x >= 2.00) {	/* |x| >= 2.0 */
230         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
231          * where x0 = x-pi/4
232          *      Better formula:
233          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
234          *                      =  1/sqrt(2) * (sin(x) + cos(x))
235          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
236          *                      =  1/sqrt(2) * (sin(x) - cos(x))
237          * To avoid cancellation, use
238          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
239          * to compute the worse one.
240          */
241                 s = sin(x);
242                 c = cos(x);
243                 ss = s-c;
244                 cc = s+c;
245 	/*
246 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
247 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
248 	 */
249                 if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
250                     z = -cos(x+x);
251                     if ((s*c)<zero) cc = z/ss;
252                     else            ss = z/cc;
253                 }
254                 if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
255 			z = (invsqrtpi*ss)/sqrt(x);
256                 else {
257                     u = pzero(x); v = qzero(x);
258                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
259                 }
260                 return z;
261 	}
262 	if (x <= 7.450580596923828125e-009) {		/* x < 2**-27 */
263 	    return (u00 + tpi*log(x));
264 	}
265 	z = x*x;
266 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
267 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
268 	return (u/v + tpi*(j0(x)*log(x)));
269 }
270 
271 /* The asymptotic expansions of pzero is
272  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
273  * For x >= 2, We approximate pzero by
274  * 	pzero(x) = 1 + (R/S)
275  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
276  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
277  * and
278  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
279  */
280 static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
281    0.0,
282   -7.031249999999003994151563066182798210142e-0002,
283   -8.081670412753498508883963849859423939871e+0000,
284   -2.570631056797048755890526455854482662510e+0002,
285   -2.485216410094288379417154382189125598962e+0003,
286   -5.253043804907295692946647153614119665649e+0003,
287 };
288 static double ps8[5] = {
289    1.165343646196681758075176077627332052048e+0002,
290    3.833744753641218451213253490882686307027e+0003,
291    4.059785726484725470626341023967186966531e+0004,
292    1.167529725643759169416844015694440325519e+0005,
293    4.762772841467309430100106254805711722972e+0004,
294 };
295 
296 static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
297   -1.141254646918944974922813501362824060117e-0011,
298   -7.031249408735992804117367183001996028304e-0002,
299   -4.159610644705877925119684455252125760478e+0000,
300   -6.767476522651671942610538094335912346253e+0001,
301   -3.312312996491729755731871867397057689078e+0002,
302   -3.464333883656048910814187305901796723256e+0002,
303 };
304 static double ps5[5] = {
305    6.075393826923003305967637195319271932944e+0001,
306    1.051252305957045869801410979087427910437e+0003,
307    5.978970943338558182743915287887408780344e+0003,
308    9.625445143577745335793221135208591603029e+0003,
309    2.406058159229391070820491174867406875471e+0003,
310 };
311 
312 static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
313   -2.547046017719519317420607587742992297519e-0009,
314   -7.031196163814817199050629727406231152464e-0002,
315   -2.409032215495295917537157371488126555072e+0000,
316   -2.196597747348830936268718293366935843223e+0001,
317   -5.807917047017375458527187341817239891940e+0001,
318   -3.144794705948885090518775074177485744176e+0001,
319 };
320 static double ps3[5] = {
321    3.585603380552097167919946472266854507059e+0001,
322    3.615139830503038919981567245265266294189e+0002,
323    1.193607837921115243628631691509851364715e+0003,
324    1.127996798569074250675414186814529958010e+0003,
325    1.735809308133357510239737333055228118910e+0002,
326 };
327 
328 static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
329   -8.875343330325263874525704514800809730145e-0008,
330   -7.030309954836247756556445443331044338352e-0002,
331   -1.450738467809529910662233622603401167409e+0000,
332   -7.635696138235277739186371273434739292491e+0000,
333   -1.119316688603567398846655082201614524650e+0001,
334   -3.233645793513353260006821113608134669030e+0000,
335 };
336 static double ps2[5] = {
337    2.222029975320888079364901247548798910952e+0001,
338    1.362067942182152109590340823043813120940e+0002,
339    2.704702786580835044524562897256790293238e+0002,
340    1.538753942083203315263554770476850028583e+0002,
341    1.465761769482561965099880599279699314477e+0001,
342 };
343 
344 static double pzero(x)
345 	double x;
346 {
347 	double *p,*q,z,r,s;
348 	if (x >= 8.00)			   {p = pr8; q= ps8;}
349 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
350 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
351 	else /* if (x >= 2.00) */	   {p = pr2; q= ps2;}
352 	z = one/(x*x);
353 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
354 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
355 	return one+ r/s;
356 }
357 
358 
359 /* For x >= 8, the asymptotic expansions of qzero is
360  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
361  * We approximate pzero by
362  * 	qzero(x) = s*(-1.25 + (R/S))
363  * where  R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
364  * 	  S = 1 + qs0*s^2 + ... + qs5*s^12
365  * and
366  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
367  */
368 static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
369    0.0,
370    7.324218749999350414479738504551775297096e-0002,
371    1.176820646822526933903301695932765232456e+0001,
372    5.576733802564018422407734683549251364365e+0002,
373    8.859197207564685717547076568608235802317e+0003,
374    3.701462677768878501173055581933725704809e+0004,
375 };
376 static double qs8[6] = {
377    1.637760268956898345680262381842235272369e+0002,
378    8.098344946564498460163123708054674227492e+0003,
379    1.425382914191204905277585267143216379136e+0005,
380    8.033092571195144136565231198526081387047e+0005,
381    8.405015798190605130722042369969184811488e+0005,
382   -3.438992935378666373204500729736454421006e+0005,
383 };
384 
385 static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
386    1.840859635945155400568380711372759921179e-0011,
387    7.324217666126847411304688081129741939255e-0002,
388    5.835635089620569401157245917610984757296e+0000,
389    1.351115772864498375785526599119895942361e+0002,
390    1.027243765961641042977177679021711341529e+0003,
391    1.989977858646053872589042328678602481924e+0003,
392 };
393 static double qs5[6] = {
394    8.277661022365377058749454444343415524509e+0001,
395    2.077814164213929827140178285401017305309e+0003,
396    1.884728877857180787101956800212453218179e+0004,
397    5.675111228949473657576693406600265778689e+0004,
398    3.597675384251145011342454247417399490174e+0004,
399   -5.354342756019447546671440667961399442388e+0003,
400 };
401 
402 static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
403    4.377410140897386263955149197672576223054e-0009,
404    7.324111800429115152536250525131924283018e-0002,
405    3.344231375161707158666412987337679317358e+0000,
406    4.262184407454126175974453269277100206290e+0001,
407    1.708080913405656078640701512007621675724e+0002,
408    1.667339486966511691019925923456050558293e+0002,
409 };
410 static double qs3[6] = {
411    4.875887297245871932865584382810260676713e+0001,
412    7.096892210566060535416958362640184894280e+0002,
413    3.704148226201113687434290319905207398682e+0003,
414    6.460425167525689088321109036469797462086e+0003,
415    2.516333689203689683999196167394889715078e+0003,
416   -1.492474518361563818275130131510339371048e+0002,
417 };
418 
419 static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
420    1.504444448869832780257436041633206366087e-0007,
421    7.322342659630792930894554535717104926902e-0002,
422    1.998191740938159956838594407540292600331e+0000,
423    1.449560293478857407645853071687125850962e+0001,
424    3.166623175047815297062638132537957315395e+0001,
425    1.625270757109292688799540258329430963726e+0001,
426 };
427 static double qs2[6] = {
428    3.036558483552191922522729838478169383969e+0001,
429    2.693481186080498724211751445725708524507e+0002,
430    8.447837575953201460013136756723746023736e+0002,
431    8.829358451124885811233995083187666981299e+0002,
432    2.126663885117988324180482985363624996652e+0002,
433   -5.310954938826669402431816125780738924463e+0000,
434 };
435 
436 static double qzero(x)
437 	double x;
438 {
439 	double *p,*q, s,r,z;
440 	if (x >= 8.00)			   {p = qr8; q= qs8;}
441 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
442 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
443 	else /* if (x >= 2.00) */	   {p = qr2; q= qs2;}
444 	z = one/(x*x);
445 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
446 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
447 	return (-.125 + r/s)/x;
448 }
449