xref: /netbsd/lib/libm/noieee_src/n_j1.c (revision bf9ec67e)
1 /*	$NetBSD: n_j1.c,v 1.4 1999/07/02 15:37:37 simonb Exp $	*/
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)j1.c	8.2 (Berkeley) 11/30/93";
38 #endif
39 #endif /* not lint */
40 
41 /*
42  * 16 December 1992
43  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
44  */
45 
46 /*
47  * ====================================================
48  * Copyright (C) 1992 by Sun Microsystems, Inc.
49  *
50  * Developed at SunPro, a Sun Microsystems, Inc. business.
51  * Permission to use, copy, modify, and distribute this
52  * software is freely granted, provided that this notice
53  * is preserved.
54  * ====================================================
55  *
56  * ******************* WARNING ********************
57  * This is an alpha version of SunPro's FDLIBM (Freely
58  * Distributable Math Library) for IEEE double precision
59  * arithmetic. FDLIBM is a basic math library written
60  * in C that runs on machines that conform to IEEE
61  * Standard 754/854. This alpha version is distributed
62  * for testing purpose. Those who use this software
63  * should report any bugs to
64  *
65  *		fdlibm-comments@sunpro.eng.sun.com
66  *
67  * -- K.C. Ng, Oct 12, 1992
68  * ************************************************
69  */
70 
71 /* double j1(double x), y1(double x)
72  * Bessel function of the first and second kinds of order zero.
73  * Method -- j1(x):
74  *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
75  *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
76  *	   for x in (0,2)
77  *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
78  *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
79  *	   for x in (2,inf)
80  * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
81  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
82  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
83  *	   as follows:
84  *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
85  *			=  1/sqrt(2) * (sin(x) - cos(x))
86  *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
87  *			= -1/sqrt(2) * (sin(x) + cos(x))
88  * 	   (To avoid cancellation, use
89  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
90  * 	    to compute the worse one.)
91  *
92  *	3 Special cases
93  *		j1(nan)= nan
94  *		j1(0) = 0
95  *		j1(inf) = 0
96  *
97  * Method -- y1(x):
98  *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
99  *	2. For x<2.
100  *	   Since
101  *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
102  *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
103  *	   We use the following function to approximate y1,
104  *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
105  *	   where for x in [0,2] (abs err less than 2**-65.89)
106  *		U(z) = u0 + u1*z + ... + u4*z^4
107  *		V(z) = 1  + v1*z + ... + v5*z^5
108  *	   Note: For tiny x, 1/x dominate y1 and hence
109  *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
110  *	3. For x>=2.
111  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
112  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
113  *	   by method mentioned above.
114  */
115 
116 #include "mathimpl.h"
117 #include <float.h>
118 #include <errno.h>
119 
120 #if defined(__vax__) || defined(tahoe)
121 #define _IEEE	0
122 #else
123 #define _IEEE	1
124 #define infnan(x) (0.0)
125 #endif
126 
127 static double pone __P((double)), qone __P((double));
128 
129 static double
130 huge    = 1e300,
131 zero    = 0.0,
132 one	= 1.0,
133 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
134 tpi	= 0.636619772367581343075535053490057448,
135 
136 	/* R0/S0 on [0,2] */
137 r00 =  -6.250000000000000020842322918309200910191e-0002,
138 r01 =   1.407056669551897148204830386691427791200e-0003,
139 r02 =  -1.599556310840356073980727783817809847071e-0005,
140 r03 =   4.967279996095844750387702652791615403527e-0008,
141 s01 =   1.915375995383634614394860200531091839635e-0002,
142 s02 =   1.859467855886309024045655476348872850396e-0004,
143 s03 =   1.177184640426236767593432585906758230822e-0006,
144 s04 =   5.046362570762170559046714468225101016915e-0009,
145 s05 =   1.235422744261379203512624973117299248281e-0011;
146 
147 #define two_129	6.80564733841876926e+038	/* 2^129 */
148 #define two_m54	5.55111512312578270e-017	/* 2^-54 */
149 double j1(x)
150 	double x;
151 {
152 	double z, s,c,ss,cc,r,u,v,y;
153 	y = fabs(x);
154 	if (!finite(x)) {		/* Inf or NaN */
155 		if (_IEEE && x != x)
156 			return(x);
157 		else
158 			return (copysign(x, zero));
159 	}
160 	y = fabs(x);
161 	if (y >= 2)			/* |x| >= 2.0 */
162 	{
163 		s = sin(y);
164 		c = cos(y);
165 		ss = -s-c;
166 		cc = s-c;
167 		if (y < .5*DBL_MAX) {  	/* make sure y+y not overflow */
168 		    z = cos(y+y);
169 		    if ((s*c)<zero) cc = z/ss;
170 		    else 	    ss = z/cc;
171 		}
172 	/*
173 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
174 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
175 	 */
176 #if !defined(__vax__) && !defined(tahoe)
177 		if (y > two_129)	 /* x > 2^129 */
178 			z = (invsqrtpi*cc)/sqrt(y);
179 		else
180 #endif /* defined(__vax__) || defined(tahoe) */
181 		{
182 		    u = pone(y); v = qone(y);
183 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
184 		}
185 		if (x < 0) return -z;
186 		else  	 return  z;
187 	}
188 	if (y < 7.450580596923828125e-009) {	/* |x|<2**-27 */
189 	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
190 	}
191 	z = x*x;
192 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
193 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
194 	r *= x;
195 	return (x*0.5+r/s);
196 }
197 
198 static double u0[5] = {
199   -1.960570906462389484206891092512047539632e-0001,
200    5.044387166398112572026169863174882070274e-0002,
201   -1.912568958757635383926261729464141209569e-0003,
202    2.352526005616105109577368905595045204577e-0005,
203    -9.190991580398788465315411784276789663849e-0008,
204 };
205 static double v0[5] = {
206    1.991673182366499064031901734535479833387e-0002,
207    2.025525810251351806268483867032781294682e-0004,
208    1.356088010975162198085369545564475416398e-0006,
209    6.227414523646214811803898435084697863445e-0009,
210    1.665592462079920695971450872592458916421e-0011,
211 };
212 
213 double y1(x)
214 	double x;
215 {
216 	double z, s, c, ss, cc, u, v;
217     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
218 	if (!finite(x)) {
219 		if (!_IEEE) return (infnan(EDOM));
220 		else if (x < 0)
221 			return(zero/zero);
222 		else if (x > 0)
223 			return (0);
224 		else
225 			return(x);
226 	}
227 	if (x <= 0) {
228 		if (_IEEE && x == 0) return -one/zero;
229 		else if(x == 0) return(infnan(-ERANGE));
230 		else if(_IEEE) return (zero/zero);
231 		else return(infnan(EDOM));
232 	}
233         if (x >= 2)			 /* |x| >= 2.0 */
234 	{
235                 s = sin(x);
236                 c = cos(x);
237                 ss = -s-c;
238                 cc = s-c;
239 		if (x < .5 * DBL_MAX)	/* make sure x+x not overflow */
240 		{
241                     z = cos(x+x);
242                     if ((s*c)>zero) cc = z/ss;
243                     else            ss = z/cc;
244                 }
245         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
246          * where x0 = x-3pi/4
247          *      Better formula:
248          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
249          *                      =  1/sqrt(2) * (sin(x) - cos(x))
250          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
251          *                      = -1/sqrt(2) * (cos(x) + sin(x))
252          * To avoid cancellation, use
253          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
254          * to compute the worse one.
255          */
256                 if (_IEEE && x>two_129)
257 			z = (invsqrtpi*ss)/sqrt(x);
258                 else {
259                     u = pone(x); v = qone(x);
260                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
261                 }
262                 return z;
263         }
264         if (x <= two_m54) {    /* x < 2**-54 */
265             return (-tpi/x);
266         }
267         z = x*x;
268         u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
269         v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
270         return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
271 }
272 
273 /* For x >= 8, the asymptotic expansions of pone is
274  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
275  * We approximate pone by
276  * 	pone(x) = 1 + (R/S)
277  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
278  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
279  * and
280  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
281  */
282 
283 static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
284    0.0,
285    1.171874999999886486643746274751925399540e-0001,
286    1.323948065930735690925827997575471527252e+0001,
287    4.120518543073785433325860184116512799375e+0002,
288    3.874745389139605254931106878336700275601e+0003,
289    7.914479540318917214253998253147871806507e+0003,
290 };
291 static double ps8[5] = {
292    1.142073703756784104235066368252692471887e+0002,
293    3.650930834208534511135396060708677099382e+0003,
294    3.695620602690334708579444954937638371808e+0004,
295    9.760279359349508334916300080109196824151e+0004,
296    3.080427206278887984185421142572315054499e+0004,
297 };
298 
299 static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
300    1.319905195562435287967533851581013807103e-0011,
301    1.171874931906140985709584817065144884218e-0001,
302    6.802751278684328781830052995333841452280e+0000,
303    1.083081829901891089952869437126160568246e+0002,
304    5.176361395331997166796512844100442096318e+0002,
305    5.287152013633375676874794230748055786553e+0002,
306 };
307 static double ps5[5] = {
308    5.928059872211313557747989128353699746120e+0001,
309    9.914014187336144114070148769222018425781e+0002,
310    5.353266952914879348427003712029704477451e+0003,
311    7.844690317495512717451367787640014588422e+0003,
312    1.504046888103610723953792002716816255382e+0003,
313 };
314 
315 static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
316    3.025039161373736032825049903408701962756e-0009,
317    1.171868655672535980750284752227495879921e-0001,
318    3.932977500333156527232725812363183251138e+0000,
319    3.511940355916369600741054592597098912682e+0001,
320    9.105501107507812029367749771053045219094e+0001,
321    4.855906851973649494139275085628195457113e+0001,
322 };
323 static double ps3[5] = {
324    3.479130950012515114598605916318694946754e+0001,
325    3.367624587478257581844639171605788622549e+0002,
326    1.046871399757751279180649307467612538415e+0003,
327    8.908113463982564638443204408234739237639e+0002,
328    1.037879324396392739952487012284401031859e+0002,
329 };
330 
331 static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
332    1.077108301068737449490056513753865482831e-0007,
333    1.171762194626833490512746348050035171545e-0001,
334    2.368514966676087902251125130227221462134e+0000,
335    1.224261091482612280835153832574115951447e+0001,
336    1.769397112716877301904532320376586509782e+0001,
337    5.073523125888185399030700509321145995160e+0000,
338 };
339 static double ps2[5] = {
340    2.143648593638214170243114358933327983793e+0001,
341    1.252902271684027493309211410842525120355e+0002,
342    2.322764690571628159027850677565128301361e+0002,
343    1.176793732871470939654351793502076106651e+0002,
344    8.364638933716182492500902115164881195742e+0000,
345 };
346 
347 static double pone(x)
348 	double x;
349 {
350 	double *p,*q,z,r,s;
351 	if (x >= 8.0) 			   {p = pr8; q= ps8;}
352 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
353 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
354 	else /* if (x >= 2.0) */	   {p = pr2; q= ps2;}
355 	z = one/(x*x);
356 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
357 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
358 	return (one + r/s);
359 }
360 
361 
362 /* For x >= 8, the asymptotic expansions of qone is
363  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
364  * We approximate pone by
365  * 	qone(x) = s*(0.375 + (R/S))
366  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
367  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
368  * and
369  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
370  */
371 
372 static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
373    0.0,
374   -1.025390624999927207385863635575804210817e-0001,
375   -1.627175345445899724355852152103771510209e+0001,
376   -7.596017225139501519843072766973047217159e+0002,
377   -1.184980667024295901645301570813228628541e+0004,
378   -4.843851242857503225866761992518949647041e+0004,
379 };
380 static double qs8[6] = {
381    1.613953697007229231029079421446916397904e+0002,
382    7.825385999233484705298782500926834217525e+0003,
383    1.338753362872495800748094112937868089032e+0005,
384    7.196577236832409151461363171617204036929e+0005,
385    6.666012326177764020898162762642290294625e+0005,
386   -2.944902643038346618211973470809456636830e+0005,
387 };
388 
389 static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
390   -2.089799311417640889742251585097264715678e-0011,
391   -1.025390502413754195402736294609692303708e-0001,
392   -8.056448281239359746193011295417408828404e+0000,
393   -1.836696074748883785606784430098756513222e+0002,
394   -1.373193760655081612991329358017247355921e+0003,
395   -2.612444404532156676659706427295870995743e+0003,
396 };
397 static double qs5[6] = {
398    8.127655013843357670881559763225310973118e+0001,
399    1.991798734604859732508048816860471197220e+0003,
400    1.746848519249089131627491835267411777366e+0004,
401    4.985142709103522808438758919150738000353e+0004,
402    2.794807516389181249227113445299675335543e+0004,
403   -4.719183547951285076111596613593553911065e+0003,
404 };
405 
406 static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
407   -5.078312264617665927595954813341838734288e-0009,
408   -1.025378298208370901410560259001035577681e-0001,
409   -4.610115811394734131557983832055607679242e+0000,
410   -5.784722165627836421815348508816936196402e+0001,
411   -2.282445407376317023842545937526967035712e+0002,
412   -2.192101284789093123936441805496580237676e+0002,
413 };
414 static double qs3[6] = {
415    4.766515503237295155392317984171640809318e+0001,
416    6.738651126766996691330687210949984203167e+0002,
417    3.380152866795263466426219644231687474174e+0003,
418    5.547729097207227642358288160210745890345e+0003,
419    1.903119193388108072238947732674639066045e+0003,
420   -1.352011914443073322978097159157678748982e+0002,
421 };
422 
423 static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
424   -1.783817275109588656126772316921194887979e-0007,
425   -1.025170426079855506812435356168903694433e-0001,
426   -2.752205682781874520495702498875020485552e+0000,
427   -1.966361626437037351076756351268110418862e+0001,
428   -4.232531333728305108194363846333841480336e+0001,
429   -2.137192117037040574661406572497288723430e+0001,
430 };
431 static double qs2[6] = {
432    2.953336290605238495019307530224241335502e+0001,
433    2.529815499821905343698811319455305266409e+0002,
434    7.575028348686454070022561120722815892346e+0002,
435    7.393932053204672479746835719678434981599e+0002,
436    1.559490033366661142496448853793707126179e+0002,
437   -4.959498988226281813825263003231704397158e+0000,
438 };
439 
440 static double qone(x)
441 	double x;
442 {
443 	double *p,*q, s,r,z;
444 	if (x >= 8.0)			   {p = qr8; q= qs8;}
445 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
446 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
447 	else /* if (x >= 2.0) */	   {p = qr2; q= qs2;}
448 	z = one/(x*x);
449 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
450 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
451 	return (.375 + r/s)/x;
452 }
453