xref: /netbsd/lib/libm/noieee_src/n_jn.c (revision bf9ec67e)
1 /*	$NetBSD: n_jn.c,v 1.4 1999/07/02 15:37:37 simonb Exp $	*/
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";
38 #endif
39 #endif /* not lint */
40 
41 /*
42  * 16 December 1992
43  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
44  */
45 
46 /*
47  * ====================================================
48  * Copyright (C) 1992 by Sun Microsystems, Inc.
49  *
50  * Developed at SunPro, a Sun Microsystems, Inc. business.
51  * Permission to use, copy, modify, and distribute this
52  * software is freely granted, provided that this notice
53  * is preserved.
54  * ====================================================
55  *
56  * ******************* WARNING ********************
57  * This is an alpha version of SunPro's FDLIBM (Freely
58  * Distributable Math Library) for IEEE double precision
59  * arithmetic. FDLIBM is a basic math library written
60  * in C that runs on machines that conform to IEEE
61  * Standard 754/854. This alpha version is distributed
62  * for testing purpose. Those who use this software
63  * should report any bugs to
64  *
65  *		fdlibm-comments@sunpro.eng.sun.com
66  *
67  * -- K.C. Ng, Oct 12, 1992
68  * ************************************************
69  */
70 
71 /*
72  * jn(int n, double x), yn(int n, double x)
73  * floating point Bessel's function of the 1st and 2nd kind
74  * of order n
75  *
76  * Special cases:
77  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
78  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
79  * Note 2. About jn(n,x), yn(n,x)
80  *	For n=0, j0(x) is called,
81  *	for n=1, j1(x) is called,
82  *	for n<x, forward recursion us used starting
83  *	from values of j0(x) and j1(x).
84  *	for n>x, a continued fraction approximation to
85  *	j(n,x)/j(n-1,x) is evaluated and then backward
86  *	recursion is used starting from a supposed value
87  *	for j(n,x). The resulting value of j(0,x) is
88  *	compared with the actual value to correct the
89  *	supposed value of j(n,x).
90  *
91  *	yn(n,x) is similar in all respects, except
92  *	that forward recursion is used for all
93  *	values of n>1.
94  *
95  */
96 
97 #include "mathimpl.h"
98 #include <float.h>
99 #include <errno.h>
100 
101 #if defined(__vax__) || defined(tahoe)
102 #define _IEEE	0
103 #else
104 #define _IEEE	1
105 #define infnan(x) (0.0)
106 #endif
107 
108 static double
109 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
110 two  = 2.0,
111 zero = 0.0,
112 one  = 1.0;
113 
114 double jn(n,x)
115 	int n; double x;
116 {
117 	int i, sgn;
118 	double a, b, temp;
119 	double z, w;
120 
121     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
122      * Thus, J(-n,x) = J(n,-x)
123      */
124     /* if J(n,NaN) is NaN */
125 	if (_IEEE && isnan(x)) return x+x;
126 	if (n<0){
127 		n = -n;
128 		x = -x;
129 	}
130 	if (n==0) return(j0(x));
131 	if (n==1) return(j1(x));
132 	sgn = (n&1)&(x < zero);		/* even n -- 0, odd n -- sign(x) */
133 	x = fabs(x);
134 	if (x == 0 || !finite (x)) 	/* if x is 0 or inf */
135 	    b = zero;
136 	else if ((double) n <= x) {
137 			/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
138 	    if (_IEEE && x >= 8.148143905337944345e+090) {
139 					/* x >= 2**302 */
140     /* (x >> n**2)
141      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
142      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
143      *	    Let s=sin(x), c=cos(x),
144      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
145      *
146      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
147      *		----------------------------------
148      *		   0	 s-c		 c+s
149      *		   1	-s-c 		-c+s
150      *		   2	-s+c		-c-s
151      *		   3	 s+c		 c-s
152      */
153 		switch(n&3) {
154 		    case 0: temp =  cos(x)+sin(x); break;
155 		    case 1: temp = -cos(x)+sin(x); break;
156 		    case 2: temp = -cos(x)-sin(x); break;
157 		    case 3: temp =  cos(x)-sin(x); break;
158 		}
159 		b = invsqrtpi*temp/sqrt(x);
160 	    } else {
161 	        a = j0(x);
162 	        b = j1(x);
163 	        for(i=1;i<n;i++){
164 		    temp = b;
165 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
166 		    a = temp;
167 	        }
168 	    }
169 	} else {
170 	    if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
171     /* x is tiny, return the first Taylor expansion of J(n,x)
172      * J(n,x) = 1/n!*(x/2)^n  - ...
173      */
174 		if (n > 33)	/* underflow */
175 		    b = zero;
176 		else {
177 		    temp = x*0.5; b = temp;
178 		    for (a=one,i=2;i<=n;i++) {
179 			a *= (double)i;		/* a = n! */
180 			b *= temp;		/* b = (x/2)^n */
181 		    }
182 		    b = b/a;
183 		}
184 	    } else {
185 		/* use backward recurrence */
186 		/* 			x      x^2      x^2
187 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
188 		 *			2n  - 2(n+1) - 2(n+2)
189 		 *
190 		 * 			1      1        1
191 		 *  (for large x)   =  ----  ------   ------   .....
192 		 *			2n   2(n+1)   2(n+2)
193 		 *			-- - ------ - ------ -
194 		 *			 x     x         x
195 		 *
196 		 * Let w = 2n/x and h=2/x, then the above quotient
197 		 * is equal to the continued fraction:
198 		 *		    1
199 		 *	= -----------------------
200 		 *		       1
201 		 *	   w - -----------------
202 		 *			  1
203 		 * 	        w+h - ---------
204 		 *		       w+2h - ...
205 		 *
206 		 * To determine how many terms needed, let
207 		 * Q(0) = w, Q(1) = w(w+h) - 1,
208 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
209 		 * When Q(k) > 1e4	good for single
210 		 * When Q(k) > 1e9	good for double
211 		 * When Q(k) > 1e17	good for quadruple
212 		 */
213 	    /* determine k */
214 		double t,v;
215 		double q0,q1,h,tmp; int k,m;
216 		w  = (n+n)/(double)x; h = 2.0/(double)x;
217 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
218 		while (q1<1.0e9) {
219 			k += 1; z += h;
220 			tmp = z*q1 - q0;
221 			q0 = q1;
222 			q1 = tmp;
223 		}
224 		m = n+n;
225 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
226 		a = t;
227 		b = one;
228 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
229 		 *  Hence, if n*(log(2n/x)) > ...
230 		 *  single 8.8722839355e+01
231 		 *  double 7.09782712893383973096e+02
232 		 *  long double 1.1356523406294143949491931077970765006170e+04
233 		 *  then recurrent value may overflow and the result will
234 		 *  likely underflow to zero
235 		 */
236 		tmp = n;
237 		v = two/x;
238 		tmp = tmp*log(fabs(v*tmp));
239 	    	for (i=n-1;i>0;i--){
240 		        temp = b;
241 		        b = ((i+i)/x)*b - a;
242 		        a = temp;
243 		    /* scale b to avoid spurious overflow */
244 #			if defined(__vax__) || defined(tahoe)
245 #				define BMAX 1e13
246 #			else
247 #				define BMAX 1e100
248 #			endif /* defined(__vax__) || defined(tahoe) */
249 			if (b > BMAX) {
250 				a /= b;
251 				t /= b;
252 				b = one;
253 			}
254 		}
255 	    	b = (t*j0(x)/b);
256 	    }
257 	}
258 	return ((sgn == 1) ? -b : b);
259 }
260 double yn(n,x)
261 	int n; double x;
262 {
263 	int i, sign;
264 	double a, b, temp;
265 
266     /* Y(n,NaN), Y(n, x < 0) is NaN */
267 	if (x <= 0 || (_IEEE && x != x))
268 		if (_IEEE && x < 0) return zero/zero;
269 		else if (x < 0)     return (infnan(EDOM));
270 		else if (_IEEE)     return -one/zero;
271 		else		    return(infnan(-ERANGE));
272 	else if (!finite(x)) return(0);
273 	sign = 1;
274 	if (n<0){
275 		n = -n;
276 		sign = 1 - ((n&1)<<2);
277 	}
278 	if (n == 0) return(y0(x));
279 	if (n == 1) return(sign*y1(x));
280 	if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
281     /* (x >> n**2)
282      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
283      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
284      *	    Let s=sin(x), c=cos(x),
285      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
286      *
287      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
288      *		----------------------------------
289      *		   0	 s-c		 c+s
290      *		   1	-s-c 		-c+s
291      *		   2	-s+c		-c-s
292      *		   3	 s+c		 c-s
293      */
294 		switch (n&3) {
295 		    case 0: temp =  sin(x)-cos(x); break;
296 		    case 1: temp = -sin(x)-cos(x); break;
297 		    case 2: temp = -sin(x)+cos(x); break;
298 		    case 3: temp =  sin(x)+cos(x); break;
299 		}
300 		b = invsqrtpi*temp/sqrt(x);
301 	} else {
302 	    a = y0(x);
303 	    b = y1(x);
304 	/* quit if b is -inf */
305 	    for (i = 1; i < n && !finite(b); i++){
306 		temp = b;
307 		b = ((double)(i+i)/x)*b - a;
308 		a = temp;
309 	    }
310 	}
311 	if (!_IEEE && !finite(b))
312 		return (infnan(-sign * ERANGE));
313 	return ((sign > 0) ? b : -b);
314 }
315