xref: /netbsd/lib/libm/src/e_jn.c (revision 6550d01e)
1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: e_jn.c,v 1.14 2010/11/29 15:10:06 drochner Exp $");
16 #endif
17 
18 /*
19  * __ieee754_jn(n, x), __ieee754_yn(n, x)
20  * floating point Bessel's function of the 1st and 2nd kind
21  * of order n
22  *
23  * Special cases:
24  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
25  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
26  * Note 2. About jn(n,x), yn(n,x)
27  *	For n=0, j0(x) is called,
28  *	for n=1, j1(x) is called,
29  *	for n<x, forward recursion us used starting
30  *	from values of j0(x) and j1(x).
31  *	for n>x, a continued fraction approximation to
32  *	j(n,x)/j(n-1,x) is evaluated and then backward
33  *	recursion is used starting from a supposed value
34  *	for j(n,x). The resulting value of j(0,x) is
35  *	compared with the actual value to correct the
36  *	supposed value of j(n,x).
37  *
38  *	yn(n,x) is similar in all respects, except
39  *	that forward recursion is used for all
40  *	values of n>1.
41  *
42  */
43 
44 #include "namespace.h"
45 #include "math.h"
46 #include "math_private.h"
47 
48 static const double
49 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
50 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
51 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
52 
53 static const double zero  =  0.00000000000000000000e+00;
54 
55 double
56 __ieee754_jn(int n, double x)
57 {
58 	int32_t i,hx,ix,lx, sgn;
59 	double a, b, temp, di;
60 	double z, w;
61 
62 	temp = 0;
63     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
64      * Thus, J(-n,x) = J(n,-x)
65      */
66 	EXTRACT_WORDS(hx,lx,x);
67 	ix = 0x7fffffff&hx;
68     /* if J(n,NaN) is NaN */
69 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
70 	if(n<0){
71 		n = -n;
72 		x = -x;
73 		hx ^= 0x80000000;
74 	}
75 	if(n==0) return(__ieee754_j0(x));
76 	if(n==1) return(__ieee754_j1(x));
77 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
78 	x = fabs(x);
79 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
80 	    b = zero;
81 	else if((double)n<=x) {
82 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
83 	    if(ix>=0x52D00000) { /* x > 2**302 */
84     /* (x >> n**2)
85      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
86      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
87      *	    Let s=sin(x), c=cos(x),
88      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
89      *
90      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
91      *		----------------------------------
92      *		   0	 s-c		 c+s
93      *		   1	-s-c 		-c+s
94      *		   2	-s+c		-c-s
95      *		   3	 s+c		 c-s
96      */
97 		switch(n&3) {
98 		    case 0: temp =  cos(x)+sin(x); break;
99 		    case 1: temp = -cos(x)+sin(x); break;
100 		    case 2: temp = -cos(x)-sin(x); break;
101 		    case 3: temp =  cos(x)-sin(x); break;
102 		}
103 		b = invsqrtpi*temp/sqrt(x);
104 	    } else {
105 	        a = __ieee754_j0(x);
106 	        b = __ieee754_j1(x);
107 	        for(i=1;i<n;i++){
108 		    temp = b;
109 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
110 		    a = temp;
111 	        }
112 	    }
113 	} else {
114 	    if(ix<0x3e100000) {	/* x < 2**-29 */
115     /* x is tiny, return the first Taylor expansion of J(n,x)
116      * J(n,x) = 1/n!*(x/2)^n  - ...
117      */
118 		if(n>33)	/* underflow */
119 		    b = zero;
120 		else {
121 		    temp = x*0.5; b = temp;
122 		    for (a=one,i=2;i<=n;i++) {
123 			a *= (double)i;		/* a = n! */
124 			b *= temp;		/* b = (x/2)^n */
125 		    }
126 		    b = b/a;
127 		}
128 	    } else {
129 		/* use backward recurrence */
130 		/* 			x      x^2      x^2
131 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
132 		 *			2n  - 2(n+1) - 2(n+2)
133 		 *
134 		 * 			1      1        1
135 		 *  (for large x)   =  ----  ------   ------   .....
136 		 *			2n   2(n+1)   2(n+2)
137 		 *			-- - ------ - ------ -
138 		 *			 x     x         x
139 		 *
140 		 * Let w = 2n/x and h=2/x, then the above quotient
141 		 * is equal to the continued fraction:
142 		 *		    1
143 		 *	= -----------------------
144 		 *		       1
145 		 *	   w - -----------------
146 		 *			  1
147 		 * 	        w+h - ---------
148 		 *		       w+2h - ...
149 		 *
150 		 * To determine how many terms needed, let
151 		 * Q(0) = w, Q(1) = w(w+h) - 1,
152 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
153 		 * When Q(k) > 1e4	good for single
154 		 * When Q(k) > 1e9	good for double
155 		 * When Q(k) > 1e17	good for quadruple
156 		 */
157 	    /* determine k */
158 		double t,v;
159 		double q0,q1,h,tmp; int32_t k,m;
160 		w  = (n+n)/(double)x; h = 2.0/(double)x;
161 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
162 		while(q1<1.0e9) {
163 			k += 1; z += h;
164 			tmp = z*q1 - q0;
165 			q0 = q1;
166 			q1 = tmp;
167 		}
168 		m = n+n;
169 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
170 		a = t;
171 		b = one;
172 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
173 		 *  Hence, if n*(log(2n/x)) > ...
174 		 *  single 8.8722839355e+01
175 		 *  double 7.09782712893383973096e+02
176 		 *  long double 1.1356523406294143949491931077970765006170e+04
177 		 *  then recurrent value may overflow and the result is
178 		 *  likely underflow to zero
179 		 */
180 		tmp = n;
181 		v = two/x;
182 		tmp = tmp*__ieee754_log(fabs(v*tmp));
183 		if(tmp<7.09782712893383973096e+02) {
184 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
185 		        temp = b;
186 			b *= di;
187 			b  = b/x - a;
188 		        a = temp;
189 			di -= two;
190 	     	    }
191 		} else {
192 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
193 		        temp = b;
194 			b *= di;
195 			b  = b/x - a;
196 		        a = temp;
197 			di -= two;
198 		    /* scale b to avoid spurious overflow */
199 			if(b>1e100) {
200 			    a /= b;
201 			    t /= b;
202 			    b  = one;
203 			}
204 	     	    }
205 		}
206 		z = __ieee754_j0(x);
207 		w = __ieee754_j1(x);
208 		if (fabs(z) >= fabs(w))
209 			b = (t*z/b);
210 		else
211 			b = (t*w/a);
212 	    }
213 	}
214 	if(sgn==1) return -b; else return b;
215 }
216 
217 double
218 __ieee754_yn(int n, double x)
219 {
220 	int32_t i,hx,ix,lx;
221 	int32_t sign;
222 	double a, b, temp;
223 
224 	temp = 0;
225 	EXTRACT_WORDS(hx,lx,x);
226 	ix = 0x7fffffff&hx;
227     /* if Y(n,NaN) is NaN */
228 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
229 	if((ix|lx)==0) return -one/zero;
230 	if(hx<0) return zero/zero;
231 	sign = 1;
232 	if(n<0){
233 		n = -n;
234 		sign = 1 - ((n&1)<<1);
235 	}
236 	if(n==0) return(__ieee754_y0(x));
237 	if(n==1) return(sign*__ieee754_y1(x));
238 	if(ix==0x7ff00000) return zero;
239 	if(ix>=0x52D00000) { /* x > 2**302 */
240     /* (x >> n**2)
241      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
242      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
243      *	    Let s=sin(x), c=cos(x),
244      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
245      *
246      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
247      *		----------------------------------
248      *		   0	 s-c		 c+s
249      *		   1	-s-c 		-c+s
250      *		   2	-s+c		-c-s
251      *		   3	 s+c		 c-s
252      */
253 		switch(n&3) {
254 		    case 0: temp =  sin(x)-cos(x); break;
255 		    case 1: temp = -sin(x)-cos(x); break;
256 		    case 2: temp = -sin(x)+cos(x); break;
257 		    case 3: temp =  sin(x)+cos(x); break;
258 		}
259 		b = invsqrtpi*temp/sqrt(x);
260 	} else {
261 	    u_int32_t high;
262 	    a = __ieee754_y0(x);
263 	    b = __ieee754_y1(x);
264 	/* quit if b is -inf */
265 	    GET_HIGH_WORD(high,b);
266 	    for(i=1;i<n&&high!=0xfff00000;i++){
267 		temp = b;
268 		b = ((double)(i+i)/x)*b - a;
269 		GET_HIGH_WORD(high,b);
270 		a = temp;
271 	    }
272 	}
273 	if(sign>0) return b; else return -b;
274 }
275