xref: /netbsd/lib/libm/src/e_jnf.c (revision bf9ec67e)
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include <sys/cdefs.h>
17 #if defined(LIBM_SCCS) && !defined(lint)
18 __RCSID("$NetBSD: e_jnf.c,v 1.9 2002/05/26 22:01:50 wiz Exp $");
19 #endif
20 
21 #include "math.h"
22 #include "math_private.h"
23 
24 static const float
25 #if 0
26 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
27 #endif
28 two   =  2.0000000000e+00, /* 0x40000000 */
29 one   =  1.0000000000e+00; /* 0x3F800000 */
30 
31 static const float zero  =  0.0000000000e+00;
32 
33 float
34 __ieee754_jnf(int n, float x)
35 {
36 	int32_t i,hx,ix, sgn;
37 	float a, b, temp, di;
38 	float z, w;
39 
40     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
41      * Thus, J(-n,x) = J(n,-x)
42      */
43 	GET_FLOAT_WORD(hx,x);
44 	ix = 0x7fffffff&hx;
45     /* if J(n,NaN) is NaN */
46 	if(ix>0x7f800000) return x+x;
47 	if(n<0){
48 		n = -n;
49 		x = -x;
50 		hx ^= 0x80000000;
51 	}
52 	if(n==0) return(__ieee754_j0f(x));
53 	if(n==1) return(__ieee754_j1f(x));
54 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
55 	x = fabsf(x);
56 	if(ix==0||ix>=0x7f800000) 	/* if x is 0 or inf */
57 	    b = zero;
58 	else if((float)n<=x) {
59 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
60 	    a = __ieee754_j0f(x);
61 	    b = __ieee754_j1f(x);
62 	    for(i=1;i<n;i++){
63 		temp = b;
64 		b = b*((float)(i+i)/x) - a; /* avoid underflow */
65 		a = temp;
66 	    }
67 	} else {
68 	    if(ix<0x30800000) {	/* x < 2**-29 */
69     /* x is tiny, return the first Taylor expansion of J(n,x)
70      * J(n,x) = 1/n!*(x/2)^n  - ...
71      */
72 		if(n>33)	/* underflow */
73 		    b = zero;
74 		else {
75 		    temp = x*(float)0.5; b = temp;
76 		    for (a=one,i=2;i<=n;i++) {
77 			a *= (float)i;		/* a = n! */
78 			b *= temp;		/* b = (x/2)^n */
79 		    }
80 		    b = b/a;
81 		}
82 	    } else {
83 		/* use backward recurrence */
84 		/* 			x      x^2      x^2
85 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
86 		 *			2n  - 2(n+1) - 2(n+2)
87 		 *
88 		 * 			1      1        1
89 		 *  (for large x)   =  ----  ------   ------   .....
90 		 *			2n   2(n+1)   2(n+2)
91 		 *			-- - ------ - ------ -
92 		 *			 x     x         x
93 		 *
94 		 * Let w = 2n/x and h=2/x, then the above quotient
95 		 * is equal to the continued fraction:
96 		 *		    1
97 		 *	= -----------------------
98 		 *		       1
99 		 *	   w - -----------------
100 		 *			  1
101 		 * 	        w+h - ---------
102 		 *		       w+2h - ...
103 		 *
104 		 * To determine how many terms needed, let
105 		 * Q(0) = w, Q(1) = w(w+h) - 1,
106 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
107 		 * When Q(k) > 1e4	good for single
108 		 * When Q(k) > 1e9	good for double
109 		 * When Q(k) > 1e17	good for quadruple
110 		 */
111 	    /* determine k */
112 		float t,v;
113 		float q0,q1,h,tmp; int32_t k,m;
114 		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
115 		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
116 		while(q1<(float)1.0e9) {
117 			k += 1; z += h;
118 			tmp = z*q1 - q0;
119 			q0 = q1;
120 			q1 = tmp;
121 		}
122 		m = n+n;
123 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
124 		a = t;
125 		b = one;
126 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
127 		 *  Hence, if n*(log(2n/x)) > ...
128 		 *  single 8.8722839355e+01
129 		 *  double 7.09782712893383973096e+02
130 		 *  long double 1.1356523406294143949491931077970765006170e+04
131 		 *  then recurrent value may overflow and the result is
132 		 *  likely underflow to zero
133 		 */
134 		tmp = n;
135 		v = two/x;
136 		tmp = tmp*__ieee754_logf(fabsf(v*tmp));
137 		if(tmp<(float)8.8721679688e+01) {
138 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
139 		        temp = b;
140 			b *= di;
141 			b  = b/x - a;
142 		        a = temp;
143 			di -= two;
144 	     	    }
145 		} else {
146 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
147 		        temp = b;
148 			b *= di;
149 			b  = b/x - a;
150 		        a = temp;
151 			di -= two;
152 		    /* scale b to avoid spurious overflow */
153 			if(b>(float)1e10) {
154 			    a /= b;
155 			    t /= b;
156 			    b  = one;
157 			}
158 	     	    }
159 		}
160 	    	b = (t*__ieee754_j0f(x)/b);
161 	    }
162 	}
163 	if(sgn==1) return -b; else return b;
164 }
165 
166 float
167 __ieee754_ynf(int n, float x)
168 {
169 	int32_t i,hx,ix,ib;
170 	int32_t sign;
171 	float a, b, temp;
172 
173 	GET_FLOAT_WORD(hx,x);
174 	ix = 0x7fffffff&hx;
175     /* if Y(n,NaN) is NaN */
176 	if(ix>0x7f800000) return x+x;
177 	if(ix==0) return -one/zero;
178 	if(hx<0) return zero/zero;
179 	sign = 1;
180 	if(n<0){
181 		n = -n;
182 		sign = 1 - ((n&1)<<1);
183 	}
184 	if(n==0) return(__ieee754_y0f(x));
185 	if(n==1) return(sign*__ieee754_y1f(x));
186 	if(ix==0x7f800000) return zero;
187 
188 	a = __ieee754_y0f(x);
189 	b = __ieee754_y1f(x);
190 	/* quit if b is -inf */
191 	GET_FLOAT_WORD(ib,b);
192 	for(i=1;i<n&&ib!=0xff800000;i++){
193 	    temp = b;
194 	    b = ((float)(i+i)/x)*b - a;
195 	    GET_FLOAT_WORD(ib,b);
196 	    a = temp;
197 	}
198 	if(sign>0) return b; else return -b;
199 }
200