xref: /netbsd/lib/libm/src/s_expm1.c (revision bf9ec67e)
1 /* @(#)s_expm1.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: s_expm1.c,v 1.12 2002/05/26 22:01:55 wiz Exp $");
16 #endif
17 
18 /* expm1(x)
19  * Returns exp(x)-1, the exponential of x minus 1.
20  *
21  * Method
22  *   1. Argument reduction:
23  *	Given x, find r and integer k such that
24  *
25  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
26  *
27  *      Here a correction term c will be computed to compensate
28  *	the error in r when rounded to a floating-point number.
29  *
30  *   2. Approximating expm1(r) by a special rational function on
31  *	the interval [0,0.34658]:
32  *	Since
33  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
34  *	we define R1(r*r) by
35  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
36  *	That is,
37  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
38  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
39  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
40  *      We use a special Reme algorithm on [0,0.347] to generate
41  * 	a polynomial of degree 5 in r*r to approximate R1. The
42  *	maximum error of this polynomial approximation is bounded
43  *	by 2**-61. In other words,
44  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
45  *	where 	Q1  =  -1.6666666666666567384E-2,
46  * 		Q2  =   3.9682539681370365873E-4,
47  * 		Q3  =  -9.9206344733435987357E-6,
48  * 		Q4  =   2.5051361420808517002E-7,
49  * 		Q5  =  -6.2843505682382617102E-9;
50  *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
51  *	with error bounded by
52  *	    |                  5           |     -61
53  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
54  *	    |                              |
55  *
56  *	expm1(r) = exp(r)-1 is then computed by the following
57  * 	specific way which minimize the accumulation rounding error:
58  *			       2     3
59  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
60  *	      expm1(r) = r + --- + --- * [--------------------]
61  *		              2     2    [ 6 - r*(3 - R1*r/2) ]
62  *
63  *	To compensate the error in the argument reduction, we use
64  *		expm1(r+c) = expm1(r) + c + expm1(r)*c
65  *			   ~ expm1(r) + c + r*c
66  *	Thus c+r*c will be added in as the correction terms for
67  *	expm1(r+c). Now rearrange the term to avoid optimization
68  * 	screw up:
69  *		        (      2                                    2 )
70  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
71  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
72  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
73  *                      (                                             )
74  *
75  *		   = r - E
76  *   3. Scale back to obtain expm1(x):
77  *	From step 1, we have
78  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
79  *		    = or     2^k*[expm1(r) + (1-2^-k)]
80  *   4. Implementation notes:
81  *	(A). To save one multiplication, we scale the coefficient Qi
82  *	     to Qi*2^i, and replace z by (x^2)/2.
83  *	(B). To achieve maximum accuracy, we compute expm1(x) by
84  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
85  *	  (ii)  if k=0, return r-E
86  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
87  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
88  *	       	       else	     return  1.0+2.0*(r-E);
89  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
90  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
91  *	  (vii) return 2^k(1-((E+2^-k)-r))
92  *
93  * Special cases:
94  *	expm1(INF) is INF, expm1(NaN) is NaN;
95  *	expm1(-INF) is -1, and
96  *	for finite argument, only expm1(0)=0 is exact.
97  *
98  * Accuracy:
99  *	according to an error analysis, the error is always less than
100  *	1 ulp (unit in the last place).
101  *
102  * Misc. info.
103  *	For IEEE double
104  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
105  *
106  * Constants:
107  * The hexadecimal values are the intended ones for the following
108  * constants. The decimal values may be used, provided that the
109  * compiler will convert from decimal to binary accurately enough
110  * to produce the hexadecimal values shown.
111  */
112 
113 #include "math.h"
114 #include "math_private.h"
115 
116 static const double
117 one		= 1.0,
118 huge		= 1.0e+300,
119 tiny		= 1.0e-300,
120 o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
121 ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
122 ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
123 invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
124 	/* scaled coefficients related to expm1 */
125 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
126 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
127 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
128 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
129 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
130 
131 double
132 expm1(double x)
133 {
134 	double y,hi,lo,c,t,e,hxs,hfx,r1;
135 	int32_t k,xsb;
136 	u_int32_t hx;
137 
138 	c = 0;
139 	GET_HIGH_WORD(hx,x);
140 	xsb = hx&0x80000000;		/* sign bit of x */
141 	if(xsb==0) y=x; else y= -x;	/* y = |x| */
142 	hx &= 0x7fffffff;		/* high word of |x| */
143 
144     /* filter out huge and non-finite argument */
145 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
146 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
147                 if(hx>=0x7ff00000) {
148 		    u_int32_t low;
149 		    GET_LOW_WORD(low,x);
150 		    if(((hx&0xfffff)|low)!=0)
151 		         return x+x; 	 /* NaN */
152 		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
153 	        }
154 	        if(x > o_threshold) return huge*huge; /* overflow */
155 	    }
156 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
157 		if(x+tiny<0.0)		/* raise inexact */
158 		return tiny-one;	/* return -1 */
159 	    }
160 	}
161 
162     /* argument reduction */
163 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
164 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
165 		if(xsb==0)
166 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
167 		else
168 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
169 	    } else {
170 		k  = invln2*x+((xsb==0)?0.5:-0.5);
171 		t  = k;
172 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
173 		lo = t*ln2_lo;
174 	    }
175 	    x  = hi - lo;
176 	    c  = (hi-x)-lo;
177 	}
178 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
179 	    t = huge+x;	/* return x with inexact flags when x!=0 */
180 	    return x - (t-(huge+x));
181 	}
182 	else k = 0;
183 
184     /* x is now in primary range */
185 	hfx = 0.5*x;
186 	hxs = x*hfx;
187 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
188 	t  = 3.0-r1*hfx;
189 	e  = hxs*((r1-t)/(6.0 - x*t));
190 	if(k==0) return x - (x*e-hxs);		/* c is 0 */
191 	else {
192 	    e  = (x*(e-c)-c);
193 	    e -= hxs;
194 	    if(k== -1) return 0.5*(x-e)-0.5;
195 	    if(k==1)  {
196 	       	if(x < -0.25) return -2.0*(e-(x+0.5));
197 	       	else 	      return  one+2.0*(x-e);
198 	    }
199 	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
200 	        u_int32_t high;
201 	        y = one-(e-x);
202 		GET_HIGH_WORD(high,y);
203 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
204 	        return y-one;
205 	    }
206 	    t = one;
207 	    if(k<20) {
208 	        u_int32_t high;
209 	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
210 	       	y = t-(e-x);
211 		GET_HIGH_WORD(high,y);
212 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
213 	   } else {
214 	        u_int32_t high;
215 		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
216 	       	y = x-(e+t);
217 	       	y += one;
218 		GET_HIGH_WORD(high,y);
219 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
220 	    }
221 	}
222 	return y;
223 }
224