xref: /netbsd/lib/libpthread/pthread_tsd.c (revision 561716c2)
1 /*	$NetBSD: pthread_tsd.c,v 1.18 2019/12/25 00:44:45 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __RCSID("$NetBSD: pthread_tsd.c,v 1.18 2019/12/25 00:44:45 joerg Exp $");
34 
35 /* Functions and structures dealing with thread-specific data */
36 #include <errno.h>
37 #include <sys/mman.h>
38 
39 #include "pthread.h"
40 #include "pthread_int.h"
41 #include "reentrant.h"
42 #include "tsd.h"
43 
44 int pthread_keys_max;
45 static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
46 static int nextkey;
47 
48 PTQ_HEAD(pthread__tsd_list, pt_specific) *pthread__tsd_list = NULL;
49 void (**pthread__tsd_destructors)(void *) = NULL;
50 
51 __strong_alias(__libc_thr_keycreate,pthread_key_create)
52 __strong_alias(__libc_thr_keydelete,pthread_key_delete)
53 
54 static void
55 /*ARGSUSED*/
56 null_destructor(void *p)
57 {
58 }
59 
60 #include <err.h>
61 #include <stdlib.h>
62 #include <stdio.h>
63 
64 static void
65 pthread_tsd_prefork(void)
66 {
67 	pthread_mutex_lock(&tsd_mutex);
68 }
69 
70 static void
71 pthread_tsd_postfork(void)
72 {
73 	pthread_mutex_unlock(&tsd_mutex);
74 }
75 
76 void *
77 pthread_tsd_init(size_t *tlen)
78 {
79 	char *pkm;
80 	size_t alen;
81 	char *arena;
82 
83 	pthread_atfork(pthread_tsd_prefork, pthread_tsd_postfork, pthread_tsd_postfork);
84 
85 	if ((pkm = pthread__getenv("PTHREAD_KEYS_MAX")) != NULL) {
86 		pthread_keys_max = (int)strtol(pkm, NULL, 0);
87 		if (pthread_keys_max < _POSIX_THREAD_KEYS_MAX)
88 			pthread_keys_max = _POSIX_THREAD_KEYS_MAX;
89 	} else {
90 		pthread_keys_max = PTHREAD_KEYS_MAX;
91 	}
92 
93 	/*
94 	 * Can't use malloc here yet, because malloc will use the fake
95 	 * libc thread functions to initialize itself, so mmap the space.
96 	 */
97 	*tlen = sizeof(struct __pthread_st)
98 	    + pthread_keys_max * sizeof(struct pt_specific);
99 	alen = *tlen
100 	    + sizeof(*pthread__tsd_list) * pthread_keys_max
101 	    + sizeof(*pthread__tsd_destructors) * pthread_keys_max;
102 
103 	arena = mmap(NULL, alen, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
104 	if (arena == MAP_FAILED) {
105 		pthread_keys_max = 0;
106 		return NULL;
107 	}
108 
109 	pthread__tsd_list = (void *)arena;
110 	arena += sizeof(*pthread__tsd_list) * pthread_keys_max;
111 	pthread__tsd_destructors = (void *)arena;
112 	arena += sizeof(*pthread__tsd_destructors) * pthread_keys_max;
113 	return arena;
114 }
115 
116 int
117 pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
118 {
119 	int i;
120 
121 	if (__predict_false(__uselibcstub))
122 		return __libc_thr_keycreate_stub(key, destructor);
123 
124 	/* Get a lock on the allocation list */
125 	pthread_mutex_lock(&tsd_mutex);
126 
127 	/* Find an available slot:
128 	 * The condition for an available slot is one with the destructor
129 	 * not being NULL. If the desired destructor is NULL we set it to
130 	 * our own internal destructor to satisfy the non NULL condition.
131 	 */
132 	/* 1. Search from "nextkey" to the end of the list. */
133 	for (i = nextkey; i < pthread_keys_max; i++)
134 		if (pthread__tsd_destructors[i] == NULL)
135 			break;
136 
137 	if (i == pthread_keys_max) {
138 		/* 2. If that didn't work, search from the start
139 		 *    of the list back to "nextkey".
140 		 */
141 		for (i = 0; i < nextkey; i++)
142 			if (pthread__tsd_destructors[i] == NULL)
143 				break;
144 
145 		if (i == nextkey) {
146 			/* If we didn't find one here, there isn't one
147 			 * to be found.
148 			 */
149 			pthread_mutex_unlock(&tsd_mutex);
150 			return EAGAIN;
151 		}
152 	}
153 
154 	/* Got one. */
155 	pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
156 	pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
157 
158 	nextkey = (i + 1) % pthread_keys_max;
159 	pthread_mutex_unlock(&tsd_mutex);
160 	*key = i;
161 
162 	return 0;
163 }
164 
165 /*
166  * Each thread holds an array of pthread_keys_max pt_specific list
167  * elements. When an element is used it is inserted into the appropriate
168  * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
169  * means that the element is not threaded, ptqe_prev != NULL it is
170  * already part of the list. When we set to a NULL value we delete from the
171  * list if it was in the list, and when we set to non-NULL value, we insert
172  * in the list if it was not already there.
173  *
174  * We keep this global array of lists of threads that have called
175  * pthread_set_specific with non-null values, for each key so that
176  * we don't have to check all threads for non-NULL values in
177  * pthread_key_destroy
178  *
179  * We could keep an accounting of the number of specific used
180  * entries per thread, so that we can update pt_havespecific when we delete
181  * the last one, but we don't bother for now
182  */
183 int
184 pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
185 {
186 	struct pt_specific *pt;
187 
188 	pthread__assert(key >= 0 && key < pthread_keys_max);
189 
190 	pthread_mutex_lock(&tsd_mutex);
191 	pthread__assert(pthread__tsd_destructors[key] != NULL);
192 	pt = &self->pt_specific[key];
193 	self->pt_havespecific = 1;
194 	if (value) {
195 		if (pt->pts_next.ptqe_prev == NULL)
196 			PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
197 	} else {
198 		if (pt->pts_next.ptqe_prev != NULL) {
199 			PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
200 			pt->pts_next.ptqe_prev = NULL;
201 		}
202 	}
203 	pt->pts_value = __UNCONST(value);
204 	pthread_mutex_unlock(&tsd_mutex);
205 
206 	return 0;
207 }
208 
209 int
210 pthread_key_delete(pthread_key_t key)
211 {
212 	/*
213 	 * This is tricky.  The standard says of pthread_key_create()
214 	 * that new keys have the value NULL associated with them in
215 	 * all threads.  According to people who were present at the
216 	 * standardization meeting, that requirement was written
217 	 * before pthread_key_delete() was introduced, and not
218 	 * reconsidered when it was.
219 	 *
220 	 * See David Butenhof's article in comp.programming.threads:
221 	 * Subject: Re: TSD key reusing issue
222 	 * Message-ID: <u97d8.29$fL6.200@news.cpqcorp.net>
223 	 * Date: Thu, 21 Feb 2002 09:06:17 -0500
224 	 *	 http://groups.google.com/groups?\
225 	 *	 hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
226 	 *
227 	 * Given:
228 	 *
229 	 * 1: Applications are not required to clear keys in all
230 	 *    threads before calling pthread_key_delete().
231 	 * 2: Clearing pointers without running destructors is a
232 	 *    memory leak.
233 	 * 3: The pthread_key_delete() function is expressly forbidden
234 	 *    to run any destructors.
235 	 *
236 	 * Option 1: Make this function effectively a no-op and
237 	 * prohibit key reuse. This is a possible resource-exhaustion
238 	 * problem given that we have a static storage area for keys,
239 	 * but having a non-static storage area would make
240 	 * pthread_setspecific() expensive (might need to realloc the
241 	 * TSD array).
242 	 *
243 	 * Option 2: Ignore the specified behavior of
244 	 * pthread_key_create() and leave the old values. If an
245 	 * application deletes a key that still has non-NULL values in
246 	 * some threads... it's probably a memory leak and hence
247 	 * incorrect anyway, and we're within our rights to let the
248 	 * application lose. However, it's possible (if unlikely) that
249 	 * the application is storing pointers to non-heap data, or
250 	 * non-pointers that have been wedged into a void pointer, so
251 	 * we can't entirely write off such applications as incorrect.
252 	 * This could also lead to running (new) destructors on old
253 	 * data that was never supposed to be associated with that
254 	 * destructor.
255 	 *
256 	 * Option 3: Follow the specified behavior of
257 	 * pthread_key_create().  Either pthread_key_create() or
258 	 * pthread_key_delete() would then have to clear the values in
259 	 * every thread's slot for that key. In order to guarantee the
260 	 * visibility of the NULL value in other threads, there would
261 	 * have to be synchronization operations in both the clearer
262 	 * and pthread_getspecific().  Putting synchronization in
263 	 * pthread_getspecific() is a big performance lose.  But in
264 	 * reality, only (buggy) reuse of an old key would require
265 	 * this synchronization; for a new key, there has to be a
266 	 * memory-visibility propagating event between the call to
267 	 * pthread_key_create() and pthread_getspecific() with that
268 	 * key, so setting the entries to NULL without synchronization
269 	 * will work, subject to problem (2) above. However, it's kind
270 	 * of slow.
271 	 *
272 	 * Note that the argument in option 3 only applies because we
273 	 * keep TSD in ordinary memory which follows the pthreads
274 	 * visibility rules. The visibility rules are not required by
275 	 * the standard to apply to TSD, so the argument doesn't
276 	 * apply in general, just to this implementation.
277 	 */
278 
279 	/*
280 	 * We do option 3; we find the list of all pt_specific structures
281 	 * threaded on the key we are deleting, unthread them, and set the
282 	 * pointer to NULL. Finally we unthread the entry, freeing it for
283 	 * further use.
284 	 *
285 	 * We don't call the destructor here, it is the responsibility
286 	 * of the application to cleanup the storage:
287 	 * 	http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
288 	 *	pthread_key_delete.html
289 	 */
290 	struct pt_specific *pt;
291 
292 	if (__predict_false(__uselibcstub))
293 		return __libc_thr_keydelete_stub(key);
294 
295 	pthread__assert(key >= 0 && key < pthread_keys_max);
296 
297 	pthread_mutex_lock(&tsd_mutex);
298 
299 	pthread__assert(pthread__tsd_destructors[key] != NULL);
300 
301 	while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
302 		PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
303 		pt->pts_value = NULL;
304 		pt->pts_next.ptqe_prev = NULL;
305 	}
306 
307 	pthread__tsd_destructors[key] = NULL;
308 	pthread_mutex_unlock(&tsd_mutex);
309 
310 	return 0;
311 }
312 
313 /* Perform thread-exit-time destruction of thread-specific data. */
314 void
315 pthread__destroy_tsd(pthread_t self)
316 {
317 	int i, done, iterations;
318 	void *val;
319 	void (*destructor)(void *);
320 
321 	if (!self->pt_havespecific)
322 		return;
323 	pthread_mutex_unlock(&self->pt_lock);
324 
325 	/* Butenhof, section 5.4.2 (page 167):
326 	 *
327 	 * ``Also, Pthreads sets the thread-specific data value for a
328 	 * key to NULL before calling that key's destructor (passing
329 	 * the previous value of the key) when a thread terminates [*].
330 	 * ...
331 	 * [*] That is, unfortunately, not what the standard
332 	 * says. This is one of the problems with formal standards -
333 	 * they say what they say, not what they were intended to
334 	 * say. Somehow, an error crept in, and the sentence
335 	 * specifying that "the implementation clears the
336 	 * thread-specific data value before calling the destructor"
337 	 * was deleted. Nobody noticed, and the standard was approved
338 	 * with the error. So the standard says (by omission) that if
339 	 * you want to write a portable application using
340 	 * thread-specific data, that will not hang on thread
341 	 * termination, you must call pthread_setspecific within your
342 	 * destructor function to change the value to NULL. This would
343 	 * be silly, and any serious implementation of Pthreads will
344 	 * violate the standard in this respect. Of course, the
345 	 * standard will be fixed, probably by the 1003.1n amendment
346 	 * (assorted corrections to 1003.1c-1995), but that will take
347 	 * a while.''
348 	 */
349 
350 	/* We're not required to try very hard */
351 	iterations = PTHREAD_DESTRUCTOR_ITERATIONS;
352 	do {
353 		done = 1;
354 		for (i = 0; i < pthread_keys_max; i++) {
355 			struct pt_specific *pt = &self->pt_specific[i];
356 			if (pt->pts_next.ptqe_prev == NULL)
357 				continue;
358 			pthread_mutex_lock(&tsd_mutex);
359 
360 			if (pt->pts_next.ptqe_prev != NULL)  {
361 				PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
362 				val = pt->pts_value;
363 				pt->pts_value = NULL;
364 				pt->pts_next.ptqe_prev = NULL;
365 				destructor = pthread__tsd_destructors[i];
366 			} else
367 				destructor = NULL;
368 
369 			pthread_mutex_unlock(&tsd_mutex);
370 			if (destructor != NULL) {
371 				done = 0;
372 				(*destructor)(val);
373 			}
374 		}
375 	} while (!done && --iterations);
376 
377 	self->pt_havespecific = 0;
378 	pthread_mutex_lock(&self->pt_lock);
379 }
380 
381 void
382 pthread__copy_tsd(pthread_t self)
383 {
384 	for (size_t key = 0; key < TSD_KEYS_MAX; key++) {
385 
386 		if (__libc_tsd[key].tsd_inuse == 0)
387 			continue;
388 
389 		pthread__assert(pthread__tsd_destructors[key] == NULL);
390 		pthread__tsd_destructors[key] = __libc_tsd[key].tsd_dtor ?
391 		    __libc_tsd[key].tsd_dtor : null_destructor;
392 		nextkey = (key + 1) % pthread_keys_max;
393 
394 		self->pt_havespecific = 1;
395 		struct pt_specific *pt = &self->pt_specific[key];
396 		pt->pts_value = __libc_tsd[key].tsd_val;
397 		__libc_tsd[key].tsd_inuse = 0;
398 	}
399 }
400