xref: /netbsd/lib/libpthread/pthread_tsd.c (revision 86b46120)
1 /*	$NetBSD: pthread_tsd.c,v 1.14 2015/05/30 14:42:26 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __RCSID("$NetBSD: pthread_tsd.c,v 1.14 2015/05/30 14:42:26 christos Exp $");
34 
35 /* Functions and structures dealing with thread-specific data */
36 #include <errno.h>
37 #include <sys/mman.h>
38 
39 #include "pthread.h"
40 #include "pthread_int.h"
41 #include "reentrant.h"
42 
43 int pthread_keys_max;
44 static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
45 static int nextkey;
46 
47 PTQ_HEAD(pthread__tsd_list, pt_specific) *pthread__tsd_list = NULL;
48 void (**pthread__tsd_destructors)(void *) = NULL;
49 
50 __strong_alias(__libc_thr_keycreate,pthread_key_create)
51 __strong_alias(__libc_thr_keydelete,pthread_key_delete)
52 
53 static void
54 /*ARGSUSED*/
55 null_destructor(void *p)
56 {
57 }
58 
59 #include <err.h>
60 #include <stdlib.h>
61 #include <stdio.h>
62 
63 /* Can't use mmap directly so early in the process because rump hijacks it */
64 void *_mmap(void *, size_t, int, int, int, off_t);
65 
66 void *
67 pthread_tsd_init(size_t *tlen)
68 {
69 	char *pkm;
70 	size_t alen;
71 	char *arena;
72 
73 	if ((pkm = pthread__getenv("PTHREAD_KEYS_MAX")) != NULL) {
74 		pthread_keys_max = (int)strtol(pkm, NULL, 0);
75 		if (pthread_keys_max < _POSIX_THREAD_KEYS_MAX)
76 			pthread_keys_max = _POSIX_THREAD_KEYS_MAX;
77 	} else {
78 		pthread_keys_max = PTHREAD_KEYS_MAX;
79 	}
80 
81 	/*
82 	 * Can't use malloc here yet, because malloc will use the fake
83 	 * libc thread functions to initialize itself, so mmap the space.
84 	 */
85 	*tlen = sizeof(struct __pthread_st)
86 	    + pthread_keys_max * sizeof(struct pt_specific);
87 	alen = *tlen
88 	    + sizeof(*pthread__tsd_list) * pthread_keys_max
89 	    + sizeof(*pthread__tsd_destructors) * pthread_keys_max;
90 
91 	arena = _mmap(NULL, alen, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
92 	if (arena == MAP_FAILED) {
93 		pthread_keys_max = 0;
94 		return NULL;
95 	}
96 
97 	pthread__tsd_list = (void *)arena;
98 	arena += sizeof(*pthread__tsd_list) * pthread_keys_max;
99 	pthread__tsd_destructors = (void *)arena;
100 	arena += sizeof(*pthread__tsd_destructors) * pthread_keys_max;
101 	return arena;
102 }
103 
104 int
105 pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
106 {
107 	int i;
108 
109 	if (__predict_false(__uselibcstub))
110 		return __libc_thr_keycreate_stub(key, destructor);
111 
112 	/* Get a lock on the allocation list */
113 	pthread_mutex_lock(&tsd_mutex);
114 
115 	/* Find an available slot:
116 	 * The condition for an available slot is one with the destructor
117 	 * not being NULL. If the desired destructor is NULL we set it to
118 	 * our own internal destructor to satisfy the non NULL condition.
119 	 */
120 	/* 1. Search from "nextkey" to the end of the list. */
121 	for (i = nextkey; i < pthread_keys_max; i++)
122 		if (pthread__tsd_destructors[i] == NULL)
123 			break;
124 
125 	if (i == pthread_keys_max) {
126 		/* 2. If that didn't work, search from the start
127 		 *    of the list back to "nextkey".
128 		 */
129 		for (i = 0; i < nextkey; i++)
130 			if (pthread__tsd_destructors[i] == NULL)
131 				break;
132 
133 		if (i == nextkey) {
134 			/* If we didn't find one here, there isn't one
135 			 * to be found.
136 			 */
137 			pthread_mutex_unlock(&tsd_mutex);
138 			return EAGAIN;
139 		}
140 	}
141 
142 	/* Got one. */
143 	pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
144 	pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
145 
146 	nextkey = (i + 1) % pthread_keys_max;
147 	pthread_mutex_unlock(&tsd_mutex);
148 	*key = i;
149 
150 	return 0;
151 }
152 
153 /*
154  * Each thread holds an array of pthread_keys_max pt_specific list
155  * elements. When an element is used it is inserted into the appropriate
156  * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
157  * means that the element is not threaded, ptqe_prev != NULL it is
158  * already part of the list. When we set to a NULL value we delete from the
159  * list if it was in the list, and when we set to non-NULL value, we insert
160  * in the list if it was not already there.
161  *
162  * We keep this global array of lists of threads that have called
163  * pthread_set_specific with non-null values, for each key so that
164  * we don't have to check all threads for non-NULL values in
165  * pthread_key_destroy
166  *
167  * We could keep an accounting of the number of specific used
168  * entries per thread, so that we can update pt_havespecific when we delete
169  * the last one, but we don't bother for now
170  */
171 int
172 pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
173 {
174 	struct pt_specific *pt;
175 
176 	pthread__assert(key >= 0 && key < pthread_keys_max);
177 
178 	pthread_mutex_lock(&tsd_mutex);
179 	pthread__assert(pthread__tsd_destructors[key] != NULL);
180 	pt = &self->pt_specific[key];
181 	self->pt_havespecific = 1;
182 	if (value) {
183 		if (pt->pts_next.ptqe_prev == NULL)
184 			PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
185 	} else {
186 		if (pt->pts_next.ptqe_prev != NULL) {
187 			PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
188 			pt->pts_next.ptqe_prev = NULL;
189 		}
190 	}
191 	pt->pts_value = __UNCONST(value);
192 	pthread_mutex_unlock(&tsd_mutex);
193 
194 	return 0;
195 }
196 
197 int
198 pthread_key_delete(pthread_key_t key)
199 {
200 	/*
201 	 * This is tricky.  The standard says of pthread_key_create()
202 	 * that new keys have the value NULL associated with them in
203 	 * all threads.  According to people who were present at the
204 	 * standardization meeting, that requirement was written
205 	 * before pthread_key_delete() was introduced, and not
206 	 * reconsidered when it was.
207 	 *
208 	 * See David Butenhof's article in comp.programming.threads:
209 	 * Subject: Re: TSD key reusing issue
210 	 * Message-ID: <u97d8.29$fL6.200@news.cpqcorp.net>
211 	 * Date: Thu, 21 Feb 2002 09:06:17 -0500
212 	 *	 http://groups.google.com/groups?\
213 	 *	 hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
214 	 *
215 	 * Given:
216 	 *
217 	 * 1: Applications are not required to clear keys in all
218 	 *    threads before calling pthread_key_delete().
219 	 * 2: Clearing pointers without running destructors is a
220 	 *    memory leak.
221 	 * 3: The pthread_key_delete() function is expressly forbidden
222 	 *    to run any destructors.
223 	 *
224 	 * Option 1: Make this function effectively a no-op and
225 	 * prohibit key reuse. This is a possible resource-exhaustion
226 	 * problem given that we have a static storage area for keys,
227 	 * but having a non-static storage area would make
228 	 * pthread_setspecific() expensive (might need to realloc the
229 	 * TSD array).
230 	 *
231 	 * Option 2: Ignore the specified behavior of
232 	 * pthread_key_create() and leave the old values. If an
233 	 * application deletes a key that still has non-NULL values in
234 	 * some threads... it's probably a memory leak and hence
235 	 * incorrect anyway, and we're within our rights to let the
236 	 * application lose. However, it's possible (if unlikely) that
237 	 * the application is storing pointers to non-heap data, or
238 	 * non-pointers that have been wedged into a void pointer, so
239 	 * we can't entirely write off such applications as incorrect.
240 	 * This could also lead to running (new) destructors on old
241 	 * data that was never supposed to be associated with that
242 	 * destructor.
243 	 *
244 	 * Option 3: Follow the specified behavior of
245 	 * pthread_key_create().  Either pthread_key_create() or
246 	 * pthread_key_delete() would then have to clear the values in
247 	 * every thread's slot for that key. In order to guarantee the
248 	 * visibility of the NULL value in other threads, there would
249 	 * have to be synchronization operations in both the clearer
250 	 * and pthread_getspecific().  Putting synchronization in
251 	 * pthread_getspecific() is a big performance lose.  But in
252 	 * reality, only (buggy) reuse of an old key would require
253 	 * this synchronization; for a new key, there has to be a
254 	 * memory-visibility propagating event between the call to
255 	 * pthread_key_create() and pthread_getspecific() with that
256 	 * key, so setting the entries to NULL without synchronization
257 	 * will work, subject to problem (2) above. However, it's kind
258 	 * of slow.
259 	 *
260 	 * Note that the argument in option 3 only applies because we
261 	 * keep TSD in ordinary memory which follows the pthreads
262 	 * visibility rules. The visibility rules are not required by
263 	 * the standard to apply to TSD, so the argument doesn't
264 	 * apply in general, just to this implementation.
265 	 */
266 
267 	/*
268 	 * We do option 3; we find the list of all pt_specific structures
269 	 * threaded on the key we are deleting, unthread them, and set the
270 	 * pointer to NULL. Finally we unthread the entry, freeing it for
271 	 * further use.
272 	 *
273 	 * We don't call the destructor here, it is the responsibility
274 	 * of the application to cleanup the storage:
275 	 * 	http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
276 	 *	pthread_key_delete.html
277 	 */
278 	struct pt_specific *pt;
279 
280 	if (__predict_false(__uselibcstub))
281 		return __libc_thr_keydelete_stub(key);
282 
283 	pthread__assert(key >= 0 && key < pthread_keys_max);
284 
285 	pthread_mutex_lock(&tsd_mutex);
286 
287 	pthread__assert(pthread__tsd_destructors[key] != NULL);
288 
289 	while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
290 		PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
291 		pt->pts_value = NULL;
292 		pt->pts_next.ptqe_prev = NULL;
293 	}
294 
295 	pthread__tsd_destructors[key] = NULL;
296 	pthread_mutex_unlock(&tsd_mutex);
297 
298 	return 0;
299 }
300 
301 /* Perform thread-exit-time destruction of thread-specific data. */
302 void
303 pthread__destroy_tsd(pthread_t self)
304 {
305 	int i, done, iterations;
306 	void *val;
307 	void (*destructor)(void *);
308 
309 	if (!self->pt_havespecific)
310 		return;
311 	pthread_mutex_unlock(&self->pt_lock);
312 
313 	/* Butenhof, section 5.4.2 (page 167):
314 	 *
315 	 * ``Also, Pthreads sets the thread-specific data value for a
316 	 * key to NULL before calling that key's destructor (passing
317 	 * the previous value of the key) when a thread terminates [*].
318 	 * ...
319 	 * [*] That is, unfortunately, not what the standard
320 	 * says. This is one of the problems with formal standards -
321 	 * they say what they say, not what they were intended to
322 	 * say. Somehow, an error crept in, and the sentence
323 	 * specifying that "the implementation clears the
324 	 * thread-specific data value before calling the destructor"
325 	 * was deleted. Nobody noticed, and the standard was approved
326 	 * with the error. So the standard says (by omission) that if
327 	 * you want to write a portable application using
328 	 * thread-specific data, that will not hang on thread
329 	 * termination, you must call pthread_setspecific within your
330 	 * destructor function to change the value to NULL. This would
331 	 * be silly, and any serious implementation of Pthreads will
332 	 * violate the standard in this respect. Of course, the
333 	 * standard will be fixed, probably by the 1003.1n amendment
334 	 * (assorted corrections to 1003.1c-1995), but that will take
335 	 * a while.''
336 	 */
337 
338 	iterations = 4; /* We're not required to try very hard */
339 	do {
340 		done = 1;
341 		for (i = 0; i < pthread_keys_max; i++) {
342 			struct pt_specific *pt = &self->pt_specific[i];
343 			if (pt->pts_next.ptqe_prev == NULL)
344 				continue;
345 			pthread_mutex_lock(&tsd_mutex);
346 
347 			if (pt->pts_next.ptqe_prev != NULL)  {
348 				PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
349 				val = pt->pts_value;
350 				pt->pts_value = NULL;
351 				pt->pts_next.ptqe_prev = NULL;
352 				destructor = pthread__tsd_destructors[i];
353 			} else
354 				destructor = NULL;
355 
356 			pthread_mutex_unlock(&tsd_mutex);
357 			if (destructor != NULL) {
358 				done = 0;
359 				(*destructor)(val);
360 			}
361 		}
362 	} while (!done && iterations--);
363 
364 	self->pt_havespecific = 0;
365 	pthread_mutex_lock(&self->pt_lock);
366 }
367