xref: /netbsd/lib/libpthread/pthread_tsd.c (revision c15b1d22)
1 /*	$NetBSD: pthread_tsd.c,v 1.9 2012/11/21 19:19:24 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __RCSID("$NetBSD: pthread_tsd.c,v 1.9 2012/11/21 19:19:24 christos Exp $");
34 
35 /* Functions and structures dealing with thread-specific data */
36 #include <errno.h>
37 
38 #include "pthread.h"
39 #include "pthread_int.h"
40 
41 
42 static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
43 static int nextkey;
44 
45 PTQ_HEAD(pthread__tsd_list, pt_specific)
46     pthread__tsd_list[PTHREAD_KEYS_MAX];
47 void (*pthread__tsd_destructors[PTHREAD_KEYS_MAX])(void *);
48 
49 __strong_alias(__libc_thr_keycreate,pthread_key_create)
50 __strong_alias(__libc_thr_keydelete,pthread_key_delete)
51 
52 static void
53 /*ARGSUSED*/
54 null_destructor(void *p)
55 {
56 }
57 
58 int
59 pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
60 {
61 	int i;
62 
63 	/* Get a lock on the allocation list */
64 	pthread_mutex_lock(&tsd_mutex);
65 
66 	/* Find an available slot:
67 	 * The condition for an available slot is one with the destructor
68 	 * not being NULL. If the desired destructor is NULL we set it to
69 	 * our own internal destructor to satisfy the non NULL condition.
70 	 */
71 	/* 1. Search from "nextkey" to the end of the list. */
72 	for (i = nextkey; i < PTHREAD_KEYS_MAX; i++)
73 		if (pthread__tsd_destructors[i] == NULL)
74 			break;
75 
76 	if (i == PTHREAD_KEYS_MAX) {
77 		/* 2. If that didn't work, search from the start
78 		 *    of the list back to "nextkey".
79 		 */
80 		for (i = 0; i < nextkey; i++)
81 			if (pthread__tsd_destructors[i] == NULL)
82 				break;
83 
84 		if (i == nextkey) {
85 			/* If we didn't find one here, there isn't one
86 			 * to be found.
87 			 */
88 			pthread_mutex_unlock(&tsd_mutex);
89 			return EAGAIN;
90 		}
91 	}
92 
93 	/* Got one. */
94 	pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
95 	pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
96 
97 	nextkey = (i + 1) % PTHREAD_KEYS_MAX;
98 	pthread_mutex_unlock(&tsd_mutex);
99 	*key = i;
100 
101 	return 0;
102 }
103 
104 /*
105  * Each thread holds an array of PTHREAD_KEYS_MAX pt_specific list
106  * elements. When an element is used it is inserted into the appropriate
107  * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
108  * means that the element is not threaded, ptqe_prev != NULL it is
109  * already part of the list. When we set to a NULL value we delete from the
110  * list if it was in the list, and when we set to non-NULL value, we insert
111  * in the list if it was not already there.
112  *
113  * We keep this global array of lists of threads that have called
114  * pthread_set_specific with non-null values, for each key so that
115  * we don't have to check all threads for non-NULL values in
116  * pthread_key_destroy
117  *
118  * We could keep an accounting of the number of specific used
119  * entries per thread, so that we can update pt_havespecific when we delete
120  * the last one, but we don't bother for now
121  */
122 int
123 pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
124 {
125 	struct pt_specific *pt;
126 
127 	pthread__assert(key >= 0 && key < PTHREAD_KEYS_MAX);
128 
129 	pthread_mutex_lock(&tsd_mutex);
130 	pthread__assert(pthread__tsd_destructors[key] != NULL);
131 	pt = &self->pt_specific[key];
132 	self->pt_havespecific = 1;
133 	if (value) {
134 		if (pt->pts_next.ptqe_prev == NULL)
135 			PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
136 	} else {
137 		if (pt->pts_next.ptqe_prev != NULL) {
138 			PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
139 			pt->pts_next.ptqe_prev = NULL;
140 		}
141 	}
142 	pt->pts_value = __UNCONST(value);
143 	pthread_mutex_unlock(&tsd_mutex);
144 
145 	return 0;
146 }
147 
148 int
149 pthread_key_delete(pthread_key_t key)
150 {
151 
152 	/*
153 	 * This is tricky.  The standard says of pthread_key_create()
154 	 * that new keys have the value NULL associated with them in
155 	 * all threads.  According to people who were present at the
156 	 * standardization meeting, that requirement was written
157 	 * before pthread_key_delete() was introduced, and not
158 	 * reconsidered when it was.
159 	 *
160 	 * See David Butenhof's article in comp.programming.threads:
161 	 * Subject: Re: TSD key reusing issue
162 	 * Message-ID: <u97d8.29$fL6.200@news.cpqcorp.net>
163 	 * Date: Thu, 21 Feb 2002 09:06:17 -0500
164 	 * http://groups.google.com/groups?hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
165 	 *
166 	 * Given:
167 	 *
168 	 * 1: Applications are not required to clear keys in all
169 	 *    threads before calling pthread_key_delete().
170 	 * 2: Clearing pointers without running destructors is a
171 	 *    memory leak.
172 	 * 3: The pthread_key_delete() function is expressly forbidden
173 	 *    to run any destructors.
174 	 *
175 	 * Option 1: Make this function effectively a no-op and
176 	 * prohibit key reuse. This is a possible resource-exhaustion
177 	 * problem given that we have a static storage area for keys,
178 	 * but having a non-static storage area would make
179 	 * pthread_setspecific() expensive (might need to realloc the
180 	 * TSD array).
181 	 *
182 	 * Option 2: Ignore the specified behavior of
183 	 * pthread_key_create() and leave the old values. If an
184 	 * application deletes a key that still has non-NULL values in
185 	 * some threads... it's probably a memory leak and hence
186 	 * incorrect anyway, and we're within our rights to let the
187 	 * application lose. However, it's possible (if unlikely) that
188 	 * the application is storing pointers to non-heap data, or
189 	 * non-pointers that have been wedged into a void pointer, so
190 	 * we can't entirely write off such applications as incorrect.
191 	 * This could also lead to running (new) destructors on old
192 	 * data that was never supposed to be associated with that
193 	 * destructor.
194 	 *
195 	 * Option 3: Follow the specified behavior of
196 	 * pthread_key_create().  Either pthread_key_create() or
197 	 * pthread_key_delete() would then have to clear the values in
198 	 * every thread's slot for that key. In order to guarantee the
199 	 * visibility of the NULL value in other threads, there would
200 	 * have to be synchronization operations in both the clearer
201 	 * and pthread_getspecific().  Putting synchronization in
202 	 * pthread_getspecific() is a big performance lose.  But in
203 	 * reality, only (buggy) reuse of an old key would require
204 	 * this synchronization; for a new key, there has to be a
205 	 * memory-visibility propagating event between the call to
206 	 * pthread_key_create() and pthread_getspecific() with that
207 	 * key, so setting the entries to NULL without synchronization
208 	 * will work, subject to problem (2) above. However, it's kind
209 	 * of slow.
210 	 *
211 	 * Note that the argument in option 3 only applies because we
212 	 * keep TSD in ordinary memory which follows the pthreads
213 	 * visibility rules. The visibility rules are not required by
214 	 * the standard to apply to TSD, so the argument doesn't
215 	 * apply in general, just to this implementation.
216 	 */
217 
218 	/*
219 	 * We do option 3; we find the list of all pt_specific structures
220 	 * threaded on the key we are deleting, unthread them, set the
221 	 * pointer to NULL, and call the destructor on a saved pointer.
222 	 * Finally we unthread the entry, freeing it from further use.
223 	 */
224 	struct pt_specific *pt;
225 	void (*destructor)(void *);
226 
227 	pthread__assert(key >= 0 && key < PTHREAD_KEYS_MAX);
228 
229 	pthread_mutex_lock(&tsd_mutex);
230 
231 	pthread__assert(pthread__tsd_destructors[key] != NULL);
232 
233 	destructor = pthread__tsd_destructors[key];
234 	if (destructor == null_destructor)
235 		destructor = NULL;
236 
237 	while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
238 		void *v;
239 		PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
240 		v = pt->pts_value;
241 		pt->pts_value = NULL;
242 		pt->pts_next.ptqe_prev = NULL;
243 		if (destructor && v) {
244 			pthread_mutex_unlock(&tsd_mutex);
245 			(*destructor)(v);
246 			pthread_mutex_lock(&tsd_mutex);
247 		}
248 	}
249 
250 	pthread__tsd_destructors[key] = NULL;
251 	pthread_mutex_unlock(&tsd_mutex);
252 
253 	return 0;
254 }
255 
256 /* Perform thread-exit-time destruction of thread-specific data. */
257 void
258 pthread__destroy_tsd(pthread_t self)
259 {
260 	int i, done, iterations;
261 	void *val;
262 	void (*destructor)(void *);
263 
264 	if (!self->pt_havespecific)
265 		return;
266 	pthread_mutex_unlock(&self->pt_lock);
267 
268 	/* Butenhof, section 5.4.2 (page 167):
269 	 *
270 	 * ``Also, Pthreads sets the thread-specific data value for a
271 	 * key to NULL before calling that key's destructor (passing
272 	 * the previous value of the key) when a thread terminates [*].
273 	 * ...
274 	 * [*] That is, unfortunately, not what the standard
275 	 * says. This is one of the problems with formal standards -
276 	 * they say what they say, not what they were intended to
277 	 * say. Somehow, an error crept in, and the sentence
278 	 * specifying that "the implementation clears the
279 	 * thread-specific data value before calling the destructor"
280 	 * was deleted. Nobody noticed, and the standard was approved
281 	 * with the error. So the standard says (by omission) that if
282 	 * you want to write a portable application using
283 	 * thread-specific data, that will not hang on thread
284 	 * termination, you must call pthread_setspecific within your
285 	 * destructor function to change the value to NULL. This would
286 	 * be silly, and any serious implementation of Pthreads will
287 	 * violate the standard in this respect. Of course, the
288 	 * standard will be fixed, probably by the 1003.1n amendment
289 	 * (assorted corrections to 1003.1c-1995), but that will take
290 	 * a while.''
291 	 */
292 
293 	iterations = 4; /* We're not required to try very hard */
294 	do {
295 		done = 1;
296 		for (i = 0; i < PTHREAD_KEYS_MAX; i++) {
297 			struct pt_specific *pt = &self->pt_specific[i];
298 			if (pt->pts_next.ptqe_prev == NULL)
299 				continue;
300 			pthread_mutex_lock(&tsd_mutex);
301 
302 			if (pt->pts_next.ptqe_prev != NULL)  {
303 				PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
304 				val = pt->pts_value;
305 				pt->pts_value = NULL;
306 				pt->pts_next.ptqe_prev = NULL;
307 				destructor = pthread__tsd_destructors[i];
308 			} else
309 				destructor = NULL;
310 
311 			pthread_mutex_unlock(&tsd_mutex);
312 			if (destructor != NULL) {
313 				done = 0;
314 				(*destructor)(val);
315 			}
316 		}
317 	} while (!done && iterations--);
318 
319 	self->pt_havespecific = 0;
320 	pthread_mutex_lock(&self->pt_lock);
321 }
322